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One of the goals of macroeconomics is to explain the aggregate sources of changes in 

goods’ prices.  If there was a single consumption good in the world, as is often assumed in 

models, describing the price changes of consumption would be a trivial matter.  But, in 

reality, there are many goods and prices, and there is an important distinction between price 

changes that are equiproportional across all goods (absolute-price changes) and changes in 

the cost of some goods relative to others (relative-price changes).  The goal of this paper is to 

empirically separate these sources of price changes and to investigate their relative size, their 

determinants, and their role in the macroeconomic Phillips relation between inflation and 

output. 

Our data are the quarterly price changes in each of 187 sectors in the U.S. personal 

consumption expenditures (PCE) category of the national income and product accounts from 

1959:1 to 2006:2.  Denoting the rate of price change for the i’th good between dates t–1 and t 

by it, and letting t be the Nx1 vector that collects these goods’ price changes, we model 

their co-movement using a linear factor model: 

 

(1) t = ΛFt + ut 

 

The k factors in the kx1 vector Ft capture common sources of variation in prices.  

These might be due to aggregate shocks affecting all sectors, like changes in aggregate 

productivity, government spending, or monetary policy, or they might be due to shocks that 

affect many but not all sectors, like changes in energy prices, weather events in agriculture, 

or exchange rate fluctuations and the price of tradables.  The N×k matrix Λ contains 

coefficients (“factor loadings”) that determine how each individual good’s price responds to 

these shocks.  The Nx1 vector ut is a remainder that captures good-specific relative-price 

variability associated with idiosyncratic sectoral events or measurement error. 
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We see the empirical model in (1) as a useful way to capture the main features of the 

covariance matrix of changes in good’s prices.  To the extent that the factors in Ft explain a 

significant share of the variation in the data, then changes in goods' prices provide 

information on the aggregate shocks that macroeconomists care about.  We separate this 

aggregate component of price changes into an absolute-price component and possibly several 

relative-price components.  Denoting these by the scalar at and the Rt vector of size k−1 

respectively, this decomposition can be written as:  

 

(2) ΛFt = lat + ΓRt   

 

Absolute price changes affect all prices equiproportionately, so l is an N×1 vector of 

ones, while relative price changes affect prices in different proportions according to the 

N×(k−1) matrix Γ.  The first question this paper asks is whether the common sources of 

variation, ΛFt, can be decomposed in this way.  

One issue is that l may not be in the column space of Λ; that is, there may no 

absolute-price changes in the data.  Given estimates of the factor model, we can investigate 

this empirically using statistical tests and measures of fit.  Another issue is that the 

decomposition in (2) is not unique; that is, at and Rt are not separately identified.  The key 

source of the identification problem is easy to see: for any arbitrary (k−1)×1 vector , we 

have that lat + ΓRt = l(at + ´Rt) + ( − l´)Rt, so that (at, Rt) cannot be distinguished from 

(at + α′Rt, Rt).  The intuition is that the absolute change in prices cannot be distinguished 

from a change in “average relative prices” α´Rt, but there are many ways to define what this 

average means.1 

                                                 
1 One natural way is to assume that relative price changes must add up to zero across all goods. Reis and 
Watson (2007) use this restriction to define a numeraire price index that measures absolute price changes. A 
further identification issue in the model is that Rt = AA−1Rt for arbitrary non-singular matrix A.  For our 
purposes we will not need to separately identify the elements of Rt so this final issue is not important. 
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We overcome this identification problem by focusing instead on two independent 

components: “pure” inflation υt, and a low-dimensional relative price index ρt defined as: 

 

(3)     υt = at − E[at | 1{ }T
 τR ] 

(4)     ρt = E[Ft | 1{ }T
 τR ] 

 

Pure inflation is identified, and it has a simple interpretation: it is the common 

component in price changes that has an equiproportional effect on all prices and is 

uncorrelated with changes in relative prices at all dates.  We label it “pure” because, by 

construction, its changes are uncorrelated with relative-price changes at any point in time, 

and because it corresponds to the famous thought experiment that economists have used 

since David Hume (1752): “imagine that all prices increase in the same proportion, but no 

relative price changes.”2  The relative-price index captures all of the aggregate movements in 

goods’ price changes that are associated with some change in relative prices at some date.  In 

an economic model, these components map into different fundamental shocks.  For instance, 

an exogenous but anticipated increase in the money supply that leads all price-setters to raise 

their prices in the same proportion leads to pure inflation, while an unanticipated increase in 

money to which some firms respond, but others do not, leads to a change in the relative-price 

index.3  In this dichotomy, inflation due to changes in the money supply that are reactions to 

relative price changes also lead to changes in the relative-price index, since pure inflation is 

uncorrelated with any relative-price change. 

The first contribution of this paper consists in estimating the empirical model in (1)-

(4) providing a decomposition of inflation into three independent components: 

                                                 
2 The definition of pure inflation also appears in current textbooks (Olivier J. Blanchard, 2003: 33). 
3 In some sticky-price models, like a Calvo model in which the frequency of price adjustments differs across 
sectors, an anticipated increase in the money supply would not lead to pure inflation, as the price-setters are, by 
assumption, unable to all raise their prices at once.  
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(5) t = lνt + ρt + ut  

 

Our estimates show that these three components have differed markedly over the last 

40 years, and allow us to address two issues.  First, we are able to quantify the share of 

inflation’s variability associated with each of the components.  We find that for a typical 

good, its idiosyncratic relative-price component accounts for roughly 70 percent of its 

variability, so that macroeconomic shocks account for almost as much as 1/3 of the 

movement in sectoral prices.  Within aggregate sources of variation, pure inflation accounts 

for about 15-20 percent of the variability in PCE inflation.  Researchers must be cautious 

when comparing the predictions for inflation from models with a single consumption good to 

the data, because most of the variation in standard aggregate inflation indices is associated 

with relative-price movements, which these models ignore.  Second, we relate our estimates 

to other variables.  At business-cycle frequencies, pure inflation is barely correlated with 

money growth, while it has a correlation of around 0.5 with nominal interest rates.  The 

relative-price index is weakly related to food and energy prices, but it is strongly related to 

the relative price of non-durable and services.  However, even considering as many as four 

conventional measures of relative-price changes, the two relative-price factors in our baseline 

specification appear to be a more comprehensive measure of relative price movements.  

The second contribution of this paper is to re-examine the correlation between 

inflation and real activity.  Alban W. H. Phillips (1958) famously first estimated it, and a vast 

subsequent literature confirmed that it is reasonably large and stable (James H. Stock and 

Watson, 1999).  This correlation has posed a challenge for macroeconomists because it 

signals that the classical dichotomy between real and nominal variables may not hold.  The 

typical explanation for the Phillips correlation in economic models involves movements in 
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relative prices.  For instance, models with sticky wages but flexible goods prices (or vice-

versa), explain it by movements in the relative price of labor.  Models of the transaction 

benefits of money or of limited participation in asset markets explain the Phillips correlation 

by changes in the relative price of consumption today vis-à-vis tomorrow, or asset returns.  

Models with international trade and restrictions on the currency denomination of prices 

explain it using the relative price of domestic vis-à-vis foreign goods, or exchange rates.  We 

show that, after controlling for all of these relative prices, the Phillips correlation is still 

quantitatively and statistically significant.  Then, using our estimates, we control instead for 

the relative price of different goods.  This would be suggested by models with many 

consumption goods, as is the case in modern sticky-price or sticky-information models.  We 

find that, controlling for relative goods prices, the Phillips correlation becomes quantitatively 

negligible This suggests a more important role for rigidities in goods markets and a less 

important role for rigidities in labor or asset markets. 

 The paper is organized as follows.  Section I outlines the methods that we use to 

estimate the factor model and to compute the inflation components and their correlation with 

other variables.  Section II presents a stylized structural model of inflation dynamics that 

generates the decomposition in equation (5) and relates its three components to fundamental 

economic shocks.  Sections III and IV present estimates of the factor model, the factors, and 

their relation to observables.  Section V investigates the Phillips correlation, and section VI 

discusses the robustness of the conclusions in the previous two sections to different 

specifications.  Section VII concludes, summarizing our findings and discussing their 

implications.  

 

Relation to the literature 

There has been much research using statistical models to define and measure inflation 
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(see the survey by E. Anthony Selvanathan and D. S. Prasada Rao, 1994) but, as far as we are 

aware, there have been relatively few attempts at separating absolute from relative-price 

changes.  An important exception is Michael F. Bryan and Stephen G. Cechetti (1993), who 

use a dynamic factor model in a panel of 36 price series to measure what we defined above as 

at.  They achieve identification and estimate their model imposing strong and strict 

assumptions on the co-movement of relative prices, in particular that relative prices are 

independent across goods.  Moreover, while they use their estimates to forecast future 

inflation, we use them to separate inflation into components and to assess the Phillips 

correlation.4 

In methods, our use of large-scale dynamic factor models draws on the literature on 

their estimation by maximum likelihood (e.g., Danny Quah and Thomas J. Sargent, 1993, 

and Catherine Doz, Domenico Giannone and Lucrezia Reichlin, 2008) and principal 

components (e.g., Jushan Bai and Serena Ng, 2002, Mario Forni, Marc Hallin, Marco Lippi 

and Reichlin, 2000, and Stock and Watson, 2002).  We provide a new set of questions to 

apply these methods.   

