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estimate that sector-specific factors have historically accounted for ap-
proximately three-fourths of long-run changes in GDP growth. Trend
GDP growth fell by nearly 3 percentage points over the postwar period,
with especially significant contributions from the Construction sector
in 1950–80 and the Durable Goods sector in 2000–2018. No sector
has contributed any steady significant increase to the trend growth rate
of GDP in the past 70 years.
I. Introduction
Following the so-calledGreat Recession of 2008–9, USGDP (gross domes-
tic product) recovered only very gradually, resulting in a low average
growth rate in the ensuing decade. Fernald et al. (2017) found that this
weak recovery stemmedmainly from slow growth in total factor productiv-
ity (TFP) and a fall in labor input and note that these adverse forces pre-
ceded the Great Recession. Antolín-Díaz, Drechsel, and Petrella (2017)
likewise document a slowdown in output growth that predates the Great
Recession.1 This paper studies what has in fact been a steady decline in
trendGDP growth over the entire postwar period, 1950–2018.We explore
the implications of TFP and labor input in accounting for this secular de-
cline, but we do so at a disaggregated sectoral level. We document dispa-
rate trend variations in TFP and labor growth across sectors and estimate
the extent to which these trends are driven by idiosyncratic rather than
common factors.We then study the implications of our empirical findings
for trend growth within amultisector framework with linkages that mimic
those of theUS economy, including, crucially, in the production of invest-
ment goods.
We first document that common trend factors play a relatively small

role in explaining sectoral trends in labor and TFP growth. For example,
in Durable Goods, only 3% of the overall trend variation in labor and
TFP growth is explained by their respective common trend factors. These
findings, therefore, highlight the quantitative importance of idiosyncratic
forces not only for business cycle fluctuations (see Foerster, Sarte, and
Watson 2011; Gabaix 2011; Atalay 2017) but also for variations in trends.
There are, however, exceptions, in that in some service sectors, the trend
variation in labor is explained to a greater degree by the common trend fac-
tor. Common trends explain a higher fraction of aggregate trend vari-
ation in labor and TFP growth because aggregation reduces the impor-
tance of sector-specific trends. We estimate that approximately one-third
ette, Fernald, and Mojon (2016) suggest that a slowdown in productivity growth that
before the Great Recession reflects in part the fading gains from the information
ology (IT) revolution. This view is consistent with the long lags associated with the
ctivity effects of IT adoption found by Basu et al. (2004) and the collapse of the

om boom in the early 2000s. Decker et al. (2016) point to a decline in business dyna-
that began in the 1980s as an additional force underlying slowing economic activity.
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of the variation in the trend growth rate of aggregate TFP is common
across sectors, while roughly two-thirds is common for labor. One cannot,
however, infer from these findings the role that common and sectoral
growth trends in labor and TFP play in the overall trend growth rate of
GDP. The reason is that capital accumulation and the network structure
of US production play a key role in translating those trends to the aggre-
gate economy.
To explore the historical implications of changing sectoral trends for the

long-run evolution of GDP growth, we derive balanced-growth accounting
equations in a dynamic multisector framework where sectors use not only
materials but also investment goods produced in other sectors. We then
use these new growth accounting equations to assess the aggregate effects
of observed sectoral changes in the trend growth rates of labor and TFP.
Our analysis, therefore, generalizes the work of Greenwood, Hercowitz,
and Krusell (1997) on investment-specific technical change (ISTC) to an
environment with multiple investment and intermediate-goods sectors
that are interconnected in production.2 At the same time, our focus on es-
timating common and idiosyncratic sources of sectoral trends, and what
their long-run aggregate implications are, differs from the literature build-
ing on Greenwood, Hercowitz, and Krusell (1997). Specifically, Fisher
(2006), Justiniano, Primiceri, and Tambalotti (2010, 2011), and Basu et al.
(2013) are primarily concerned with the business-cycle implications of
sectoral shocks and, in particular, investment-specific shocks.More recently,
vom Lehn and Winberry (2022) show that the input-output network of in-
vestment goods is critical in accounting for shifts in the cyclicality and rela-
tive volatilities of aggregate time series since the 1980s.3

We show that capital accumulation, together with the network structure
of US production,markedly amplifies the aggregate long-run growth effects
of sectoral changes in the trend growth rates of TFP and labor. This ampli-
ficationmechanism canbe conveniently summarized in the formof sectoral
multipliers that reflect the knock-on effects of production linkages. Given
observed US production linkages, the influence of individual sectors on
2 Ngai and Pissarides (2007) provide a seminal study of balanced growth in a multisector
environment. They consider both multiple intermediates and multiple capital-producing
sectors, but not at the same time. Importantly, their analysis abstracts from pairwise link-
ages in both intermediates and capital-producing sectors that play a key role in this paper.
Ngai and Samaniego (2009) generalizes the model in Greenwood, Hercowitz, and Krusell
(1997) to three sectors, which allows for an input-output network in intermediate goods in
carrying out growth accounting. Duarte and Restuccia (2020) include input-output link-
ages across sectors in a multisector environment abstracting from capital and study the im-
plications of cross-country productivity differences in nontraditional service sectors.

3 Basu et al. (2013) also construct a multisector extension of the Greenwood, Hercowitz,
and Krusell (1997) environment, but they work with an aggregate capital stock and an ag-
gregate labor endowment, with each factor being perfectly mobile across sectors. In con-
trast to our paper, the authors study short-run responses to TFP shocks.
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GDPgrowthmay be as large as 3 times their share in the economy, including
in Durable Goods, Construction, and Professional and Business Services.
Combining our empirical findings with the amplification effects of sec-

toral multipliers, we find that sector-specific trends have accounted for
roughly three-fourths of the trend variation in GDP growth over the post-
war period, leaving aggregate or common factors to explain only one-
fourth of those changes. The secular decline in US GDP growth since
1950, therefore, is a phenomenon largely driven by idiosyncratic rather
than aggregate forces. These findings arise in part because of the knock-
on effects of production linkages but also because sector-specific changes
in TFP and labor have been historically large in some sectors. Thus, US
trend GDP growth fell by nearly 3 percentage points between 1950 and
2018. The combination of large trend TFP growth variations in the Con-
struction sector and its large sectoral multiplier means that it contributed
roughly 1 percentage point of that decline between 1950 and 1980. The
Durable Goods sector, after contributing significantly to an economic ex-
pansion in the 1990s, then contributed another 2percentage point decline
in trendGDP growth between 2000 and 2018.While Professional andBusi-
ness Services stands out as having the second-largest sectoral multiplier,
smaller trend TFP growth variations in that sector imply that its contribu-
tions to the secular decline in GDP growth have been more muted to this
point. Remarkably, no sector has contributed any steady significant in-
crease to the trend growth rate of GDP over the postwar period.
Our paper also falls within the literature on equilibrium models with

sectoral production networks developed first by Long and Plosser (1983)
and later by Horvath (1998, 2000) and Dupor (1999). Since then, a large
body of work has explored important features of those models for gen-
erating aggregate fluctuations from idiosyncratic shocks. We maintain
the original assumptions of competitive input and product markets as
well as constant-returns-to-scale technologies. Even absent non–log line-
arities in production emphasized by Baqaee and Farhi (2019), for exam-
ple, and beyond the role of idiosyncratic shocks in explaining aggregate
cyclical variations, the analysis reveals that sector-specific changes also
dominate long-run variations in US GDP growth.4

This paper is organized as follows. Section II gives an overview of the
behavior of trend GDP growth over the past 70 years. Section III provides
an empirical description of the trend growth rates of TFP and labor
growth by industry and estimates the contributions of sector-specific
4 See Foerster, Sarte, andWatson (2011), Gabaix (2011), and Atalay (2017) for assessments
of the importance of idiosyncratic shocks in driving business-cycle fluctuations. We introduce
explicit dynamic considerations into the work of Acemoglu et al. (2012), Baqaee and Farhi
(2019), and Miranda-Pinto (2021), combined with an empirical model that parses out com-
mon and idiosyncratic components of sectoral trend input growth.
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and common factors to these trends. Section IV develops the implica-
tions of these changes at the sector level in the context of a dynamic mul-
tisector model with production linkages in materials and investment.
This model serves as the balanced-growth accounting framework that
we use to determine the aggregate implications of changes in the sectoral
trend growth rates of labor and TFP. Section V presents our quantitative
findings. Section VI discusses salient implications of our work and outlines
directions for future research. Section VII concludes. A detailed appen-
dix contains a comprehensive description of the data, statistical methods,
and economic model and discussions of departures from our benchmark
assumptions and includes additional figures and tables referenced in the
text.
II. The Long-Run Decline in US GDP Growth
Figure 1 shows the behavior ofUSGDPgrowth over the post–WorldWar II
period. Here, annual GDP growth is measured as the share-weighted
value-added growth from 16 sectors comprising the private US economy;
details are provided in the next section.
Figure 1A shows aggregate private-sector growth rates computed by

chain-weighting the sectors and by using three alternative sets of fixed
sectoral shares computed as averages over the entire sample (1950–2018),
over the first 15 years of the sample (1950–64), and over the final 15 years
(2004–18). This panel shows large variation in GDP growth rates—the
standard deviation is 2.5% over the period 1950–2018—but much of this
variation is relatively short-lived and is associated with business cycles
and other relatively transitory phenomena. Moreover, to the extent that
sectoral shares have changed slowly over time, these share shifts have little
effect in figure 1A. In other words, changes in aggregate growth largely
stem from changes within sectors rather than between them. Our interest,
however, is in longer-run variation.
Figure 1B, therefore, plots centered 11-year moving averages of the an-

nual growth rates. Here, too, there is variability. In the 1950s and early
1960s, average annual growth exceeded 4%. Average growth fell to 3%
in the 1970s, rebounded to nearly 4% in the 1990s, but plummeted to less
than 2% in the 2000s (see table 1). At these lower frequencies, the effects
of slowly shifting shares over the sample become more visible, but they
still play a relatively minor role.
Figures 1C and 1D refine these calculations by eliminating the cyclical

variation, using an Okun’s law regression as in Fernald et al. (2017).
Thus, figure 1C plots the residuals from a regression of GDP growth rates
onto a short distributed lead and lag of changes in the unemployment
rate (Δut11, Δut , Δut21). This cyclical adjustment eliminates much of



TABLE 1
Average GDP Growth Rates

Dates

Constant Mean

Weights:
Full Sample

Time-Varying

Weights

Constant Mean

Weights:
First 15 Years

Constant Mean

Weights:
Last 15 Years

Growth
Rates

Cyclically
Adjusted
Rates

Growth
Rates

Cyclically
Adjusted
Rates

Growth
Rates

Cyclically
Adjusted
Rates

Growth
Rates

Cyclically
Adjusted
Rates

1950–2018 3.3 3.2 3.3 3.2 3.2 3.1 3.4 3.4
1950–66 4.5 4.2 4.3 4.0 4.3 4.0 4.6 4.3
1967–83 3.1 3.6 3.0 3.5 2.8 3.4 3.4 3.9
1984–2000 3.9 3.4 3.9 3.4 4.0 3.4 3.8 3.4
2001–18 1.9 1.8 2.0 2.0 1.7 1.7 2.0 2.0
Note.—The values shown are averages of the series plotted in fig. 1 over the periods
shown.
FIG. 1.—US GDP growth rates 1950–2018 (percentage points at an annual rate). Growth
rates are share-weighted value-added growth rates from 16 sectors making up the private
US economy. Cyclical adjustment uses a regression on leads and lags of the first difference
in the unemployment rate.
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the cyclical variability evident in figure 1A. In addition, the 11-year mov-
ing average in figure 1D now produces a more focused picture of the
trend variation in the growth rate of private GDP. Again, time-varying
share weights have a discernible but relatively small effect on the aggre-
gate growth rate or its 11-year moving average.
The numbers reported in table 1 frame the key question of this paper:

why did the average growth rate of GDP fall from 4%per year in the 1950s
to just over 3% in the 1980s and 1990s and then further decline precip-
itously in the 2000s? As the different columns of the table make clear, this
question arises regardless of the shares used in constructing GDP. We
look to inputs—specifically TFP and labor at the sectoral level—for the
answer. That is, when long-run variations of the data are interpreted as
a time-varying balanced-growth path (BGP), changes in trend GDP
growth are in part determined by changes in the trend growth rates of
those sectoral inputs. However, as the analysis in section IV makes clear,
not all sectoral inputs are created equal. Sectors differ not only in their
size or their value-added share in GDP but also in the share of materials
or capital that they provide to other sectors.
Before investigating these input-output interactions, we begin by briefly

describing the sectoral data and how sectoral value-added and labor and
TFP inputs have evolved over the post-WWII period. In much of our anal-
ysis, we construct aggregates using constant weights computed from full-
sample averages. As figure 1 and table 1 suggest, results using these con-
stant shares are robust to alternative weighting schemes.
III. An Empirical Description of Trend Growth
in TFP and Labor
As a first step, we estimate an empirical model of TFP and labor growth for
different sectors of theUSeconomy.Ourpaper applies as a benchmark the
insights of Hulten (1978) on the interpretation of aggregate TFP changes
as a weighted average of sector-specific value-addedTFP changes. In partic-
ular, under constant returns to scale and perfect competition in product
and inputmarkets, the sectors’weights are the ratios of their valued added
to GDP.5

