CHAPTER 7

The Kalman filter: applications to
forecasting and rational-expectations
models

Robert F. Engle and Mark W. Watson

1 Introduction

Economics is not engineering; yet, perhaps, we can track the economy
using the same tools used to track a spacecraft, an oil tanker, or a chemi-
cal reaction. In the 25 years since the publication of the original Kalman
(1960) and Kalman and Bucy (1961) papers that introduced digital filters
for nonstationary problems, economists have been studying these possi-
bilities, and the presence of the August 1985 session of the World Con-
gress of the Econometric Society suggests that it is still a question of great
interest.

The initial attempts to apply these methods to economic problems im-
mediately faced a major difficulty. Engineers usually had quantitative the-
ories that described the equations of motion of physical systems and were
primarily interested in estimates of the “state” of the system obtained from
noisy measurements. The extraction of estimates of such signals from
noise was called the estimation, or “state estimation,” problem. Econo-
mists, however, knew far less about the fundamental laws of motion of
economic systems and were therefore particularly interested in discover-
ing such laws of motion from the noisy data rather than in merely esti-
mating the state of the economy. Since the Kalman filter takes the param-
eters of the process as given in estimating the state, it appeared thai there
would be little possibility to apply such methods in economics.

However in the mid-1970s a number of economists were able to change
the focus of the estimation problem and, applying Schweppe’s (1965) re-
sult, used the Kalman filter as a computational tool to evaluate the likeli-
hood function in complex cases. Therefore, the parameters of the process
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could be estimated using maximum-likelihood methods, as in more stan-
dard econometrics. As a by-product, estimates of the state conditional
on these fixed parameters were obtained, and sometimes these too were
of interest.

The new interpretation of the state space framework allowed the un-
observed states to have a wide variety of interpretations, and the model
became the natural generalization of latent variable models to a full dy-
namic framework. In the state space model, it was possible to specify far
more complex dynamic error structures. In many cases, these would be
suggested by the economics of the situation where a disturbance would
have an impact on different dependent variables in different time periods.
The structure unified estimation of regressions with ARMA errors, time-
varying parameters (TVPs), seasonal adjustment, dynamic factor analy-
sis, and dynamic multiple-indicator, multiple-cause models.

A wide variety of potential applications became possible. A short tax-
onomy as in Engle and Watson (1980) will prove useful in discussing the
successes and failures of these models:

1. Univariate: one dependent variable.

(a) Time-varying parameter models: One or more regression
coefficients from a linear model are allowed to evolve
stochastically, possibly with causal variables.

(b) Unobserved component models: The same as (a), except
that the coefficients that vary are coefficients of the in-
tercept. By specifying different structures, more than one
component can be extracted. Both seasonality and trends
can be analyzed in a regression context.

(c) UCARIMA models: The same as (b), except that the
components are each ARIMA models. This is useful
for seasonal adjustment and stochastic detrending.

- 2. Multivariate: more than one dependent variable.

(a) Varying coefficient regressions: One or more of the co-
efficients of a set of regression equations are allowed to
vary.

(b) Unobserved component models: The varying coefficients
are again on the intercept, but the important features are
that the same components may appear in several equa-
tions.

(c) Dynamic factor analysis: The covariance matrix of a set
of dynamic regressions has a factor structure that may
have the latent variables entering different equations with
different lags - a special case of (b).
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(d) DYMIMIC: The latent variable in a set of dynamic re-
gressions influences several dependent variables and is
caused by several independent variables - a special case

of (b).

This outline provides a framework for listing many of the successful
empirical applications of the Kalman filter in economics. Most of the ref-
erences on this list are of the unobserved components type. UCARIMA
models have been successfully used for signal extraction by Pagan (1975),
for forecasting by Harvey and Todd (1983) and Harvey (1984), and for
seasonal adjustment by Nerlove, Grether, and Carvallo (1979), Engle
(1979), and Hausman and Watson (1985). Howrey (1978) and Conrad and
Corrado (1979) use the unobserved components model to estimate data
revisions and to combine forecasts, whereas Harvey and Phillips (1979)
point out that it can be used to estimate regression models with ARMA
errors. Dynamic factor analysis was utilized by Engle and Watson (1981).
Watson-and Kraft (1984), Hamilton (1985), and Engle, Lilien, and Wat-
son (1985) used the DYMIMIC model.

Although time-varying parameters have been used in many studies,
these typically are interpreted as tests for the stability of a regression equa-
tion [see, e.g., Garbade (1977); Laumas and Mehra (1976); Rauser and
Laumas (1976)]. Much less common are TVP models, either univariate
or multivariate, where the variation is interpreted as economically impor-
tant. One case is in finance, where the beta of the market equation is al-
lowed to vary [see Ohlson and Rosenberg (1982); Alexander, Benson, and
Eger (1982); Bos and Newbold (1984)]. Other recent exceptions are Doan,
Litterman, and Sims (1984) in the multivariate context and EPRI (1983),
which will be discussed in more detail later in this chapter.

This chapter will present two serious applications of the Kalman filter.
These applications were selected to illustrate the power of the state space
formulation in solving a wide variety of problems. The first application
uses the TVP model to forecast and “weather normalize” electricity sales,
whereas the second uses the multivariate unobserved components model
to build a rational-expectations model of the relation between dividends

and equity prices.

2 The time-varying parameter model

The varying coefficient regression model was introduced into economics
by Cooley and Prescott (1973a, b, 1976) and Rosenberg (1972, 1973). Re-
cent surveys by Pagan (1980), Nichols and Pagan (1983), Chow (1983a),
Swamy and Tinsley (1980), and Beck (1983) have extended the range of
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models and results available. Harvey (1981a, b) provides a textbook ver-
sion for econometricians. Los and Kell (1985) present some Monte Carlo
evidence on the behavior of the methods. In each of these models, one
or more of the parameters is allowed to evolve over time, and estimation
techniques are explored for both the fixed parameters and the varying
parameters. In these papers, a variety of large-sample estimation results,
identification procedures, and diagnostic tests are presented and discussed.
However, as will be mentioned below, the most important cases are yet
to be given a satisfactory treatment.

To consider the simplest possible case, let y, and x, be scalar observ-
able data series and let 3, and ¢, be scalar unobservable series with prop-
erties to be defined. Suppose z, to be a vector of observed variables with
~ the regression coefficients. Let

Y,=x.6,+2,7t¢ (2.1)
define the relation between the series, and suppose that
¥, 11X, 20, Bo» the past of y,x, 2} ~ N(x,B,+2,7, 0%)) (2.2)

with x, and z, as weakly exogenous for the parameters of interest. The
model is clearly unidentified as §, is not observable. In this setup, B, is
the state to be estimated, and the measurements that are to be used to
estimate this state are the y,. Equation (2.1), or its more statistical coun-
terpart (2.2), is therefore defined as the measurement equation since it
defines how the measurements are derived from the unobserved states.

To complete the model, a generating equation for the state B, is need-
ed. This is called the transition equation since it explains how the state
evolves. A parameter is inherently constant, at least if it is a parameter of
taste or technology and therefore is invariant to structural change, as in
Engle, Hendry, and Richard (1983). Any model of varying coefficients re-
quires explanation. If the coefficient varies, then it must also follow some
model, and one might hope that the parameters of this model would be
constant.

A simple example of a transition equation is

B,= B, _i+z,0+n, 7, ~IN(0,\""'a?) (2.3)

with higher-order processes as direct generalizations. Our empirical ex-
perience and the theoretical arguments in this and the following section
suggest that, in most cases, the model for 3 ought to have a unit root.
For many data sets, the simple random walk with ¢ =1 and 0=0 per-
forms well:

B,=B,_y+n m~IN(O,X"o?) 2.4)
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To develop theoretical models for the transition equations, three types
of economic models will be suggested: behavioral, unobserved causes, and
misspecification. A famous behavioral motivation for parameter varia-
tion is the Lucas (1976) critique of economic policy analysis. If the policy
regime is changed, then agents will adjust their behavior and the coefli-
cients that held in the previous regime will change to new values. This ob-
servation could be built into a structural model of changing coefficients.
Of course, such a theory must include a formulation of how agents learn
about the new model, and the transition equation could represent such a
learning process. Plausibly, one would change the estimate of the state
only when new information becomes available, thus suggesting the unit
root. This model might be sensible for a variety of processes whereby pol-
icy regimes are shifted, although suboptimal for known types of changes.