Using these methods on price data, Riccardo Cristadoro, Forni, Reichlin and 

Giovanni Veronesi (2005) estimate a common factor on a panel with price and quantity series 

and ask a different question: whether it forecasts inflation well.  Marlene Amstad and Simon 

M. Potter (2007) address yet another issue, using dynamic factor models to build measures of 

the common component in price changes that can be updated daily.  Marco Del Negro (2006) 

estimates a factor model using sectoral PCE data allowing for a single common component 

and relative price factors associated with durable, non-durable, and services goods sectors.  

Finally, Filippo Altissimo, Benoit Mojon, and Paolo Zaffaroni (2009) estimate a common 

factor model using disaggregated Euro-area CPI indices and use the model to investigate the 

                                                 
4Bryan, Cecchetti and Roisin O’Sullivan (2002) use a version of the Bryan-Cecchetti (1993) model to study the 
importance of asset prices for an inflation index. 



7 
 

persistence in aggregate Euro-area inflation.  The common factor in these papers is not a 

measure of pure inflation, since it affects different prices differently.  

 Closer to our paper, in the use of dynamic factor models to extract a measure of 

inflation that is then used to assess macroeconomic relations suggested by theory, is Jean 

Boivin, Marc Giannoni and Ilian Mihov (2009).  They extract a macroeconomic shock using 

many series that include prices and real quantities, estimate the impulse response of 

individual prices to this shock, and then compare their shape to the predictions of different 

models of nominal rigidities.  In contrast, we use only price data (and no quantity data) to 

separate different components of inflation, so that we can later ask how they relate to 

quantities.  Moreover, we apply our estimates to assess unconditional correlations of real 

variables with inflation, whereas they focus on the link conditional on identified monetary 

shocks.  Finally, we separate relative prices and pure inflation, while their inflation measure 

is a mix of the two, so we ask a different set of questions. 

 

I. Measuring the Components of Inflation and Calculating Macro-

Correlations 

 

The model in (1)-(4) is meant to capture the key properties of the inflation series as 

they pertain to the estimation of their separate components, with an eye on the applications 

that we discussed in the introduction.  We use a factor model for the covariance between 

sectoral inflation rates because past research focusing on the output of different sectors, and 

macroeconomic variables more generally, found that this model is able to flexibly and 

parsimoniously account for the main features of the economic data (Stock and Watson, 1989, 

2005, Forni et al, 2000).  
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A. Estimating the Dynamic Factor Model 

The strategy for estimating the model can be split in two steps.  First, we choose the 

number of factors (k).  Second, we estimate the factors (at, Rt) and the factor loadings (), 

and examine the restriction that the factor loading on at is equal to unity.  We discuss each of 

these in turn. 

Choosing the number of factors, that is the size k of the vector Ft, involves a trade-

off.  On the one hand, a higher k implies that a larger share of the variance in the data is 

captured by the aggregate components.  On the other hand, the extra factors are increasingly 

harder to reliably estimate and are less quantitatively significant.  Bai and Ng (2002) have 

developed estimators for k that are consistent (as min(N,T) → ∞) in models such as this.  We 

compute the Bai-Ng estimators, which are based on the number of dominant eigenvalues of 

the covariance (or correlation) matrix of the data.  We complement them by also looking at a 

few informative descriptive statistics on the additional explanatory power of the marginal 

factor.  In particular, we estimate an unrestricted version of (1) that does not impose the 

restriction in (2) that the first factor has a unit loading.  We start with one factor and 

successively increase the number of factors, calculating at each step the incremental share of 

the variance of each good’s inflation explained by the extra factor.  If the increase in 

explained variance is large enough across many goods, we infer it is important to include at 

least these many factors.  These pieces of information lead us to choose a benchmark value 

for k.  In section VI, we investigate the robustness of the results to different choices of k. 

To estimate the factor model, we follow two approaches.  The first approach 

estimates (1)-(2) by restricted principal components.  It consists of solving the least-squares 

problem:  

 

(6) 2
,( , )

1 1

min ( )
N T

a i it t
i t

w a
 

   '
Γ R i tγ R   
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where i denotes the i’th row of  (from (2)) and wi are weights.  We set wi equal to the 

inverse of the sample variance of it so that the solution to (6) yields the restricted principal 

components associated with the sample correlation matrix of the inflation series (C. 

Radhakrishna Rao (1973), section 8g.2). When N and T are large and the error terms uit are 

weakly cross-sectionally and serially correlated, the principal components/least squares 

estimators of the factors have two important statistical properties that are important for our 

analysis (Stock and Watson, 2002, Bai, 2003, Bai and Ng, 2006).  First, the estimators are 

consistent.  Second, the sampling error in the estimated factors is sufficiently small that it can 

be ignored when the estimates, say ˆta  and ˆ
tR , are used in regressions in place of the true 

values of at and Rt.   

The second approach makes parametric assumptions on the stochastic properties of 

the three latent components (at, Rt, and uit), estimates the parameters of the model by 

maximum likelihood, and then computes estimates of the factors using signal extraction 

formulae.  In particular, we assume that (at, Rt) follow a vector autoregression, while uit 

follow independent autoregressive processes, all with Gaussian errors.5  The resulting 

unobserved-components model is: 

 

(7) it = at + γi′Rt + uit  

(8) ( ) ta
L
 
 
 t

Φ
R

 = t  

(9) βi(L)uit = ci +  eit   

 

                                                 
5 One concern with assuming Gaussianity is that disaggregated inflation rates are skewed and fat-tailed.  In 
general, skewness is not a major concern for Gaussian MLEs in models like this (Watson, 1989), but excess 
kurtosis is more problematic.  To mitigate the problem, we follow Bryan, Cecchetti and Rodney L. Wiggins II 
(1997) and pre-treat the data to eliminate large outliers (section III has specifics). 
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with {eit},{ejt}j≠i,{t} being mutually and serially uncorrelated sequences that are normally 

distributed with mean zero and variances var(eit) = 2
i , var(t) = Q.  To identify the factors, 

we use the normalizations that the columns of Г are mutually orthogonal and add up to zero, 

although the estimates of υt and ρt do not depend on this normalization. 

Numerically maximizing the likelihood function is computationally complex because 

of the size of the model.  For example, our benchmark model includes at and two additional 

relative price factors, a VAR(4) for (8), univariate AR(1) models for the {uit}, and N = 187 

price series.  There are 971 parameters to be estimated.6  Despite its complexity, the linear 

latent variable structure of the model makes it amenable to estimation using an EM algorithm 

with the “E-step” computed by Kalman smoothing and the “M-step” by linear regression.  

The web appendix to this paper describes this in more detail. 

While this exact dynamic factor model (7)-(9) is surely misspecified − for instance, it 

ignores small amounts of cross-sectional correlation among the uit terms, conditional 

heteroskedasticity in the disturbances, and so forth − it does capture the key cross sectional 

and serial correlation patterns in the data.  Doz, Giannone and Reichlin (2008) study the 

properties of factors estimated from an exact factor structure as in (7)-(9) with parameters 

estimated by Gaussian MLE, but under the assumption that the data are generated from an 

approximate factor model (so that (7)-(9) are misspecified).  Their analysis shows that when 

N and T are large, the factor estimates from (7)-(9) are consistent despite potential 

misspecification in the model.  

We carry out our analysis using the principal components estimates of the factors and 

the estimates from (7)-(9). To save space, unless noted otherwise, the results reported in 

sections III-V are based on the estimates from the parametric factor model (7)-(9); results 

with the principal components estimates of the factors are shown in section VI, which 

                                                 
6The number of unknown parameters is 186 + 185 (γi) + 187 (βi) + 187 (ci) + 187 (var(ei)) + 36 () + 3 (var(ε)) 
= 971, where these values reflect the normalizations used for identification. 
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focuses on the robustness of the empirical conclusions. 

The model in (1)-(2) imposes the restriction that the loading on the absolute-price 

factor must be one for all goods.  To investigate how restrictive this is, we calculate the 

increase in fit that comes from dropping the restriction, measured as the fraction of (sample) 

variance of i explained by the factors.  Moreover, we estimate the value of ςi in the N 

regressions: 

 

(10) it = ςiat + i′Rt + uit,  

 

using ˆta  and ˆ
tR  in place of at and Rt, as explained above.  When ςi = 1, this corresponds to 

our restricted model, so we can use the estimates of ςi to judge how adequate is this 

restriction.  