We calculate standard TFP growth rates at the sectoral level, construct
trend growth rates using a “low-pass” filter, and estimate a statistical model
5 In the absence of constant returns to scale, perfect competition, or frictionless factor
mobility, Basu and Fernald (1997, 2001) and Baqaee and Farhi (2018) show that aggregate
TFP changes also incorporate reallocation effects. These effects reflect the movement of
inputs between low- and high-return sectors in the absence of equalization of marginal
rates of transformation and substitution.
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to decompose these trend growth rates into common and sector-specific
components.
A. Data
Sectoral TFP growth rates are calculated with KLEMS (capital, labor, en-
ergy, materials, services) data from of the Bureau of Economic Analysis
(BEA) and the Bureau of Labor Statistics integrated industry-level pro-
duction accounts (ILPAs). These data are attractive for our purposes be-
cause they provide a unified approach to the construction of gross output
and the primary inputs capital and labor, as well as intermediate inputs
(“materials”), for a large number of industries. The KLEMS data are
based on US national income and product accounts (NIPAs) and consis-
tently integrate industry data with input-output tables and fixed-asset ta-
bles. The ILPA KLEMS data build on seminal work studying sectoral pro-
ductivity accounting by Jorgenson and his collaborators and first
summarized in Jorgenson, Gollop, and Fraumeni (1987).
Table 2 lists the 16 sectors we consider, along with the growth rates of

value added, labor, and TFP for each sector. Section 7 of the appendix
provides a detailed discussion of the data and the construction of labor
and TFP from quantity and price indices available in KLEMS data. For
each sector, the table shows average cyclically adjusted growth rates of
value added, labor, and value-added TFP over 1950–2018, and it also
shows their average shares in aggregate value added and labor input.
The aggregate growth rates in the bottom row are the value-weighted av-
erages of the sectoral growth rates, with average value added and labor
shares used as fixed weights.
Clearly, sectors grow at different rates, and this disparity is hidden in

studies that consider only aggregates. Average real value-added growth
rates range from 1.4% in Mining to 4.9% in Information, bracketing the
aggregate value-added growth rate of 3.3%. With the exception of the Du-
rable Goods sector, most sectors with growth rates that exceed the aggre-
gate growth rate provide services. Similarly, labor input growth rates range
from 21.3% in Agriculture to 3.5% in Professional and Business Services
(PBS), bracketing the average aggregate growth rate of 1.6%. Again, most
sectors with labor input growth rates that exceed the aggregate growth rate
provide services. Finally, TFP growth rates range from20.4% inUtilities to
3.1% in Agriculture, bracketing the average aggregate TFP growth rate of
0.8%. Sectoral TFP growth rates are less aligned with either value-added or
labor input growth rates. There are four sectors withTFPdeclines—namely,
Utilities, Construction, FIRE (finance, insurance, and real estate, except for
Housing [x-Housing]), and Education andHealth—as well as a number of
sectors with stagnant TFP levels. Negative TFP growth rates are a counter-
intuitive but known feature of disaggregated industry data. These are in
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part attributed tomeasurement issues with respect to output, though land
and the regulatory environment are also factors in sectors such as Con-
struction (see, e.g., Herkenhoff, Ohanian, and Prescott 2018).
To a first approximation, the contributions of the different sectors to

aggregate outcomes are given by the nominal value-added and labor input
shares in the last two columns of table 2. In those columns, two notable
contributors to value added and TFP are Durable Goods and FIRE (x-
Housing). The two largest contributors to labor payments are Durable
Goods and PBS. Over time, the shares of goods-producing sectors have
declined while the shares of services-producing sectors have increased.
However, despite these changes, aggregating sectoral outputs and inputs
using constant mean shares, as opposed to time-varying shares, has little
effect on the measurement of aggregate outputs and inputs (fig. 1).
B. Empirical Framework
The empirical analysis used to characterize the long-run properties of the
data proceeds in three steps. First, we carry out a cyclical adjustment of
sectoral TFP and labor raw growth rates to eliminate some of their cyclical
TABLE 2
16-Sector Decomposition of the US Private Economy (1950–2018)

Sectors

Average Growth Rate,

Cyclically Adjusted Data

(percentage points at an
annual rate)

Average Share

(percentage points)

Value Added Labor TFP Value Added Labor

1. Agriculture 2.41 21.29 3.12 2.69 3.23
2. Mining 1.38 .37 .39 2.11 1.55
3. Utilities 2.09 1.00 2.42 2.37 1.04
4. Construction 1.69 1.76 2.23 4.99 7.62
5. Durable Goods 3.65 .54 2.10 13.32 15.5
6. Nondurable Goods 2.27 .14 .83 9.20 8.80
7. Wholesale Trade 4.61 1.67 1.81 7.15 6.63
8. Retail Trade 3.13 1.19 1.07 8.18 9.61
9. Transportation and Warehousing 2.58 .91 1.27 4.16 5.03
10. Information 4.93 1.35 1.04 4.97 3.74
11. FIRE (x-Housing) 3.88 2.77 2.03 9.97 7.53
12. PBS 4.45 3.51 .36 8.79 11.25
13. Education and Health 3.43 3.34 2.29 6.22 9.35
14. Arts, Entertainment, and Food

Service 2.48 1.79 .36 3.74 4.56
15. Other Services (x-Government) 1.99 .52 1.04 2.94 4.37
16. Housing 3.45 .86 .24 9.20 .20

Aggregate 3.32 1.55 .82 100 100
Note.—The values shown are average annual growth rates for the 16 sectors. The row
labeled “Aggregate” reports the constant share-weighted average of the 16 sectors.
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variability. Second, we make use of methods discussed in Müller andWat-
son (2020) to extract smooth trends capturing the long-run evolution of
the data. Finally, we carry out a factor analysis that quantifies the relative
importance of common and sector-specific factors in driving these smooth
trend components.
1. Cyclical Adjustment
Let Δ~xi,t denote the growth rate (100 � the first difference of the loga-
rithm) of annual measurements of labor or TFP in sector i at date t. These
sectoral growth rates are volatile, and in many sectors, much of the vari-
ability is associated with the business cycle. Our interest is in trend (i.e.,
low-frequency) variation, which is more easily measured after cyclically
adjusting the raw growth rates. Thus, as with the cyclically adjusted mea-
sure of GDP shown in figure 1, we follow Fernald et al. (2017) and cycli-
cally adjust these growth rates, using the change in the unemployment
rate, Δut, as a measure of cyclical resource utilization. That is, we estimate

Δ~xi,t 5 mi 1 biðLÞΔut 1 ei,t ,

where biðLÞ 5 bi,1L 1 bi,0 1 bi,21L21 and the leads and lags of Δut cap-
ture much of the business-cycle variability in the data. Throughout the
remainder of the paper, we use Δxi,t 5 Δ~xi,t 2 b̂iðLÞΔut , where b̂iðLÞ de-
notes the OLS (ordinary least squares) estimator and xi,t represents the
implied cyclically adjusted value of sectoral TFP (denoted zi,t) or labor
input (denoted ‘i,t) growth rates.
2. Extracting Low-Frequency Trends
We begin by extracting low-frequency trends from the data, using a frame-
work presented in Müller and Watson (2008). That framework is useful
because, on the one hand, it yields smooth trends that capture the
long-run evolution of the growth rate of GDP and the associated growth
rates of sectoral labor and TFP and, on the other hand, it simultaneously
provides a convenient framework for statistical analysis. We give an over-
view below of the approach here. Müller and Watson (2020) provide a
detailed discussion of statistical analysis using this framework.6

To extract low-frequency trends in the growth rates of GDP, TFP, and
labor input, generically denoted by Δxt, we regress these series onto a
constant and a set of low-frequency periodic functions. In particular, let
6 The methods used are closely related to well-known spectral analysis methods using
low-frequency Fourier transforms of the data. See Müller and Watson (2020) for a detailed
discussion and references.
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ΨjðsÞ 5
ffiffiffi
2

p
cosð jspÞ denote a cosine function on s ∈ ½0, 1� with period

2=j . The fitted values from the OLS regression of Δxt onto a constant
and Ψjððt 2 1=2Þ=T Þ for j 5 1, ::: , q and t 5 1, ::: , T capture the low-
frequency variability in the sample corresponding to periodicities
longer than 2T=q. Moreover, let W(s) denote the vector of regressors
½Ψ1ðsÞ, ::: ,ΨqðsÞ�0 with periods 2 through 2=q, WT the T � q matrix with
t th row Ψððt 2 1=2Þ=T Þ0, and Ψ0

T 5 ½1T ,ΨT �, where 1T is a T � 1 vector
of 1s. The specific form used for the cosine weights implies that the col-
umns of Ψ0

T are orthogonal with T21Ψ00
TΨ0

T 5 Iq11. Thus, the OLS coeffi-
cients from the regression of Δxt onto Ψ0

T—that is, ðΨ00
TΨ0

T Þ21Ψ00
TΔx1 : T—

amount to q 1 1 weighted averages of the data, T21Ψ00
TΔx1 : T , which we

partition as ð�x,XÞ, where �x is the sample mean of Δxt. In our application,
T 5 69, so that with q 5 8, the regression captures long-run variation
with periodicities longer than 17.25 (5 2 � 69=8) years. These are the
low-frequency growth rate trends analyzed in this paper.7

Figure 2 plots the growth rates of (cyclically adjusted) GDP, its cen-
tered 11-year moving average, and its trend computed as the fitted
values from the low-frequency regression we have just described.8 The
FIG. 2.—Trend rate of growth of GDP (percentage points at an annual rate). The low-
frequency trend captures variability for periodicities longer than 17 years. Cyc.5 cyclically.
7 Calculations presented in Müller and Watson (2008) show that these low-frequency
projections approximate a low-pass filter for periods longer than 2T=q. That said, there
is some leakage from higher frequencies, and this makes the cyclical adjustment discussed
above useful.

