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1 Introduction

This chapter discusses econometric methods for studying low-frequency variation and co-

variation in economic time series. We use the term low-frequency for dynamics over time

spans that are a non-negligible fraction of the sample period. For example, when studying

70 years of post-WWII quarterly data, decadal variation is low-frequency, and when study-

ing a decade of daily return data, yearly variation is low-frequency. Much of this chapter

is organized around a set of empirical exercises that feature questions about low-frequency

variability and covariability, and there is no better way to introduce the topics to be covered

than to look at the data featured in these exercises.

Figure 1 plots four univariate time series, the growth rate of total factor productivity in

the United States (quarterly, from 1948-2019), the $/£ real exchange rate (annually, from

1791-2016), realized volatility for returns on the S&P composite index (daily, from 2000-

2018), and the U.S. unemployment rate (monthly, from 1948-2019).1 Each figure shows the

raw data and a low-frequency trend computed using methods described in Section 3; for now

just note that these trends seem to capture low-frequency movements in the series. We will

study three sets of questions involving low-frequency features of these univariate time series.

The first involves the level of the series. For a stationary process, the level is the mean,

and the first empirical exercise involves inference about the mean growth rate of TFP al-

lowing for the familiar rapidly decaying serial correlation patterns – ‘I(0)’ processes – that

underlie heteroskedastic-autocorrelation-consistent (HAC) standard errors. A related exer-

cise involves inference about the mean of a highly serially correlated series like the unem-

ployment rate, where standard I(0) inference is misleading. Empirical researchers studying

productivity have asked about changes in the level of the TFP growth rate, and this leads

us to consider methods for inference about discrete breaks in the mean and a ‘local-level’

model that allows slowly changing variation in the level.

The second set of questions involves low-frequency persistence. For example, a large

empirical literature has asked whether real exchange rates are covariance stationary (or I(0))

or have a unit root (are I(1)), or more generally sought to measure the half-life of shocks. We

take up these questions. Another empirical literature has argued that asset return volatility

exhibits long-memory, in the form a fractionally integrated I(d) model, where d denotes the

1The data and sources are described in the online data appendix for this chapter.
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Notes: Panel (a): Units: percentage points at an annual rate; Sample frequency/sample period: quarterly, 1948:Q2-

2019:Q2 (T = 285); Low-frequency transforms: q = 14, shortest period = 41 quarters 
Panel (b): Units: logarithm relative to value in 1900; Sample frequency/sample period: annual, 1791-2016 (T = 226);  

Low-frequency transforms:  q = 22, shortest period = 20 years 
Panel (c): Units: logarithm; Sample frequency/sample period: trading days, 1/3/2000 – 11/14/2018 (T  = 4738); 

Low-frequency transforms:  q = 37, shortest period = 256 trading days 
Panel (d): Units: percentage points; Sample frequency/sample period: monthly, 1948:M1 – 2019:M9 (T  = 861); 

Low-frequency transforms:  q = 14, shortest period = 123 months 
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Figure 1: Four economic time series. Raw data and low-frequency trends

integration parameter (defined more precisely below). We provide methods for inference

about the value of d. Returning to the local-level model, we also conduct inference on the

relative importance of permanent versus transitory shocks, another measure of persistence

used in empirical work.

The third set of questions involve long-horizon predictions. How fast will TFP grow over

the next 75 years and how certain are we about its future level? More precisely, based

on a sample of T observations, we discuss Bayes methods for constructing the predictive

distribution for the average value of a series over the next h periods, where h is of the same

order as T , and for constructing analogous frequentist prediction sets. When the series being

analyzed is a growth rate or first difference of a variable, these predictions for the average
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Notes: Units: percentage points at an annual rate; Sample frequency/sample period: quarterly, 1948:Q2-2019:Q2 (T 

= 285); Low-frequency transforms: q = 14, shortest period = 41 quarters 
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Figure 2: Growth rates of TFP and per-capita GDP, consumption, investment and labor

compensation in the United States. Raw data and low-frequency trends

change over the next h periods are readily converted into h-period ahead predictions for the

level of the variable.

We also discuss methods to analyze the low-frequency features of multivariate times se-

ries. Figure 2 plots five times series, the growth rate of TFP together with growth rates

of per-capita values of GDP, consumption, investment and labor compensation for the U.S.

Neoclassical growth theory asserts a tight connection between these variables over the long

run and we discuss econometric methods to evaluate these assertions. Specifically, we de-

fine low-frequency covariances, correlations, and linear regression coefficients, and illustrate

inference about their values for the data in Figure 2 using a low-frequency linear factor

model.

Inference about low-frequency features of a time series is inherently a small-sample sta-
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tistical problem. For example, the quarterly macro data in Figure 2 span 71 years (or 285

quarters), but contain only seven decades and fewer than three non-overlapping 25-year pe-

riods. Thus, when interest focuses on variation over these long periods, the effective sample

size is small. One way to overcome this small-sample problem is to use shorter-run or high-

frequency variability in the sample to learn about low-frequency variability. For example,

parametric time series models such as ARMA, VAR or VECM models use a common set of

parameters to model autocovariances over both short and long horizons, and use both short-

run and low-frequency variation in the sample to estimate the model parameters. While this

is sensible if there are tight connections between low-frequency and higher-frequency vari-

ability, it can lead to serious misspecification and hence misleading inference absent these

connections. A more robust approach is to conduct inference about the low-frequency char-

acteristics of a time series based solely on the low-frequency characteristics of the sample.

This chapter describes inference using this latter approach. This requires small-sample sta-

tistical methods that efficiently utilize the limited low-frequency information in the sample.

We discuss both Bayes and frequentist inference.

The general approach is straightforward to describe. Let xt, t = 1, ..., T denote a time

series with T observations: for example, the raw data plotted in Figures 1-2. The low-

frequency variation in these data is extracted using a small number of weighted averages

collected in the vector X0
T . For example, one of these averages is the sample mean, another

captures variability with period 2T , then period T , period 2T/3, and so forth, until the

highest period of interest in included. The low-frequency trends plotted in Figures 1 and 2 are

functions of X0
T . We consider low-frequency inference based solely on X0

T ; that is, the higher-

frequency variability in the sample is treated as irrelevant and is therefore discarded. The

vectorX0
T has two important properties. First, it contains only a few elements; that is, only a

small number of low-frequency weighted averages are needed to summarize the low-frequency

variability in the sample. This reflects the small-sample nature of the low-frequency inference

problem. The second property of X0
T is that in large samples, X0

T
a∼ N (µX , T

−1VX). This

central limit theorem result is, perhaps, not surprising for an I(0) process, but it turns

out to hold more generally for highly persistent covariance stationary processes, unit-root

processes, and other persistent processes used to describe economic time series. Given this

framework, low-frequency inference involves inference about a small sample – the elements

in X0
T – of jointly normally distributed random variables.
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This chapter discusses low-frequency inference using parametric models. Specifically, we

consider models that describe the low-frequency level, variability and covariability using a

low dimensional parameter, say θ. One example is the I(0) model, where θ includes the

mean and long-run variance because these two parameters completely describe the low-

frequency second moment properties of an I(0) process. Other models include additional

parameters that characterize low-frequency persistence distinct from the I(0) model. These

models yield X0
T

a∼ N (µX(θ), T
−1VX(θ)), with known functions linking θ to the mean

and covariance matrix of X0
T . Inference about θ then proceeds using Bayes or frequentist

methods,2 where the specifics depend on how θ affects µX and VX . For example, in the I(0)

model, the elements of X0
T are independent and homoskedastic, VX = σ2I, and efficient low-

frequency inference leads to familiar methods such as Student-t confidence intervals. In other

models, µX and VX are more complicated functions of θ. Despite this, Bayes methods are

easily implemented using modern computational methods. As a general matter, frequentist

inference is relatively less straightforward, since the small sample problem often involves

nuisance parameters which complicate the construction of efficient tests and confidence sets.

1.1 Reader’s Guide

We emphasize at the outset that this chapter is not designed as a survey. We have strong

opinions about the best methods for conducting inference about low-frequency characteristics

of economic time series,3 and this chapter focuses on these methods. That said, these meth-

ods build on the important contributions of a multitude of researchers, and we do our best

to highlight these connections. In particular, these methods build on classic work on spec-

tral analysis discussed in textbooks such as Brillinger (1975), Brockwell and Davis (1991),

Fuller (1976), Hannan (1960, 1970), and Priestley (1981), and on the spectral regression

work discussed in Hannan (1963) and Engle (1974). The I(0) analysis builds on HAC/HAR

contributions in Grenander and Rosenblatt (1957), Domowitz and White (1982), Hansen

(1982), Newey and West (1987), Andrews (1991), Kiefer, Vogelsang, and Bunzel (2000),

Jansson (2004), Kiefer and Vogelsang (2005), Sun, Phillips, and Jin (2008), Lazarus, Lewis,

2Doksum and Lo (1990) and Kwan (1999) also consider “limited-information” Bayes approaches with a

likelihood based on the asymptotic distribution of a low dimensional summary statistic.
3See, in particular, Müller and Watson (2008, 2013, 2016, 2017, 2018).
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and Stock (2021) and many others. The focus on low-frequency models uses insights from the

unit-root literature, especially Phillips (1998b), and among many others, Dickey and Fuller

(1979), Engle and Granger (1987), Phillips (1987a, 1999, 2005a, 2014), Johansen (1988),

Stock (1994), and Bierens (1997). The various bridges between I(0) and I(1) models includ-

ing local-to-unity models (e.g., Cavanagh (1985), Chan and Wei (1987), Phillips (1987b),

and Stock (1991)), fractionally integrated models (e.g., Granger and Joyeux (1980), Geweke

and Porter-Hudak (1983), and Robinson (2003a)), and I(0) + I(1) unobserved component

models described in Harvey (1989).