Many other simpler theories might suggest changes in parameters fol-
lowing particular processes. The rational-expectations example presented
later in this chapter is a prime example. In that case, the states include ex-
pectations of future prices and dividends, and the rational-expectations
hypothesis gives specific content to the relationships. A similar strategy
is followed by Burmeister and Wall (1982) and Hamilton (1985). Another
example of interest is in Engle, Lilien, and Watson (1985), where the un-
observed state is the rate at which housing rents are capitalized into asset
prices. Here the capitalization rate can be calculated in steady state where
inflation rates, interest rates, and tax rates are constant, but it is not clear
how the market evaluates new information and changes in these variables.
Thus, the steady state provides constraints on the form of the transition
equation in the long run whereas the data are allowed to determine the
short-run behavior.

The unobserved causes model recognizes that if we know why a pa-
rameter is changing, we can usually rewrite the model with constant pa-
rameters. For example, suppose 3, = w,6; then (2.1) becomes

yi=x,w0+Z;y+¢
and least squares can be used directly. However, if w is unobserved, then

it can be replaced only by its time series representation. Thus, if p(B)w, =
n,,» then the transition equation becomes

¢(3)51=Th0 (2.5)

and the parameters of the polynomial ¢(B) can be interpreted in terms of
the process of the unobserved w. For most economic variables, therefore,
this process should be nonstationary and slowly evolving. Often, we know
that it should be very smooth and have a unit root. Sometimes, we might
know a series that causes w,, and this too can be used to tighten the speci-
fication. The electricity forecasting example in this chapter is based upon



250 Robert F. Engle and Mark W. Watson

the unobserved causes model where appliance saturations (particularly
measured in efficiency units) are not observed.

The third model that appears to produce time-varying parameters is
the omnipresent misspecification. The misspecification of a regression re-
lation will generally lead to nonwhite residuals that may be partly “ex-
plained” by allowing some of the parameters of the model to be time
varying. It is in this sense that the model has been suggested as a test pro-
cedure, particularly through the analysis of recursive residuals (see, e.g.,
Brown, Durbin, and Evans 1975; Harvey and Collier 1977). The peril of
the time-varying parameter model is in the interpretation of the result, if
indeed misspecification is the source of the variation. It remains an open
question whether allowing for time variation in parameters of a misspeci-
fied model would improve forecasts of the model. One might suspect that
in the majority of cases this would be true, but to our knowledge, this has
not been investigated.

The interest in stochastic detrending of economic series in Harvey and
Todd (1983), Watson (1985b), and Engle, Brown, and Stern (1985) can be
viewed as correcting for misspecified trend components in a regression.
The assumption of a unit root in the transition equation effectively dis-
tinguishes the trend from the cyclical and noise components.

In each of these cases, there is a suggestion that the transition equa-
tion ought to have a unit root. Further justification will arise from the
discussion of the spline model in the next section. A consequence of this
assumption, however, is that the asymptotic theory is not yet fully devel-
oped. It is not clear that maximum likelihood will have its usual prop-
erties in the presence of unit roots, even for the remaining parameters.
In fact, in a recent paper on splines, Rice (1986) shows that when part
of a model is parametric and the rest is nonparametric and fit by smooth-
ing splines, the rate of convergence of the parametric part may be slower
than for a pure parametric problem. This is an important area for fur-
ther research.

3 The three statistical models: MLE, Bayes, spline

In this section, three statistical models will be developed that support esti-
mation of the TVP model: the classical model, the Bayesian model, and
the smoothing spline model. The key differences hinge on the way to con-
trol the degree of parameter variability allowed and the model used for
the parameter process. Short of these differences, the estimates obtained
for each method will be identical. The connections between these meth-
ods have been known for many years (see, e.g., Kimeldorf and Wahba
1970; Wahba and Wold 1975) and more recently exploited by Wecker and
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Ansley (1983) and Ansley and Wecker (1983) [with discussion by Gersch
(1983) and Dempster and Jonas (1983)] and by Wahba (1983). Most of
this literature adapts classical approaches to the smoothing spline setup.
Thus far, there seems little return fertilization. The possibilities for such
a development will be discussed later. These depend somewhat on the
particular setup.

The first statistical model, which is the one most often associated with
TVP, is classical time series analysis leading to a maximum-likelihood es-
timate of . The log-likelihood function can be written as the sum of the
log likelihoods of the conditional densities of y, which in turn are simply
the densities of the innovations »,. Since these are linear in y, each contri-
bution to the log likelihood is simply a Gaussian density:

L=-3 (log h,+vi/h) 3.1

For this to properly be interpreted as the log likelihood, the entire mod-
el, including the distributional assumptions, must be specified correctly.
In particular, the transition equation is viewed as a true data generation
equation. [It is worth pointing out, however, that some optimal prop-
erties of the Kalman filter can be developed even without the normality
assumption. See, e.g., Anderson and Moore (1979).] This likelihood func-
tion can be maximized over the three parameters: v, o2, and \. The maxi-
mum-likelihood estimate of \ then regulates the trade-off between fitting
y and having a constant f3.

The second statistical model is the Bayesian model, where the transi-
tion equation for S, is treated as a prior. That is, the prior is assumed to
have the same distribution as a random variable following such a process.
For the random-walk model in (2.4), the prior can be written as

B=R"'n (3.2)
with
B=(B|’Bz»---,3r)'
n=(n, 12 -, 17)
[ 1 0 0« 0 O]
-1 1 0--- 0 O
R= O -11-.-- 020
ERT
so that

BI\, 0% ~N(0,\"'g*R™'R'7Y) (3.3)
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Writing y and z as the T x 1 and T x K vectors of dependent and indepen-
dent variables and X and the T x T diagonal matrix with rth diagonal ele-
ment x,, the log of the density for y, conditional on (3, can be written as

log F(y|B)=—T/2log o>~ (y=XB—2y)'(y—XB-27)/26>  (3.9)
so that the log joint density of y and g is
L*=—Tlogo*+T/2log A
—[(y=XB—27) (y—XB—2zv)+\B'R'RB]/20* (3.5)
and the log of the marginal density of y is

L'=-T/2log 0*—1/2log|T|=(y—2yv) T '(y-27)/2  (3.6)
with
=+ XR™'R""'X")

From this observation, it is clear that if (3.2).is taken to be the true gen-
erating equation for 3, then (3.6) is the log-likelihood function, so that
L=l

Since the joint distribution is normal, the mode of the joint will give
the Bayesian estimate of 3 for a wide variety of loss functions. In the case
where y =0, this is simply

B=(X'X+\R'R)"'X'y=E(8|y) 3.7

the familiar Bayesian formula for the conjugate normal problem. It can
be expressed as the expected value of B given the full data set and the
prior and is therefore comparable with the smoothed estimate of 8 from
the maximume-likelihood estimate (MLE). In fact, this is an alternative
expression for the smoothed estimates.

In the Bayesian case, the selection of \ is typically viewed as a prior
value for the parameter process and is not estimated from the data. As
the sample grows, the size of X'X as well as R'R will grow. Multiplying
both sides of (3.7) by (X’X+ AR’R) and recognizing that X is diagonal
and R has at most one off-diagonal element,

[2A\4x2 -2 0 -« 0 0

-% D#xd =\ 0 0

0 : : P |B=Xy
: = Phbachay =X
| 6 0 -+ =N \+x}|

an expression for 3 can be found:

")\Br—l'*'(x12+2)\)81“')\31+l=x1)'1 (3.8)
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This shows that the importance of X and R does not vanish as the sample
size grows. A small value of \ produces 8,=y,/x, and therefore fits each
point exactly. A large value of A constrains successive triples of coeffi-
cients to lie along a straight line with the boundary condition Br_;= B
Thus, the parameter is constant.