8 An 11-year moving average is a crude low-pass filter, with more than half of its spectral
gain associated with periods longer than 17 years.
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low-frequency trend smooths out the higher-frequency variation in the
11-year moving average. While the aggregate importance of sectoral
shocks is known for business cycles—generally, cycles with periods ranging
from 2 to 8 years—our interest here is on the role of sectoral shocks for
the aggregate trend variations shown in figure 2. Thus, we focus on cycles
longer than 17 years, as captured by the Ψ-weighted averages of the data.
Figures 3 and 4 plot the cyclically adjusted growth rates of labor and

TFP, respectively, for each of the 16 sectors, along with their low-frequency
trends. The disparity in experiences across different sectors stands out. In
particular, the trends show large variations across sectors and through
time. For example, labor input was contracting at nearly 4% per year in
Agriculture in the 1950s but stabilized near the end of the sample. In con-
trast, labor input in theDurableGoods andNondurableGoods sectors was
increasing in the 1950s but has been contracting since the mid-1980s. At
the same time, the trend growth rates of labor in several service sectors ex-
hibit large ups anddowns over the sample. Similar disparities are apparent
in the sectoral growth rates of TFP. Trend TFP growth in Construction, for
FIG. 3.—Labor growth rates and trends by sector (percentage points at an annual rate).
Each panel shows the cyclically adjusted growth rate of labor for each sector in black, along
with its low-frequency trend in blue. In figures 3, 4, 6–8, and 12, Trans. & Ware. 5 Trans-
portation and Warehousing; Educ. 5 Education; Arts, Ent., & Food Svc.5 Arts, Entertain-
ment, and Food Service; Gov. 5 Government.
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example, was around 5% in the 1950s, declined over the next couple of
decades, andflattenedout thereafter. In contrast, TFP trend growth inDu-
rable Goods increased somewhat steadily from the 1950s to 2000 but has
since collapsed bymore than 5 percentage points. In sections IV and V, we
quantify the aggregate implications of these sectoral variations in labor
and TFP inputs.
3. Decomposition of Trend Growth Rates
into Common and Sector-Specific Factors
To fix notation, let gt denote the trend growth rate constructed from our
data on TFP or labor input,Δxt. That is, gt is the fitted value from theOLS re-
gressionofΔxtontoa constant and the qperiodic functionsΨjððt 2 1=2Þ=T Þ,
and it is the low-frequency trend plotted in figures 2–4. We saw above that
because the regressors are mutually orthogonal, the OLS regression co-
efficients are ð�x,XÞ, where �x is the sample mean of Δxt and X is the
q � 1 vector ofOLS regression coefficients from the regression ofΔxt onto
Ψjððt 2 1=2Þ=T Þ for j 5 1, ::: , q. Importantly, because the regressors are
deterministic, the stochastic process for gt is completely characterized by
FIG. 4.—TFP growth rates and trends by sector (percentage points at annual rate). See
figure 3 legend for further details.
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the probability distribution of the q 1 1 random variables ð�x,XÞ, and vari-
ation in gt over the sample is determined by the q � 1 vector X.9

A key implication of these results is that the original sample of T obser-
vations on Δxt contains only q pieces of independent information on the
long-run properties of Δx. In our context, the T 5 69 annual observa-
tions contain only q 5 8 observations describing the long-run variation
for periods longer than 17 years. This makes precise the intuition that
a statistical analysis of long-run growth is inherently a “small-sample”
problem. Conveniently, however, this small-sample problem involves var-
iables that are averages of the T observations—the elements of X—and
that are, therefore, (approximately) normally distributed and readily an-
alyzed with standard statistical methods.
Examination of the trends plotted in figures 3 and 4 suggests that some

of the trend variation may be common across sectors while some are sec-
tor specific. In addition, in some sectors, trend variation in labor appears
to be correlated with trend variation in TFP (and, interestingly, this cor-
relation generally appears to be negative). We now outline an empirical
model that captures these features.
Let Δ ln ‘i,t denote the rate of growth of labor input in sector i in period

t, and let Δ ln zi,t denote the rate of growth of TFP. Consider the factor
model

Δln ‘i,t

Δln zi,t

" #
5

l‘
i 0

0 lz
i

" #
f ‘
t

f z
t

" #
1

u‘
i,t

uz
i,t

" #
, (1)

where ft 5 ð f ‘
t f z

t Þ0 are unobserved common factors, li 5 ðl‘
i l

z
i Þ0 are fac-

tor loadings, and ui,t 5 ðu‘
i,t u

z
itÞ0 are sector-specific disturbances. Denote

the trend growth rates in ðΔ ln ‘i,t , Δ ln zi,t , f ‘
t , f z

t , u‘
i,t , u

z
i,tÞ by, respectively,

ðg ‘
i,t , g

z
i,t , g

‘
f ,t , g

z
f ,t , g

‘
u,i,t , g

z
u,i,tÞ. Let X‘

i denote the q � 1 vector of OLS coeffi-
cients associated with Ψjððt 2 1=2Þ=T Þ, j 5 1, ::: , q, in the regression of
Δ ln ‘i,t on a constant and these periodic functions, and similarly for
Xz

i , F‘, Fz, U‘
i and Uz

i . Premultiplying each element in equation (1) by
T21w0

t , where T21w0
t is the tth row of WT, and summing yields a factor de-

composition of the trends and cosine transforms of the form (abstract-
ing from the constant),

X‘
i
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i
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which characterizes the low-frequency variation in the data.We estimate a
version of equation (2) and use it to describe the common components,
9 By construction, the low-frequency trends are highly serially correlated, and this mus
be accounted for in the statistical analysis. As it turns out, this is relatively straightforward
given the framework described above. We highlight a few key features of this framework in
sec. 1 of the appendix and refer the reader to Müller and Watson (2020) and references
therein for more detail.
t
,
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ðg ‘
f ,t , g

z
f ,tÞ, and sector-specific components, ðg ‘

u,i,t , g
z
u,i,tÞ, of the trend growth

rates in sectoral labor input and TFP.10

The model is estimated with Bayes methods. While large-sample Bayes
and frequentist methods often coincide, the analysis of long-run trends
is predicated on a small sample: in our application, the variation in each
trend is characterized by only q 5 8 observations. Hence, large-sample
frequentist results are irrelevant for our “small-sample” empirical prob-
lem, and Bayes analysis will, in general, depend on the specifics of the
chosen priors. Section 1 of the appendix contains details of the estima-
tion method and empirical results for the low-frequency factor model.11

The priors we use are relatively uninformative except for the factor
loadings. Let l‘ 5 ðl‘

1, ::: , l
‘
16Þ0, and note that the scales of l‘ and F‘

are not separately identified. Thus, we normalize s0‘l
‘ 5 1, where s‘ de-

notes the vector of average sectoral labor shares shown in table 2. This
imposes a normalization where the growth of aggregate labor, say
Δ ln ‘t 5 oi51s‘,iΔ ln ‘i,t , satisfies Δ ln ‘t 5 f ‘

t 1 oi s‘,iu‘
i,t . That is, a 1-unit

change in f ‘ corresponds to a unit change in the long-run growth rate
of aggregate labor.
The prior for l‘ is l‘ ∼ N ð1, P‘Þ, where 1 is a vector of 1s and P‘ 5

h2ðI16 2 s‘ðs0‘s‘Þ21s0‘Þ, which enforces the constraint that s0‘l
‘ 5 1. The pa-

rameter h governs how aggressively the estimates of l‘
i are shrunk toward

their mean of unity. Our benchmark model uses h 5 1, so the prior puts
approximately two-thirds of its weight on values of l‘

i between 0 and 2.
Smaller values of h tighten the constraint, making negative factor load-
ings less likely, while larger values of h loosen it. To gauge the robustness
of our conclusions to the choice of h, we also show results with h 5 1=2
and h 5 2 in section V. We use an analogous prior for lz.
C. Estimated Sectoral and Aggregate Trend Growth Rates
in Labor and TFP
For our purposes, the key results are summarized in a table and three
figures. The table summarizes salient features of the stochastic process
10 SeeMüller, Stock, andWatson (2022) for a related application studying long-run growth
nd long horizons forecasts for per capita GDP values of a panel of 113 countries. In eq. (1),
e common factors affect all sectors without leads and lags, an unrealistic assumption made
r expositional purposes.The low-frequencymodel ineq. (2) allows for lags ineq. (1) that are
ort relative to the sample size. That said, lags of a decade or longer, such as those associated
ith general-purpose technologies (e.g., semiconductors), will confound common and sector-
ecific sources of variation in the growth rates. See, e.g., Basu et al.’s (2004) discussion of the
iffusion of information and communications technology (ICT) and its delayed effects on pro-
uctivity growth in ICT-using industries in the United States and the United Kingdom.
11
a
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w
sp
d
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Frequentist methods for small-sample problems such as these are discussed, e.g., in
Müller and Watson (2008, 2016, 2018). As a practical matter, these methods apply only
to univariate and bivariate settings. Our application here involves 32 time series.
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describing the long-run evolution of the sectoral growth rates. The fig-
ures summarize the historical evolution of the long-run growth rates
over the sample period.
Table 3 reports the posterior medians for l, along with 68% credible

intervals.12 Also reported is the fraction of the trend variability in each
sector explained by the common trend factors, ðg ‘

f ,t , g
z
f ,tÞ, denoted R2

‘

and R2
z in the table. Finally, the table also reports the correlation between

the sector-specific labor and TFP trends, ðg ‘
u,i,t , g

z
u,i,tÞ, in each sector and

the correlation between the common trends ðg ‘
f ,t , g

z
f ,tÞ.

Looking first at the median values of the factor loadings, Agriculture,
FIRE (x-Housing), and PBS have the largest factor loadings for labor,
and Transportation and Warehousing, Durable Goods, and Nondurable
Goods have the smallest. Utilities, Durable Goods, and Construction have
the largest loadings for TFP, while FIRE (x-Housing) and Arts, Entertain-
ment, and Food Services have the smallest. The 68% credible intervals
are relatively wide and give a quantitative sense of how information about
the long run is limited in our sample: the average width is 1.3 for l‘ and 1.9
for lz. That said, for the majority of sectors, the posterior puts relatively lit-
tle weight on negative values of the factor loadings. Detailed results for al-
ternative priors are available in section 1 of the appendix.
The sectoral R 2 values are typically low, indicating that common trend

factors play a relatively muted role in explaining overall sectoral trends.
For example, in Durable Goods, only 3% of the overall trend variation
in labor and TFP growth is explained by their respective common trend
factors. Notable exceptions for R2

‘ arise in several service sectors, for ex-
ample in FIRE (x-Housing), where 76% of the trend variation in labor is
explained by the common trend factor. Interestingly, the posterior sug-
gests that the sector-specific trends in labor and TFP are generally nega-
tively correlated, rather dramatically so for PBS.
The final row of the table shows the results for aggregate values of labor

and TFP. By construction, the share-weighted factor loadings sum to unity.
The common trends, ðg ‘

f ,t , g
z
f ,tÞ, are also negatively correlated.TheR2 values

are higher for the aggregates because aggregation reduces the importance
of the sector-specific trends. The point estimates suggest that roughly two-
thirds of the variation in the trend growth rate of labor is common across
sectors, while roughly one-third is common for TFP. However, one cannot
directly infer from these findings the role that common growth trends in
labor and TFP play in the overall trend growth rate of GDP. The reason is
production linkages across sectors. In particular, the effective weight that
12 Throughout the paper, we report equal-tail 68% credible intervals. Section 1 of the
appendix also reports selected 90% credible intervals, which in some cases are markedly
wider. We remind the reader that these long-run empirical results use only q 5 8 indepen-
dent observations on labor input and TFP for each of the 16 sectors.
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each sector has in the aggregate economy can differ considerably from its
value-added share inGDP. Thus, as we show below, sectors such as Durable
Goods, Construction, and PBS, with extensive linkages to other sectors as
input suppliers, have an outsize influence on the aggregate trend.
Figure 5 shows a historical decomposition of the trends in aggregate

labor and TFP growth rates arising from the common factors, ðg ‘
f , g

z
f Þ,

and sector-specific components, fg ‘
u,i, g

z
u,ig16

i51. Figures 5A and 5D show
the (demeaned) values of the aggregate growth rates with the associated
TABLE 3
Changes in Trend Value of Labor and TFP Growth Rates

Sector l‘ lz R 2
‘ R 2

z corr(‘, z)

1. Agriculture 2.01 .59 .21 .02 2.32
(1.24, 2.71) (2.59, 1.64) (.06, .44) (.00, .13) (2.52, 2.15)

2. Mining .73 1.10 .01 .01 2.35
(2.17, 1.64) (.10, 2.09) (.00, .07) (.00, .04) (2.63, 2.06)

3. Utilities 1.13 1.36 .24 .05 .22
(.41, 1.82) (.36, 2.35) (.04, .58) (.00, .29) (2.06, .58)

4. Construction 1.55 1.26 .33 .02 2.25
(.95, 2.08) (.21, 2.66) (.10, .61) (.00, .19) (2.55, 2.04)

5. Durable Goods .40 1.31 .03 .03 2.35
(2.23, 1.03) (.44, 2.17) (.00, .18) (.00, .15) (2.63, 2.05)

6. Nondurable Goods .59 1.22 .06 .04 2.36
(2.20, 1.38) (.36, 2.13) (.01, .29) (.00, .23) (2.65, 2.06)

7. Wholesale Trade 1.09 .88 .53 .04 .20
(.62, 1.49) (.06, 1.74) (.17, .81) (.00, .20) (2.06, .53)

8. Retail Trade .80 1.14 .26 .05 .06
(.26, 1.29) (.17, 2.82) (.04, .60) (.00, .85) (2.25, .62)

9. Transportation and
Warehousing 2.04 .88 .05 .06 .06

(2.75, .72) (2.02, 1.79) (.00, .23) (.00, .28) (2.25, .36)
10. Information 1.34 .77 .22 .03 2.25

(.69, 2.01) (2.18, 1.81) (.04, .51) (.00, .19) (2.56, 2.00)
11. FIRE (x-Housing) 1.92 .35 .76 .08 .01

(1.34, 2.48) (2.42, 1.34) (.35, .92) (.01, .40) (2.41, .40)
12. PBS 1.87 .90 .64 .06 2.92

(1.48, 2.29) (2.01, 1.80) (.31, .87) (.00, .39) (2.98, 2.67)
13. Education and Health .59 1.36 .16 .10 2.63