With this in mind, we alert the reader that this chapter’s title “Low-Frequency Analysis of

Economic Time Series” is much too general. A chapter that was true to that title would need

to cover the vast literature on econometric methods used to study low-frequency variability

and covariability including, for example, spectral analysis, unit roots, structural breaks,

cointegration and error-correction models, and long-memory and other highly persistent

processes. Fortunately, this material is well-covered elsewhere in popular textbooks, previous

chapters in this Handbook, other collections of papers, and monographs on specific methods.

An accurate title for the chapter, which is much longer but captures its narrower focus, is

“Bayes and Frequentist Methods for Analyzing Low-Frequency Features of Economic Time

Series Using Projections Onto a Fixed Number of Low-Frequency Periodic Functions: Ap-

plications, Theory, and Computation.” Specifically, the chapter focuses on a set of tools we

have found useful for a range of low-frequency empirical questions, such as those discussed

above.

Rather than providing a survey, the chapter embraces the definition of a Handbook as

both an instruction and how-to reference manual. With these goals in mind, the chapter

provides material for different types of readers. One group of readers is interested in how

these low-frequency methods can be applied to their specific empirical problems. Another is

interested in the theory underlying the methods. A third is interested in developing inference

and computational procedures that are related to, but distinct from the specific problems

discussed in this chapter. Addressing the issues that might be of interest to each of these

readers leads to a lot of material, only a subset of which might be of immediate interest to

a particular reader. Thus, we begin with a short reader’s guide.

Sections 2 and 3 provide introductory material focusing on the low-frequency models and

data transformations utilized in this chapter.
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Section 2 introduces five models that usefully parameterize a range of low-frequency

variation and covariation patterns in economic time series. These include the class of I(0)

models that characterize the relatively short-lived dependence in standard covariance sta-

tionary ARMA models. Because of their limited dependence, a time series that follows an

I(0) process behaves like a white noise processes over the low frequencies studied in this

chapter. Analogously, a time series whose first differences is I(0) follows an I(1) model and

has the same second moment properties as a random walk over low frequencies. Three other

parametric models generalize the I(0) and I(1) processes but in ways that lead to different

forms of low-frequency persistence. The local-to-unity model generates covariance stationary

data, but with autocorrelations, say Cor(xt, xt+j), that decay at rate e−c(j/T ) where T is the

sample size and c > 0 is the model’s decay parameter. Covariance stationary fractionally

integrated models have autocorrelations that decay hyperbolically at the rate j2d−1, where

d ∈ (−1/2, 1/2) is the model’s decay parameter. And finally, the local-level model generates

a time series that is a linear combination of I(0) and I(1) processes, where a parameter g

governs the relative importance of the I(1) component. In these three models, low-frequency

persistence depends on the value of the model-specific c, d, or g parameters. The value of this

persistence parameter is of primary interest in some applications; in others, it is important

because persistence affects uncertainty about the mean of a time series, the long-horizon

average of its future values, or the low-frequency correlation between two times series.

Section 3 introduces X0
T , the low-frequency averages of the sample data that are used for

low-frequency inference. One interpretation of X0
T is as the OLS regression coefficients from

the regression of the sample data onto low-frequency deterministic periodic functions of time

– we use a constant and cosine functions. The fitted values from this regression are the low-

frequency trends plotted in Figures 1 and 2. Importantly, only a small number of periodic

functions are needed to capture the low-frequency properties of the series, so the dimension

of X0
T is small. This chapter focuses on low-frequency inference based solely on these low-

frequency summaries of sample data and exploits the approximate normal distribution of

X0
T . Section 3 illustrates this by showing how X0

T can be used for low-frequency inference

in the I(0) model.

Sections 4 and 5 provide ready-to-use Bayes and frequentist methods that provide em-

pirical answers to specific low-frequency inference questions. These sections are aimed at

applied researchers.
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Section 4 focuses on Bayes methods. It shows how to conduct inference about the per-

sistence parameters in the models of Section 2, about the mean when persistence is local-to-

unity, about discrete breaks in the mean of an otherwise I(0) process, about the realization

of the low-frequency I(1) trend in a local-level model, and discusses the calculation of Bayes

factors to compare the relative fit of the models. Section 4 also treats multivariate problems:

Initially in the multivariate I(0) model, and then, as an example of non-I(0) inference, it

develops a low-frequency factor model for the five variables plotted in Figure 2. Finally,

it shows how Bayes methods can be used to construct predictive distributions for the av-

erage values of xt over long-horizon out-of-sample periods. In each of these problems, the

posterior is readily computed using simple numerical methods requiring trivial amounts of

modern computer time.

Section 5 takes up a subset of the same problems using frequentist methods. Specifically

it considers tests of I(1) persistence (that is, unit-root tests), tests of I(0) persistence (some-

times called stationarity tests), construction of confidence intervals for the local-to-unity

persistence parameter, and inference and prediction in the univariate and multivariate I(0)

models. As discussed in that section, these inference problems can be solved using standard

methods (for the I(0) model) or by straightforward calculations after eliminating nuisance

parameters using invariance restrictions. The section discusses a few other problems (low-

frequency covariation in bivariate models and univariate long-horizon prediction intervals)

where numerical methods have been developed for efficient inference in models beyond the

I(0) model.

Sections 6 and 7 discuss both the theory and numerical methods underlying the Bayes

and frequentist methods used in Sections 4 and 5. These sections utilize the low-frequency

problems introduced in Sections 4 and 5 as illustrative examples, but the principles and

computational methods discussed in these sections have general applicability and are not

specific to low-frequency inference. These sections are aimed at readers interested in these

Bayes and frequentist methods, regardless of their interest in low-frequency models.

Section 6 focuses on Bayes methods, where the requisite theory is relatively straight-

forward and computational methods are part of a well-developed literature. This section

includes a discussion of uninformative priors and invariance restrictions, MCMC posterior

simulators (including code-checking diagnostics) and methods for computing Bayes factors.

Section 7 discusses small sample frequentist methods, with a focus on the problem of
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constructing powerful tests of competing hypothesis and the related problem of constructing

efficient confidence intervals. The Neyman-Pearson (NP) lemma is the bedrock of powerful

testing procedures. But, because NP tests involve simple hypotheses, they cannot be directly

applied in the many practical problems that involve composite hypotheses. Section 7 provides

an in-depth discussion of this complication with topics that include weighted average power,

least favorable distributions, invariance/equivariance restrictions, and efficiency results for

confidence sets obtained by inverting these tests. Implementation of these efficient frequentist

methods sometimes requires numerical approximations to least favorable distributions, and

Section 7.5 outlines some associated algorithms.

Section 8 returns to the low-frequency analysis of economic times series and focuses on

two issues. First, it shows how the limiting covariance matrix for X0
T depends only on

the spectrum of xt in a local area near frequency zero, and extends this to pseudo-spectra

for nonstationary processes. This explicitly characterizes the low-frequency nature of the

analysis in spectral terms. The section’s second contribution is a statement of the central

limit theorem that serves as the basis for the normal likelihoods used throughout the chapter.

This section is aimed at readers interested in the large-sample theory underlying the low-

frequency applications in Sections 3-5.

2 Five Low-Frequency Models

Many models have been proposed to describe the low-frequency or long-run behavior of eco-

nomic time series. In this section we highlight five models that have played a particularly

important role in empirical work.4 The univariate versions of these models are quite parsi-

monious – they are characterized by at most three parameters – and are readily analyzed

with the Bayes and frequentist methods that are the focus this chapter. We begin with a

discussion of univariate models, and generalize the discussion to multivariate models later

in this section.

4Alternative models include Müller and Watson’s (2016) bcd -model which encompasses the five models,

the explosive local-to-unity model as in Phillips and Magdalinos (2005), the local-to-unity model with de-

terministically time varying parameter of Bykhovskaya and Phillips (2020), the local-to-unity model with

stochastically time varying parameter of Lieberman and Phillips (2014), and the generalized local-to-unity

model of Dou and Müller (2021).
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Let xt denote a univariate time series observed for t = 1, . . . , T . Decompose xt as

xt = µ+ ut (1)

where µ is a constant and ut is a zero-mean stochastic process. More formally, in this

chapter we use the term low-frequency dynamics to describe the large sample properties of

the suitably scaled partial sum process
∑⌊·T ⌋

t=1 ut (or, more specifically, of the joint asymptotic

distribution of the weighted averages introduced in the next section). The five models differ

in their assumptions about ut, and induce different forms of low-frequency dynamics.

2.1 A Digression on Scale Factors

We begin with a short digression on scale factors. Recall that when ut ∼i.i.d.(0, σ2), the

sample mean u1:T = T−1
∑T

t=1 ut satisfies Var(T 1/2u1:T ) = O(1). In contrast, when ut is a

random walk with ∆ut ∼ i.i.d.(0, σ2), Var(T−1/2u1:T ) = O(1). Said differently, when ut is

i.i.d., then the scale factor
√
T stabilizes the variance of the sample average, but when ut is

a random walk, a scale of 1/
√
T is required. In the fractionally integrated models introduced

below, the appropriate scale factors are yet different powers of T.