When v # 0, a similar expression can be written. The parameters B and

~ are estimated by

[B]= [X'x+ \R'R X’z]" [X’y]

X 2T 'y

-

Y
or
B=(X'R+A\RR)"' X'y R=U-2z2)"'2'1X (3.9)

The Bayesian who does not wish to impose a value for X can instead
formulate a prior on A and let the data select the particular value that
maximizes the posterior. If this prior is uniform, it would coincide with
the MLE as usual.

The third model is the discrete-time version of smoothing splines as
developed in the statistical literature for curve fitting. See, for example,
Wahba and Wold (1975), Craven and Wahba (1979), and Rice and Rosen-
blatt (1983), and, in economics, Shiller (1984), Wecker and Ansley (1983),
Ansley and Wecker (1983), and Engle et al. (1985). In this case, there is
assumed to be some fixed, but unknown, set of 3, that are taken to be
smooth in some sense to be specified. The estimation problem is to achieve
a compromise between fidelity to the data (a good fit) and fidelity to the
smoothness criterion (a smooth path for the 3,). Letting e=y—X8-2y,
fidelity to the data is defined as minimizing e’e. Smoothness criteria are
often taken to be the integral of the squared mth derivative from zero to
T. This can be approximated by the squared mth differences in discrete
time with equally spaced intervals. For the time-varying parameter prob-
lem, the appropriate notion of smoothness is an unchanging parameter
rather than a linearly changing one. Thus, again, we are led to a natural
model with m = 1. Much of the smoothing spline literature and applica-
tions take m =2, but for time-varying parameter models, a linear func-
tion is a more appropriate smoothness objective.

Estimation is accomplished by minimizing

L**=e’e+\3'R'Rf (3.10)

over B and v, taking \ as given. It is clear that this will have the same max-
imand as L* and consequently L once a?is concentrated out. Once again,
(3.7) and (3.9) provide expressions for the estimated 3. The statistical
model underlying this is rather different, as now the 3’s are fixed values
that are being estimated using a biased estimation procedure designed to
substantially reduce variance leading to reduced mean squared error.



254 Robert F. Engle and Mark W. Watson

The smoothness prior is not assumed to be a correct representation
of the true data generation process in the standard case. However, as
pointed out above for the Bayesian estimation, the effects of the choice
of X and R do not vanish asymptotically. Many of the asymptotic results
developed for nonparametric regression models of this kind assume that
additional data are obtained using more frequent sampling over the same
interval, and consequently consistency is not difficult to achieve (see, e.g.,
Wahba 1983).

Selection of the appropriate value for X is a central feature of any op-
erational nonparametric method. This is equivalent to the choice of band-
width for kernel methods of estimation. Wahba and Wold (1975) pro-
posed using cross-validation to pick X, and in Craven and Wahba (1979),
generalized cross-validation (GCV) was introduced and applied. This turns
out to be a close relative of Akaike’s (1969, 1973) finite prediction error
(FPE) criterion and Akaike information criterion (AIC) and several others
suggested by Shibata (1981) and surveyed by Atkinson (1981). Essentially,
all attempt to use within-sample information to obtain estimates of mean
square prediction error and then minimize this with respect to \. These
criteria are therefore designed to be optimal for a mean square €rror mea-
sure of risk. GCV can be defined as

GCV =e'e/[1-tr(A)/T1*=y (I- A)¥y/ltr(I-A)/T)*  (3.11)
where 7= A(\)y and A(\) is the projection matrix
A=X(X'X+\R'R)"'X'+2(z'2)" 'z’ (3.12)

and e= y— XB—2z7. If \ is very small, then the sum of squared resid-
uals will be very small but tr(A4) will be approximately 7, thus leading to
large values of GCV. Large values of \ decrease the trace of A but impose
tighter constraints on the data, restricting the fit and increasing the sum
of squared residuals. In Engle et al. (1985), the results using GCV to select
\ are very satisfactory.

The classical investigator will therefore choose X\ by maximizing L,
whereas the nonparametric statistician will minimize some criterion such
as GCV. In a recent comparison of these criteria, Wahba (1983) found
that in some cases, maximum likelihood will undersmooth, that is, choose
too small a value of A compared to an optimal selection from the point of
view of mean square forecast error loss function. Since many of the sug-
gested applications of the TVP model are forecasting applications, this
suggests that it may be interesting to consider other criteria for selecting
. Furthermore, since GCV is designed to select A optimally, even when
the data generation process of 8 is not R =17, it may be more robust to
misspecification.
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- Forecasting electricity sales with the TVP model

Recently these methods have been applied quite successfully in modeling
the demand for electricity over time. Early results are described in EPRI
(1983) and others in Engle, Brown, and Stern (1986) and Granger and
Engle (1985). Particular features of these studies will be reported here.

The usage of electricity by residential customers is strongly influenced
by the weather since much of the fluctuation in demand is due to heating
and cooling requirements. The number of homes with central air con-
ditioners has increased since the early sixties as the costs of such units
have decreased and as this technology has been incorporated into new
buildings. As the price of electricity increased in the middle to late seven-
ties, many customers reduced their thermostats to reduce their bills and
introduced new technologies such as additional insulation and thermal
engineering. The net effect has been continual gradual shifts in the rela-
tionship between temperature and electricity usage. This reveals itself in
the aggregate data as a shift between the winter and summer peaks; in
fact, many utilities are now summer peaking that were previously win-
ter peaking.

The discussion suggests that the coefficient of hot weather might be
an excellent candidate for a varying coefficient. A second potential can-
didate for the TVP formulation is the trend. The growth rate of electric-
ity sales has slowed from a constant 7 percent per year in the sixties and
early seventies to nearly a zero growth rate. Presumably, this is due to the
combined effect of macroeconomic recession and dramatically increasing
energy prices; however, such variables do not adequately represent the
process, and one is often forced to rely on measures of “patriotism” or
“conservation ethic” to explain the slowdown.

Two time-varying parameter models were proposed for this data set:
TVP-A and TVP-B. The first allows the coefficients on weather to vary,
and the second estimates a stochastic trend. In each case, monthly data
on residential sales per customer by state (Y) were regressed on monthly
seasonal dummies (MONTHDUM), the real price of electricity for a cus-
tomer using 750 kWh/month (RELP750), real personal income per cus-
tomer (RPINC/C), and weather variables measured as heating degree days
(HDDs) and cooling degree days (CDDs) each measured from the daily
midpoint of high and low temperature with 65° as the base.' Because the
bills for a month are for electricity consumed partly in the previous month

I Specifically, if f; is the average of the high and low temperatures on day ¢, then
HDD = Y, max(65— f,,0) CDD = ¥ max(f,—65,0)
where the sums are over the days of the month.
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and sometimes for the month before that, potentially two-month lags of
the weather may be important (see Train et al. 1984).
The TVP-A model can be written as

Y, = 31,CDDMA,+(32,HDDMA +z, v+ ¥,
U =pu_1te¢

Bl,=B1,_,+nl,

B2,=B2,_+n2

with z={RPINC/C, RELP750, MONTHDUM, CONSTANT} and
CDDMA = CDD,/3+CDD,_,/2+CDD,_,/6 with HDDMA similarly
defined. The moving averages of heating and cooling degree days are
merely to condense the critical weather variables into a single parameter
so that the effect of changing appliance stocks is not allowed to change
the distribution of the load over the billing cycle. When this model is used
for forecasting, the b’s will take on their last estimated value throughout
the forecast horizon. First-order serial correlation is assumed to be suffi-
cient for this model on the grounds that twelfth-order (as found in many
other specifications) is due simply to the failure to allow the weather co-
efficient to vary.
The model for stochastic trend is TVP-B and can be defined as

4.1)

Y, =8,+z/y+u,
B,= Br—l+0-9(31—|2—61—13)+ M 4.2)
u,=pt,_+0.9(u 12— p_13) t €

where z* = {RPINC/C, RELP750, CONSTANT, CDD, CDD, _,, CDD, _»,
HDD, HDD,_,}. The regressors differ from TVP-A by exclusion of the
seasonal dummies but allowance for a more flexible lag structure on the
weather variables. Of most importance, however, is the constant coeffi-
cient on the weather and the allowance for a varying intercept that is con-
strained to have a unit root. The error structure now allows for seasonal
serial correlation.