 

B. Computing the Aggregate Components of Inflation 

To separate the components of inflation and obtain time-series for pure inflation and 

the relative-price index (υt, ρt), we need to calculate the expectation of absolute-price changes 

conditional on relative-price changes in (3)-(4).  This requires a model of the joint dynamics 

of at and Rt.  We model this as a VAR, as in (8), which is estimated by Gaussian MLE in the 

parametric factor model, or by OLS using the principal-component estimators for the factors 

as in the two-step approach taken in factor-augmented VARs (Bernanke, Boivin, Eliasz, 

2005).  Finally, given estimates of (L), we compute the implied projection in (3) and (4) to 

obtain pure inflation and the relative-price index.  Details are provided in the web appendix. 

 

C. Computing Macro-Correlations at Different Frequencies 

As described in the introduction, we are interested in the relationship between pure 
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inflation and the relative-price index, υt and ρt, and other macro variables such as the PCE 

deflator, food and energy prices, the unemployment rate, or the nominal interest rate.  Let xt 

denote one of these macro variables of interest and consider the projection of xt onto leads 

and lags of υt (or ρt) 

 

(11) xt = δ(L)υt + et.  

 

The fraction of variability of xt associated with {υt} (or {ρt}) can be computed as the 

R2 from this regression.  Adding additional control variables, say zt, to the regression makes 

it possible to compute the partial R2 of x with respect to leads and lags of υt (or ρt) after 

controlling for zt. 

We will compute frequency-domain versions of these variance decompositions and 

partial R2’s (squared coherences or partial squared coherences).  One of their virtues is that 

they allow us to focus on specific frequency bands, like business cycle frequencies. Another 

virtue is that they are robust to the filter used to define the variables (e.g., levels or first 

differences).  In particular we report the squared coherence (the R2 at a given frequency) 

between x and υ (or ρ) averaged over various frequency bands.  When it is relevant, we also 

report partial squared coherences controlling for (leads and lags) of a vector of variables z 

(the partial R2 controlling for z at a given frequency), again averaged over various frequency 

bands.   

We are also interested in the relationship between Rt and standard measures of 

relative prices such the relative price of consumer durables, food, energy, and so forth.  Let qt 

denote a vector of these variables.  We summarize the correlation between R and q using 

canonical correlations, again implemented using frequency domain methods.  In particular 

we report the squared canonical coherences between R and q averaged over various 
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frequency bands.  

These various spectral R2 measures are computed using VAR spectral estimators, 

where the VAR is estimated, in the first instance, using xt, ˆta , ˆ
tR , and (if appropriate) zt, 

and in the second instance using ˆ
tR and qt.  The standard errors for the spectral measures are 

computed using the delta-method and a heteroskedastic-robust estimator for the covariance 

matrix of the VAR parameters. Details are provided in the web appendix. 

 

II. A Theoretical Framework 

 

The statistical decomposition in (5) expresses it in terms of three components: vt, 

which we have labeled pure inflation, t, which is a function of aggregate relative-price 

shocks, and uit, which captures sector-specific relative-price changes or measurement error. 

Structural macro models give rise to an analogous representation for inflation, where the 

components depend on the various shocks in the macro model. The specifics of the structural 

model determine the relative variances of the components and their correlation with non-

price variables such as real output, money, interest rates, and so forth. 

This section presents a simple economic model of inflation that relates key structural 

shocks to the statistical constructs v,  and u.  The goal is to help guide the reader’s intuition 

about the forces underlying the statistical factors that we estimate, so the model is kept as 

simple as possible.  We believe that its main conclusions are robust to the specific modeling 

choices (like the source of nominal rigidities, or the particular  functional forms), and that 

this model could serve as the starting point for a more structural empirical analysis of 

inflation's components in future work. 

 

A. The Model 
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The general-equilibrium setup follows Blanchard and Nobuhiro Kiyotaki (1987) and 

Michael Woodford (2003) allowing for many sectors.  A representative consumer 

maximizes: 

 

(12) 
1

0
0

ln
1

t t
t

t

L
E C










  
    

    

   

where δ < 1 is the discount factor and ψ is the elasticity of labor supply.  Total labor supplied 

is Lt and Ct is a consumption aggregator with elasticity  across N sectors, indexed by i, and 

across a continuum of varieties within each sector, indexed by j: 

 

(13)                         
/( 1)

1/ ( 1)/

1

,
N

t it
i

C N C
 

  


 



   
 

  with 

/( 1)1
( 1)/

0

( ) .it itC C j dj

 

 



 
  
 
  

 

At every date, the consumer purchases each good at price Pit(j) for a total spending of 

( ) ( )t it iti
S P j C j dj   , earns a wage Wt for labor services, and pays taxes at rate Tt.  She has 

three other sources income that are lump-sum: profits Dt from firms, transfers Gt from the 

fiscal authorities, and money injections Ht from the monetary authority.  Finally, the 

consumer holds money Mt to save and to purchase consumption goods.  The budget and 

cash-in-advance constraints are: 

 

(14) 
            1(1 ) ,t t t t t t t t tS M T W L M D G H         

(15) 
                    1 .t t tS M H 
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Firms are monopolistically competitive, each hiring labor Lit(j) to produce output 

Yit(j) with productivity Xit(j) subject to decreasing returns to scale at rate η < 1: 

 

(16) ( ) ( ) ( )it it itY j X j L j   

 

Finally, the two government authorities simply return their funds to consumers, so 

that Ht = Mt – Mt-1 and Gt = TtWtLt.  Market clearing in the goods and labor market require 

Yit(j) = Cit(j) and ( )t iti
L L j dj    respectively. 

In this simple economy, there is uncertainty about taxes Tt, the money supply Mt, and 

productivity Xit(j), each of which depends on shocks.  Letting small letters denote the natural 

logarithm of the corresponding capital letters: 

 

(17) ( ) ( )it it it i tx j x j         

(18) 
t t t tm mt         

(19) ln(1 )t tT t      

 

The six independent shocks (in Greek letters with time subscripts) are: firm-specific 

productivity (), sectoral productivity (χ), aggregate productivity with a sector-specific 

impact (ζ), anticipated monetary policy (ω), unanticipated monetary policy (μ) and 

anticipated tax changes (τ). In (18) note that  the monetary policy rule responds 

systematically to productivity shocks.  For simplicity, we assume that each shock follows an 

independent random walk, and that the variety-specific and sector-specific shocks 

approximately average to zero in each time period, 
1

0
( ) 0it j dj   for all i and 1

1
0

N

iti
N 




.  We further assume that mt grows over time at a rate m  that is large enough so that 
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δEt(Mt/Mt+1) < 1, ensuring that the cash-in-advance constraint always binds. 

We model price rigidity through imperfect information as in Robert E. Lucas Jr. 

(1973) and N. Gregory Mankiw and Reis (2002).  In particular, we assume that at the 

beginning of every period, all firms learn about the past values of the six shocks, as well as 

the current values of the anticipated fiscal and monetary shocks.  However, only a randomly 

drawn fraction i of firms in each sector observe the contemporaneous realization of the other 

four shocks before making their pricing decisions.  The remaining 1–i fraction of firms learn 

these shocks only in the following period, and we denote their expectations with this 

incomplete information by ˆ (.)E .  This assumption of imperfect information has a long 

tradition in macroeconomics (Woodford, 2003, chapter 3, labels it the “neoclassical” case) 

and is in line with the recent work on sticky-information Phillips curves. 

 The web appendix solves for the equilibrium in this economy, showing that it can 

be reduced to the following equations for pit, pt, and yt (ignoring constants): 
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where α and  are two positive parameters that depend on the preference and production 

parameters, ( )it itx x j dj   
is sectoral productivity and xt = 1

1

N

iti
N x

  is average 

productivity .  The first equation is the fundamental pricing equation in new Keynesian 

models, relating sectoral prices to marginal costs, which in this model depend on aggregate 

output, sectoral productivity, and taxes.  The second equation is a log-linear approximation to 



17 
 

the static cost-of-living price index, which we denote by pt.  The third equation is the 

quantity theory relation that follows from the cash-in-advance constraint.  This basic 

reduced-form structure is shared by many modern models of inflation dynamics. 

A few steps of algebra show that sectoral price changes in this economy follow the 

same linear dynamic factor model in (5), t = lνt + Θρt + ut, that we will estimate in the 

data.  The three components are: 
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where   and   are the sectoral averages of i and i  respectively, Δ = (1–L)  is the first-

difference operator, and Θi on the left-hand side of (24) denotes the factor loading for it.  