(2.06, 1.05) (.24, 2.49) (.01, .56) (.01, .54) (2.88, 2.26)
14. Arts, Entertainment,

and Food Service 1.19 .37 .37 .05 2.18
(.69, 1.75) (2.39, 1.31) (.11, .67) (.00, .26) (2.51, .02)

15. Other Services
(x-Government) .68 .74 .06 .02 2.07

(2.10, 1.48) (2.10, 1.63) (.01, .23) (.00, .10) (2.35, .17)
16. Housing .82 .75 .01 .10 .07

(2.13, 1.74) (.08, 1.50) (.00, .04) (.01, .44) (2.21, .40)
Aggregate 1.0 1.0 .67 .30 2.29

(.48, .82) (.10, .58) (2.72, 2.13)
Note.—The estimates are posterior medians, with 68% credible intervals shown in pa-
rentheses. The “corr(‘, z)” column reports the correlations between g ‘

u,i,t and g z
u,i,t for the

rows corresponding to sectors, and correlations between g ‘
f ,t and g z

f ,t for the “Aggregate”
row.
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low-frequency trend. The other panels decompose the trend into its com-
mon (figs. 5B, 5E) and sector-specific components (figs. 5C, 5F). This de-
composition relies on standard signal extraction formulas to compute
the posterior distribution of (F, U), given X, and the figure includes
68% (pointwise) credible intervals for the resulting common and sector-
specific trends that incorporate uncertainty about the model’s parameter
values. Figure 5B suggests that much of the increase in the trend growth
rate of aggregate labor in the 1960s and 1970s and the subsequent decline
in the 1980s and 1990s (both typically associated with demographics) is
captured by the model’s common factor in labor. Sector-specific labor fac-
tors, for themost part, played a supporting role. In contrast, while themod-
el’s aggregate common factor played a role in the decline of trend TFP
growth in the 1970s, the low-frequency variation in the series since then
has been associated almost exclusively with sector-specific sources.
Figures 6 and 7 present the trend growth rates for each of the sectors

(shown previously in fig. 5), along with the estimated sector-specific
ðg ‘

u,i,t , g
z
u,i,tÞ components. Consistent with the R 2 values shown in table 3,
FIG. 5.—Aggregate trend growth rates in labor and TFP: common and sector-specific
components (percentage points at annual rate). A and D show the growth rates (deviated
from their sample mean) and the low-frequency trend. The other panels show the low-
frequency trend and its decomposition into common and sector-specific components.
The red lines denote the posterior median and the shaded areas the (pointwise) equal-tail
68% credible intervals.
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much of the variation in the trend growth rates of sectoral TFP and labor
is associated with sector-specific factors, and this is particularly true for
TFP. Notable in figures 6 and 7 is the negative correlation between the
low-frequency components of labor and TFP sectoral growth.13
IV. Sectoral Trends and the Aggregate Economy
Given the evolution of sectoral trend growth rates for labor and TFP over
the past 70 years, this section explores their implications for long-runGDP
growth. The key consideration here is that production sectors are linked
because each sector uses capital goods and materials produced in other
sectors. Therefore, we consider a multisector growth model that features
FIG. 6.—Labor trends and sector-specific components (percentage points at annual
rate). Each panel shows the low-frequency trend for sectoral growth rate (in blue) and
its sector-specific component (in red). The red lines denote the posterior median and
the shaded areas the (pointwise) equal-tail 68% credible intervals.
13 One explanation for this negative correlation relies on complementarities in prefer-
ences (see Ngai and Pissarides 2007; Herrendorf, Rogerson, and Valentinyi 2013). Techno-
logical progress in a sector leads to reduced spending on that sector’s consumption goods
and, by implication, reduced employment in that sector as well.
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these interactions. Consistent with our TFP calculations in section III, the
model also features competitive product and input markets.
We consider a structural framework with preferences and technolo-

gies that are unit elastic, so that the economy evolves along a BGP in
the long run. Capital accumulation interacts with production linkages
to amplify the effects of sector-specific sources of growth. In particular,
changes in the growth rate of labor or TFP in one sector affect not only
its own value-added growth but also that of all other sectors. We derive
closed-form expressions for the long-run multipliers summarizing the
aggregate growth implications of these network effects for each sector.
The magnitude of the multiplier associated with a given sector depends
on its role and importance as a supplier of capital and materials to other
sectors.
We first outline a general n-sector model that we use in our quantita-

tive analysis. After introducing the general model, we present several
special cases using n 5 2 sectors to highlight key mechanisms and their
relationship to previous work. We then return to the general n-sector
model.
FIG. 7.—TFP trends and sector-specific components (percentage points at annual rate).
See figure 6 legend for further details.
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A. Economic Environment
Consider an economy with n distinct sectors of production indexed by j
(or i). A representative household derives utility from these n goods ac-
cording to

E0o
∞

t50

bt
Yn
j51

cj ,t
vj

� �vj

, o
n

j51

vj 5 1, vj ≥ 0,

where vj is the household’s expenditure share on final good j.
Each sector produces a quantity, yj,t, of good j at date t, using a value-

added aggregate, vj,t, and a materials aggregate, mj,t, with the technology

yj ,t 5
vj ,t
gj

� �gj mj ,t

1 2 gj

� �12gj

, gj ∈ ½0, 1�: (3)

The quantity of materials aggregate, mj,t, used in sector j is produced with
the technology

mj ,t 5
Yn
i51

mij ,t

fij

� �fij

, o
n

i51

fij 5 1, fij ≥ 0, (4)

wheremij,tdenotesmaterials purchased from sector iby sector j. Thenotion
that every sector potentially uses materials from every other sector intro-
duces a first source of interconnectedness in the economy. An input-
output matrix (IO matrix) is an n � n matrix Φ with typical element fij.
The columns of Φ add up to the degree of returns to scale in materials
for each sector, in this case unity. The row sums ofΦ summarize the impor-
tance of each sector as a supplier ofmaterials to all other sectors. Thus, the
rows and columns ofΦ reflect “sell-to” and “buy-from” shares, respectively,
for each sector.
The value-added aggregate, vj,t, from sector j is produced using capital,

kj,t, and labor, ‘j,t, according to

vj ,t 5 zj ,t
kj ,t
aj

� �aj ‘j ,t
1 2 aj

� �12aj

, aj ∈ ½0, 1�: (5)

Capital accumulation in each sector follows

kj,t11 5 xj,t 1 ð1 2 djÞkj ,t , (6)

where xj,t represents investment in new capital in sector j and dj ∈ ð0, 1Þ is
the depreciation rate specific to that sector. Investment in each sector j is
produced using the quantity, xij,t, of sector i goods by way of the technology

xj ,t 5
Yn
i51

xij ,t
qij

� �qij

, o
n

i51

qij 5 1, qij ≥ 0: (7)
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Thus, there exists a second source of interconnectedness in this econ-
omy, in that new capital goods in every sector are potentially produced
using the output of other sectors. This additional source of dynamic link-
ages in the economy, mostly absent from structural multisector studies, is
shown to be a key propagation mechanism over the business cycle in
vom Lehn andWinberry (2022). Similarly to the IOmatrix, a capital flow
matrix is an n � n matrix Ω with typical element qij. The columns of Ω
add up to the degree of returns to scale in investment for each sector
which here is unity. The row sums of Ω indicate the importance of each
sector as a supplier of new capital to all other sectors.
The resource constraint in each sector j is given by

cj,t 1o
n

i51

mji,t 1o
n

i51

xji,t 5 yj ,t:

Sectoral change is defined by changes in the composite variable, Aj,t, that
reflect the joint behavior of both TFP and labor growth. In particular,
under the maintained assumptions, sectoral value added may be alterna-
tively expressed as

vj ,t 5 Aj ,t

kj,t
aj

� �aj

,

where

Δ ln Aj ,t 5 Δ ln zj,t 1 ð1 2 ajÞΔ ln ‘j ,t : (8)

In this paper, we condition on the observed joint behavior of TFP and
labor growth rates, fΔ ln zj,t , Δ ln ‘j ,tg, in each sector j and derive their
implications for aggregate value-added or GDP growth. In particular, we
provide general growth accounting expressions that quantify the effects
of changes in trend input growth in a given sector in light of its produc-
tion linkages to all other sectors.
While we condition on observed labor growth rates, the growth account-

ing expressions we derive are largely unchanged in a model where the al-
location of labor is endogenous. In particular, a conventional treatment
of labor supply produces a growthexpression that is isomorphic to that pre-
sented below. In that expression, the way in which capital accumulation
and the network features of production determine the influence of differ-
ent sectors on aggregate growth is unchanged, as are the effects of long-run
changes in TFP growth on GDP growth. The key difference is that with en-
dogenous labor supply, the common and idiosyncratic components of la-
bor input now carry a structural interpretation. Specifically, the common
component is associated with broad demographics such as population
growth and how these demographics affect labor input in each sector.
The idiosyncratic component reflects sector-specific factors such as those
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determining the disutility cost of working in different sectors, including a
sector-specific Frisch elasticity, or sector-specific labor quality adjustments.14

For ease of presentation, we use the following notation throughout the
paper: we denote thematrix summarizing value-added shares in gross out-
put indifferent sectorsΓd 5 diagfgjg, the IOmatrixΦ 5 ffijg, the capital
flowmatrixΩ 5 fqijg, and the matrix summarizing capital shares in value
added in different sectors ad 5 diagfajg.
B. Balanced Growth and Sectoral Multipliers
We consider a BGP where the growth rates of TFP and labor in sector j
are given by g z

j and g ‘
j , respectively. From equation (8), it follows that

along that path,

Δ ln Aj ,t 5 g a
j 5 g z

j 1 1 2 aj

� �
g ‘
j :

We now show that because of production linkages, sources of change in
an individual sector, g a

j , help determine value-added growth in every other
sector along the BGP. These linkages, therefore, amplify the effects of
sector-specific change on GDP growth, and this amplification can be
summarized by a multiplier for each sector. As we will see below, these
multipliers scale the influence of some sectors on GDP growth by up
to multiple times their share in the economy.
The sectoral multipliers are readily computed from the production

linkages specified in the model. Along the BGP, gross output in sector
j (yj,t) and its uses (cj,t, mji,t, and xji,t) grow at the same sector-specific rate.
Thus, let g y

j denote this common growth rate for yj, cj, mji, and xji. Let g v
j ,

gm
j , g

k
j , and g x

j denote the BGP growth rates of sector j’s inputs vj, mj, kj,
and xj, respectively. Let g y 5 ðg y

1 , :::g
y
nÞ0, and define the n � 1 vectors

gv, gm, and so on, analogously. From equation (4), note that
gm
j 5 oifij g

y
i (because mij grows at rate g

y
i ), so that gm 5 Φ0g y. Similarly,

from equations (6) and (7), g k
j 5 g x

j 5 oiqij g
y
i (because xij grows at rate

g
y
i ), so that g k 5 Ω0g y. Equation (3) implies g y 5 Γdg v 1 ðI 2 ΓdÞg m, with
g v 5 g a 1 adg k from equation (5). Collecting terms in gy then yields g y 5
Γdg a 1 ΓdadΩ0g y 1 ðI 2 ΓdÞΦ0g y, so that
14 See sec. 4 of the appendix. The interpretation or identification of sources of labor
growth will necessarily depend on the particular model of endogenous labor supply under
consideration. Because our focus is on growth accounting (rather than counterfactuals),
we take the observations on labor growth as given, whatever their underlying forces. Ngai
and Pissarides (2007) explore an alternative framework where the reallocation of labor
among consumption goods sectors is an outcome of unbalanced growth among those goods
while, at the same time, preserving balanced growth at the aggregate level. Absent from their
work, however, are the network considerations and the role of capital in determining network
multipliers that are central to this paper. An interesting avenue for future work, therefore, is
the study of growth and structural change with production networks.
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g y 5 Ξ0g a, (9)

where Ξ0 5 ½I 2 ΓdadΩ0 2 ðI 2 ΓdÞΦ0�21Γd is the generalized Leontief
inverse.
Finally, with g v 5 g a 1 adg k and g k 5 Ω0g y, then

g v 5 I 1 adΩ
0Ξ0ð Þg a : (10)