Notice that the equations for 8, and u, are of exactly the same form
with a common seasonal factor. The only difference is the imposition of
the unit root in B,: this distinguishes the trend from the disturbance. The
sum of B, + u, is an ARIMA(1, 1, 1) times the seasonal factor (1 —0.9B%).
The seasonal factor is set with a known parameter 0.9 only for conve-
nience in estimation so that the entire equation could be seasonally quasi-
differenced before the TVP routine was called.

When forecasting with the model, «, will gradually damp to its uncon-
ditional mean, which is zero, whereas 8, will damp to its last estimated
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value. The trend for the current month will be 90 percent of whatever it
was estimated to be the previous year. Similarly, the current-month dis-
turbance will be forecast as p times its value the previous month plus 90
percent of u,— pu,_; the previous year. If instead of 0.9 a coefficient of
1.0 had been used, then the trend would not damp out but would remain
at exactly the rate from the preceding year throughout the forecast hori-
zon. All forms of second differencing used in this forecasting experiment
proved quite inferior predictors, particularly for multistep forecasts where
they soon proceeded to go way off the mark.

If the stochastic trend were unnecessary for some data set, then the
variance of 5 should be zero. This implies that the regressors z* adequately
model the trend, which is interpretable by saying that Y and z* are co-
integrated, as in Engle and Granger (1987).

These models were estimated by maximum likelihood using the EM al-
gorithms as presented in Watson and Engle (1983) [which is derived from
the general procedure of Dempster, Laird, and Rubin (1977)]. Each step
of this procedure is relatively fast, although it often takes many steps
to achieve convergence. The alternative of using scoring as employed in
Engle and Watson (1981) requires more computations and is optimal only
in the neighborhood of the maximum where the likelihood is nearly quad-
ratic. In more recent experience, it appears that a series of EM steps fol-
lowed by several steps of scoring provides a quicker and more sure route
to the maximum.

Two benchmark models were also estimated so that the forecast per-
formance of the TVP models could be carefully evaluated. The more so-
phisticated model, labeled AUTO-A, is defined as

Y, =2*v+y, 4.3)

uy=pu_tpau_ptp3u_13te
where z** = [RPINC/C, RELP750, CONSTANT, MONTHDUM, CDD,
CDD,_,, CDD,_,, HDD, HDD, _,, HDD, _,}, which includes all the re-
gressors of both z and z*. It differs from TVP-B by not having the im-
posed unit root trend term but does not constrain the autoregressive error
process. It differs from TVP-A by allowing more flexible error terms but
does not include time-varying weather sensitivity. A still simpler model,
labeled NAIVE, assumes that u, in the AUTO-A model is white noise.

These four models are estimated for ten states from January 1964
through December 1978 and then are used to forecast the 36 months
through December 1981. This produces 36 rolling forecasts one step ahead
but only 12 forecasts 24 months ahead. Both conditional forecasts and
" unconditional forecasts were constructed. In the latter case, the weather
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Table 7.1. Geometric means across states

Method 1 month 12 months 24 months Annual average

Conditional rms forecast errors

Naive 69.7 722 77.5 39.9
Auto-A 26.3 35.2 46.2 17.4
TVP-A 31.9 34.8 43.2 24.1
TVP-B 25.0° 30.7° 37.1° 14.6°
Unconditional rms forecast errors

Naive 72.9 75.4 86.8 40.9
Auto-A 29.2 43.1 50.3 19.1
TVP-A 31.0 40.8° 43.5° 23.1
TVP-B 28.8° 41.3 47.7 18.3°

@Revised May 1984.
5The best at that horizon.

and economic variables must themselves be forecast. For this purpose, the
weather was assumed to maintain its long-run average patterns, whereas
the economic variables were forecast by low-order Box-Jenkins models.

The geometric means across states of the root-mean-square (RMYS)
forecast errors are given in Table 7.1. These results point out the abilities
of time-varying parameter models in forecasting, particularly for multi-
step forecasts. The TVP-B model proves to be the most successful of all
these models for both short- and long-run forecasting conditional on the
future economic and weather variables, and the TVP-A model is quite
successful for forecasts of a year or more. It apparently suffers in the one-
month-ahead forecast because there remains important twelfth-order se-
rial correlation that is picked up by the AUTO-A and TVP-B models.
This hurts in the yearly average forecast as well as in the one-month fore-
cast. Both models perform dramatically better than the NAIVE model
and slightly better than the AUTO-A model, which is clearly a very so-
phisticated competitor.

5 Applications to rational-expectations models

The flexibility of the state space model makes it an appropriate tool for
estimating a wide class of econometric models. One important class of
models that fits naturally into the state space framework is the class of
dynamic linear models containing unobservables. In these models, the

state space measurement equations are used to describe the relationship
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between the observed and the unobserved variables. The state transition
equations are then used to model the evolution of the unobserved vari-
ables through time. The Kalman filter can be used to form the one-step-
ahead prediction errors and prediction error variances of the observed
data. These form the basis of a Gaussian likelihood or other objective
function, which can be maximized with respect to any unknown param-
eters. This procedure is discussed in detail in Engle and Watson (1981)
and Watson and Engle (1983).

In modern macroeconomic models, expectation variables are an im-
portant class of unobserved variables. This section will investigate the
special structure of state space models that include these variables. This
question was first investigated by Wall (1980), who showed special state
space forms for models that included adaptive or rational expectations.
Burmeister and Wall (1982) used a state space model to estimate a money-
demand/money-supply model of the German hyperinflation. The unob-
servable in their model was a “stochastic bubble” that drove the hyperin-
flation. Hamilton (1985) has used a state space model to investigate the
relationship between the rate of price inflation, nominal interest rates, €x-
pectations of inflation, and real interest rates. The latter two variables are
unobservable in his model.

In any completely specified economic model in which expectations play
a role, the expectation formulation mechanism is completely specified.
This makes it possible (in principle at least) to solve out for the unob-
served expectations, leaving a model in which only observed variables
are present. The standard textbook treatment of adaptive expectations
leading to a Koyck-lag in observed variables is a case in point (see, €.g.,
Johnston 1984, p. 348). When expectations are formed rationally rather
than adaptively, the same thing is generally true,? but the solution proce-
dure is typically more complicated. [Solution procedures are discussed in
Blanchard and Kahn (1980), Chow (1983b), and Whiteman (1983).]

Since it is possible to explicitly solve out for the unobserved expec-
tations, one might question the utility of using a model for unobserv-
ables. This question was addressed in Watson (1985a) in the context of a
dynamic linear rational-expectations model. He argued that the Kalman
filter was a useful device for recursively solving the model and that the
flexibility of the state space model would be particularly important for ap-
plications in which issues such as errors in variables, temporal aggrega-
tion, missing data, or temporal instability were important. In the remain-
der of this chapter, we will investigate the usefulness of the state space
representation and the Kalman filter for estimating this type of model.

2 This may not be possible in models incorporating bubbles.
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The specific model that we consider relates stock prices, expected future
stock prices, and dividends. The basic structure of the model follows from
the standard arbitrage condition assuming a constant real interest rate.
The data are a subset of those used by Shiller (1981) in his investigation of
the same relationship using a variety of variance bounds.

The remainder of this section is organized as follows. We begin by
briefly reviewing a simplified version of the model and its state space rep-
resentation. This allows us to highlight the basic features of the recursive
solution technique and to discuss the rationale behind some constraints
that will be placed on the parameters of the state space model. The ex-
pository simplification in this discussion involves postulating a stationary
AR(1) generating process for dividends. In the next section, we drop this
assumption and assume that dividends have an ARIMA representation
and that they may depend on lagged values of stock prices and on other
variables that we do not observe. This leads to our empirical specifica-
tion. The results from this initial specification are not entirely satisfac-
tory. The innovations appear to be heteroscedastic, and a simple vector
autoregressive model with a co-integration constraint fits the data much
better. The final three sections investigate possible causes for the poor
performance of the model. First, we estimate a model incorporating time-
varying discount rates; in the next section, we estimate a model that incor-
porates dynamic errors in variables; and in the final section, we present
a model in which some of the disturbance processes are characterized by
autoregressive conditional heteroscedasticity.