Aggregate output in turn is: 

 

(26)  
1

11

1 (1 ) 1 (1 )t t t t ty
       

    

                      
  

 

B. Relation Between the Theory and the Estimates 

 We ask, in the model, the same two questions that we will ask in the data: what 

part of price changes is due to pure inflation, relative-price aggregate shocks, and 
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idiosyncratic shocks? And, which shocks account for the Phillips correlation between real 

activity and inflation?  Answering these questions shock by shock (table 1 summarizes the 

results): 

Anticipated money (ω): When money grows by 1 percent and all price-setters know 

about it, then all raise their prices by exactly 1 percent once and for all.  No relative prices 

change and there is pure inflation.  The quantity theory in turn implies that output is 

unchanged so there is no Phillips correlation.  This is a result of the absence of money 

illusion in this model, as rational consumers and firms realize that nothing but units have 

changed, so there is no reason to change any real actions. 

Unanticipated money (μ):  In this case, only a fraction i of the firms in each sector 

change their prices in response to a shock while the others remain inattentive.  As a result, 

sectoral inflation is different across sectors, depending on the share of attentive firms in each 

sector, so there is an aggregate relative-price change.  A monetary expansion raises output, 

because of the information stickiness of prices, and thus there is a Phillips correlation. 

Aggregate productivity (ζ):  This shock has a similar effect as an unanticipated money 

shock, both through its direct effect and through the systematic response of monetary policy.  

Either because it affects the productivity of different sectors differently, or because of 

different information stickiness across sectors, the shock induces a change in relative prices.  

Output increases when firms become more productive so there is a Phillips correlation. 

Sectoral productivity (χ):  These shocks map directly into the idiosyncratic shocks to 

relative prices in our measurement model.  Because we assumed that an approximate law of 

large numbers holds, they do not affect output, so they do not generate a Phillips correlation. 

Firm-specific productivity ():  These shocks are an example of something that the 

statistical model will miss.  While these shocks induce relative-price changes within each 

sector, they wash out at the sectoral level so they do not affect relative sectoral prices. 



19 
 

Likewise, while they affect the allocation of production across firms, within each sector, they 

aggregate to zero on aggregate, so they neither move aggregate output nor prices.  Whether 

these shocks are important or not cannot be answered without more disaggregated data. 

Anticipated tax changes (τ):  When taxes increase, the representative agent raises her 

wage demand. As this affects all firms equally, all raise their price in the same amount.  

Therefore, there is pure inflation.  However, output falls as the return to work has fallen.  The 

Phillips correlation results not from a change in the relative price of goods, but rather from a 

change in the relative price of labor versus consumption. 

To conclude, our empirical estimates are informative about the role of different 

shocks in this economy.  Our first empirical contribution, the estimates of the variability of 

overall inflation due to pure inflation, aggregate sources of relative prices, and idiosyncratic 

shocks, pins down the relative variance of anticipated versus unanticipated shocks and of 

aggregate versus sectoral shocks.7  Our second empirical contribution, whether the Phillips 

correlation is still present after we control for goods’ relative prices, tells us whether this 

famous relation is due to monetary and productivity shocks via goods’ relative prices as 

models of monopolistic competition emphasize, or whether it is due instead to shocks to 

other relative prices like real wages. 

 

III. The Estimated Factor Model 

 

A. The Data 

The price data are monthly chained price indices for personal consumption 

expenditures by major type of product and expenditure from 1959:1 to 2006:6.  Inflation is 

                                                 
7Our definition of pure inflation only allows us to gauge the relative variance of the unsystematic parts of 
money supply. To identify the policy rule, in this case the coefficient  , requires more structure just as in the 
VAR literature on identifying monetary policy shocks. Also, as in that literature, a small role for pure inflation 
should not be confused for a small role for monetary policy. 
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measured in percentage points at an annual rate using the final month of the quarter prices: it 

= 400×ln(Pit/Pit−1), where Pit are prices for March, June, September, and December.8  Prices 

are for goods at the highest available level of disaggregation that have data for the majority 

of dates, which gives 214 series.  We then excluded series with unavailable observations (9 

series), more than 20 quarters of 0 price changes (4 series), and series j  if there was another 

series i  such that Cor(it, jt) > 0.99 and Cor(it, jt) > .99  (14 series).  This left N = 187 

price series.  Large outliers were evident in some of the inflation series, and these 

observations were replaced with centered 7-quarter local medians.  A detailed description of 

the data and transformations are given in the web appendix. 

As the economic model from section II makes clear, the level of aggregation across 

goods and time affects the interpretation of the estimated model.  For example, as stressed in 

section II, the sectoral data provide no information about the relative prices of goods within a 

sector.  The hope, therefore, is that the sectoral information is rich enough to capture 

important aggregate shocks.  Furthermore, as with all models of information flows and 

discrete actions, the definition of the appropriate time period is important.  The use of 

quarterly data means, for example, that equiproportional changes in all sectoral  price indexes 

within the quarter are included in at, even if these changes occur at different times throughout 

the quarter.  Said differently, the relative price factors, Rt, capture only those relative prices 

changes that persist for at least one quarter.  Because most macroeconomic analyses focusing 

on aggregate shocks use quarterly data, we are not departing from tradition. 

One feature of these data is the constant introduction of new goods within each sector 

(Christian Broda and David Weinstein, 2007).  Insofar as our statistical factor model of 

sectoral price changes remains a good description of their co-movement during the sample 

period, this should not affect our results.  Another common concern with price data is the 

                                                 
8We considered using monthly, rather than quarterly, price changes, but found that the extra idiosyncratic error 
in monthly price changes outweighed the benefit of more observations. 
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need to re-weight prices to track expenditure shares and measure their effects on welfare.  

Our model in (1)-(5) does not require any expenditure shares, since the objective of 

measuring pure inflation is not to measure the cost of living, but rather to separate absolute 

from relative price changes. 

 

B. The Number of Factors and the Estimated Parameters 

Panel (a) of figure 1 shows the largest twenty eigenvalues of the sample correlation 

matrix of the inflation data.  It is clear that there is one large eigenvalue, but it is much less 

clear how many additional factors are necessary.  The Bai-Ng estimates confirm this 

uncertainty: their ICP1, ICP2 and ICP3 estimates are 2 factors, 1 factor, and 11 factors 

respectively.  Panel (b) of figure 1 summarizes instead the fraction of variance explained by 

unrestricted factor models with 1 through 4 factors for each of the 187 inflation series.9  To 

make the figure easier to read, the series have been ordered by the fraction of variance 

explained by the 1-factor model.  The uncertainty in the appropriate number of factors is 

evident here as well: the second factor improves the fit for several series, but it is unclear 

whether a third, fourth or fifth factor is necessary.  In our benchmark model we will use 3 

factors (at and two relative price factors in Rt).  We summarize the key results for other 

choices in section VI.10 

We use the parametric factor estimates from (5)-(7) in our benchmark calculations; 

results using the principal components estimators are similar and are summarized in Section 

VI.  The VAR for the factors in the benchmark specification uses 4 lags, guided by a few 

                                                 
9 These measures were computed as 2 21 [var( ) / ]

ii iR u s  , where var( )iu  is the estimated variance of ui implied 

by the estimated model and 2

i
s is the sample variance of i. 

10 There is also uncertainty about the number of dynamic factors, which corresponds to the rank of the 
covariance matrix of  in (8). The estimator developed in Bai and Ng (2007) indicates that the number of 
dynamic factors is the same as the number of static factors, while the estimators discussed in Dante Amengual 
and Watson (2007) and Hallin and Roman Liska (2007) suggest one dynamic factor. In our parametric model 
we will not constrain the rank of the covariance matrix of . 
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diagnostic tests (not reported).  It is well-known that inflation series are quite persistent and it 

is difficult to reject the null hypothesis that they have a unit root in the autoregressive 

representation (Pivetta and Reis, 2007).  When we estimate the VAR in (6), we find that 

there are several large roots in (L) and one that is very close to unity.  In our benchmark 

model, we impose two unit roots in (L); that is, at and one of the relative price factors are 

treated as I(1) processes.  Results in which these unit roots are not imposed turn out to be 

very similar, and again, we summarize results for these models in section VI.  Finally, we use 

only one lag in the univariate autoregressions of uit, as suggested by diagnostic tests.  The 

estimated AR(1) coefficients for uit are typically small, suggesting I(0) variation in the 

idiosyncratic relative inflation rates.  

Values for the estimated parameters for the benchmark model are given in the 

appendix. 

 

C. The Unit Coefficient on at 

 Panel (a) of figure 2 summarizes the fit of unrestricted factor models that do not 

impose the unit restriction on the loading of the absolute-price factor.  It shows that the 

increase in fit, measured by R2 is less than 3 percent for 80 percent of the series.  The median 

increase is less than 1 percent.  The unrestricted model appears to fit appreciably better only 

for a small number of price series: for 10 series the increase in R2 exceeds 10 percent.  Panel 

(b) of figure 2 shows the ordered values of the estimates of ςi from (10),  that is the least-

squares coefficient from regressing it on ˆta controlling for ˆ
tR .  Most of the estimates are 

close to 1.  Panel (c) shows the ordered values of the (4-lag Newey-West) t-statistic testing 

that ςi =1.  There are far more rejections of the restriction than would be expected by 

sampling error, with over 30 percent of the t-statistics above the standard 5 percent critical 

values and over 20 percent above the 1 percent critical values.  These results suggest that, as 
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a formal matter, the unit factor loading restriction in (2) appears to be rejected by the data.  