Keeping track of these different scale factors is a bookkeeping challenge and leads

to cumbersome notation. Moreover, these factors do not ultimately affect inference in

any of our applications because the methods we suggest lead to scale-invariant or scale-

equivariant inference. To avoid these complications, we apply a notational device by embed-

ding the appropriate scale factor directly into the definition of each model to ensure that

Var(T 1/2u1:T ) = O(1) throughout. For example, we define the random walk as a process

with ∆ut ∼ i.i.d. (0, (σ/T )2). As a formal matter, this means that the various stochastic

processes for ut depend on T , but we will suppress this in the notation to avoid clutter. With

this background out of the way, we now define the models.

2.2 Five Models

A fundamental ingredient in each of the models is a covariance stationary I(0) process that

we denote by ηt. For example, an ARMA(p, q) process with AR and MA roots strictly outside

the unit circle is an example of an I(0) process. More generally, as in Stock’s (1994) chapter

in Volume 4 of this Handbook, the I(0) process ηt is defined as ηt = a(L)εt =
∑
ajεt−j where
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εt is a stationary martingale difference process with E[ε2t ] = σ2
ε and the moving average

weights aj decay sufficiently rapidly so that
∑∞

j=0 j |aj| < ∞. The resulting so-called long-

run variance of ηt is σ
2 = σ2

ε(
∑
aj)

2 = σ2
εa(1)

2 =
∑∞

j=−∞ Cov(ηt, ηt−j); the ‘long-run’ label

here refers to the fact that σ2 is the limiting variance of T−1/2
∑T

t=1 ηt and is proportional to

the zero-frequency (i.e., infinite-period) spectral density of ηt. Each of the models introduced

below can be described in terms of one or several such I(0) variables ηt.

In the I(0) model, ut = ηt.

In the I(1) model, ut is I(1), that is (1 − L)ut = (1/T ) ηt, where the term (1/T ) is the

scale factor appropriate for this model. Recursive substitution yields ut = u0+T
−1
∑t

j=1 ηj,

so that xt = (µ+ u0) + T−1
∑t

j=1 ηj. We fix u0 = 0, since µ and u0 have the same effect on

the observations xt for t = 1, ..., T .

The final three models provide continuous bridges between these I(0) and I(1) models.

The local-to-unity (LTU) model is the covariance-stationary model5

(1− ρTL)ut = (1/T ) ηt where ρT = 1− c/T with c > 0. (2)

To appreciate the parameterization in (2) consider the model with ρT = ρ, |ρ| < 1, and ηt

white noise. In this fixed-coefficient model, Cor(ut, ut+j) = ρj → 0 as j → ∞ and ut is an

I(0) process. Yet, when ρ is close to one and j is a non-negligible fraction of the sample size

T , say j = ⌊sT ⌋ for s > 0, then ρ⌊sT ⌋ differs significantly from zero, and large-sample I(0)

approximations for the distribution of statistics computed from ut are not accurate. More

accurate large-sample approximations are obtained by the local-to-unity parameterization

(2) where the value of c is held fixed as T → ∞. In large samples, with fixed positive values

for c and s, (ρT )
⌊sT ⌋ → e−sc. In this parameterization, large values of c produce near-I(0)

low-frequency dynamics,6 and moderate positive values of c capture persistence patterns

5Early references for the LTU model include Bobkoski (1983), Cavanagh (1985), Chan and Wei (1987),

and Phillips (1987b); applications have focused on inference about the autoregressive coefficient (e.g., Stock

(1991), Andrews and Chen (1994), Hansen (1999), Elliott and Stock (2001), and Rossi (2005)), trend esti-

mation (e.g., Canjels and Watson (1997) and Phillips and Lee (1996)), long-horizon impulse responses (e.g.,

Phillips (1998a), Wright (2000a), Gospodinov (2004), and Pesavento and Rossi (2006)), and regression coef-

ficients when a regressor and/or error terms in highly persistent (e.g., Cavanagh, Elliott, and Stock (1995),

Elliott (1998), Valkanov (2003)and Campbell and Yogo (2006)).
6Local-to-moderate unit root asymptotics with c = cT → ∞ studied by Phillips, Magdalinos, and Giraitis

(2010), among others, lead to I(0) low-frequency dynamics in the sense of this chapter.
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between I(1) and I(0). We define the LTU model for c = 0 to be the I(1) model. While

the limit of the stationary model (2) as c → 0 does not exist, it turns out that location

invariant low-frequency statistics still have a distribution that is continuous at c = 0 under

this definition (cf. Elliott (1999), and Section 8.1).

Another I(0)/I(1) bridge is the I(d) or fractional (FR) model with

(1− L)dut =
(
T−d

)
ηt (3)

where the parameter d is allowed to take on non-integer fractional values and T−d is the

appropriate scale factor.7 Fractional models with −1/2 < d < 1/2 are covariance stationary

and invertible with autocovariances γj that decay hyperbolically at the rate j2d−1 for d ̸= 0

and are said to exhibit long memory.8 We will consider values of d between −1/2 and

3/2, where for 1/2 < d < 3/2 we follow Velasco (1999) and define ut = u0 + T−1
∑t

j=1 vj

with vt ∼ I(d − 1), and normalize u0 = 0. It turns out that with this choice, scale and

location invariant low-frequency statistics of the fractional model have a distribution that

is continuous in d ∈ (−1/2, 3/2) (see Müller and Watson (2008), and Sections 4.1.3 and 8.1

below).

The final I(0)/I(1) bridge is the local-level (LL) model that expresses ut as the sum of

uncorrelated I(0) and I(1) processes

ut = τ t + et (4)

where τ t ∼ I(1) and et ∼ I(0) with τ 0 = 0. This model is usefully parameterized as

τ t = (g/T )
t∑

j=1

ηj (5)

where et and ηt follow uncorrelated I(0) processes with common long-run variance σ2, so

that both τ t and et contribute non-negligibly to the low-frequency dynamics of ut. In this

parameterization, the long-run standard deviation of ∆τ t is σ∆τ = σg/T . The name local-

level model reflects that in (4), µ+ τ t serves as the ‘local-in-time level’ of xt.
9

7For fractional values of |d| < 1/2, the lag polynomial uses the binomial expansion (1− L)
d

=∑∞
j=0

Γ(j−d)
Γ(−d)Γ(j+1)L

j .
8See Baillie (1996) and Robinson (2003a) for surveys of the early work on fractional long-memory models,

and the collection of papers in Robinson (2003b).
9The local-level model is an example of an unobserved-component-ARIMAmodel which has a long history:
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Table 1: Partial Sum Convergence of Five Time Series Models

Model Parameters Partial sum convergence

1 I(0) σ > 0 T−1/2
∑[·T ]

t=1 ut ⇒ σW (·)

2 I(1) σ > 0 T−1/2
∑[·T ]

t=1 ut ⇒ σ
∫ ·
0W (s)ds

3 LTU σ > 0, c ≥ 0 T−1/2
∑[·T ]

t=1 ut ⇒ σ
∫ ·
0 J

c(s)ds

4a FR σ > 0, −1
2 < d < 1

2 T−1/2
∑[·T ]

t=1 ut ⇒ σW d(·)

4b FR σ > 0, 1
2 < d < 3

2 T−1/2
∑[·T ]

t=1 ut ⇒ σ
∫ ·
0W

d−1(s)ds

5 LL σ > 0, g ≥ 0 T−1/2
∑[·T ]

t=1 ut ⇒ σW1(·) + gσ
∫ ·
0W2(s)ds

Notes: The driving innovation ut is scaled as discussed in Section 2.1. W , W1 and W2 are

independent standard Wiener processes, J0 = W , Jc for c > 0 is the stationary Ornstein-

Uhlenbeck process Jc(s) = Ze−sc/
√
2c+

∫ s
0 e

−c(s−λ)dW (λ) with Z ∼ N (0, 1) independent of

W and W d is a “type I” (cf. Marinucci and Robinson (1999)) fractional Brownian Motion

W d(s) = Γ(d+ 1)−1
∫ 0
−∞

[
(s− λ)d − (−λ)d

]
dW (λ) + Γ(d+ 1)−1

∫ s
0 (s− λ)ddW (λ).

Table 1 summarizes the large sample low-frequency dynamics of these five models in

terms of the limiting behavior of the partial sum process T−1/2
∑⌊·T ⌋

t=1 ut (see Müller and

Watson (2008) for references and additional discussion).

3 Low-Frequency Trends and Averages

This section has two primary goals: the first is to describe the low-frequency weighted av-

erages of the data that underlie the low-frequency trends plotted in Figures 1 and 2, and

the second is to introduce normal approximations for the probability distribution of these

weighted averages based on central limit results formally developed in Section 8. As discussed

in the introduction, these low-frequency averages are the small-dimensional data summaries

that form the basis for low-frequency inference discussed in this chapter. The central limit re-

sults rationalize low-frequency inference based on Gaussian likelihoods. With these concepts

in hand, the section presents the chapter’s first application which is autocorrelation-robust

see Chapter 1 of Nerlove, Grether, and Carvalho (1979) for a historical survey and Harvey (1989) for the

classic textbook development, and the collection of papers in Harvey and Proetti (2005) for applications.
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Figure 3: Constructing low-frequency transforms (trends)

inference procedures for the mean of an I(0) process, and then discusses generalizations for

I(0) linear regression models. Finally, the section offers some conceptual comments and

practical advice on the appropriate choice of the low-frequency band used for empirical

applications.