5.1 Recursive solutions

If we let p, denote the real price of a share of stock and d, the real value
of dividends per share, then the familiar efficient-markets hypothesis can
be written as

Piv1=wup,—d, Pir1=E[Di+119Q,] (5.1)

Where it is assumed that dividends are paid at the end of the period, p is
the time-invariant gross rate of return, and the information set {2, con-
tains present and past variables of p, d, and any other relevant variables.
Equation (5.1) is the relationship that we will be investigating throughout
the remainder of this chapter. Before presenting the state space form of
the model and discussing the recursive solution procedure, we need to
specify a model for the generation of dividends. To simplify the presenta-
tion in this section, we will assume that dividends are generated by the
AR(1) process:
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d,=o¢d,_ +ef (5.2)

where e is white noise with E(ef |2,_,) =0, var(ed|Q,_) =0}, |¢|<],
and d, given. (These assumptions will be modified for the empirical anal-
ysis.) The state space representation of the model is derived from the fol-

lowing “reduced form”:

p,=pit+e’ (5.3)
d=df+ef (5.4)
df, = ¢df +def (5.5)
Dfe1=ppi—df+pel—ef (5.6)

with
E[eplﬂt 1]—E[e |2,-,1=0

This reduced form describes the evolution of variables at time ¢ as
functions of variables at time ¢ — 1 and innovations. Equations (5.3) and
(5.4) follow from the rational expectations for p and d. Equations (5.5)
and (5.6) describe the generation of the expectations. Equation (5.5) fol-
lows directly from the AR(1) generating equation for d,. Equation (5.6)
is merely a rewrite of the efficient-markets equation (5.1) replacing p, and
d, with their decompositions given in (5.3) and (5.4). Equations (5.3)-
(5.6) incorporate all of the information concerning the evolution of the
data given in equations (5.1) and (5.2).

To characterize the generation of the data completely, we need to intro-
duce three parameters not present in relationships (5.1) and (5.2). Flrst
we need to parameterize the covanance structure of the innovations e

and e”. We project e” onto e, which yields
ef= el +u,

where 7 and o2 are thus far unrestricted. In addition, we need initial con-
ditions for the expectations p{ and d{. We have df = ¢d,, but the value
of p¢is left unrestricted by the model. The complete characterization of
the data generation process requires specification of the parameters =,
o2, and pf as well as the parameters oj, d,, ¢, and u from above.

To write the model in state space form, we use equations (5.3)-(5.6) as
a set of transition equations. The measurement equations merely select p,
and d, from the state vector. The model is

Y, =HX,
Xt=¢X’_l+Gf’
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with
Y:'=(prdr) Xrlz(pldrdtenpten) 5;=(utetd)
[0 0 0 1] (1 x|
N 1 0 0 O b= 0 0 1 0 G= 0 1
01 0O 00 ¢ O 0 o)
(0 0 =1 puj Lp. px=1 |

Initiaiizing the Kalman filter with a state vector that has mean X/, =
(pododipf) and variance Poj= 0, we can use the Kalman filter to gener-
ate the one-step-ahead forecast errors and forecast error variances of the
observed data.? These can be used to form the Gaussian likelihood of the
date, which can be maximized with respect to the unknown parameters
(¢, g 7, 04, 05, and pf).

In the empirical example that follows, we impose a constraint on the
parameters of the model. This constraint rules out explosive “backward-
looking” behavior and deterministic or stochastic rational “bubbles.” To
motivate the constraint, consider the constructed variable

w,=p,—d,(u—9)"

It is easy to show that w/ evolves as
W= uwi +plce +u]

with ¢= 7+ (p—¢)~". This implies that
E(w | Q]=p"""w for k>1

Since x> 1, this implies that w, is expected to explode if wf,,# 0 for any
¢. Since w is a linear combination of d and p, and d is stationary, p is ex-
pected to explode at the same rate as w. The constraint that we impose
rules out this expected explosive behavior, by setting wf=0 for all 7. It is
easy to verify that this constraint will be satisfied if and only if

pi=(p—9)"'df T=—(p—¢)"
and o2 =0. These constraints are equivalent to forming the “forward-
looking” solution of p,; that is,

p=pn" E pE(d i1 Q)

i=1

3 There are two reasonable interpretations for the initial value, po. The first assumes that
equation (5.1) holds at time 0, so that py= u~Y(pf+d,). The second assumes that py is
an unrestricted nuisance parameter. In either case, given pf and df, the likelihood of the

data for t=1,2, ..., T does not depend on the value of p,.
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This example has shown the basic features underlying the state space
representation of the model. However, the particular form of the model
that was described has no empirical relevance. Notice, for example, that
the imposition of the forward-looking solution yields a model for the bi-
variate process of p and d that is generated by a single disturbance. It im-
plies that p, = (u— ) ~'d, for all 7, so that the regression of p, onto d, has
an R2of 1. We will now discuss a modification of the model that incorpo-
rates an additional source of uncertainty.

52 The empirical model

Our empirical specification is somewhat richer than the specification used
in the last section. In particular, we assume that (1—B)d, is covariance
stationary and is generated by

(1-B)d,=x,_ B+ (5.7

where x,_, is covariance stationary with x,_, € Q,_,. The innovation £4is
white noise, with E(¢¢|Q,_,)=0. In this application, we will be using
data on prices and dividends only, so that we will treat some of the x vari-
ables as unobserved. Since we are concerned only with the relationship
between prices and dividends, we project x;_, onto lagged values of prices
and dividends. This vields a relationship of the form

6(B)(1-B)d,=v(B)(1—B)p,_,+0(B)el + w(B)u,_, (5.8)

where all polynomials in B are one sided and finite order, and we normal-
ize ¢o=0,=1. The innovation ¢4 is now viewed as the innovation from
the restricted information set, that is, the information set consisting of
lagged values of prices and dividends only.* This relationship led to our
initial empirical specification for the generation of expectations of divi-
dends: ‘

diy,=di+ d>1(df—d,_,)+¢2(d,_,—d,_2)+-yo(pf—p,_,)+)\,u,+)\2e,d

This follows directly from (5.8) by assuming ¢(B), v(B), 6(B), and w(B)
are polynomials of order 2, 0, 1, and 1, respectively. The coefficients A\, =
vYo— wo and \,=1+¢,—0,. The state space representation for the model
has the same basic structure as the model that was presented in the last
section. Extra lags of prices and dividends must be added to allow for the
more complicated dynamics. The state vector is now

X,=(p,d,d,_|df+|pf+|)'

4 When prices and dividends are co-integrated, it is possible that terms such as di_;—TP-i
appear on the right-hand side of this equation. This possibility will be discussed in more

detail in the text.
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and the matrices appearing in the state transition equation are

[0 0 6 0 1] (1 x ]
0 0 0 1 0 0 1
¢=| 0 1 0 0 0 0 0
-1 $2—¢ —92 l1+é v NN

i 0 0 0 -1 "y | ® y.‘r—lJ

In the last section, we discussed a constraint placed on the parameters
of the model that ruled out explosive behavior in price expectations. We
want to impose the same constraint on this system. The form of the con-
straint is somewhat different because of the change in the dividend pro-
cess. To derive the constraint for this model, let p be an eigenvector of ¢’
corresponding to an eigenvalue greater than unity. (For most reasonable
parameter values in the model, the matrix ¢ will have exactly one root
with a modulus greater than 1.) Then

p’X,=alp’X,_)+(p'g)u,+(p'gr)e’

where « is the eigenvalue corresponding to p, and g, and g, are the first
and second columns of G. Since |a|> 1, explosive behavior can be ruled
out only if

p'X0=0 (59)
p'g,=0 (5.10)
p'g82=0 (5.11)

Equation (5.9) places one constraint on the initial value of the state vec-
tor, equation (5.10) imposes a constraint on the relationship between u
and \,, and equation (5.11) imposes a constraint on the relationship be-
tween =, \,, and u. These constraints will be imposed on the model.