That said, the results in panels (a) and (b) suggest that little is lost by imposing this 

restriction. 

 

IV. Decomposing Sectoral Inflation 

 

Figure 3 shows the historical decomposition of headline PCE inflation (top panel) and 

a representative sector, “major household appliances” (bottom panel).  By construction, the 

pure-inflation (v) component is identical in the two plots (note the difference in the scales), 

while the idiosyncratic (u) component differ across goods, and the aggregate relative prices 

components () differs in its impact ().  Because υt = at − E[at | 1{ }T
 τR ], we have plotted 

the data from 1965-1999 to eliminate uncertainty associated with pre-sample and post-

sample values of Rt. 

Pure inflation is somewhat smoother than the other series and less volatile.  The 

standard deviation of υt is 0.3 percent, while the standard deviation of  PCE inflation 

changes is 1.7 percent.  Sectoral inflation is more volatile: the standard deviation for changes 

in “Major Household Appliances” is 4.1 percent, and the median across all 187 sectors is 5.9 

percent.  Evidently, aggregate relative price changes () explain much of the low-frequency 

variability in headline PCE.  For example, much of the increases in inflation in the early 

1970s and the declines in inflation in the 1990s were associated with changes in the relative 

price factor.  That said, pure inflation (v) did account for over 2 percent of the increase in 

inflation from 1970-1980 and over 2 percent of the subsequent decline from 1980-1983. 

 

A. The Relative Size of the Components 

Table 2 shows the fraction of the variability of overall inflation associated with each 
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of its components, either averaged over all frequencies or just over business-cycle 

frequencies.  The first row of the table uses the PCE deflator as the measure of overall 

inflation and shows that, at business-cycle frequencies, 15 percent of the movements in the 

series are accounted for by pure inflation, 76 percent is accounted for by the relative-price 

index, and the remainder is accounted for by the idiosyncratic sectoral shocks.  The second 

and third row look at two other commonly used measures of overall inflation, the GDP 

deflator and the Consumer Price Index, and show similar results.  The 2-dimensional 

relative-price index captures most of the variance in aggregate measures of inflation, while 

pure inflation plays a smaller but not negligible role.  Including all frequencies, the role of 

pure inflation rises (with the exception of the CPI) while the relative-price index is 

significantly less prevalent. 

These results have implications for macroeconomic models.  For example, in terms of 

the model of section II, this 5-to-1 ratio in the relative variances of the relative-price index 

and pure inflation would say that a weighted average of the variance of anticipated shocks is 

significantly less volatile than an average of the unanticipated shocks.  More generally, it is 

customary to compare the predictions of models with a single good for inflation with, for 

example, the data on the PCE deflator.  The results in table 2 show that it is dangerous to do 

so since as much as 85 percent of the movements in the PCE deflator are driven by changes 

in the relatives prices of different goods.  For some questions, it might be better to compare 

the predictions of these models with our estimated series for pure inflation. 

Two common approaches to strip relative-price movements from inflation are to 

exclude the prices of food and energy or to look at the median inflation across the different 

sectors.  The next two rows in table 2 shows that these rough attempts at controlling for 

relative-price changes go in the right direction but remain quite far from excluding all 

relative-price changes.  Core inflation is less closely tied to the relative-price index and more 
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related to pure inflation, but the squared coherences are still only slightly different, 69 

percent and 21 percent respectively.  For median CPI inflation, the idiosyncratic component 

is higher, but the two aggregate components are also only slightly lower. 

The last section of table 2 summarizes the distribution of variance decompositions for 

the 187 sectoral inflation rates. Looking at the 25th and 75th quartile, the relative-price index 

accounts for between 15 percent and 42 percent of the overall variability of sectoral inflation 

rates, and pure inflation between 2 percent and 8 percent.  As expected, the idiosyncratic 

relative-price shocks account for a much bigger share of sectoral price movements than they 

do for aggregate inflation measures.  More remarkable, at the median, almost 1/3 of relative-

price movements at the sectoral level are accounted for by the aggregate measures of pure 

inflation and the 2-dimensional relative-price index.  Using sectoral price data, these findings 

confirm a result found for different macroeconomic datasets, countries, and time periods: a 

few aggregate factors (in our case three) can account for a large share of the variability in the 

economy (Stock and Watson, 1989, 2005, Forni et al, 2000).  

 

 

B. Components of Inflation and other Observables 

Table 3 compares the 2-dimensional index of relative prices with several 

conventional measures of relative-price changes.  In the first row is the change in the price of 

durables relative to the headline PCE.  The squared canonical coherence of this measure of 

relative prices with the relative price factors is high, around 0.5, but this single indicator falls 

short of capturing all of the variability in relative prices.  The next two rows look at the 

relative prices of non-durables and services.  The link between these and the two relative-

price factors is higher, but they are still quite far from being a comprehensive indicator for 

relative-price changes.  The next two rows show the relative price of food and energy, 
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popular measures of relative-price shocks in the macro literature.  These are still statistically 

significant, but they perform significantly worse.  In spite of the attention devoted to the 

price of energy, Table 3 suggests that it can account for only roughly one third of the 

relative-price shocks hitting the U.S. economy at business cycle frequencies. 

Figure 4 illustrates these results by showing the projection of the change in the 

relative prices of services and energy onto 2 leads and lags of ˆ
tR , the estimated vector of 

relative price factors. For services, the regression’s adjusted R2 is 0.56, but for energy it falls 

to 0.22.  Both series can deviate quite significantly from the relative-price index, but energy 

prices provide a particularly poor fit to the aggregate movements in relative prices. 

Table 3 indicates that combining food and energy captures a larger share of the 

movements in relative prices, but still only comparable to the share accounted for by 

services. Finally, the resulting 4-dimensional index of relative prices (durables, nondurables, 

food and energy) can only account for at most 87 percent of the variability of relative prices 

captured by the two relative-price factors.  These results suggest that, given its parsimony 

and comprehensiveness, the two relative-price factors estimated from the statistical model 

provide a useful summary of relative-price shocks in the U.S. economy. 

The bottom panel of Table 3 investigates the correlation of pure inflation with 

measures of monetary policy and the term spread.  Milton Friedman and Anna J. Schwartz 

(1963) famously observed that in the long run, money growth and inflation are tightly linked.  

Equally famously, Irving Fisher (1930) and many that followed showed that there is an 

almost as strong link between nominal interest rates and inflation in the long run.  At 

business-cycle frequencies though, these correlations are much weaker.  The correlation 

between money growth and inflation is unstable and typically low (Stock and Watson, 1999), 

while the correlation between inflation and nominal interest rates is typically higher, but well 

below its level at lower-frequencies (Frederic S. Mishkin, 1992).  Panel b of Table 3 shows 
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the average squared coherence of pure inflation and measures of money growth (M0, M1, 

and M2) and different short-term nominal interest rates (the federal funds rate and the 3-

month Treasury bill rate).  The correlation between money growth and pure inflation is very 

close to zero for all measures.  The correlation between nominal interest rates and pure 

inflation is significantly higher and statistically significant at conventional significance 

levels, especially at business-cycle frequencies.  These correlations are much like 

correlations found by other researchers using overall measures of inflation.  The final row of 

Table 3 shows the correlation of pure inflation with the term spread (the difference between 

to yield on 10-year Treasury bonds and 3-month Treasury bills), where the results look much 

like the results for short-term rates.  

In terms of the model of section II, these estimates again provide useful information 

on the relative size of different shocks.  Identifying some sectors in the model with services, 

non-durables, food or energy, the results in panel (a) of table 3 provide information on the 

relative size of the sectoral-specific productivity shocks.  In turn, the results in panel (b) of 

the table indicate the relative weight of anticipated monetary shocks vis-à-vis unanticipated 

monetary shocks and fiscal shocks. 

 

V.  The Phillips Correlation 

 

One of the most famous correlations in macroeconomics, due to Phillips (1958), 

relates changes in prices with measures of real activity.  The first panel of table 4 displays the 

Phillips correlation using our measures of squared coherence.  At business-cycle frequencies, 

measuring inflation with the PCE deflator and real activity with GDP, the average squared 

coherence (R2) is 0.28, corresponding to a “correlation” of roughly 0.5.  The Phillips 

correlations for industrial production, consumption, employment or the unemployment rate 
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are all similarly large. 