3.1 Low-Frequency Projections

Figure 3 summarizes the construction of the low-frequency trends and averages, using the

data on TFP growth rates as an example. Let xt denote the raw data; for TFP these are

the growth rates plotted in panel (a). Sample data are available for t = 1, 2, . . . , T ; in the

example, the data are available from 1948:Q2 through 2019:Q2, so that T = 285 quarters.

The low-frequency trends are computed as the fitted values from a regression of xt onto

the set of low-frequency functions shown in panel (b) of Figure 3. The first of these is the

constant function, and the other are cosine functions. The first cosine function has a period of

14



2T , the second has period T , and the j-th has period 2T/j. There are q = 14 cosine functions

plotted in the figure, so the shortest period is 2T/14 ≈ 41 quarters (or slightly more than 10

years). The low-frequency fitted values are plotted in panel (c). Panel (d) shows the q = 14

OLS regression coefficients corresponding to each of the cosine-function regressors in panel

(b). The OLS coefficients fully summarize the low-frequency fitted values.10 In this example,

there are q+1 = 15 regression coefficients including the constant, and low-frequency analysis

of TFP growth rates is based on this small sample of 15 observations.

Some additional notation summarizes the calculations represented in Figure 3. Let

Ψj(s) =
√
2 cos(jsπ) denote a cosine function on s ∈ [0, 1] with period 2/j (where the

factor
√
2 simplifies a calculation below), let Ψ(s) = [Ψ1(s),Ψ2(s), . . . ,Ψq(s)]

′ denote a vec-

tor of these functions with periods 2 through 2/q and let ΨT denote the T × q matrix with

t-th row Ψ ((t− 1/2)/T )′. The j-th column of ΨT has period 2T/j and is the j-th cosine

function plotted in panel (b) of Figure 3. The fitted values shown in panel (c) are from the

regression of x1:T = (x1, . . . , xT )
′ onto Ψ0

T = [lT ,ΨT ] where lT is a T × 1 vector of ones.

Denote these OLS regressions coefficients as X0
T = (Ψ0′

TΨ
0
T )

−1Ψ0′
Tx1:T . The specific form

used for the cosine weights simplifies the analysis because the resulting columns Ψ0
T are

orthogonal with

T−1Ψ0′
TΨ

0
T =

[
T−1l′T lT T−1l′TΨT

T−1Ψ′
T lT T−1Ψ′

TΨT

]
= Iq+1. (6)

The OLS coefficients are then

X0
T = (Ψ0′

TΨ
0
T )

−1Ψ0′
Tx1:T = T−1Ψ0′

Tx1:T , (7)

which can be partitioned as

X0
T =

[
x̄1:T

XT

]
(8)

where x̄1:T = T−1l′Tx1:T is the sample mean and

XT = T−1Ψ′
Tx1:T (9)

10The low-frequency fitted values plotted in panel (d) and in Figures 1 and 2 are nearly identical to

low-pass filtered versions of xt using, for example, the truncated ideal filter advocated in Baxter and King

(1999), with frequency cutoff corresponding to 2T/q periods, where the only marked differences are near the

endpoints. This is not surprising. Calculations in Müller and Watson (2008) show that the cosine transforms

used here (or related Fourier transforms) produce close-to-ideal low-pass filters.
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are called cosine transforms of x1:T , or more precisely type 2 discrete cosine transforms

(DCT-II). (We append the superscript ‘0’ to X0
T because x̄1:T can be viewed as 0-th cosine

transform of x1:T .)

In this notation, the T × 1 vector of low-frequency trend values plotted in panel (c) are

x̂1:T = Ψ0
TX

0
T = lT x̄1:T +ΨTXT . (10)

3.2 Large-Sample Normality of Low-Frequency Averages

The low-frequency averages X0
T introduced in the last section are normally distributed in

large samples for a wide range of stochastic processes, including the models discussed in

Section 2. This result is formally developed in Section 8; here we provide an overview.11

From (1), x1:T = lTµ+ u1:T with u1:T = (u1, . . . , uT )
′, so the low-frequency averages are

X0
T = ιq+1µ+ T−1Ψ0′

Tu1:T , where ιq+1 = (1 0′
q)

′. Thus

X0
T − ιq+1µ =

[
x̄1:T − µ

XT

]
= T−1Ψ0′

Tu1:T (11)

is a weighted average of the zero-mean random variables u1:T . The large sample behavior of

X0
T depends on the stochastic process generating u1:T and the weights making up Ψ0

T . The

central limit theorem in Section 8 provides sufficient conditions on the stochastic process and

weights so that (a centered and scaled version of) X0
T has a limiting normal distribution. In

our applications, the columns of Ψ0
T are the constant term and cosine weights in panel (b)

of Figure 3, and the stochastic process is one of the five models described in Section 2; these

satisfy the conditions given in Section 8 and thus

T 1/2(X0
T − ιq+1µ) ⇒ N

(
0, σ2Ω

)
. (12)

The key implication of (12) is that X0
T is approximately normally distributed

X0
T =

[
x̄1:T

XT

]
a∼ N

([
µ

0

]
, T−1σ2Ω

)
. (13)

In the five models introduced in Section 2 the covariance matrix for X0
T depends on both

the scale and persistence of the process ηt: the scale factor σ
2 is the long-run variance of the

11Alternatively, asymptotic normality may be deduced from existing functional central limit results such

as those in Table 1, as explained in Müller and Watson (2017).
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I(0) component ηt and the matrix Ω is a function of the model-specific low-frequency dy-

namics. In obvious notation we use ΩI(0), ΩI(1), ΩLTU(c), ΩFR(d), and ΩLL(g) to denote the

value of Ω for the various models, where the parameters c, d, and g characterize persistence

in the LTU, FR, and LL models. Denote the sub-blocks of Ω as Ωx̄x̄ ∈ R, ΩXX ∈ Rq×q, and

Ωx̄X ∈ Rq. Section 8 derives an expression for Ω in terms of the low-frequency properties of

the spectrum for xt. The essential ideas underlying the CLT and resulting expressions for

Ω can be gleaned from three examples.

In the first example, suppose that ut = εt, a sequence of i.i.d.(0, σ2
ε) random variables.

In this case
√
T (X0

T − ιq+1µ) = T−1/2
∑T

t=1ψ
0
t εt where ψ0′

t is the t-th row of Ψ0
T . Thus

(X0
T − ιq+1µ) is a weighted average of ε1:T = [ε1, . . . , εT ]

′ with weights given by the constant

and periodic terms making up the rows of Ψ0
T . A central limit theorem yields large sample

normality and a direct calculation shows that Var(T−1/2
∑T

t=1ψ
0
t εt) = σ2

εT
−1
∑T

t=1ψ
0
tψ

0′
t =

σ2T−1Ψ0′
TΨ

0
T = σ2

εIq+1, where the first equality uses the fact that εt is i.i.d., the second

equality uses the definition of the weights ψ0
t and the final equality follows from (6).

In the second example, suppose ut = εt + a1εt−1, where εt follows the i.i.d. process

from the first example, so that ut follows a MA(1) process. Here,
√
T (X0

T − ιq+1µ) =

T−1/2
∑T

t=1ψ
0
t (εt + a1εt−1) = (1 + a1)T

−1/2
∑T

t=1ψ
0
t εt − RT , where RT is a remainder term

with RT = T−1/2a1(ψ
0
T εT − ψ0

1ε0) − a1T
−1/2

∑T
t=2(ψ

0
t − ψ0

t−1)εt−1. This remainder term is

op(1): for the first term this is obvious, and for the second this follows from T−1
∑T

t=2(ψ
0
t −

ψ0
t−1)(ψ

0
t − ψ0

t−1)
′ → 0 for sufficiently smooth weights ψ0

t . Thus, the second example

differs from the first only through the additional scale factor (1 + a1), so that (12) holds

with Ω = Iq+1 and σ2 = (1 + a1)
2σ2

ε, which is the long-run variance of ut. A similar

argument applies when ut follows a general I(0) process: σ2 is the long-run variance of ut

and ΩI(0) = Iq+1.
12

12This example illustrates the restrictions on the weights ψ0
t required for the central limit result. These

conditions are made explicit in Theorem 2 presented in Section 8.2. The cosine weights used here satisfy these

restrictions, but so do other weights. For example, the well-known asymptotic distribution of low-frequency

periodogram ordinates in the I(0) model follows from this result using Fourier weights. In the context of

I(0) inference about the mean (discussed below), researchers have used a variety of low-frequency periodic

functions including cosines, sines, both (i.e., Fourier weights) and other choices. See Müller (2004), Phillips

(2005b), and Sun (2013) for discussion and examples. A feature of the cosine weights used here is that they

correspond to eigenvectors of the covariance matrix of a demeaned random walk (cf. Phillips (1998b)), and

this simplifies the form of Ω in the I(1) and LL models; see equation (14).
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In the third example, suppose ut is a random walk with ut = T−1
∑t

j=1 εj. In this case,
√
T (X0

T − ιq+1µ) = T−1/2
∑T

t=1ψ
0
tut = T−1/2

∑T
t=1ψ

a
t εt where ψ

a
t = T−1

∑T
j=tψ

0
j . Again,

(X0
T − ιq+1µ) is a weighted average of ε1:T but now the weights depend on partial sums of

the rows of Ψ0
T . A direct calculation shows Var(T−1/2

∑T
t=1ψ

a
t εt) = σ2

εT
−1
∑T

t=1ψ
a
tψ

a′
t , so

ΩI(1) = limT→∞ T−1
∑T

t=1ψ
a
tψ

a′
t . While not as as straightforward as in the I(0) case, an

explicit expression for ΩI(1) can be derived from this limit with a little effort, and yields

ΩI(1) =

(
Ω

I(1)
x̄x̄ Ω

I(1)
x̄X

Ω
I(1)
Xx̄ Ω

I(1)
XX

)
(14)

where Ω
I(1)
x̄x̄ = 1/3, Ω

I(1)
x̄X = (−

√
2π−2,−

√
2(2π)−2, . . . ,−

√
2(qπ)−2) and Ω

I(1)
XX =

diag(π−2, (2π)−2, . . . , (qπ)−2). As in the second example, this random walk result gener-

alizes to other I(1) processes with σ2 equal to the long-run variance of the driving process.