Observe that preference parameters are absent from equation (10), in
that balanced-growth relationships are ultimately statements about tech-
nologies and resource constraints.
Equation (10) describes how the sources of growth in a given sector, g a

j ,
affect value-added growth in all other sectors, g v

i . This relationship in-
volves the direct effects of sectors’ TFP and labor growth on their own
value-added growth, Iga, and the indirect effects that sectors have on other
sectors through the economy’s sectoral network of investment and mate-
rials, adΩ0Ξ0ga. The general Leontief inverse, Ξ, is central and summarizes
the knock-on effects of sectoral changes through linkages in investment,
captured in Ω, and materials, captured in Φ.
Given the vector of sectoral value-added growth rates, gv, the Divisia

aggregate index of GDP growth is g V 5 sv0g v, where sv 5 ðsv1 , ::: , svnÞ is a
vector of sectoral value-added shares in GDP that are constant on the
BGP. Thus,

g V 5 sv0 I 1 adΩ
0Ξ0ð Þg a, (11)

so that, holding shares constant,

∂g V

∂g a 5 sv 1 ΞΩads
v : (12)

The first term in equation (12) shows the direct effect of ga on the
growth rate of GDP, and the second term captures the network effects
of ga on GDP growth induced by production linkages.15 Equation (12),
therefore, defines the vector of sectoral multipliers for each of the j sectors.
When no sector uses capital in production, ad 5 0, the drivers of

growth in sector j, g a
j , affect GDP growth only through that sector’s share

in the economy, ∂g V =∂g a
j 5 svj . More generally, equations (10) and (12)

suggest the presence of a network multiplier effect that varies by sector
and that depends not only on the importance of sectoral interactions
15 In general, sectoral value-added shares in GDP, sv, will also depend on the model’s un-
derlying parameters, including the vector of sources of sectoral growth, ga. However, changes
in sectoral shares induced by an exogenous change in a sector k, ∂svj =∂g a

k , will be mostly in-
consequential for overall growth, consistent with fig. 1 and the notion that since shares must
sum to 1, ojð∂svj =∂g a

k Þ 5 0.
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through the elements of Ξ but also on the extent to which sectors use cap-
ital produced by other sectors in their own production, that is, the ele-
ments inΩ and ad. From equation (9), a change in input growth in sector
j influences every other sector k through the network of production link-
ages summarized by all nonzero jk elements (i.e., from j to k) of Ξ.
Induced changes in all sectors k, in turn, potentially affect investment
in every other sector, i, through capital flows summarized by qki in Ω
(i.e., from k to i, including back to j). The net effect on GDP growth is
the sum of all these interactions. Conveniently, the effects of sectoral
changes, ∂ga, on GDP growth may be thought of as a direct effect, sv,
and an additional indirect effect resulting from sectoral linkages, ΞΩadsv.
Hence, we define the combined direct and indirect effects of structural
change on GDP growth in terms of the vector of sectoral multipliers,
sv 1 ΞΩadsv.
To gain intuition, the next section discusses equations (10) and (11) in

the context of special cases exemplified in previous work. In particular, we
provide examples of sectoral multipliers in Greenwood, Hercowitz, and
Krusell (1997) and variations thereof. The appendix discusses each exam-
ple in detail, as well as the case studiedbyNgai andPissarides (2007). These
examples highlight the role of capital accumulation in generating sectoral
multipliers. They also underscore the fact that, given a network of interme-
diate goods, all sectors, even those that produce no capital goods, can have
sectoral multipliers well in excess of their share in GDP. This last feature of
sectoral influence is absent in Greenwood, Hercowitz, and Krusell (1997),
which abstracts from intermediate inputs.
C. Relationship to Greenwood, Hercowitz, and Krusell
(1997)
The one-sector environment featuring an aggregate production function
in Greenwood, Hercowitz, and Krusell (1997) also has an interpretation
as a two-sector economy (see their sec. V.A). Under that interpretation,
one sector produces consumption goods (sector 1) and the other invest-
ment goods (sector 2), and each sector’s production function has the
same capital elasticity, a. For simplicity, we focus on the discussion in sec-
tion III of Greenwood, Hercowitz, and Krusell (1997), which abstracts
from the distinction between equipment and structures. Thus, consider
a two-sector economy with production given by

ct 5 y1,t 5 z1,tk
a
1,t‘

12a
1,t ,

x t 5 y2,t 5 z2,tk
a
2,t‘

12a
2,t ,

kt11 5 xt 1 1 2 dð Þkt ,
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where factors are freelymobile, kt 5 k1,t 1 k2,t , ‘t 5 ‘1,t 1 ‘2,t , and the con-
stant scale factors in production (which simplify the algebra in the full
model) have been dropped. Under the maintained assumptions, this
two-sector environment reduces to the one-sector framework with aggre-
gate production described inGreenwood,Hercowitz, andKrusell (1997).
That is, there exists a one-sector interpretation of the two-sector economy
with associated resource constraint,

ct 1 qtxt 5 z1,t k
a
t ‘

12a
t , (13)

where qt 5 z1,t=z2,t is the relative price of investment goods, and aggregate
output (in units of consumption goods), yt 5 ct 1 qtxt , is a function of to-
tal factor endowment only, z1,t ka

t ‘12a
t . To the extent that technical progress

in the investment sector, z2,t, is generally more pronounced than that in
the consumption sector, z1,t, the relative price of investment goods will de-
cline over time, as emphasized by Greenwood, Hercowitz, and Krusell
(1997).
Along the BGP, all variables grow at constant but potentially different

rates. Because Greenwood, Hercowitz, and Krusell (1997) do not consider
materials, there is no distinction between gross output and value added.
From themarket-clearing conditions and the form of production technol-
ogies, it follows that sectoral output growth rates, g y

j 5 g v
j , are given by (in

terms of the notation introduced above)

g v
j 5 g z

j 1 ð1 2 aÞg ‘ 1 ag k 5 g a
j 1 ag k , j 5 1, 2: (14)

Equation (14) makes clear that any amplification of sectoral sources of
growth, g a

j , can take place only through capital accumulation. In this case,
it follows from the capital accumulation equation that along the BGP,
capital grows at the same rate as investment which, in sector 2 (the capital
goods–producing sector), is also that of output. Thus, we have that

g v
2 5 g k 5

1

1 2 a
g a
2 and g v

1 5 g a
1 1

a

1 2 a
g a
2 : (15)

Note that the assumptionof factormobility across sectors has onlyminor
implications for the characterization of the BGP. First, even with sector-
specific investment, the resource constraint for investment implies that
investment and capital grow at the same rate in each sector. Second, with
sector-specific labor, the expression for output growth remains as in equa-
tion (14), with the only difference being that sector-specific labor growth
rates, g ‘

j , now replace the aggregate labor growth rate, g‘, so that ga
j 5

gz
j 1 ð1 2 aÞg ‘

j .
Aggregate GDP growth is defined as the Divisia index of sectoral value-

added growth rates weighted by their respective value-added shares.
Thus, from equation (15), aggregate GDP growth is
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g V 5 sv1 g a
1 1

a

1 2 a
g a
2

� �
1 sv2

1

1 2 a
g a
2 , (16)

or alternatively,

g V 5 sv1g
a
1 1 sv2g

a
2 1

a

1 2 a
g a
2 : (17)

In this economy, sector 2 is the sole producer of capital for both sec-
tors 1 and 2 and has both a direct and an indirect effect on the aggregate
economy. The indirect effect stems from the fact that capital accumula-
tion amplifies the role of sectoral sources of growth. In equation (16),
sector 2 contributes ½a=ð1 2 aÞ�g a

2 > 0 to value-added growth in sector 1
and scales its contributions from TFP and labor to its own value-added
growth by 1=ð1 2 aÞ > 1. Thus, in equation (17), the direct aggregate ef-
fect of an expansion in sector 2 by way of TFP or labor growth is its share,
sv2 , while its indirect aggregate effect is a=ð1 2 aÞ > 0. It follows that sec-
tor 2’s sectoral multiplier, ∂g V =∂g a

2 , is s
v
2 1 a=ð1 2 aÞ. In contrast, because

sector 1 produces goods that are fit only for consumption, it has a direct
effect only on the aggregate economy. Its sectoral multiplier, ∂g V =∂g a

1 , is
then simply its share in GDP, sv1 .
A straightforward application of the general framework laid out in the

previous section produces the same BGP and sectoral multipliers for sec-
tors 1 and 2 that we have just discussed. In particular, the Greenwood,
Hercowitz, and Krusell (1997) economy is a special case with n 5 2
and, since sector 2 is the only sector producing investment goods,
q1j 5 0 and q2j 5 1 for j 5 1, 2. In addition, each good is produced with-
out intermediate inputs, gj 5 1, j 5 1, 2, and the sectors use the same
production functions, aj 5 a, j 5 1, 2. These yield the matrices

Ω 5
0 0

1 1

 !
, Γd 5 I , ad 5 aI ,

and

Ξ 5 ðI 2 ΩadÞ21 5
1 0

a

1 2 a

1

1 2 a

0
@

1
A:

The associated sectoral multipliers are given by the elements of

∂g V

∂g a
1

5 sv1 and

∂g V

∂g a
2

5 sv2 1
a

1 2 a
:
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Actual production linkages are generally more involved than those just
discussed. Importantly, even in the context of two sectors and nomaterials,
the simple fact that factor income shares differ across sectors prohibits a
one-sector interpretation of the economic environment with an aggregate
production function. In this case, the amplification of sources of sectoral
growth on GDP growth now depends on a value-added share-weighted av-
erage of capital elasticities.16
D. Strictly Positive Multipliers for Sectors That Produce
No Capital
Moving beyond Greenwood, Hercowitz, and Krusell (1997), sectoral link-
ages also reflect a network of materials production. Thus, we now intro-
duce intermediate goods into the Greenwood, Hercowitz, and Krusell
(1997) environment. Crucially, when the consumption sector (sector 1)
also produces materials for the investment-goods sector (sector 2), the
growth rateof capital depends onboth sectors 1 and2.Therefore, both sec-
tors 1 and 2 now have indirect effects on long-run GDP growth over and
above their share in the economy.
We illustrate these points via a simple network of intermediate goods.

Here, sector 1 produces not only consumption goods but also materials,
m1,t, used by sector 2. Similarly, sector 2 still produces capital goods for
both sectors but also materials, m2,t, used by sector 1. Since sector 1 now
produces consumption goods and intermediate goods, we refer to sec-
tor 1 as the “Nondurable Goods” sector. Thus, in terms of our general no-
tation, we have that gj ≠ 1, q1j 5 0, and q2j 5 1 for j 5 1, 2. Moreover, the
relevant resource constraints in sectors 1 and 2 are now

ct 1 m1,t 5 y1,t 5 z1,t k
a1

1,t‘
12a1

1,t

� �g1m12g1

2,t

and

xt 1 m2,t 5 y2,t 5 z2,t k
a2

2,t‘
12a2

2,t

� �g2m12g2

1,t ,

while the rest of the production side of the economy is as in the previous
examples.
In this case, a calculation shows that the BGP growth rate of capital is

given by

g k 5
ð1 2 g2Þg1g a

1 1 g2g a
2

Δ
, (18)

where Δ 5 1 2 g2a2 2 ð1 2 g2Þ½g1a1 1 ð1 2 g1Þ�: The growth rate of
GDP is then
16 See sec. 3 of the appendix for exact expressions.
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g V 5 sv1g
a
1 1 sv2g

a
2 1 ðsv1a1 1 sv2a2Þg k: (19)

Two important observations emerge relative to the previous examples.
First, because the Nondurable Goods sector now produces intermediate
inputs for the investment sector, the growth rate of capital goods in equa-
tion (18) reflects sources of growth in both sectors, g a

1 and g a
2 . Hence,

unlike in the previous section, both sectors 1 and 2 in equation (19) have
an additional indirect effect on long-run GDP growth, ðsv1a1 1 sv2a2Þ
ð∂g k=∂g a

1 Þ and ðsv1a1 1 sv2a2Þð∂g k=∂g a
2 Þ, respectively, over and above their

shares in the economy, sv1 and sv2 . Second, from equation (19), the indi-
rect effect from sector 2 on GDP growth dominates that from sector 1 if
and only if its contributions to overall capital growth, ∂g k=∂g a

2 , are larger
than the corresponding contributions from sector 1, ∂g k=∂g a

1 . From
equation (18), this condition holds if and only if

g2 > ð1 2 g2Þg1:

This will not be true, for example, in economies where the value-added
share in gross output of the capital sector, g2, is relatively small. In that
case, the main inputs into the production of capital goods are intermedi-
ate inputs from the Nondurable Goods sector. That sector, therefore, ends
up having more influence on aggregate growth.
Substituting equation (18) into equation (19) yields the sectoral

multipliers:17

∂g V

∂g a
1

5 sv1 1
sv1a1g1ð1 2 g2Þ 1 sv2a2g1ð1 2 g2Þ

Δ
and

∂g V

∂g a
2

5 sv2 1
sv1a1g2 1 sv2a2g2

Δ
:

Generally, the main lesson from these examples is that network pro-
duction linkages and capital accumulation are the key components that
lead to sectoral multipliers along the BGP. Furthermore, the implied am-
plification of idiosyncratic sources of growth on GDP growth can arise in
any sector, including those producing only Nondurable Goods.
Finally, we note a caveat to our results: they all pertain to a closed econ-

omy. Cavallo and Landry (2010) argue that imports are also a source of
equipment capital accumulation, and more generally Basu et al. (2013)
17 Equivalently, these multipliers can be computed from the general formula in eq. (12)
sing the matrices for this model:

Ω 5
0 0

1 1

 !
, ad 5

a1 0

0 a2

 !
, Γd 5

g1 0

0 g2

 !
, and Φ 5

0 1

1 0

 !
:

u
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argue for including trade when studying ISTC with production networks.
In section 3.5 of the appendix, we introduce traded investment goods into
the Greenwood, Hercowitz, and Krusell (1997) framework along the lines
of Basu et al. (2013). In that case, the amplification effects of production
networks and capital accumulation also reflect variations in the terms of
trade, scaled by the share of foreign investment goods in total investment.
In this example, the quantitative implications of traded capital goods re-
main limited, though they have increased over time.
V. Quantitative Findings
This section puts together the empirical findings from section III and
model insights from section IV. It shows that sector-specific trends have
played a dominant role in driving the trend rate of growth in GDP over
the postwar period. We estimate that this aggregate trend rate of growth
has fallen by almost 3 percentage points between 1950 and today.
A. Model Parameters
We first outline the construction of model parameters, a procedure that
follows mostly Foerster, Sarte, and Watson (2011) and is governed by the
BEA input-output and capital flow accounts.18

In our benchmark economy, value-added shares in gross output, {gj},
capital shares in value added, {aj}, and material bundle shares, {fij}, are ob-
tained from the 2015 BEAmake and use tables. The make table tracks the
value of production of commodities by sector, while the use tablemeasures
the value of commodities used by each sector. We combine the make and
use tables to yield, for each sector, a table whose rows show the value of a
sector’s production going to other sectors (materials) and households
(consumption) and whose columns show payments to other sectors (ma-
terials) as well as labor and capital. Thus, a column sum represents total
payments from a given sector to all other sectors, while a row sum gives
the importance of a sector as a supplier to other sectors. We then calculate
material bundle shares, {fij}, which constitute the IOmatrix, as the fraction
of all material payments from sector j that goes to sector i. Similarly, value-
added shares in gross output, {gj}, are calculated as payments to capital and
labor as a fraction of total expenditures by sector j, while capital shares in
value added, {aj}, are payments to capital as a fraction of total payments to
labor and capital.
18 Section 8 of the appendix contains a more detailed description of the procedure, and
for the 16 sectors considered in this paper it displays the capital flow matrix, table A10; the
IO matrix, table A11; and the associated generalized Leontief inverse, table A12.
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The parameters that determine the production of investment goods,
{qij }, are chosen similarly in accordance with the BEA capital flow table
from 1997, the most recent year for which this flow table is available.
The capital flow table shows the flowof new investment in equipment, soft-
ware, and structures toward sectors that purchase or lease it. By matching
commodity codes to sectors, we obtain a table that has entries showing the
value of investment purchased by each sector from every other sector. A
column sum represents total payments from a given sector for investment
goods to all other sectors, while a row sum shows the importance of a sector
as a supplier of investment goods to other sectors. Hence, the investment
bundle shares, {qij}, that constitute the capital flowmatrix are estimated as
the fraction of payments for investment goods from sector j to sector i, ex-
pressed as a fraction of total investment expenditures made by sector j.
Conditional on these parameters, equation (10) gives sectoral value-

added growth along the BGP. In constructing aggregate GDP growth
from these sectoral value-added growth rates, we rely on the full-sample
mean value-added shares from the KLEMS data that were used in our em-
pirical analysis. Recall also that in figure 1, we explored using different
definitions of value-added shares in calculating GDP growth. While this
did not lead tomeaningful differences in aggregate growth, to the extent
that these shares are changing over time, as do input-output relation-
ships, the model might nevertheless yield more material differences in
the implied sectoral multipliers. Thus, in section 9 of the appendix, we
show that our benchmark sectoral multipliers are robust to versions of
the model informed by mean value-added shares for the first and last
15 years and the 1960 and 1997 make and use tables.
B. Production Linkages in the US Economy
The production of investment goods in the United States turns out to be
concentrated in relatively few sectors. Construction and Durable Goods
produce close to 80% of the capital in almost every sector. Put another
way, as shown in figure 8, we can think of the Construction and Durable
Goods sectors as investment hubs in the productionnetwork. Construction
comprises residential and nonresidential structures, including infrastruc-
ture. The bulk of capital produced by the Durable Goods sector resides in
motor vehicles, machinery, and computer and electronic products. Other
sectors recorded as producing capital goods for the US economy include
Wholesale Trade, Retail Trade, and PBS. In the PBS sector, the notion of
capital produced for other sectors is overwhelmingly composedof computer
system designs and related services. The BEA distinguishes between materi-
als and capital goods by estimating the service life of different commodities,
and, consistent with the annual time period used in this paper, commodities
expected to be used in production within the year are defined asmaterials.
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As a practical matter, however, the distinction between materials and in-
vestment goods is not always straightforward. We address measurement is-
sues separately in section VI.19

Compared to the capital flow matrix, the production of intermediate
goods is somewhat less concentrated, as all sectors produce materials for
FIG. 8.—Investment network. This figure shows the investment network as a graph, where
capital flows are represented by edges between nodes representing sectors. A sector with a
larger node indicates that other sectors spend a larger share of their capital expenditures,
on average, in that sector. A wider edge between two nodes reflects larger bidirectional cap-
ital flows relative to all other capital flows. See the capital flow table (A10) in section 8 of the
appendix.
19 Major revisions of the NIPAs broadened the concept of capital by including expendi-
tures on software in 1999 and expenditures on R&D and entertainment, literary, and artistic
originals in 2013. These investments now come under the heading of “intellectual property
products” (IPPs). While the KLEMS data include a broad measure of IPP capital, the 1997
capital flow tables include software investment but not all IPP investment categories. The
share of missing investment is less than 10% in 1960 and about 15% today. As also noted
in Foerster, Sarte, andWatson (2011), capital flow tables do not account for an industry’s pur-
chases of used capital goods and likely miss a portion of maintenance and repair using within-
sector resources. Results presented here are robust to adjustments that assume up to an addi-
tional 25% of capital expenditures within sectors. Finally, we abstract from land and inventories
in the production structure. Including inventories and land is conceptually straightforward,
but data quality at the sector level remains an issue. The online appendix of Fernald (2014)
includes land and inventories into a Greenwood, Hercowitz, and Krusell (1997) growth ac-
counting framework and finds only a marginal effect.
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all other sectors to varying degrees. However, from the IOmatrix, PBS and
FIRE stand out as suppliers of materials. These two sectors are the largest
suppliers of intermediate goods in the US production network, making
up roughly 20% ofmaterials expenditures across sectors. A key difference,
however, is that intermediate inputs produced by FIRE are used extensively
in Housing, which is consumed mostly as a final good. In contrast, PBS is
the largest supplier of intermediate goods to Durable Goods (other than
those Durable Goods purchases from itself). After FIRE and PBS, the
next-largest suppliers of materials are Durable Goods and Nondurable
Goods, which make up around 11% of materials expenditures across sec-
tors on average, or half of those spent on PBS.
In contrast to the sectors that play a key role in the US production net-

work, output produced in sectors such as Agriculture, Forestry, Fishing
and Hunting, Housing, and Arts, Entertainment, and Food Services is
mostly consumed as final goods.
C. Sectoral Multipliers
Table 4 shows the direct and combined effects of sectoral sources of growth
onGDP growth. The importance of Durable Goods, PBS, and Construction
means not only that their value-added shares in GDP are large—13%, 9%,
and 5%, respectively—but also that they have large spillover effects on other
sectors. In particular, Durable Goods and PBS have the two largest sectoral
multipliers, 0.42 and 0.25, respectively, while Construction’s multiplier
exceeds 3 times its value-added share in GDP at 0.17, given its central role
TABLE 4
Sectoral Multipliers

Sector
sv ΞΩadsv (I 1 ΞΩad)sv

(1) (2) (3)

Agriculture .03 .01 .03
Mining .02 .03 .05
Utilities .02 .01 .03
Construction .05 .12 .17
Durable Goods .13 .28 .42
Nondurable Goods .09 .03 .13
Wholesale Trade .07 .08 .15
Retail Trade .08 .02 .11
Transportation and Warehousing .04 .03 .07
Information .05 .03 .08
FIRE (x-Housing) .10 .03 .14
PBS .09 .16 .25
Education and Health .06 .00 .06
Arts, Entertainment, and Food Service .04 .01 .04
Other Services (x-Government) .03 .01 .04
Housing .09 .00 .09
Note.—This tabledecomposes each sector’s totalmultiplier (col. 3) into adirect effect (col. 1)
and an indirect effect (col. 2). The sums do not necessarily add up because of rounding.
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in the investment network. Considering that trend TFP growth in Con-
struction fell by almost 5 percentage points between 1950 and 1980 in fig-
ure 4, this gives us, all else equal, a roughly 0.85 percentage point decline
in trendGDP growth from that sector alone during that period. Similarly,
the over 6 percentage point collapse in the trend growth rate of TFP in
Durable Goods since 2000 would have, on its own, contributed roughly
a 2.5 percentage point decline in trend GDP growth.
It is also apparent from table 4 that the effects of sectoral change onGDP

growth are always at least as large as sectors’ value-added shares in GDP.
Sectoral network multipliers almost triple the share of PBS, from 0.09 to
0.25, and double that of Wholesale Trade, from 0.07 to 0.15. In other sec-
tors, such as Agriculture, Forestry, Fishing and Hunting, or Housing, the
network multipliers are smaller, since these sectors produce mainly final
consumption goods. Because the same network relationships embodied
in the capital flow matrix, Ω, and the IO matrix, Φ, determine the impor-
tance that sectors have in the economy both as a share of value added and
through their spillover effects, sectors with relatively larger shares in GDP
will also tend to be associated with large network multipliers.
A key implication of table 4 is that the effects of sectoral change on

GDP growth arise in part through a composition effect. Therefore, secu-
lar changes in GDP growth can take place without observable changes
in aggregate TFP growth. For example, consider purely idiosyncratic
changes inTFP growth, ∂g u,z

u,j , that leave aggregate TFP growth unchanged,
on

j51svj ∂g z
u,j 5 0. In other words, the direct effect of sectoral TFP growth in

this case is zero. Despite aggregate TFP growth not changing, these idio-
syncratic changes will nevertheless have an (indirect) effect on GDP
growth, since the sum of sectoral multipliers is larger than 1.
D. Historical Decomposition of the Trend Growth Rate
of GDP
The various sectoral multiplier calculations we have just carried out de-
pend on the balanced-growth equations (10) and (11). These equations
hold only in steady state and ignore endogenous transitional dynamics
that are potentially important in explaining variations over the business
cycle. However, because our empirical focus is on variations in growth
rates with periodicities longer than 17 years, we abstract from these tran-
sitional dynamics and apply the formulas (10) and (11) directly to the
trend growth rates of TFP and labor extracted in section III, g z

i,t and g ‘
i,t ,

as an approximation.20 In addition, we then explore how our estimates
20 Our results then reflect the long-run amplifying effects of production linkages by way
of capital accumulation. Despite abstracting from the transition dynamics, sec. 9 of the ap-
pendix shows that the model’s implied trend sectoral capital growth rates match their
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of common (lz
i g z

i,t , l
‘
i g ‘

i,t) and sector-specific (g z
u,i,t , g

‘
u,i,t) trend input growth

have historically contributed to the trend growth rates of sectoral value-
added and GDP. Thus, we compute the trend growth rates of sectoral value
added as

g v
t 5 I 1 adΩ

0Ξ0ð Þ lzg z
f ,t 1 g z

u,t 1 ðI 2 adÞ l‘g ‘
f ,t 1 g ‘

u,t

� �	 

,

where g v
t 5 ðg v

1,t , ::: , g
v
n,tÞ, and (lz, l‘) are vectors containing the factor

loadings from equation (1). GDP trend growth is then

g V
t 5 sv0g v

t :