The data that we will use to estimate the model is the Standard and
Poor’s (S & P) data set described and analyzed in Shiller (1981). Stock
prices represent annual observations of the S & P composite stock price
index deflated by the producer price index (PPI). The dividend series rep-
resent dividends per share adjusted to the S & P index. These are four-
quarter totals and are deflated by the annual average of the PPI. The
sample period is 1871-1979. A more complete description of the data can
be found in Shiller (1981).

In the first column of Table 7.2, we present the results from our initial
specification. [In all of the models estimated, the coefficient on (1-B)p,_,

5 The initial values for the elements of the state vector were chosen in the following way.
Data from the first two time periods were dropped from the sample and used to initialize
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Table 7.2. Structural models relating stock prices and

dividends
Base model Measured error ARCH
® 1.112 1.236 1.097
(0.071) (0.138) (0.080)
®, —0.148 —0.252 -0.130
(0.073) (0.138) (0.082)
p 1.040 1.043 1.037
(0.006) (0.008) (0.008)
x 23.658 11.534 18.750
(4.080) (9.273) (2.422)
o, 0.055 0.052 -
(0.003) (0.004)
Ted 0.002 0.001 0.002
(0.004) (0.0002) (0.0001)
dI/U 0.006 0.006 0.006
(0.008) (0.005) (0.004)
A\ 0.003 0.002 0.002
A, 1132 1.218 1.105
B =4 0.784 z
(0.160)
Om 8 0.085 -
(0.151)
g - - 4.0x1074
(3.0x107%)
P - — 0.998
(0.021)
a - = 0.076
(0.005)
L —583 -577 —555

appearing in the dividend equation was small and statistically insignifi-
cant. For the results reported in the table, the coefficient was constrained
to equal zero.] The point estimates look sensible. The standard errors for
the one-step-ahead forecasts of prices and dividends are 0.068 and 0.0017,

Po, dy, and d_,. The initial value, df, was estimated as an unknown nuisance parameter,
and pf was determined from the “boundedness” condition (3.3). An alternative is to use
the initial values of p and d to determine pf from pf=upy—d,. The value of df could
then be determined from the boundedness condition. These approaches lead to different
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respectively. These can be compared with root-mean-squares for (I1—-8)p
and (1—B)d of 0.077 and 0.0017. The estimate of 4 implies an annual
real interest rate of 4 percent. From the autoregressive polynomial for
(1— B)d, it may appear as if a unit root is present, but this may be an arti-
fact of the parameterization chosen. The presence of the coefficients X,
and \, allow moving-average terms and feedback from prices to divi-
dends. This may lead to near cancellation of the large autoregressive root
in the dividend process.

Some caution must be exercised in conducting inference concerning u
because it is estimated as a simple transformation of an estimated co-inte-
grating coefficient. [See Granger (1981) and Engle and Granger (1987) for
a discussion of co-integrating processes.] To see why this is so, recall that
equations (5.9)-(5.11) imposed the constraint p’X, =0. This imposes a con-
straint between the levels of the price and dividend processes. In the model
under consideration, the largest eigenvalue of ® is u, and a little algebra
shows that the constraint that is imposed on the system can be written as

lim E(p,ex| Q) =(1—p) 'E(d, 49,

k — oo
Since dividends follow an integrated process, this is just a co-integration
constraint, and the variable {p,—(1—g)~'d,} is covariance stationary.
Stock (1984) discusses inference in models with co-integrating constraints.

Although the estimated model looks sensible, it does not stand up to
careful scrutiny. Misspecified dynamics will lead to serially correlated in-
novations, and the estimated innovations can be used to test for this. The
estimated innovations from the model showed no gross serial correlation.
The only significant auto- or cross-correlation was the second autocorre-
lation in price. It had a value of —0.28. A more stringent test of the model
can be constructed, however. The model is a constrained co-integrated
vector ARIMA(2,1,1) model. We can compare the fit of this model to
an unconstrained model. To avoid the computational complexity of es-
timating moving-average coefficients we have approximated the uncon-
strained model with a third-order vector autoregression relation (1—B8)p
and (1—B)d. To incorporate the co-integrating constraint, we included
error correction terms of the form (p,_;—7d,_,) in the vector autore-
gressive representation (VAR). The results for this model are shown in
Table 7.3.¢ The co-integrating coefficient, 7, is estimated to be 24.5. This

Footnote S (cont.)
estimates of the initial expectations, but the asymptotic distribution of the other esti-
mated parameters is unaffected.

6 The model was estimated in a two-step procedure. The coefficient 7 was estimated by re-
gressing the level of price on the level of dividends. This estimated value of 7 was then
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Table 7.3. Co-integrated VAR model“

Dividends Price
(1-B)d,_, 0.220 6.486
(0.129) (4.923)
(1-B)d,_, —-0.274 —1.464
(0.123) (4.701)
(1-8)d,_, 0.009 3.643
(0.126) (4.808)
(1-B)p,_, 0.002 0.077
(0.003) (0.129)
(1-B)p,_, 0.003 -0.273
(0.003) (0.119)
(I—B)P;_3 0.005 0.115
(0.003) (0.126)
ec, —0.000 -0.120
(0.001) (0.069)
g 0.0017 0.0643

9ec, = price, — 24.51 div,.

implies an annual real interest rate of 4 percent, essentially identical to
the estimate found in the structural model. The results suggest little feed-
back from prices to dividends, and a significant effect of the error correc-
tion term on prices but not on dividends.

The log likelihood associated with this model is —567, compared to
— 583 for the structural model. In the structural model, we have estimated
5 parameters describing the evolution of (1—B)d and (1—-B)p, |1 param-
eter - the co-integrated coefficient - describing the long-run relationship
between the levels of p and d, and one initial condition relating the level
of p and d. In the VAR, we have estimated 17 parameters describing the
evolution of (1—B)p and (1—B)d, and 1 co-integrating coefficient. Ne-
glecting the initial value (which is not estimated consistently), this sug-
gests that the X3 distribution is a valid large-sample approximation to

imposed during the estimation of the VAR. The Durbin-Watson (DW) statistic associ-
ated with the levels regression was 0.311. Monte Carlo results presented in Engle and
Granger (1987) suggest that if the series were not co-integrated, then there is only a 10 per-
cent chance of finding a DW statistic this large. Indeed, after a correction for heterosce-
dasticity, the DW statistic increases to 0.40.
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Figure 7.1 Price innovations, model 1.

the distribution of the likelihood ratio statistic.” The likelihood ratio sta-
tistic has a value of 32, which suggests that the model can be rejected at
any reasonable confidence level.

A plot of the innovations from the model suggests another serious
problem. These innovations, plotted in Figure 7.1, show clear heterosce-
dasticity. When the squared price innovations are regressed on a constant
and the squares of lagged price, we find a positive coefficient and an R?
of 0.19. This yields an LM heteroscedasticity test statistic of 19. The same
exercise for dividends also yields a positive coefficient, but the R?is much
lower; it is only 0.005.

At least three candidate sources of model misspecification come to mind
that are consistent with the diagnostic test results. First, real interest rates,

7 The distribution is complicated by the presence of the estimated co-integrating coefficient.
Stock (1984) has shown that, for the VAR model, the large-sample distribution of the
other parameters in the model is unaffected by using the estimated value of the co-inte-
grating coefficient rather than the true value. The X 2 approximation used in the text is
valid if this result carries over to our structural model.
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and therefore x, may not have been constant over the 109-year sample pe-
riod. Second, the price, dividend, or the price deflator series may be con-
taminated with measurement error. Third, there may be persistent hetero-
scedasticity in the innovations arising from an unspecified source. This
suggests that autoregressive conditional heteroscedasticity should be in-
corporated in the model. These candidates are investigated fully in the

next three sections.