These examples suggest a simple method for computing Ω for any of the models in-

troduced in Section 2: pick a convenient canonical version of the model, and approxi-

mate Ω by the implied covariance matrix ΩT of X0
T for some large T . Specifically, with

√
T (X0

T − ιq+1µ) = T−1/2Ψ0′
Tu1:T , ΩT = T−1Ψ0′

TΛTΨ
0
T , where ΛT is the T × T covariance

matrix of u1:T with elements Λij,T . With σ2 = 1, we may choose

1. I(0) model: ΛT = IT

2. I(1) model: ΛT = T−2ATA
′
T , where AT is a lower triangular matrix of ones

3. LTU model: Λij,T (c) = T−2ρ
|i−j|
T / (1− ρ2T ) with ρT = 1− c/T

4. Stationary I(d) model (−1/2 < d < 1/2):13 Λij,T (d) = Cov(ui, uj) =

T−4d {Γ(k + d)Γ(1− 2d)} / {Γ(k + 1− d)Γ(1− d)Γ(d)} with k = |i − j|; I(d) model

with 1/2 < d < 3/2: ΛT (d) = T−2ATΛT (d− 1)A′
T

5. Local-Level model: ΛT (g) = IT + (g/T )2ATA
′
T .

In all of these cases

ΩT = T−1Ψ0′
TΛTΨ

0
T → Ω. (15)

In many calculations presented below we use this expression for ΩT with T = 1000 as an

approximation for Ω.

13See Baillie (1996) for this and alternative formulae.
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3.3 Multivariate Models and Low-Frequency Covariation

We use the following notation for multivariate models: xt = [x1,t, . . . , xn,t]
′ is an n×1 vector-

valued time series with xt = µ+ut with mean µ = [µ1, . . . , µn]
′, x1:T is a T ×n matrix with

t-th row equal to x′
t and similarly for u1:T ; X

0
T , as defined in (7), is (q+1)×n; x̂1:T = Ψ0

TX
0
T

is the T × n matrix of trend values.

The multivariate analog to (12) is

T 1/2
(
X0

T − ιq+1µ
′)⇒ X0 with vec(X0) ∼ N (0,V) (16)

so that

vec(X0
T )

a∼ N
(
µ⊗ ιq+1, T

−1V
)
. (17)

The matrix V can be partitioned into (q + 1)× (q + 1) blocks Vij = Cov(X0
i ,X

0
j) where X

0
i

denotes the i-th column ofX0 which is computed from the i-th series xi,t. As in the univariate

model, the matrix V depends on the scale (σ in the univariate model) and persistence

parameters. A leading case is the I(0) model in which Vij = σijIq+1, where σij is the long-

run covariance between xi,t and xj,t. We discuss other multivariate models in the examples

scattered throughout the chapter.

We define the low-frequency covariance between xi,t and xj,t as the population covariance

between the low-frequency trend values, x̂i,t and x̂j,t averaged over the length of the sample

σLF
ij = T−1

T∑
t=1

E
[
(x̂i,t − µi)

(
x̂j,t − µj

)]
. (18)

Collecting the low-frequency covariances into the n×n matrix ΣLF with elements σLF
ij , some

simple algebra shows the relationship between ΣLF and V in (16):

ΣLF = T−1E
[
(x̂1:T − lTµ

′)
′
(x̂1:T − lTµ

′)
]

= T−1E
[(
Ψ0

T

(
X0

T − ιq+1µ
′))′ (Ψ0

T

(
X0

T − ιq+1µ
′))]

= E
[(
X0

T − ιq+1µ
′)′ (X0

T − ιq+1µ
′)]

where the last equality uses T−1Ψ0′
TΨ

0
T = Iq+1. Thus, using the large-sample approximation

in (17),

σLF
ij ≈ T−1 tr(Vij). (19)
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Associated with the low-frequency covariance matrix are the low-frequency correlations,

linear regression coefficients, etc., defined by the corresponding transformations of the co-

variance matrix. For example

ρLFij =
σLF
ij√

σLF
ii σ

LF
jj

is the low-frequency (population) correlation between xi,t and xj,t and

βLF
1,i:j =

[
ΣLF

i:j,i:j

]−1
ΣLF

i:j,1 (20)

is the low-frequency (population) coefficient in a regression of x̂1,t on x̂i:j,t.

3.4 An Example: Inference about µ in the I(0) Model

A leading example of a low-frequency inference problem concerns the value of the mean, µ,

in the I(0) model and the associated extensions to parameters in regression, instrumental

variable, and GMM problems.14 We begin by discussing inference for scalar xt, and then

extend this to multivariate models.

In the Gaussian I(0) model with σ2 known, a classic result from Grenander and Rosen-

blatt (1957) shows that asymptotically efficient inference about µ relies on the data through

x̄1:T with x̄1:T
a∼ N (µ, σ2/T ). A large literature has focused on deriving consistent estimators

for σ2, which can be used in place of σ2; these are heteroskedastic and autocorrelation con-

sistent (HAC) estimators, where ‘heteroskedastic’ refers to their use in regression models.15

Inference relies on
T 1/2 (x̄1:T − µ)

σ̂
⇒ N (0, 1) (21)

where σ̂ is a HAC estimator of σ. The result in (21) leads, for example, to 100(1 − α/2)%

confidence intervals for µ of the form x̄1:T ±z1−α/2σ̂/
√
T , where z1−α/2 is the 1−α/2 quantile

of the standard normal distribution.
14This inference problem has generated a large literature. We offer only handful of references here, but

the interested reader may want to consult two recent invited papers that appeared with discussion in the

Journal of Business and Economic Statistics, Müller (2014) and Lazarus, Lewis, Stock, and Watson (2018).

These papers, together with the published discussions by M. Cattaneo, R. Crump, N. Kiefer, U. Müller,

Y. Sun, T. Vogelsang, and K. West provide a helpful review of the literature and summarize many of the

outstanding issues.
15Important early references in economics include Hansen (1982), Domowitz and White (1982), Newey

and West (1987), and Andrews (1991).
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A more recent literature has highlighted important problems with using (21) as the basis

for finite-sample inference. These problems arise because (21) neglects the estimation error

in σ̂. HAC estimators that use a small bandwidth result in a large variance for σ̂2, while

estimators using a large bandwidth have large bias when the data exhibit moderate-to-severe

autocorrelation. To address these problems, recent work has focused on heteroskedastic-

autocorrelation-robust (HAR) inference that explicitly accounts for sampling uncertainty

about σ.16

A class of HAR procedures utilizes (13) with Ω = ΩI(0) = Iq+1 and classic inference

procedures for small-sample i.i.d. normal samples. For example, with s2 = T
q

∑q
j=1X

2
jT =

T
q
X′

TXT , standard properties of the multivariate normal distribution (e.g., Rao (1973)) imply

qs2/σ2 a∼ χ2
q (22)

and √
T (x̄1:T − µ)

s

a∼ Student-tq (23)

and where the approximate distributions in both (22) and (23) become exact as T → ∞.

Inverting the t-statistic in (23) yields the usual 100 (1− α/2)% confidence interval for µ

x̄1:T ± tq,1−α/2s/
√
T (24)

where tq,1−α/2 is the 1− α/2 quantile of the Student-t q distribution.

The approximation (13) also serves as the basis for limited-information large-sample

Bayes inference that treats X0
T as the only observation. Standard conjugate priors for µ and

σ2 lead to standard posteriors, and in particular, the usual uninformative priors imply that

(24) is a 100 (1− α/2)% credible interval for µ.

As equation (23) makes clear, the value of q is key for HAR inference. When q is large,

the Student-t q distribution is very close to the standard normal distribution, so that there is

little difference between (23) and (21), while smaller q lead to more uncertainty about σ and

thus wider confidence/credible intervals for µ. The choice of q faces the same bias-variance

16In economics, early contributions include Kiefer, Vogelsang, and Bunzel (2000), whose methods involve

non-standard probability distributions and associated critical values, and Müller (2004, 2007) whose methods

utilize Student-t and F distributions. Related contributions include Phillips (2005b) and Sun (2013), with

antecedents in the statistics literature (e.g., exercise 5.13.25 in Brillinger (1975)). The discussion here follows

Müller (2004).
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trade-offs as the bandwidth choice for HAC estimators: larger values of q mean that higher

frequency variability in the data is being used to estimate the long-run variance σ2. This

induces a bias in s2 when the data are autocorrelated. We discuss the choice of q in more

detail below.