The second and third panels in table 4 show that the usual controls for relative prices 

reduce the strength of this correlation.  Controlling for intertemporal relative prices (using 

short-term interest rates and stock returns), for the relative price of labor and consumption 

(using real wages), or for the relative price of domestic and foreign goods (using the real 

exchange rate) cuts the Phillips correlations in approximately half.  Still, these correlations 

remain quantitatively large and statistically significant. 

The fourth and fifth panels in table 4 include instead two of the conventional 

measures of relative prices that we discussed in the previous section.  Controlling for food 

and energy relative prices, the Phillips curve relation falls significantly, but the squared 

coherences remain sizeable and at least 0.10 for two of the five real series.  Including all four 

relative-price indicators drives down the Phillips relation to between 0.03 and 0.08 (although 

with four relative price series included in the VAR used to estimate the coherences, one 

might conjecture that some of this decline is associated with over-fitting). 

The last panel of table 4 introduces as controls instead the two relative price factors 

from the estimated model.  Strikingly, controlling for ρt, the Phillips correlation disappears 

over business cycle frequencies.  The largest squared coherence point estimate between PCE 

inflation and measures or real activity, controlling for our relative-price index, is 0.03 and the 

point estimates are statistically insignificant at the 10 percent level for all measures of real 

activity.  Apparently, the empirical regularity that Phillips first brought attention to is 

essentially entirely explained by the two relative-price factors.  

Table 5 provides a different perspective by decomposing the Phillips relation into the 

inflation components that we have separated.  The first panel shows that removing the 

idiosyncratic sources of inflation variation makes the Phillips relation much stronger than it 

was with headline PCE inflation.  At business-cycle frequencies, the squared coherence 
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between the aggregate components of inflation and measures of real activity is as high as 70 

percent, and it is highly statistically significant at conventional significance levels.  The 

second panel controls for the relative-price index, so it shows the squared coherence between 

pure inflation and measures of real activity.  Again, controlling for relative prices essentially 

eliminates the Phillips correlation, with the squared coherences falling by a factor of roughly 

one-seventh.  According to the model in section II, the little that remains of the relation 

between pure inflation and real activity could be due to omitted relative prices like wages.  

Panels (c) and (d) control for real wages, asset prices and exchange rates, which cuts the 

squared coherences a little further.  

The results in these tables suggest that a large part of the Phillips correlation, that has 

puzzled macroeconomists for half a century, is explained by changes in good’s relative 

prices.  Changes in the unit of account, as captured by pure inflation, do not seem to affect 

real variables, consistent with anticipated money shocks accounting for most of pure 

inflation.  However, note that a few of the estimates in table 5 are statistically significant, 

even if small, even after controlling for other relative prices.  This suggests that some money 

illusion may be present, although it seems to explain very little of the variability of real 

activity. 

 

VI.  The Robustness of the Results 

 

Table 6 investigates the robustness of the key empirical conclusions to four aspects of 

the model specification: (i) the number of estimated factors, (ii) the method for estimating the 

factors (signal extraction using the parametric factor model (5)-(7) versus principal 

components on (4)), (iii) the imposition of unit roots in the factor VAR for the parametric 

model, and (iv) the number of lags and imposition of unit roots in the VAR spectral estimator 
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used to compute the various coherence estimates.  The table focuses on seven key results 

described below. 

The first row of the table shows results for the benchmark model, where the first 

column provides details of the factor estimates and where “(1,1,0)” denotes a parametric k=3  

factor model where the first and second factor are I(1) processes and the third is I(0).  The 

next column, labeled “VAR”, summarizes the specification of the VAR used to compute the 

spectral estimates, which for the benchmark model involves 4 lags of (at, Rt) with at and the 

first element of Rt entered as first differences (D,4). 

Results shown in the column labeled (1) are for the fraction of the business cycle 

variability of headline PCE inflation explained by the relative price factors () and pure 

inflation (v); for the benchmark model these are taken from the first row of Table 2.  Results 

shown in the column labeled (2) are the average squared canonical coherences between the 

relative inflation factors Rt and relative inflation rates for durables, nondurables, food, and 

energy (benchmark model from Table 3, panel a, final row).  Columns (3) and (4) show the 

average squared coherence between pure inflation and the growth rate of M2 and the 3-

month Treasury bill rate (benchmark model from Table 3, panel b, rows 3 and 5).  Column 

(5) shows the average coherence between real GDP and headline PCE inflation after 

controlling for the estimated relative inflation factors (benchmark model, Table 4, panel f, 

first row).  The final two columns show the fraction of business cycle variability explained 

by the factors (at, Rt) (Column 6) and the fraction explained by pure inflation, vt (benchmark 

models results from Table 5, row 1 of panels a and b). 

Looking across the entries in the table, the key quantitative conclusions from Tables 

2-5 appear to be robust to the changes in specification studied in Table 6.  From column (1), 

relative inflation factors explain a significant fraction of the business cycle variability of 

aggregate inflation (as measured by the headline PCE deflator), while pure inflation (v) 
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explains a smaller, but non-negligible fraction.  Observable measures of relative price 

inflation are reasonably highly correlated with one of the relative inflation factors (the first 

canonical coherence is roughly 0.90), but less highly correlated with the other factor (the 

other canonical coherences are generally less than 0.50).  For all of the specifications the 

estimates of pure inflation are very weakly correlated with M2, but more highly correlated 

with nominal interest rates.  Finally, in all of the specifications, controlling for the relative 

inflation factors essentially eliminates the correlation between PCE inflation and real GDP 

(column 5), and, while the estimated factors are highly correlated with real GDP (column 6), 

the pure inflation factor is very weakly correlated with real GDP (column 7). 

 

VII.  What Have we Done and Why Does it Matter? 

 

 In this paper, we decomposed the quarterly change in sectoral goods’ prices into 

three components: pure inflation, an aggregate relative-price index, and idiosyncratic relative 

prices.  We used different estimation techniques and specifications to estimate these 

components, proposed a simple method to compute their correlations with other 

macroeconomic variables, and presented a stylized structural model that showed how these 

components relate to different economic shocks. 

  Our first finding was that pure inflation, the relative-price index, and conventional 

measures of inflation, like the PCE deflator or its core version, can all differ markedly.  Pure 

inflation is smoother and less volatile than the others, and much of the low-frequency swings 

in standard inflation measures are associated with changes in relative prices.  More 

concretely, a large part of the increase in inflation in the early 1970s and the decrease in 

inflation in the 1990s was associated with changes in relative prices, while some of the 

increase in the late 1970s and the decrease in inflation in the early 1980s was associated with 
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changes in pure inflation.   

Second, we found that aggregate shocks account for roughly 90 percent of the 

variability of aggregate inflation, and a still sizable 1/3 of the variability of sectoral inflation 

rates.  Within aggregate shocks, the relative-price index dominates, but pure inflation is also 

quantitatively significant, accounting for 15-20 percent of the variability in inflation 

measured by conventional price indices, like the PCE deflator, the GDP deflator, or the CPI.  

This finding has at least two implications for the work of economic theorists building models 

to explain inflation.  First, it shows that comparing the predictions of one-good models with 

common measures of inflation is flawed.  Changes in the relative prices of goods are large 

enough that they can easily lead to mistakenly accepting or rejecting models that ignore this 

feature of the data.  Second, our estimates provide statistics that can be used to calibrate the 

relative variances of anticipated versus unanticipated shocks, and aggregate versus sectoral 

shocks.   

Our third finding was that conventional measures of relative-price inflation, such as 

the relative inflation of non-durables, food and energy, or combinations of several of them, 

all fall short of capturing most of the relative-price inflation in the data.  Our 2-dimensional 

relative-price index provides a parsimonious yet comprehensive measure of relative-price 

inflation that we hope will be useful in other studies that either need to statistically control 

for relative-price changes, or that seek to provide economic models of the main sources of 

relative-price movements.  Pure inflation is only partly related to monetary policy variables.  

The link to the growth rate in monetary aggregates is weak, but the correlation with nominal 

interest rates at business cycle frequencies is stronger (approximately 0.5). 

Our most striking finding was perhaps that, once we controlled for the two relative 

price factors, the Phillips correlation became quantitatively insignificant.  Therefore, the 

correlation between real quantity variables and nominal inflation variables observed in the 



33 
 

data can be accounted for by changes in goods’ relative prices.  This implies that models that 

break the classical dichotomy via nominal rigidities in good’s price adjustment are likely 

more promising than models that rely on money illusion on the part of agents.  Moreover, 

changes in the relative prices of labor and intertemporal prices were less successful in 

explaining the Phillips correlation, suggesting a less important role for rigidities in the labor 

and asset markets. 

To conclude, the distinction between absolute and relative prices is a central one in 

economic theory.  Models of inflation have strong predictions on the relative sizes of pure 

and relative-price inflation and on what accounts for the Philips correlation.  However, 

separating absolute and relative-price movements is naturally difficult, since the two 

concepts themselves are more a fruit of thought experiments than something easily observed.  