Figure 9 depicts the annual growth rate of GDP and its trend in black
(previously shown infig. 2), together with the corresponding trend growth
rate computed from the balanced-growthmultipliers (solid blue line) and
its contribution from the direct effect using sectors’ value-added shares
only (dashed blue line), sv0I ½g z

t 1 ðI 2 adÞg ‘
t �. In all, trendGDP growth fell

by nearly 3 percentage points over the postwar period. Importantly, the siz-
able gap between the trend with direct effects only and the full-model
trend implies that the indirect effects stemming from network production
linkages constitute a significant component of trend GDP growth. There
is a notable discrepancy between model and data in the 1970s, when the
balanced-growthmultipliers suggest a larger decline in trend GDP growth
rates than in the data. In that period, periodicities longer that 17 yearsmay
not be adequate to capture the required adjustment to capital implied by
the model.
Figure 10 decomposes the trend growth rate of GDP implied by the

model into its components derived from common factors and sector-
specific factors. The model indicates that sector-specific or unique factors
in trend labor and TFP growth (fig. 10B) have historically accounted for
roughly three-fourths of the long-run changes in GDP growth. Conversely,
only about one-fourth of the variation in trendGDP growth since 1950 has
come from common sources of input growth (fig. 10A). This is despite
common factors explaining roughly two-thirds of the variation in the trend
growth rate of aggregate labor, noted in section III. To understand this
finding, recall that some sectors that have large sectoral multipliers, such
as Durable Goods or Construction (table 3), also have large variations in
trend input growth that are almost entirely driven by idiosyncratic factors
(figs. 6, 7).
Figure 10C plots the posterior density for R 2

f , the fraction of the vari-
ance in trend GDP growth explained by common sources. The median
of the posterior for R 2

f is 0.26, the mode is less than 0.20, and 70% of the
counterparts in the data well, with the exception of Mining, which carries a small sectoral
multiplier.



FIG. 9.—Trend growth rate in GDP: data and model (percentage points at annual rate).
The figure shows the cyclically adjusted GDP growth rate (thin black line), along with its
low-frequency trend (thick black line). Also shown are the model-implied trend using
the low-frequency trends of labor and TFP growth (solid blue line) and the trend implied
by only the direct effects of labor and TFP based solely on value-added shares (dashed blue
line).
FIG. 10.—Decomposition of the trend growth rate in GDP (percentage points at annual
rate). A, B, The (demeaned) model-implied trend GDP growth (black line) and its decom-
position into changes due to the common factor and sector-specific factors (red lines).
The overall trend in black is sv0ðI 1 adΩ0Ξ0Þ½g z

t 1 ðI 2 adÞg ‘
t �. The posterior median esti-

mates of common and sector-specific components, along with their 68% credible inter-
vals red lines, shaded areas) are, respectively, sv0ðI 1 adΩ0Ξ0Þ½lzg z

f ,t 1 ðI 2 adÞl‘g ‘
f ,t � and

sv0ðI 1 adΩ0Ξ0Þ½g z
u,t 1 ðI 2 adÞg ‘

u,t �. C, Posterior distribution for the fraction of the variance
in trend GDP growth attributed to the common factor.
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posterior mass is associated with values of R 2
f that are less than 0.40.

Thus, these results suggest that most of the long-run evolution of GDP
growth has historically stemmed from sector-specific factors.
The results reported thus far use the benchmark priors. Recall from sec-

tion III that these priors were relatively uninformative, except for the fac-
tor loadings. In particular, the prior for l‘ was l‘ ∼ N ð1, P‘Þ, where
P‘ 5 h2½I16 2 s‘ðs0‘s‘Þ21s0‘�, and an analogousprior was used for lz. Thesepri-
ors enforced the normalization that s0‘l

‘ 5 s0vl
z 5 1, so that unit changes

in f ‘
t and f z

t lead to unit changes in the long-run growth rate of aggregate
labor and TFP. The parameter h then governed how aggressively the esti-
mates of l‘

i or l
z
i are shrunk toward their mean of unity. The benchmark

results use h 5 1. Smaller values of h shrink the estimates closer to 1, while
larger values of h allow them to deviate from 1 more than the baseline
model. Thus, we now explore the robustness of our findings to alternative
priors, h 5 1=2 and h 5 2. In addition, we also run themodel using q 5 6,
which captures long-run variations with periodicities longer than 2 � 69=
6 5 23 years.
Figure 11 summarizes the findings from these robustness exercises by

reproducing figure 10 for each of these alternative models. It is clear from
the figure that across all cases, contributions from common sources of
trend input growth to the long-run evolution of GDP growth remain lim-
ited. Median estimates of R 2

f range from 0.28 to 0.37, with posterior distri-
butions that place the bulk of their mass between 0 and 0.5. We thus con-
clude that the result that sector-specific forces are the primary driver of
trendGDP growth is robust to changes in the priors for the factor loadings
and to increasing the periodicity used that defines long-run trends.
Given that sector-specific (rather than common) trends have played a

dominant role in driving trend GDP growth over the postwar period, fig-
ure 12 gives the historical trend contributions to aggregate GDP growth
from the sector-specific components for each sector. Two sectors stand
out, Construction and Durable Goods. Recall that US trend GDP growth
fell by approximately 3 percentage points between 1950 and 2018. Com-
paring the beginning and the end of the sample, figure 12 indicates that
Durable Goods alone contributed around 1 percentage point of that de-
cline and Construction 0.75 percentage points. However, there are also
important differences in the timing and variation of those sectoral contri-
butions. Construction contributed roughly a 1 percentage point decline
in trendGDPgrowthbetween 1950 and 1980 andwas essentially flat there-
after. In contrast, Durable Goods played a key role in raising trend GDP
growth in the 1980s and1990s before contributing an almost 2 percentage
point decline in trendGDPgrowth after 2000. NondurableGoods also no-
tably contributed to the postwar decline in trend GDP growth, at roughly
0.5 percentage points over the entire sample period, though offset some-
what by Mining after 1980. Strikingly, many other sectors show relatively
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flat contributions to aggregate trend growth over 1950 to 2018, between
20.1 and 0.1 percentage points. Perhaps even more surprising, no sector
has contributed any steady significant increase to the trend growth rate of
GDP over that period.
VI. Discussion and Implications for Future Research
The findings we have just described result from two key notions explored
above. One is largely empirical and relates to the size of variations in
trend TFP and labor growth in each sector. The other is more theoretical
and relates to the size of a sector’s multiplier, given its place in the pro-
duction network. The paper then brings together two related, though so
far mostly distinct, literatures. One addresses ISTC, explored by Green-
wood, Hercowitz, and Krusell (1997) and others, and the other studies
the effects of production networks, underscored, for example, by Acemoglu
FIG. 11.—Robustness to changes in statistical model. See figure 10 legend. Each vertical
panel of the figure shows results for a different specification of the prior distribution, h, or
long-run periodicities, q.
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et al. (2012) and Baqaee and Farhi (2019). We extend Greenwood, Her-
cowitz, and Krusell (1997) by considering the full set of materials and in-
vestment linkages that characterize US sectoral production. At the same
time, we introduce their emphasis on dynamics and capital accumulation
into the static production network environments of Acemoglu et al.
(2012). The analysis then provides new results and more general insights
into each of these literatures separately. Importantly, these results, com-
bined with our empirical trend analysis, provide the basis for a more com-
plete and accurate picture of the drivers of the secular decline in GDP
growth.
A. Production Networks and ISTC
The literature on ISTC has relied for the most part on a particular set of
key simplifying assumptions. One is a direct relationship between the
relative price of investment goods and the relative productivity of the
capital-producing sector. Another is that there is no distinction between
FIG. 12.—Sector-specific contributions to the trend growth rate of GDP (percentage
points at annual rate). Each panel shows the implications of sector-specific trends for
the trend growth rate of GDP using the model-based multipliers. The solid lines de-
note the posterior median and the shaded areas the (pointwise) equal-tail 68% credible
intervals.
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producer prices and final demand prices. Finally, abstracting from sec-
toral linkages in materials means that only the capital-producing sector
can have a sectoral multiplier that exceeds its value-added share. In prac-
tice, however, as illustrated in the two-sector example of section IV, even
sectors that produce only services will have a multiplier effect when those
services are used by capital-producing sectors.
Sectoral linkages break down the one-to-one relationship between rel-

ative productivity and relative price. In Greenwood, Hercowitz, and Kru-
sell (1997), this would mean that investment-specific productivity, 1=qt ,
is no longer the relative price of investment goods, qt, as in equation
(13) above.21 In section 2 of the appendix, we show a more general map-
ping where productivity growth in any one sector potentially contributes
to changes in producer prices in all other sectors. Analogous to equation
(10), this more complex mapping reflects the influence of production
linkages,Ω andΦ, through the general Leontief inverse,Ξ0. The appendix
then further shows that themodel’s quantitative implications for producer
prices generally matches well their data counterparts across sectors.22 That
said, as inmost previous work, we continue to abstract from the distinction
between producer prices and final demand prices. To make that distinc-
tion, including for investment prices, one needs to model the allocation
of the cost components from intermediation industries, which include Re-
tail Trade, Wholesale Trade, and Transportation, to final goods. For now,
we leave exploring these relationships to future work.23

With only two sectors and no intermediate inputs, the last key limitation
of Greenwood, Hercowitz, and Krusell (1997) is that the effects of TFP in-
creases in a sector that produces mainly intermediate goods or services
cannot be easily traced. In particular, these would show up partly as a de-
cline in the relative price of investment goods when those services are pur-
chased by capital-producing sectors. Therefore, without a more structural
description of the sectoral production network, any effects on growth risk
21 It should be noted, though, that even in the absence of sectoral linkages, unequal cap-
ital income shares across sectors alone introduce a wedge between relative prices and rel-
ative productivities. See Hornstein and Krusell (1996).

22 Let p y denote the n � 1 vector of prices for sectoral output and g p y

the associated long-
run growth rate. With multiple sectors and the full set of production linkages, g p y

5
ð1Θ 2 I ÞΞ0g a . See sec. 9 of the appendix for a comparison of the model’s implied sectoral
trend growth rates in producer prices and the data. Closer to the ISTC literature, Basu
et al. (2013), in a similar framework but imposing that capital and labor are homogeneous
and mobile across sectors, obtain an analogous relationship that relates the relative price
of capital to a weighted average of all sectoral productivities off the BGP.

23 The construction of input-output tables and gross product by industry separates inter-
mediation industries’ contributions to final demand and their contributions to the direct
provision of goods. Therefore, commodity transactions are valued at producers’ prices that
exclude final purchasers’ payments for trade services and transportation costs to obtain the
commodities. A useful survey on the treatment of intermediation industries is Yuskavage
(2007).
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being attributed to capital sectors rather than the original service sector. In
contrast, while PBS plays a notably less prominent role in the investment
network than does Construction in figure 8, table 4 shows that PBS never-
theless has a larger overall sectoral multiplier than Construction, 0.25 ver-
sus 0.17. Moreover, while the ratio of Construction’s sectoral multiplier to
its value-added share exceeds that of PBS, both are around 3. The reason is
that while PBS’s role in the investment network is small, it is a key supplier
of materials, including to Durable Goods. Figure 12 shows that the contri-
butions fromPBS to trend variations inGDP growth are smaller than those
from Construction. However, this finding arises not because PBS is less in-
fluential in the overall production network but because variations in trend
TFP growth in PBS have been historically less important (recall fig. 4). Ev-
idently, as an empirical matter, this can change going forward in a way that
could not be captured in a starker model.
B. Measurement
While explicitly modeling the production network helps address short-
comings implied by a starker sectoral setup, one challenge with more de-
tailed multisector models is that output is more easily measured in some
sectors, for example, Durable Goods, than in others, such as PBS. In the
case of PBS, this matters for at least two reasons. One is that PBS is a large
supplier of intermediate inputs to other sectors. The other is that, after
the Information sector, PBS is the second-largest producer of IPPs.
Measurement error in PBS then potentially arises in mainly two ways.