Empirical example. The TFP growth rates shown in Figure 1 have a sample mean of

x̄1:T = 1.21. Using q = 14, the estimated long-run standard deviation is s = 3.83. The

95% confidence/credible interval (24) for µ then evaluates to [0.72;1.69]. Panel (a) of Table

2 shows selected quantiles of the Bayes posterior under uninformative priors; the table also

shows results for several of the other examples discussed in the next section. ▲

3.4.1 Multivariate and Linear Regression Extensions for the I(0) Model

The I(0) results outlined above are for the univariate mean, but they extend readily to the

vector model. Suppose xt is an n × 1 vector that follows an I(0) process with long-run

covariance matrix Σ. Then (17) holds with V = Σ⊗Iq+1. Hotelling’s-T
2 statistic (Hotelling

(1931))

T (x̄1:T − µ)′S−1(x̄1:T − µ) a∼ nq

q + 1− n
Fn,q+1−n (25)

can be used for inference, where S = (T/q)X′
TXT , and Fn,q+1−n is the F -distribution with

n and q + 1− n degrees of freedom. (See Rao (1973) or, in this context, Müller (2004)).

Importantly, these results generalize for inference in I(0) regression and GMM models.

For example, in the linear regression model yt = z′tβ+ut, β̂ − β replaces x̄1:T−µ in the I(0)

mean problem, S−1
zz ztut replaces xt, where β̂ is the OLS estimator and Szz = T−1

∑T
t=1 ztz

′
t.

In this case Σ is the large-sample variance of T 1/2(β̂ − β), and S is the corresponding (HAR)

estimator. See Müller (2004, 2014), Phillips (2005b), Sun (2013, 2014), Hwang and Sun

(2017), Lazarus, Lewis, and Stock (2021) and Mart́ınez-Iriarte, Sun, and Wang (2020) for a

more detailed discussion and extensions.

3.5 Choice of q and Limited-Information Low-Frequency Inference

As discussed in the introduction, and as the univariate I(0) example makes clear, low-

frequency inference is conducted using only the information contained in the sample mean

x̄1:T and the q low-frequency transforms in XT . Why, one might ask, should inference be

based solely on these q+1 statistics, effectively discarding the rest of the data? One answer is
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Table 2: Posterior Mean and Quantiles from Several Empirical Exercises  

 
 

Parameter Posterior 
Mean 

Posterior Quantiles 
0.05 0.17 0.50 0.83 0.95 

 
(a) TFP Growth Rate, I(0) model. Prior: f(µ, s2) ∝ 1/s2 

µ 1.21 0.81 0.98 1.21 1.43 1.61 
 

(b) $/£ Real Exchange Rate, LTU model 
 (i) Prior: f(µ, s2) ∝ 1/s2 , r ~ U(0.50,0.999) 
r 0.93 0.85 0.90 0.94 0.97 0.98 

half-life 25.7 4.4 6.7 11.7 23.5 50.7 
 (ii) Prior: f(µ, s2) ∝ 1/s2,  half-life ~ U(1,100) 
r 0.97 0.93 0.96 0.98 0.99 0.99 

half-life 43.1 9.7 15.6 36.8 75.4 93.0 
 

(c) Daily Realized Volatility, I(d) model.  Prior: f(µ, s2) ∝ 1/s2, d ~ U(-0.4,1.4) 
d  0.59 0.36 0.45 0.58 0.72 0.82 

 
(d) TFP Growth Rate, LLM, Prior: f(µ, s2) ∝ 1/s2, ln(g) ~ U(ln(0.1), ln(500)) 

s 3.40 2.04 2.56 3.32 4.24 5.07 
g 8.8 0.16 0.53 4.4 11.8 22.3 
sDτ   0.067 0.002 0.007 0.051 0.118 0.193 

 
(e) Unemployment Rate. Prior: f(µ, s2) ∝ 1/s2 

 (i) LTU model, Prior: half-life ~ U(1,120) 
half-life 46.7 5.8 15.4 39.9 82.3 106.8 

µ 5.53 4.10 4.85 5.58 6.20 6.79 
 (ii) I(0) model 
µ  5.74 5.10 5.38 5.74 6.11 6.38 

 
(f) TFP growth rate, I(0) with break in mean, f(µpre, µpost, s2) ∝ 1/s2, r ~ U(0,1) 

µ 2.11 1.24 1.63 2.08 2.50 2.88 
µ+d 0.80 0.36 0.60 0.84 1.08 1.30 
d -1.31 -2.18 -1.74 -1.28 -0.80 -0.33 

 
(g) Bivariate TFP and GDP Growth Rates, I(0) model. Flat prior 

rLF 0.80 0.60 0.71 0.82 0.89 0.93 
bLF (GDP 
onto TFP) 

1.10 0.71 0.88 1.10 1.32 1.49 

 
  

Table 2: Posterior mean and selected posterior quantiles for Bayes empirical examples
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practical: restricting the analysis to these statistics leads to tractable and robust statistical

inference procedures. The key feature underlying tractability is the large-sample normal

law of the transformed data. The statistical analysis can thus draw on the extensive suite

of methods that have been developed for finite sample (here q + 1 dimensional) Gaussian

models. Large-sample robustness shows up in a variety of forms. First, and related to the

first point, the methods are robust to the distributional properties of the original data xt,

through the use of averages and normal laws. Second, by restricting the analysis to low-

frequency variability in the data, modeling becomes easier, because only the low-frequency

properties of the model affect inference. For example, in the I(0) model, the exact form of

dependence (AR(4) versus ARMA(2,2) versus MA(20), say) plays no role; all that matters

is the mean and the long-run variance of the process.

This said, the low-frequency statistics used in the analysis are not sufficient statistics,

so there is a loss of efficiency. For example, a special case of the I(0) model is the i.i.d.

Gaussian process, where the sufficient statistics are x̄1:T and the sample variance. In this

special case, the power loss associated with restricting the sample to the (q+1) observations

in X0
T is easily quantified by the larger critical value in (23): An efficient test would use a

t-statistic with T − 1 degrees of freedom, while the low-frequency analysis uses a t-statistic

with only q degrees of freedom. (Recall that in the TFP example q = 14.) Of course, in

this case, the robustness considerations of the last paragraph would lead one to ask how

sure one could be that the data are i.i.d. Gaussian. Indeed, as shown in Müller (2011) in

a general setting, it is not possible to use pretests or otherwise learn from the data that it

is i.i.d. to obtain more efficient hypothesis tests without inducing size distortion for some

process that satisfies (12) with Ω = Iq+1; in other words, with (12) the minimal restriction

that one is willing to put on the xt process, asymptotically efficient tests simply rely only

on the low-frequency transforms of the data.

There remains an important practical question: what value of q should be used in a

particular application? There are two guiding principles.

First, one way to think about q is definitional: q defines low-frequency in the analysis.

To see why, return to Figure 3 which showed the low-frequency transforms for TFP growth

rates over T = 285 quarters from 1948:Q2 through 2019:Q2, computed using q = 14. The

resulting low-frequency trend captures variability for periods longer than 2T/q ≈ 41 quarters
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(≈ 10 years).17 If instead, q = 8, the analysis would capture variability 2T/8 ≈ 72 quarters

(or 18 years). This suggests that a researcher interested in variability over periods of 10-years

or longer should use q = 14; a researcher interested in variability over periods of 18-years or

longer should use q = 8.

Second, q defines the low-frequency range over which the normal distribution in (13)

provides a reliable approximation for inference. Consider the TFP example in the I(0) model.

The approximation in (13) has two features: the normal limit and the specific covariance

matrix σ2T−1Iq+1. When the data are non-Gaussian, a concern is the large-q accuracy of

the multivariate normal distribution, leading to misspecification of the likelihood for Bayes

inference and to the results in (22), (23) and (25) that form the basis for frequentist inference

in the I(0) model. Moreover, as shown in Section 8, the limiting covariance matrix depends

critically on the shape of the (pseudo-) spectrum in a local (1/T ) neighborhood of frequency

zero. The weighted averages in XT use variability for frequencies as high as q/(2T ), so the

limiting covariance matrix may be a poor approximation when q is large. The univariate

I(0) model provides a clear example. Suppose xt follows a stationary AR(1) model with

coefficient ρ and unit innovation variance. The long-run variance, that is, the limiting

variance of
√
T (x̄1:T − µ), is σ2 = 1/(1− ρ)2. The spectrum of the process at frequency ϕ,

say Υ(ϕ), satisfies 2πΥ(ϕ) = 1/ (1 + ρ2 − 2ρ cos(ϕ)), so that 2πΥ(ϕ) ≈ σ2 for small values

of ϕ. But note that the value of the approximation depends on the values of both ϕ and ρ.