As a result, there have been few systematic attempts to measure and separate them in the 

data.  The goal of this paper was to make some progress on this decomposition and on 

understanding its effects.  Our estimates are certainly not perfect.  We hope, however, that 

they are sufficiently accurate that future research can look deeper into the time-series and the 

moments that we provide, and that by stating the challenges and putting forward a 

benchmark, we can motivate future research to come up with better estimators.  Likewise, we 

are sure that our findings will not settle the debates around the Phillips correlation.  Our more 

modest hope is that they offer a new perspective on how to bring data to bear on this long-

standing question.  
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Table 1. Fundamental shocks, inflation components and the Phillips correlation 

 

Fundamental shocks Inflation component Phillips correlation? 

Anticipated money (ω) ν No 

Unanticipated money (μ) ρ Yes 

Aggregate productivity (ζ) ρ Yes 

Sectoral productivity (χ) u No 

Firm-level productivity ()   No 

Anticipated tax changes (τ) ν Yes 
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 Table 2. Fraction of Variability of Inflation associated with Aggregate Components 

Average squared coherence over frequencies (standard errors in parentheses) 

 

Inflation measure All frequencies π/32 ≤ ω ≤ π/6 

 ρt νt ρt νt 

Aggregate Inflation Rates     

   Headline PCE 0.51 (0.05) 0.16 (0.04) 0.76 (0.10) 0.15 (0.07) 

   Headline GDP 0.35 (0.06) 0.21 (0.04) 0.71 (0.11) 0.15 (0.07) 

   Headline CPI 0.47 (0.04) 0.12 (0.03) 0.76 (0.09) 0.15 (0.06) 

   Core PCE 0.32 (0.05) 0.24 (0.05) 0.69 (0.11) 0.21 (0.09) 

   Median CPI 0.39 (0.08) 0.14 (0.04) 0.64 (0.13) 0.18 (0.08) 

     

187 Sectoral Inflation Rates     

   25th Percentile 0.13 0.03 0.15 0.02 

   Median 0.19 0.05 0.25 0.05 

   75th Percentile 0.25 0.07 0.42 0.08 

Notes: PCE is the Personal Consumption Expenditures deflator, GDP is the Gross Domestic 
Product deflator, and CPI is the Consumer Price Index. Median CPI inflation is from the 
Federal Reserve Bank of Cleveland and these data are available for t ≥ 1967:2. For the last 
three rows, we computed the fraction of variability explained by pure inflation for each of the 
187 goods’ series, and report the 25, 50, and 75 percent values. 
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Table 3. The Components of Inflation and Other Observables 
Average squared canonical coherence over frequencies (standard errors in parenthesis) 

 
Observable Frequencies 

All /32 ≤  ≤ /6 
a. Relative-Price Index ρt 

   Durables 0.42 (0,06) 0.58 (0.09) 
   Nondurables 0.47 (0.05) 0.72 (0.09) 
   Services 0.48 (0.05) 0.75 (0.08) 
   Food 0.20 (0.05) 0.55 (0.14) 
   Energy 0.30 (0.05) 0.37 (0.11) 
   Food, Energy 0.53 (0.04)   0.06 (0.03) 0.78 (0.08)   0.10 (0.08) 
   Durables, Nondurables, 
Food, Energy 

0.62 (0.04)   0.25 (0.04) 0.87 (0.05)   0.42 (0.10) 

   
b. Pure Inflation νt 

   M0 0.04 (0.02) 0.01 (0.02) 
   M1 0.06 (0.03) 0.01 (0.02) 
   M2 0.03 (0.02) 0.01 (0.02) 
   Federal Funds Rate 0.11 (0.04) 0.27 (0.10) 
   3-Month T-bill Rate 0.12 (0.03) 0.27 (0.12) 
   Term Spread  
   (10Y-3Month) 

0.08 (0.04) 0.27 (0.11) 
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Table 4. Fraction of Variability of Real Variables associated with PCE Inflation  
Average squared coherence over frequencies (standard errors in parenthesis) 

 
Real Variable Frequencies 

All /32 ≤  ≤ /6 
a. No Controls 

   GDP 0.11 (0.05) 0.28 (0.12) 
   Industrial Production 0.13 (0.06) 0.27 (0.14) 
   Consumption 0.15 (0.06) 0.28 (0.13) 
   Employment 0.19 (0.06) 0.32 (0.12) 
   Unemployment Rate 0.22 (0.07) 0.34 (0.15) 

 
b. Controls: Interest Rates, Stock Returns, Wages  

   GDP 0.09 (0.05) 0.14 (0.07) 
   Industrial Production 0.13 (0.05) 0.12 (0.05) 
   Consumption 0.07 (0.04) 0.12 (0.06) 
   Employment 0.15 (0.04) 0.24 (0.09) 
   Unemployment Rate 0.14 (0.04) 0.18 (0.07) 

   
c. Controls: Interest Rates, Stock Returns, Wages, Exchange Rates (t  ≥ 1973) 

   GDP 0.14 (0.05) 0.17 (0.08) 
   Industrial Production 0.15 (0.05) 0.14 (0.06) 
   Consumption 0.10 (0.05) 0.18 (0.08) 
   Employment 0.12 (0.04) 0.24 (0.10) 
   Unemployment Rate 0.13 (0.04) 0.20 (0.08) 

   
d. Controls: Relative Inflation Rates of Food and Energy 

   GDP 0.03 (0.02) 0.05 (0.04) 
   Industrial Production 0.07 (0.03) 0.08 (0.05) 
   Consumption 0.07 (0.03) 0.04 (0.04) 
   Employment 0.12 (0.04) 0.10 (0.06) 
   Unemployment Rate 0.10 (0.04) 0.12 (0.06) 

   
e. Controls: Relative Inflation Rates of Durable, Non-durables, Food and Energy 

   GDP 0.02 (0.02) 0.03 (0.03) 
   Industrial Production 0.04 (0.02) 0.04 (0.04) 
   Consumption 0.05 (0.02) 0.03 (0.03) 
   Employment 0.09 (0.03) 0.06 (0.04) 
   Unemployment Rate 0.07 (0.03) 0.08 (0.05) 

   
f. Controls: Relative-Price Index ρt 

   GDP 0.02 (0.02) 0.01 (0.02) 
   Industrial Production 0.03 (0.02) 0.01 (0.02) 
   Consumption 0.06 (0.03) 0.03 (0.02) 
   Employment 0.08 (0.03) 0.03 (0.03) 
   Unemployment Rate 0.08 (0.03) 0.03 (0.03) 

   
Notes: The results in panel (c) use only data only from 1973 onwards because of data 
availability for the weighted U.S. real exchange rate series. 
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Table 5. Fraction of Variability of Real Variables associated with Inflation Components 
Average squared coherence over frequencies (standard errors in parenthesis) 

 
Real Variable Frequencies 

All /32 ≤  ≤ /6 
a. Aggregate Inflation Components, νt and t

   GDP 0.26 (0.05 ) 0.60 (0.10 ) 
   Industrial Production 0.28 (0.06 ) 0.59 (0.12 ) 
   Consumption 0.28 (0.06 ) 0.62 (0.11 ) 
   Employment 0.35 (0.05 ) 0.65 (0.10 ) 
   Unemployment Rate 0.42 (0.06 ) 0.70 (0.11 ) 

   
b. Pure Inflation νt 

   GDP 0.05 (0.02) 0.09 (0.05) 
   Industrial Production 0.06 (0.02) 0.09 (0.06) 
   Consumption 0.08 (0.03) 0.08 (0.04) 
   Employment 0.07 (0.02) 0.12 (0.06) 
   Unemployment Rate 0.12 (0.03) 0.14 (0.07) 

   
c. Pure inflation νt, control for Interest Rates, Stock Returns, Wages 

   GDP 0.04 (0.02) 0.05 (0.03) 
   Industrial Production 0.05 (0.02) 0.04 (0.02) 
   Consumption 0.05 (0.02) 0.06 (0.03) 
   Employment 0.06 (0.02) 0.10 (0.04) 
   Unemployment Rate 0.12 (0.03) 0.07 (0.03) 

   
d. Pure inflation νt, control for Interest Rates, Stock Returns, Wages, Exchange Rates 

(t  ≥  1973) 
   GDP 0.03 (0.02) 0.07 (0.04) 
   Industrial Production 0.04 (0.02) 0.04 (0.03) 
   Consumption 0.04 (0.02) 0.06 (0.04) 
   Employment 0.06 (0.02) 0.16 (0.07) 
   Unemployment Rate 0.10 (0.02) 0.09 (0.05) 

    
Notes: The results in panel (d) use only data only from 1973 onwards because of data 
availability for the weighted U.S. real exchange rate series. 
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Table 6: The Robustness of the Conclusions 
Average squared coherences over business cycle frequencies (standard errors in parenthesis) 