5.3 Time-varying discount rates

The incorporation of time-varying interest rates into our structural model
is difficult. One approach would involve replacing our parameter y in the
state transition matrix with a set ot time-varying g,’s. Although this may
appear to be a simple solution to the problem, two issues must be faced.
First, how do we estimate the real interest rate - that is, what values do we
use for g,? Second, how do we impose the nonexplosiveness or forward-
looking solution on the model? Since y is time varying, the procedure
used in the last section is not appropriate. Rather than address these two
difficult issues, we will temporarily abandon the full-information frame-
work. Instead, we consider time variation in the efficient-markets rela-

tionship:
Piai=wmp,—d,

If we let e, denote the forecast error p,.;—p/,,, then we can rear-
range this equation to form

Piitd i =up te (5.12)

where e, is uncorrelated with p,. If the parameter x is constant in equa-
tion (5.12) and the disturbance is homoscedastic, then the equation can
be estimated efficiently by ordinary least squares (OLS). Estimating the
equation by OLS yields

p=1.029(0.016) g, = 0.0068 DW =1.86

The residuals from the OLS regression exhibit the same pattern of hetero-
scedasticity that was present in the model of the last section. We can carry
out a test for time-varying parameters using the test proposed in Watson
and Engle (1985). The alternative under consideration is

= =0 —p)+n, (5.13)

with 7, ~NIID(O0, ¢2) and |¢|<1. Constant coefficients corresponds to
the parameter restriction a,f," = (), and the test statistic is constructed as an

LM test for this hypothesis. Since the transition parameter ¢ is uniden-
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tified under the null, the LM test statistic is calculated for a variety of
values of ¢, and the largest of these statistics is used to test the hypothesis.
The square root of the test statistic takes on a value of 7.8 corresponding
to ¢ =0.05. Under the null hypothesis, this statistic is the maximum of
a set of correlated standard normal random variables, so that the value
of the statistic appears to be very extreme. Using the approximation to
the distribution of the test statistic suggested by Watson and Engle (which
is not entirely appropriate because of the nonstationarity of the data),
the test statistic has a probability value less than 0.3 x 10 ~'4. This is strong
evidence against the null hypothesis of constant coefficients.

These test results suggest that time variation in p may be important.
A time-varying parameter model produces the following estimates:

pmtd =wp (0= 0.0009)

i, = 1.068 + 0.000(x,_, — 1.068) (o = 0.177)
(0.018) (0.096)

The model appears to fit the data quite well, but the parameter esti-
mates are difficult to interpret. The estimates imply that u varies randomly
around 1.068 with a standard deviation of 0.17. This standard deviation
is quite large and implies that real annual interest rates as low as —29
percent and as high as 42 percent are not particularly surprising. In Fig-
ure 7.2, we plot the smoothed values of the discount rate implied by the
model. These are the minimum mean square error estimates of u, condi-
tional on the estimated parameters and all of the data.® The model sug-
gests that real interest rates are very volatile, with annual real rates as high
as SO percent in 1936 and as low as —35 percent in 1932 and —33 percent
in 1947 and 1975. These nonsensical results led us to consider the second
candidate for the cause of the misspecification: errors in variables.

5.4 Measurement error

The description of the data given in Section 5.2 and more fully in Shil-
ler (1981) suggests at least two important sources of measurement error.
First, the portfolio of stocks used to construct the price and dividend in-
dices is time varying. This implies that the time ¢ expected future divi-
dend series implicitly constructed by the model need not correspond to
the time ¢ portfolio of stocks. Second, the PPI used to deflate both prices

$ These smoothed values appear to be quite accurate estimates of the u,'s underlying the
model. If we denote the smoothed estimates by /., then the RMS of p,r—p, varies
between 0.009 and 0.001 over the sample period. These values are conditioned on the
estimated parameters of the model.
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Figure 7.2 Time-varying gross rates of return implied by TVP model.

and dividends is not the ideal deflator. The ideal deflator is a perfectly
measured index of prices for consumption goods. Trend movements in
the PPI and this ideal measure are probably very similar, but there is no
reason to believe that shorter-run, year-to-year movements are perfectly
correlated. Since the structural model imposes very tight constraints on
the long- and short-run movements in the data, these transitory devia-
tions of the PPI from the ideal deflator may be very important.

To get a rough idea of the importance of possible measurement error
in the model, we considered a modification of the basic model in which
an additional AR (1) disturbance was appended to both p, and d,. These
two measurement error processes were assumed to be independent of the
structural disturbances u, and ef. This produced a model in which

p=pi+mf  d=d;+mf

where p* and d* represent the true underlying values of price and divi-
dends, and m” and m¥ are the measurement errors. The asterisks identify
variables assumed to follow the structural model given in Section 5.2, and
the measurement errors are assumed to follow univariate AR (1) models.
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We allowed the innovations in the measurement errors to be correlated.
The state space representation for this model is a slight modification of
the model given in Section 5.3. The variables labeled p and d in the state
vector of that model are now interpreted as the components with asterisks
of p, and d,. The two measurement errors are also added to the state vec-
tor, which is now of dimension 7.

The estimates from this model were intriguing. The estimated autore-
gressive coefficients for the measurement error processes were very close
to one another (0.93 and 0.90), and the correlation between the innova-
tions in the measurement errors was estimated to be 1 (the boundary con-
dition imposed during estimation). This suggests that there is one com-
mon factor missing from the original specification of the model. Can this
additional common factor be interpreted as measurement error?

Suppose that the entire source of the measurement error is misspecifi-
cation of the deflator. Let P and D denote the nominal values of stock
prices and dividends, let PP1 denote the producer price index, and let PC
denote the ideal unobserved consumption deflator. We have p = (P/PPI),
d = (D/PPI), and assume p*= (P/PC), and d*= (D/PC). A Taylor se-
ries approximation yields '

p,=p!+mp; | (5.14)
d,=d:+m,d; (5.15)

where the measurement error m, = (PPI,—PC,)/PC,. Since the measure-
ment error is common to both equations, this explains the common factor
found above. In addition, the measurement error component is multi-
plied by the time-varying terms p; and d?. This explains the heterosce-
dasticity found in all of the models.

Before estimating the model using the Kalman filter, a slight modifica-
tion is necessary. As they now stand, equations (5.14) and (5.15) are non-
linear in the unobservables m,, pf, and d;. The likelihood function can-
not be formed using the Kalman filter. However, an approximation to
the model can be estimated. If we replace the terms m, p{ and m,d; with
m, p},—, and m,dj, _,, then the model is linear in the unobservables since
piy— and djy,_, are predetermined functions of the observed data. The
state space representation of this model is a slight modification of the ba-
sic model used in Section 5.3. The state vector is now

_ X,=(p; d di- tir prar o my)
The first five elements evolve according to the structural model in Section

5.2, and the measurement error evolves independently of the variables
with asterisks as an AR(1) process. The measurement error innovation
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standard deviation will be denoted o, and its autoregressive coefficient
will be denoted p,,. Finally, the measurement equation 1S

Y1=H1Xr
with
Yr':(ﬁrdr)

and

1 0 0 0O p:/l—l
H,=
0100 0 dj-,

The estimated parameters for this model are shown in the second col-
umn of Table 7.2. The results look sensible and are similar in many re-
spects to the base model. The estimated gross rate of return has changed
from 1.040 to 1.043. The estimated value of o, of 8.5 percent together
with the estimated autoregressive coefficient of 0.78, imply that the stan-
dard error of the measurement error process is approximately 13 percent.
The inclusion of measurement error improves the fit of the model signifi-
cantly. The log likelihood has increased from —583 to —577. In Figures
7.3 and 7.4, we have plotted the actual values of p, and d, and the cor-
responding filtered estimates of the values with asterisks, which track the
actual data quite closely during most of the sample period. The exception
is the period 1974-9. From 1973 to 1975, the stock price index falls from
0.95 to 0.42. The model attributes some share of this 56 percent decline
in share prices to measurement error. During this period the values with
asterisks fall from 0.98 to 0.56, and the measurement error component
must explain the remaining 0.14 drop in the index. This corresponds to
a value of m, of approximately 20 percent during this time period. One
must suspect that the measurement error component is also capturing
specification error during these years.