First, service price deflators that account for quality changes in IPP indus-
tries are notoriously difficult to obtain. It is possible, therefore, that our
benchmark results incorrectly attribute sources of productivity growth
across sectors by understating output in PBS. Second, the distinction be-
tweenmaterials and investment goods is sometimes ambiguous, and goods
can be misclassified. Over time, the BEA has in several instances come to
recognize expenditures on goods as investment rather than as payments
for intermediate inputs. This is the case, for example, in the comprehen-
sive revisions to theNIPAs in 2013 regarding expenditures onR&Dand en-
tertainment originals. Our analysis relies on capital flow tables from 1997
to determine the sources of investment goods in different sectors. While
these tables already include software as an investment good, they do not
line up exactly with the broader IPP definition used in the construction
of capital stocks in KLEMS.Our capital requirements matrix,Ω, therefore,
likely does not capture all of the investment contributions fromPBS, inpar-
ticular those of its IPP industries.
In the environment we study, the mismeasurement of output growth

in one sector, say PBS, will generally affect measured TFP in other sec-
tors. Thus, suppose that sectoral output growth, g y, is measured with
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some error, e, so that measured sectoral output growth is g y,m 5 g y 1 e.
Then, given production linkages, measured sectoral TFP, g z,m, is given by

g z,m 5 g z 1 Ξ021e:

Therefore, measurement error in any sector’s output growth rate, e, is
generally reflected in all sectors’ measured TFP growth, g z,m, through
Ξ0.24 In particular, to the degree that output growth in PBS is under-
measured (ej < 0 in PBS), so is its TFP growth rate, while TFP growth
in other sectors tends to be overstated (because the off-diagonal elements
of Ξ021 are generally negative). This last expression then allows us to carry
out counterfactuals exploring the implications of measurement error in
sectoral gross output growth. In particular, removing the measurement
error changes GDP growth by

2sv0ðI 1 adΩ
0Ξ0ÞΞ021e 5 2sv0Ξ021e 2 sv0adΩ

0e: (20)

In other words, correcting for downward bias in the measurement of
PBS output (ej < 0), the first term on the right-hand side of the above
expression, 2sv

0
Ξ021e, increases the contributions to GDP growth from

PBS and lowers the contributions from other sectors (TFP growth is
now higher in PBS and lower in other sectors). The second term,
2sv

0
adΩ0e, generally increases all other sectors’ contributions to GDP

growth to the extent that PBS sells some investment goods to these sec-
tors. The net effect of correcting for understated output growth in PBS,
therefore, is an increase in its contributions to GDP growth, and either
an increase or a decrease in the contributions from other sectors.
To explore the role of possible output mismeasurement in PBS, we con-

sider the possibility that price growth in its two IPP-related subsectors,
namely, Computer System Design (BEA industry code 5415) andMiscella-
neous Professional, Scientific, and Technical Services (BEA industry code
5412OP), is overstated in KLEMS. Alternatively, gross output growth in
those sectors would be understated. In particular, in amanner comparable
to Byrne, Fernald, and Reinsdorf (2016), we modify observed price mea-
sures in the two IPP-related subsectors of PBS to be more closely aligned
with price measures of IPPs (which cover commodities similar to those
in BEA industry codes 5415 and 5412OP) in the NIPAs. The NIPA price
indices indicate less rapid price growth and, therefore, imply higher pro-
ductivity (see sec. 6 of the appendix). By using closely related NIPA price
indices, we interpret this exercise as a reasonable first pass at correcting for
suspected bias in the KLEMS prices, or at least providing a sense of robust-
ness with respect to measurement. In this case, the adjustment produces a
24 See sec. 6 of the appendix for derivations.



3328 journal of political economy
price index for PBS that increases at a rate that is 1 percentage point lower
than KLEMS prices.
The dashed line in figure 13 shows, relative to the contributions to GDP

growth originally shown in figure 12, the effects of higher productivity in
PBS implied by the more rapidly declining prices of its IPPs in the NIPAs.
As explained above, higher measured productivity growth in PBS affects
all sectors, including Construction and Durable Goods, highlighted here.
The contributions from PBS to trend GDP growth are noticeably higher
both because of the direct effect of higher measured TFP in that sector,
through the corresponding element of2sv

0
Ξ021e in equation (20), and be-

cause the production of other capital goods in PBS benefits from its more
productive IPP sectors (and thus lower prices), captured by the corre-
sponding element of2sv

0
adΩ

0e in equation (20). In contrast, the quantita-
tive contributions from Construction and Durable Goods to the trend
growth rate of GDP do not change appreciably, relative to their baseline.
On the one hand, measured TFP growth is now smaller in those sectors
(i.e., the corresponding elements of2sv

0
Ξ021e are negative). On the other

hand, those sectors also benefit from employing more productive IPP sec-
tors in PBS in producing their own output (2 sv0adΩ0e > 0).
The other key potential source of mismeasurement in multisector mod-

els is the misclassification of goods. Specifically, while the 1997 capital flow
tables include software as investment, they do not line up exactly with the
broader definition of IPPs used in KLEMS for capital. Thus, they likelymiss
contributions fromPBS to investment stemming from its IPP industries. To
explore the implications of this misclassification problem, we separate out
FIG. 13.—Mismeasurement and misclassification in PBS. The red solid lines depict the
baseline contributions to trend GDP growth from the different sectors. The black dashed
lines reflect the effects of higher productivity in PBS, implied by the price indices of its IPP
industries in the NIPAs, on those contributions. The solid blue lines illustrate sectoral con-
tributions to trend GDP growth when, in addition, the capital requirement matrix allows for
investment contributions from IPP industries within PBS.
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the two sectors producing IPPs within PBS, BEA industry codes 5415 and
5412OP defined above, from other PBS industries producing more clearly
defined intermediate inputs.25 We then construct a modified capital re-
quirement matrix,Ω, that accounts for the possible omission of IPP contri-
butions from PBS to the production of new capital. In particular, as an up-
per bound for possiblemismeasurement inΩ, we reclassify 50%of the value
of IPPs produced by industries 5415 and 5412OP in PBS as final investment
demand for IPP. This reclassification implies a new capital requirementma-
trix, Ω, that results in a sectoral multiplier for PBS of 0.36, as compared to
our baseline of 0.25.
The solid blue line in figure 13 shows the combined effects of the new

capital requirement matrix with those correcting for possible bias in
KLEMS prices of IPPs in PBS. The partial reclassification of Computer Sys-
tem Designs and Miscellaneous Professional, Scientific, and Technical
Services in PBS from materials to capital raises its sectoral multiplier
and lowers those of Construction and Durable Goods. The net effect is
that contributions from PBS to trend GDP growth are now higher overall
than those from Construction. While the reapportioning of 50% of the
production value of PBS’s main IPPs may be an upper bound on missing
contributions from IPP capital inΩ, the exercise nevertheless underscores
the importance of classifying goods appropriately. Moreover, this section
also highlights the importance of continuing efforts to address challenges
associated with the measurement of IPP indices.
C. Production Networks and Capital Accumulation
In seminal work, Hulten (1978) showed that when different sectors em-
ploy inputs produced inmultiple other sectors, aggregate TFP is a weighted
average of sectoral TFP, with weights given by the ratio of sectoral gross out-
put to GDP, or Domar weights. This result hinges in part on interpreting
TFP as scaling gross output. WhenTFP is instead interpreted as scaling value
added, as we do here, the relevant weights become value-added shares in
GDP.26 Building on Long and Plosser (1983), a number of papers over the
past decade have studied the different ways in which sectoral productivity
changes influence aggregate value added.
25 These are Legal Services, Management of Companies and Enterprises, Administrative
and Support Services, and Waste Management and Remediation Services.

26 These results are evidently related. When sectoral TFP, zj, is measured as scaling value
added, ~zj ,t 5 z

gj

j ,t becomes the relevant scalar for sectoral gross output, where gj is j’s value-
added share in gross output, pv

j vj=p
y
j yj . In Hulten (1978), ∂ ln Vt=∂ ln~zj ,t 5 Dj , where Dj is

sector j’s Domar weight or ratio of gross output to GDP, py
j yj=V . It immediately follows from

the definition of ~zj that ∂ ln Vt=∂ ln zj ,t 5 gjDj , where gjDj is then simply sector j’s value-
added share in GDP, svj .
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Acemoglu et al. (2012) note that in a static multisector environment ab-
stracting from the production of capital, the same sectoral value-added
shares also capture the effects of sectoral productivity changes on GDP.
They interpret this observation, therefore, in terms of Hulten’s (1978)
work on aggregation and refer to the vector of value-added shares as the
“influence vector.” They show that when some sectors serve as hubs in
the production network, the distribution of these shares is such that sec-
toral shocks do not generally cancel out in aggregation. These insights
are used in Gabaix (2011) to highlight the importance of shocks to large
firms for aggregate variations. Baqaee and Farhi (2019) then explore in
a similar environment the role of nonlinearities in production for generat-
ing GDP effects from sectoral shocks that go beyond what they refer to as
Hulten’s theorem.
Our work recognizes that a key aspect of an economy’s production net-

work arises through sectoral linkages in the production of investment
goods, in addition to those in materials. The presence of capital, in par-
ticular, means that the effects of sectoral changes on GDP reflect the in-
teractions between sectoral linkages and the dynamics of capital accumu-
lation. These features then amplify the aggregate effects of disturbances
in different sectors beyond their value-added shares. Moreover, they do
so under otherwise standard neoclassical assumptions, log-linear tech-
nologies, and competitive input and product markets. Importantly, un-
like the aforementioned papers on production networks, sectoral multi-
pliers here apply to the effects of changes in sectoral input growth on
GDP growth, ∂Δ ln V =∂Δ ln A, rather than levels, ∂ ln V =∂ ln A. This com-
plements the empirical macroeconomics literature’s emphasis on the
characterization and behavior of growth rates, including at different fre-
quencies, rather than levels. In this case, the new formulas we derivemake
it possible to explore empirically the secular decline in GDP growth, as
highlighted in figure 9.27

Beyond our focus on long-run growth, our work highlights the impor-
tance of capital accumulationwithin theproduction network. Because the
investment network plays a key role in amplifying the aggregate effects of
sectoral changes, it is reasonable to conjecture that other features related
to investment or other sources of dynamics could also play a role.While we
allow for sectoral technologies that differ in their input shares, features
such as time to build, investment adjustment costs, or the cost of holding
27 Section 5 of the appendix shows that the findings and insights in Acemoglu et al.
(2012) and subsequent work remain nested in a static version of our economic environ-
ment without capital and where the focus is on levels rather than growth rates. However,
it also shows that this “levels” result changes somewhat in the steady state of a dynamic
economy with capital. In particular, the effect of a productivity change in a sector on
the level of GDP is given by its value-added share (or Domar weight) scaled by the inverse
of the average labor income share.
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investment goods in inventories likely differ across sectors. Aside from
affecting the long-run amplification mechanisms highlighted here, these
features likely alsohelp shapehow sectoral disturbances play out at business-
cycle or medium-run frequencies. Therefore, more accurately modeling
the technologies used in different sectors, and how these technologies
affect dynamics at different frequencies, is an important next step.
VII. Concluding Remarks
In this paper, we study how trends in TFP and labor growth across major
US production sectors have helped shape the secular behavior of GDP
growth. We find that sectoral trends in TFP and labor growth have gener-
ally decreased across a majority of sectors since 1950. Common trends in
sectoral TFP growth contributed around one-third of the secular decline
in aggregate TFP growth. Common trends in sectoral labor growth con-
tributed about two-thirds of the secular decline in aggregate labor growth.
We embed these findings into a dynamic multisector framework in

whichmaterials and capital used by different sectors are producedbyother
sectors. Theseproduction linkages, alongwith capital accumulation,mean
that changes in the growth rate of labor orTFP inone sector affect not only
its own value-added growth but also that of all other sectors. In particular,
capital induces network effects that amplify the repercussions of sector-
specific sources of growth on the aggregate economy and that we summa-
rize in terms of sectoral multipliers. Quantitatively, thesemultipliers scale
up the influence of some sectors by multiple times their value-added
share in the economy.
Ultimately, we find that sector-specific factors in TFP and labor growth

historically explain three-fourths of low-frequency variations in US GDP
growth, leaving common or aggregate factors to explain only one-fourth
of these variations. Changing sectoral trends in the past 7 decades, trans-
lated through the economy’s production network, have on net lowered
trend GDP growth by close to 3 percentage points. The Construction
andDurableGoods sectors, more than any other sector, stand out for their
contribution to the trend decline in GDP growth over the postwar period,
though other sectors with largemultipliers, such as PBS, could also have an
outsize influence on the aggregate economy going forward. Remarkably,
no sector has contributed any steady or significant increase to the trend
growth rate of GDP in the past 70 years.
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