 
Factor 

Estimates 
VAR (1) (2) (3) (4) (5)  (6) (7) 

Benchmark Model 
(1,1,0) D,4 0.76 (0.10)  0.15 (0.07) 0.87 (0.05)   0.42 (0.10) 0.01 (0.02) 0.27 (0.12) 0.01 (0.02) 0.60 (0.10) 0.09 (0.05) 

Alternative Parametric Factor Estimates 
(1,1,0) D,6 0.85 (0.06)  0.11 (0.04) 0.90 (0.04)  0.37 (0.12) 0.06 (0.07) 0.20 (0.09) 0.07 (0.05) 0.67 (0.08) 0.11 (0.06) 
(0,0,0) D,4 0.74 (0.10)  0.16 (0.08) 0.87 (0.04)  0.42 (0.10) 0.01 (0.02) 0.30 (0.11) 0.02 (0.02) 0.61 (0.10) 0.09 (0.06) 
(0,0,0) D,6 0.84 (0.06)  0.12 (0.05) 0.90 (0.04)  0.36 (0.12) 0.05 (0.07) 0.20 (0.09) 0.06 (0.04) 0.68 (0.08) 0.11 (0.06) 

(1,1,0,0) D,4 0.80 (0.08)  0.12 (0.06) 0.89 (0.04)  0.56 (0.08)  0.14 (0.07) 0.01 (0.01) 0.21 (0.10) 0.01 (0.01) 0.62 (0.10) 0.08 (0.05) 
(1,1,0,0) D,6 0.87 (0.05)  0.09 (0.03) 0.92 (0.03)  0.50 (0.12)  0.13 (0.09) 0.05 (0.06) 0.15 (0.09) 0.06 (0.04) 0.70 (0.08) 0.12 (0.06) 
(1,1,0) L,4 0.80 (0.08)  0.11 (0.05) 0.87 (0.05)  0.53 (0.11) 0.02 (0.03) 0.20 (0.11) 0.01 (0.01) 0.62 (0.10) 0.12 (0.07) 
(1,1,0) L,6 0.86 (0.05)  0.09 (0.04) 0.90 (0.05)  0.50 (0.12) 0.03 (0.05) 0.20 (0.11) 0.05 (0.04) 0.71 (0.09) 0.17 (0.08) 
(0,0,0) L,4 0.79 (0.08)  0.11 (0.05) 0.88 (0.05)  0.52 (0.12) 0.02 (0.03) 0.19 (0.11) 0.00 (0.01) 0.62 (0.10) 0.12 (0.07) 
(0,0,0) L,6 0.85 (0.05)  0.09 (0.04) 0.90 (0.04)  0.49 (0.12) 0.03 (0.05) 0.19 (0.11) 0.05 (0.04) 0.72 (0.08) 0.16 (0.08) 

(1,1,0,0) L,4 0.82 (0.07)  0.10 (0.05) 0.90 (0.04)  0.61 (0.09)  0.15 (0.07) 0.02 (0.03) 0.24 (0.10) 0.01 (0.01) 0.64 (0.09) 0.11 (0.06) 
(1,1,0,0) L,6 0.87 (0.05)  0.08 (0.04) 0.92 (0.03)  0.56 (0.11)  0.16 (0.09) 0.03 (0.04) 0.22 (0.10) 0.05 (0.04) 0.72 (0.08) 0.16 (0.07) 

Using Principal Component Factor Estimates 
PC-3 D,4 0.70 (0.11)  0.19 (0.08) 0.82 (0.07)  0.37 (0.11) 0.00 (0.01) 0.30 (0.12) 0.01 (0.01) 0.53 (0.11) 0.05 (0.04) 
PC-3 D,6 0.80 (0.07)  0.15 (0.06) 0.86 (0.05)  0.40 (0.11) 0.06 (0.06) 0.28 (0.10) 0.04 (0.03) 0.64 (0.10) 0.06 (0.05) 
PC-4 D,4 0.71 (0.10)  0.19 (0.08) 0.85 (0.05)  0.50 (0.09)  0.10 (0.06) 0.01 (0.02) 0.36 (0.10) 0.01 (0.02) 0.55 (0.11) 0.05 (0.04) 
PC-4 D,6 0.80 (0.07)  0.14 (0.05) 0.87 (0.04)  0.46 (0.11)  0.09 (0.07) 0.08 (0.06) 0.33 (0.09) 0.04 (0.03) 0.68 (0.08) 0.08 (0.04) 
PC-2 D,4 0.69 (0.11)  0.17 (0.07) 0.57 (0.13) 0.00 (0.01) 0.30 (0.13) 0.01 (0.01) 0.40 (0.12) 0.03 (0.03) 
PC-2 D,6 0.81 (0.07)  0.13 (0.05) 0.74 (0.09) 0.06 (0.06) 0.29 (0.10) 0.05 (0.05) 0.49 (0.12) 0.07 (0.06) 
PC-3 L,4 0.81 (0.07)  0.07 (0.04) 0.86 (0.06)  0.50 (0.11) 0.01 (0.01) 0.15 (0.09) 0.00 (0.00) 0.56 (0.11) 0.04 (0.04) 
PC-3 L,6 0.87 (0.05)  0.06 (0.03) 0.89 (0.05)  0.44 (0.11) 0.05 (0.07) 0.16 (0.09) 0.04 (0.04) 0.65 (0.10) 0.07 (0.04) 
PC-4 L,4 0.82 (0.07)  0.08 (0.04) 0.89 (0.04)  0.58 (0.10)  0.11 (0.06) 0.00 (0.01) 0.26 (0.10) 0.00 (0.00) 0.61 (0.10) 0.05 (0.04) 
PC-4 L,6 0.87 (0.04)  0.06 (0.03) 0.90 (0.04)  0.47 (0.11)  0.09 (0.06) 0.07 (0.07) 0.24 (0.10) 0.02 (0.02) 0.71 (0.09) 0.09 (0.05) 
PC-2 L,4 0.78 (0.08)  0.07 (0.04) 0.78 (0.08) 0.02 (0.04) 0.18 (0.10) 0.01 (0.01) 0.40 (0.13) 0.02 (0.03) 
PC-2 L,6 0.85 (0.06)  0.07 (0.03) 0.81 (0.08) 0.04 (0.06) 0.21 (0.11) 0.04 (0.05) 0.50 (0.12) 0.08 (0.06) 
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Notes:  The first column describes the factor estimates, where the parametric estimates 
are based on signal extraction applied to (5)-(7) with parameters estimated by Gaussian 
MLE, and the numbers in parenthesis indicate the number of factors and whether the 
relevant factor is modeled as an I(1) or I(0) process. For example, “(1,1,0)” is a three 
factor model modeled as I(1), I(1), and I(0) processes.  PC-k denotes a k-factor model 
estimated by principal components.  The column labeled VAR shows the specification of 
the VAR used to compute the VAR-spectral estimates, where “D” and “L” denote first 
differences and levels specifications and the numbers 4 and 6 denote the number of lags 
in the VAR.  Results shown in the column (1) are the average squared coherences 
between Headline PC and t and vt (benchmark model results from Table 2 first row); (2) 
canonical coherences between the relative prices of (Durables, Nondurables, Food, 
Energy) and Rt (benchmark model results from Table 3 row 7); (3) coherence between 
M2 and v (Table 3 row 10); (4) coherence between Federal Funds Rate and vt (Table 3 
row 11); (5) coherence between PCE Inflation and GDP controlling for Rt (Table 4, panel 
f, row 1); (6) coherence between vt + t  and GDP (Table 5, panel a, row 1), and (7) 
between vt and GDP (Table 5, panel b, row 1). 
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Figure 1. Choosing the number of factors 

 

Panel A. Eigenvalues of the correlation matrix 

 

Panel B. Contribution of more factors to the R2 of each good 

 

Notes: Panel a) shows the eigenvalues of the N×N sample correlation matrix of inflation 
rates. Panel b) shows the fraction of sample variance of inflation explained by k factors, 
where k varies from k=1 to k=4. 

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k = 1 k = 2 k = 3 k = 4



46 
 

Figure 2. Comparison with unrestricted factor model 

 

Panel A. Increase in R2 from moving to unrestricted model 

 

Panel B. Estimates of ςi, the coefficient on the absolute-price component 

 

Panel C. Individual t-statistics for hypothesis ςi=1 

 

 

Notes: The horizontal axis in each panel goes from i = 1 to i = 187.  In each panel, the goods 
are organized in increasing order. 
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Figure 3. Estimates of inflation and its components  

Panel A. Headline PCE inflation 

 
 
 

Panel B. Major household appliances inflation  
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Figure 4. The Relative Price Index and Other Observables 

Panel A. Relative services inflation (thick line) and projection onto ρ (thin line). 

 
 

Panel B. Relative energy inflation (thick line) and projection onto ρ (thin line). 

 
 
 