Diagnostic checks of the model provide a mixed picture. In this model,
the innovations are heteroscedastic, but the predicted time-varying vari-
ances calculated by the model can be used to construct a set of normal-
ized innovations. These normalized innovations should be independent
white-noise processes with zero mean and unit variance. The normalized
price innovation from the model has a mean of —0.08 and a standard de-
viation of 0.97, very close to the population values of 0 and 1. The corre-
sponding values for dividends was —0.12 and 1.01. There are no significant
cross-correlations between the innovations for leads and lags from 0 to 20
and no significant autocorrelation in the price innovations. There was
some evidence of misspecification from the dividend innovations. These

showed an estimated autocorrelation of —0.29 at lag 2 and —0.21 at lag 12
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Figure 7.3 Decomposition of price, model 2.

but were otherwise close to zero. Two large correlations out of the 82 cal-
culated does not suggest any serious model misspecification.

While the residuals appear to have the predicted variances and covari-
ances, we also were interested in the performance of the model in captur-
ing all of the heteroscedasticity in the data. If the model specification is
correet, the innovations at time ¢ should have a unit variance conditional
on any of the data available at time 7—1. Here the model does not seem
to perform well. When we regress the squared, normalized innovation in
price at time ¢ on a constant and the squares of py)—, we find a positive
coefficient and an R? of 0.13. This suggests that we have not completely
captured all the heteroscedasticity in the data.

In the next section, we take an agnostic view on the source of the het-
eroscedasticity in the model. Rather than attempt to explain it in terms of
time-varying interest rates or measurement €rror, as we have done in the

last two sections, we merely attempt to incorporate its persistence in the

model. To be specific, we model the innovation in price as a process with
autoregressive conditional heteroscedasticity.
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Figure 7.4 Decomposition of dividends, model 2.

5.5 ARCH

The heteroscedasticity in price innovations from model 1 appears to be
quite persistent. A glance at Figure 7.1, which plots these innovations,
should convince the reader of this persistence. The first autocorrelation
of the squares of these innovations is 0.37, which suggests significant se-
rial correlation in the variance of the price innovation. There does not
seem to be any significant serial correlation in the dividend innovation.
The first autocorrelation of the squared dividend innovations is only 0.03.
In this section, we will estimate a model that incorporates ARCH in the
price but not the dividend innovation.

Because the price and dividend processes are tightly connected by the
structural model, some care must be taken in the specification of the
ARCH process. Recall that we had normalized the model so that the price
innovation was composed of two orthogonal components. The first was
wed (where e?is the dividend innovation), and the second was u,. Hetero-
scedasticity in &, will lead to heteroscedasticity in the price innovation but
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not in the dividend innovation. If we let A, =var(u,|Q,_,), then the pa-
rameterization that we have chosen for the ARCH process can be written
as

h,=ayg+ph,_+a;w,_, (5.16)

where

Y
W =ui_—h_

Since E(w, | Q,_,) =0, equation (5.16) can be viewed as an AR (1) process
for the variance. The innovation in A, is w,, which is the deviation of u}

from its expected value. Solving equation (5.16) yields
h=ag(l—e) '+a; T 0'u}_;
i=0
where
9 - p = CE]

so that A, can be viewed as the exponential weighted average of the lagged
squared errors. The homoscedastic model corresponds to «; =0, and the
usual ARCH (1) model corresponds to p= «;.

The state space form of this model is nearly the same as model 1. The
only modification is the incorporation of the time-varying variance for u,.
Since the likelihood value is formed sequentially using the Kalman filter,
the incorporation of a time-varying variance is straightforward.

The estimated parameter values for this model are shown in Table 7.2
in the column labeled ARCH. Several results stand out. First, the fit of
the model is very good. The value of the log likelihood has increased from
— 583 for model 1 to —555. The heteroscedasticity seems to be very per-
sistent. The value of p is 0.998. Over the sample period, the variance of
u, appears to be a random walk with a small drift.® In Figure 7.5, we plot
the implied standard deviation of the one-step-ahead forecast error in
price. The standard deviation has increased markedly over the sample pe-
riod. From 1871 to 1974, the standard deviation increased from 0.03 to
0.08. It increased dramatically (to 0.12) following the large unexpected
decline in prices over the 1974-6 period.

The diagnostic checks suggested that the model was satisfactory. First,
the ARCH process appeared to explain all of the heteroscedasticity. There
was no significant autocorrelation in the (normalized) squared innova-
tions. Both the (normalized) price and dividend innovations had sample

? One might question the large estimated value of p, in light of the reasonably low (0.37)
first autocorrelation in the squared price innovations. If we assume that our model for A,
is correct, and that u,|Q,_; ~ N(0, &,), then a few lines of algebra shows that the popu-
lation first autocorrelation is 0.38. (With these parameter values, however, the fourth
moment of the random variable is infinite, so that the sample autocorrelations may be
very imprecise estimates.)
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Figure 7.5 Standard deviation of price innovation, ARCH model.

standard deviations close to 1 (1.00 and 1.05). There was one large auto-
correlation in the price innovations; the second autocorrelation had a
value of 0.2, and there were two large-sample autocorrelations in the div-
idend innovations; the second and twelfth took on the values —0.28 and
—0.2, respectively. Even these would probably lose importance when di-
vided by estimated standard deviations.

What does this exercise suggest about the relationship between prices
and dividends? First, the results from model 1 confirm results found else-
where, that the relationship predicted by the model is not satisfied by the
raw data. Second, our time-varying coefficient regression results suggest
that the model cannot be salvaged by allowing time-varying interest rates.
Our TVP model produced satisfactory statistical results but implied an-
nual real rates of interest varying from —33 to —50 percent. Third, some
of the friction between the data and the theory can be explained by the
presence of measurement error in the price deflator. Our estimated model
provided an improvement in the fit of the model and explained some of
the heteroscedasticity in the errors. Our final model, which incorporated
ARCH in the price innovations, was very successful in describing the data.
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It implied a substantial increase in the variance of price innovations over
the sample period.

6 Concluding remarks

At this point, it might be useful to reiterate the comments made by An-
drew Harvey at the beginning of the August 1985 session of the World
Congress of the Econometric Society. The Kalman filter, in and of itself,
is of little interest to econometricians. The state space model that under-
lies the Kalman filter should be of great interest to econometricians. As
our taxonomy in the introduction to this chapter showed, the state space
model serves as a unifying model for all of the dynamic linear (and some
nonlinear) models used in econometrics. Clearly, the strength of the state
space is its flexibility. As the applications presented in the session suggest,
this flexibility can profitably be explored by econometricians. Additional
applications, utilizing the flexibility of the model, are important areas for
future research.

However, one need not search for new applications of the model to
find fertile areas for research. As our first application indicated, even the
oldest application of the Kalman filter in econometrics - the TVP mod-
el - has important avenues open for future research. Of foremost impor-
tance is the need for distributional results for estimated parameters in
TVP models with unit roots. Additionally, it would be useful to formally
investigate the ability of linear TVP models to approximate unknown re-
gression functions. Clearly, the quality of the approximation will depend
on the form of the regression function and the time series structure of
weakly exogenous variables. One can imagine cases in which the adaptive
ability of the TVP model would provide a very good approximation.

The final application presented in this chapter - the use of the state
space model and Kalman filter to solve a dynamic linear rational-expecta-
tions model - opens up a new direction for the use of the model in eco-
nomics. As the simple example presented in this chapter indicates, the
linear rational-expectations model places very tight constraints on the dy-
namic interaction of the variables in the model. When these constraints
are tested using real data, they are usually rejected. The state space model
may serve as a useful tool for loosening these constraints along some di-
mensions while preserving the basic structure of the rational-expectations
model. An example of this is our empirical model, which included mea-
surement error. There, the observed data were modeled as a linear com-
bination of underlying latent variables (the variables with asterisks) that
satisfied the rational-expectations model plus some additional noise. This
additional noise helped describe the dynamics of the observed data but
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was of no economic interest. The linear rational-expectations model might
still be viewed as an empirical success if it describes “most” of the features
of the data and leaves very little to be captured by the additional noise.
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