When ρ = 0, the data are serially uncorrelated and the approximation holds exactly for all

values of ϕ. On the other hand, when |ρ| is large, the approximation deteriorates quickly for

larger |ϕ|. Letting ϕ = q/2T , suppose T = 285 as in the TFP example. Then, for ρ = 0.5,

2πΥ(ϕ)/σ2 is equal to {0.99, 0.96, 0.91} for q = {7, 14, 21}, but when ρ = 0.8, 2πΥ(ϕ)/σ2

is equal to {0.90, 0.68, 0.49} for q = {7, 14, 21}. Thus, the estimator s2 of σ2 in (23) is

likely to be noticeably downward biased using q = 14 when ρ = 0.8, but exhibits little bias

when ρ = 0.5. This suggests using a small value of q for the I(0) approximation for more

persistence processes. But, a small value of q reduces the degrees of freedom, resulting in

tests with lower power. See Lazarus, Lewis, and Stock (2021) and Lazarus, Lewis, Stock,

and Watson (2018) for discussion of the choice of q for I(0) inference that explicitly considers

the trade-off between size distortion (choosing q too large) and power loss (choosing q too

17See Müller and Watson (2008) for a discussion of the ability of the q cosine transforms to capture

variability for frequencies lower than q/(2T ).
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small), and Dou (2024) for optimal inference procedures given an explicit upper bound for

ρ.

4 Bayes Inference: Examples

As stressed in the introduction, low-frequency inference is inherently a small-sample sta-

tistical problem. For example, while the TFP example uses data from a 71-year sample,

variability for periods longer than a decade are summarized by the vector X0
T that contains

only q+1 = 15 elements. With small samples, Bayes and frequentist inference typically differ

(although their coincidence in the I(0) analysis of the mean is an interesting counterexample

to this general rule). Section 6 provides a detailed overview for the Bayes methods employed

in this chapter. For convenience, a few of the Bayes results used in this section’s examples

are summarized here.

4.1 Some Bayes Basics

Let Y denote vector of random variables with a probability density f(y|θ) that depends on a

parameter vector θ. Let p(θ) be a probability density that describes the a priori uncertainty

about the value of θ (the prior). After observing Y = y, the goal is the determination of the

updated probability density function p(θ|y) (the posterior). All the low-frequency examples

discussed here concern inference about the mean and/or covariance matrix from a normal

likelihood, and the Bayes analysis uses standard methods. We begin with three results (see,

for example, Gelman, Carlin, Stern, and Rubin (2004)) that are useful in this context.

4.1.1 Some Specific Priors and Posteriors

Posterior for the mean: Suppose that Y|µ ∼ N (Hµ,Σ), where H and Σ are known, and

the prior for µ is

µ ∼ N (m,Λ). (26)

Then (Y,µ) are jointly normally distributed with Y ∼ N (Hm,Σ+HΛH′) and

Cov(Y,µ) = HΛ. The well-known conditional distribution for multivariate normals then
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shows that the posterior for µ is

µ|Y = y ∼ N (m+K (y −Hm) ,Λ−KHΛ) (27)

where K = ΛH′ (HΛH′ +Σ)−1. Note that when Λ = κ2I with κ2 → ∞ and H′Σ−1H

non-singular, this posterior distribution converges to

µ|Y = y ∼ N
(
(H′Σ−1H)−1H′Σ−1y, (H′Σ−1H)−1) . (28)

Posterior for the variance: Suppose the nY × 1 vector Y satisfies Y|σ2 ∼ N (µ, σ2Ω),

where µ and Ω are known, and the prior for σ2 is

σ2 ∼ IG(α, β), (29)

the inverse Gamma distribution with parameters α and β. The posterior for σ2 is

σ2|Y = y ∼ IG
(
α + nY /2, β + (y − µ)′Ω−1 (y − µ) /2

)
. (30)

We also use a multivariate extension of this result: Suppose Y is an n × m matrix with

vec(Y) ∼ N (0,Σ⊗ In) where Σ is m×m, and the inverse-Wishart prior for Σ is

Σ ∼ IW(Λ, ν). (31)

The posterior for Σ is

Σ|Y = y ∼ IW (Λ+ y′y, ν + n) (32)

and the posteriors for the associated correlations, regression coefficients, etc., follow directly.

Posterior with discrete support: Suppose Y has density f (y|ϑ), where the parameter ϑ

can take on one of nϑ known values {ϑ1, . . . , ϑnϑ
} with prior

P (ϑ = ϑi) = pi. (33)

The posterior for ϑ is

P (ϑ = ϑi|Y = y) =
f (y|ϑi) pi∑nϑ

j=1 f (y|ϑj) pj
. (34)
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4.1.2 A Gibbs Algorithm

Many of the examples in this section have a common structure and the posterior can be

formed using draws from a Gibbs Markov chain Monte Carlo (MCMC) algorithm. (See

Section 6 for a general discussion of these methods.)

Generically, let Y denote an nY × 1 vector with

Y
∣∣(µ, σ, ϑ) ∼ N

(
H(ϑ)µ, σ2Ω(ϑ)

)
(35)

where ϑ has discrete support. Suppose the parameters µ, σ, ϑ have the normal, inverse

Gamma and discrete priors given in (26), (29), and (33), respectively. Draws from the

posterior (µ, σ, ϑ) |Y = y can then be obtained from the following 3-step Gibbs algorithm:

1. Draw µ from the posterior µ |(y, σ, ϑ) using (27) with (35) as the likelihood and (26)

as the prior.

2. Draw σ2 from the posterior σ2 |(y,µ, ϑ) using (30) with (35) as the likelihood and (29)

as the prior.

3. Draw ϑ from the posterior ϑ |(y,µ, σ) using (34) with (35) as the likelihood and (33)

as the prior.

4.1.3 Invariance and Uninformative Priors

As discussed in Sections 6 and 7, there is a close connection between certain kinds of invari-

ance and uninformative priors for location and scale parameters. These flat prior/invariance

results simplify some of the Bayes calculations in this section.

To be specific, and mimicking the notation in (13), suppose that

X0
T =

[
x̄1:T

XT

]
∼ N

([
µ

0

]
, T−1σ2

[
Ωx̄x̄(ϑ) Ωx̄X(ϑ)

ΩXx̄(ϑ) ΩXX(ϑ)

])
(36)

where (µ, σ, ϑ) are unknown parameters. Suppose that the prior for µ is flat, so that the

posterior is as in (28). In this case, a calculation shows that the posterior for (σ, ϑ) only

depends on XT , and no longer depends on x̄1:T . That is, the posterior for (σ, ϑ) can be

computed using the likelihood XT |(σ, ϑ) ∼ N (0, σ2ΩXX(ϑ)), ignoring the data x̄1:T and the
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parameter µ. Note that XT is the component of X0
T that remains invariant to translations

of the underlying data {xt}Tt=1 → {xt + a}Tt=1.

As another example, suppose that

XT ∼ N
(
0, T−1σ2ΩXX(ϑ)

)
(37)

where (σ, ϑ) are unknown parameters. Consider the usual uninformative prior for σ pro-

portional to 1/σ (corresponding to α = β = 0 in (29)). In this case, the posterior for ϑ

depends on the data only through the value of Xs
T = XT/

√
X′

TXT ; thus XT and aXT with

a > 0 yield the same posterior for ϑ, and Xs
T remains invariant to scale transformations of

the underlying data. The probability density for Xs
T is (see, for instance, Kariya (1980) or

King (1980))

fXs
T
(xs

T |ϑ) = C |ΩXX(ϑ)|−1/2 (xs′
TΩXX(ϑ)

−1xs
T

)−q/2
(38)

where C is a constant. Thus, when interest is focused on ϑ, σ can be dropped from the

analysis by restricting attention to Xs
T and using the likelihood (38).

With this uninformative prior on σ, the scale of ΩXX(ϑ) in (13) is immaterial, as is

easily seen by inspecting (38). It is thus without loss of generality to normalize ΩXX(ϑ)

to satisfy trΩXX(ϑ) = q, say. The continuity of the low-frequency implications for the

fractional model over d ∈ (−1/2, 3/2) then holds after such a normalization (which amounts

to making the long-run variance σ2 of the underlying process at a particular function of d).

As a computational matter, this normalization is particularly useful when ΩXX(ϑ) have very

different scales, as this can lead to poor mixing in Step 3 of the Gibbs algorithm outlined

above when drawing σ is part the posterior analysis.

4.2 Inference about Low-Frequency Persistence

This section takes up three inference problems involving low-frequency persistence. The first

problem concerns the parameter c in the LTU model (2); the second problem concerns d in

the I(d) model (3); the third involves low-frequency variability in the I(1) component, τ t,
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in the LL model (4).18 Each of these problems has a common structure

X0
T =

[
x̄1:T

XT

]
a∼ N

([
µ

0

]
, T−1σ2Ω(ϑ)

)
(39)

where the persistence parameter ϑ equals c for the LTU model, d for the I(d) model and g

for the LL model. The unknown parameters are (µ, σ, ϑ).

Draws from the posterior for (µ, σ, ϑ) can be obtained from the Gibbs algorithm from

Section 4.1.2. However, the uninformative-prior considerations of the last subsection lead to

two simplifications for the three exercises in this subsection. The first simplification arises

because µ is not a parameter of interest in any of the exercises. Thus, with a flat prior for µ,

the posterior for the remaining two parameters (σ, ϑ) can be computed using the data XT .

Similarly, the first two exercises focus solely on the persistence parameter ϑ (where ϑ = c in

the LTU example and ϑ = d in the I(d) example), so with an uninformative prior for σ, the

posterior for ϑ can be computed using the scale-normalized data Xs
T with density (38).

4.2.1 Low-Frequency Persistence in the Stationary Local-to-Unity Model

Recall that in the LTU model, xt has low-frequency persistence parameterized by a local-

to-unity AR parameter ρT = 1 − c/T and XT
a∼ N

(
0, T−1σ2ΩLTU

XX (c)
)
. Thus, with Xs

T =

XT/
√
X′

TXT , from (38) the large-sample likelihood is

f (Xs
T |c) ∝

∣∣ΩLTU
XX (c)

∣∣−1/2 (
Xs′

TΩ
LTU
XX (c)−1Xs

T

)−q/2
(40)

With a discrete prior for c, the posterior can then be directly computed using (34).

Empirical Example: An important piece of evidence underlying Rogoff’s (1996) ‘purchas-

ing power parity (PPP) paradox’ is the high degree of persistence in the real exchange rate.

We apply the methods outlined in this section to learn what the data (together with priors)

tell us about real exchange rate persistence in the context of the LTU model. We use the

18Each of these questions has been studied using alternative methods to those presented here. For example,

Stock (1991) is the classic paper for frequentist inference about the local-to-unity parameter c, based on unit-

root test statistics. Also see Andrews (1993) and Elliott and Stock (2001). Related methods for inference

about g in the local-level-model are developed in Stock and Watson (1998). Sims and Uhlig (1991) focuses

on Bayes inference for near unit roots in the AR(1) model. Frequentist methods for inference about d are

presented in Geweke and Porter-Hudak (1983) and Robinson (2003a).
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annual real $/£ exchange rate series plotted in Figure 1; the sample period is 1791-2016

(T = 226 years), and the analysis uses q = 22 cosine transforms that summarize variabil-

ity for periods longer that 2T/q ≈ 20 years. The local-to-unity persistence parameter is c,

but two transformations of c are more easily interpreted. The first is ρ = 1 − c/T which

can be interpreted as an AR(1) parameter in a model with innovation variance σ2. In the

LTU model the jth autocorrelation is approximately e−c(j/T ) ≈ ρj, so ρ can be used to

describe long-horizon LTU persistence using familiar AR(1) low-frequency dynamics. The

second parameter is a version of the implied half-life, that is, the value of h such that

Cor(xt, xt+h) ≈ e−c(h/T ) = 1/2. We stress that, although both h and ρ are interpretable

in terms of AR(1) dynamics, the LTU model does not assume that xt follows an AR(1)

process; rather it assumes that, over long horizons, autocorrelations decay at the same rate

as a highly persistent AR(1) model.

With this background, Figure 4 plots the likelihood (40) as a function of ρ and as a

function of the half-life h. The likelihood places little weight on values of ρ < 0.9, or

equivalently h < 7 years. That said, the likelihood is relatively uninformative otherwise.

Thus, the prior will play an important role. To illustrate this, panel (b) of Table 2 summarizes

the posterior associated with two priors. The first prior is ρ ∼ U(0.5, 0.999), which puts

less than 10% of its mass on values of h > 13 years, while the second is h ∼ U(1, 100),
which puts more than half its weight on values of ρ > 0.986; in both cases the prior is

approximated with an equally spaced discrete grid of 200 points.19 These two priors lead to

substantively different posteriors. This is a generic feature of low-frequency Bayes analysis:

because effective sample sizes are small, prior and sample information are both important

for posterior inference. That said, in this example, both priors yield posteriors with most

of their mass on values of h > 10 years, and in this sense provide evidence for Rogoff’s

PPP-puzzle.20 ▲

19Because c = T (1− ρ) = −T ln(1/2)/h, these priors for ρ and h imply different priors for c.
20Empirical results in Dou and Müller (2021) suggest that the low-frequency AR(1) decay implied the

LTU model understates the half-life for real exchange rates. Specifically, they develop a generalized LTU

model that allows for ARMA(p, p− 1) low-frequency dynamics, and find that the p ≥ 2 models fit better

than the p = 1 model and imply a larger value of h.
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Notes: Values are relative to the maximum. 
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Figure 4: Likelihood values for the local-to unity AR(1) and half-life parameters

4.2.2 Low-Frequency Persistence in the Fractionally Integrated Model

In the fractional I(d) model, XT
a∼ N

(
0, T−1σ2ΩFR

XX (d)
)
. With this change of Ω, the

posterior for d can be computed in the same way as the posterior for c was computed in the

LTU model.

Empirical Example: A large literature documents long-memory persistence in asset return

volatility (e.g., Ding, Granger, and Engle (1993), Baillie (1996), Andersen and Bollerslev

(1997) and Andersen, Bollerslev, Diebold, and Labys (2003)). We apply the methods outlined

here to the logarithm of daily realized volatility plotted in panel (c) of Figure 1. This series

is available for 4738 trading days from January 3, 2000 through November 14, 2018 and we

use q = 37 to capture periods of 256 trading days (approximately one year) or longer. A

flat prior, d ∼ U(−0.4, 1.4), approximated by a discrete grid with 200 equally spaced points,

yields the posterior summarized in panel (c) of Table 2. The 90% equal-tailed credible

interval is d ∈ (0.36, 0.82), with most posterior mass on nonstationary values d > 1/2. ▲

4.2.3 Low-Frequency Persistence in the Local-Level Model

In the local-level model, xt is the sum of independent I(0) and I(1) processes (see (4)).

Using the parameterization for the I(1) component in (5), XT
a∼ N

(
0, T−1σ2ΩLL

XX (g)
)
. The

Gibbs algorithm outlined above can be used to obtain draws from the posterior of (σ, g).

Empirical Example. Section 3.4 presented confidence and credible intervals for the mean

growth rate of TFP in the U.S. constructed using an I(0) model. But an I(0) model, with
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its constant mean, is ill-suited for describing the long swings in TFP growth rates over the

past 150 years (Gordon (2016)) or the 1970 productivity slowdown (Nordhaus (1972)) in the

post-WWII period. The local-level model’s I(1) component can be used to capture these

long swings. This raises two question: first, by how much is this I(1) component expected to

change over, say, a quarter of a century, and second, what has been the historical evolution

of this component? We answer the first question here, and tackle the second question in the

next subsection.

Using the notation in (5), the I(1) component is denoted by τ t, and the long-run standard

deviation of ∆τ t is σ∆τ = (g/T )σ. Over a long span of h periods the standard deviation of

τ t+h − τ t is approximately equal to
√
hσ∆τ . Panel (d) of Table 2 summarizes the posterior

for σ, g, and σ∆τ using the TFP growth rate data and an uninformative prior for σ. The

prior for g is informative and reflects an a priori belief that changes in τ t are likely to

be small relative the overall variability in TFP growth rates: ln(g) ∼ U(ln(0.1), ln(500)),
approximated with a finite grid. The resulting posterior mean is E[σ∆τ |XT ] = 0.067, which

corresponds to a standard deviation of 25-year (h = 100-quarter) changes in the level of the

growth rate of TFP of
√
100 × 0.067 = 0.67. (To put this value in perspective, recall that

TFP growth rates are measured in percentage points per year and the sample mean was 1.24

over the post-WWII period.) The equal-tailed 68% credible set is
√
100σ∆τ ∈ (0.07, 1.18),

which implies considerable uncertainty about the variability in the level of TFP growth rates.

▲

4.3 Inference about the Low-Frequency Level of a Time Series

Section 3 took up the problem of inference about the mean of a I(0) time series. In this

section we present methods for inference about the level when the stochastic process is not

I(0). We consider three examples. In the first, xt is stationary (so the level is its mean),

but is highly persistent as in the LTU model. In the second example we return to the I(0)

process, but allow the mean to have a discrete break at an unknown date. Here, interest

focuses on the pre- and post-break values of the mean together with the break date. In

the third example, xt follows the local-level model (4) and interest focuses on the value

of the I(1) component τ t, the local-(in time)-level of the series. This is a low-frequency

signal extraction problem with unknown model parameters. In each of these examples, the
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posterior is computed using a variant of the Gibbs algorithm outlined above.

4.3.1 Inference about the Mean in a Highly Persistent Stationary Process

This example returns to the stationary LTU model, but now interest focuses on the value of

µ. The large sample likelihood is

X0
T =

[
x̄1:T

XT

]
a∼ N

(
ιq+1µ, T

−1σ2ΩLTU (c)
)

(41)

where ιq+1 =
[
1 0′

q

]′
. Using a normal prior for µ, an inverse-Gamma prior for σ2, and a

discrete prior for c, the Gibbs algorithm using (27)-(34) yields draws from the posterior.

Empirical Example. The U.S. unemployment rate plotted in panel (d) of Figure 1 shows

large low-frequency swings around a population mean that, arguably, was constant over

the post-WWII period. The methods outlined above can be applied to learn about this

mean. We use uninformative priors for µ and σ, but an informative prior for c that puts

much of its mass on small values of c. As in the the real exchange rate example in Section

4.2.1 we express this prior using the half-life, h, with prior h ∼ U(1, 120) and where h is

measured in months (so that h = 120 corresponds to 10 years). Selected posterior quantiles

are given in panel (e) of Table 2. The posterior indicates large uncertainty about the degree

of persistence, with a 68% credible set for h that ranges from 15 to 82 months. Comparing

the LTU posterior for µ to its I(0) counterpart (also shown in the table), shows that the

LTU posterior is more spread out, consistent with the higher persistence in the LTU model.

▲

4.3.2 Inference about a Discrete Break in the Mean of an I(0) Process

In this exercise

xt = µt + ut (42)

with

µt = µ+ 1[t > rT ]δ + ut (43)
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where µ and µ + δ are the pre- and post-break values of µt and ⌊rT ⌋ is the break date,

with 0 < r < 1 the break date expressed as a fraction of the sample size.21 The error

term ut is assumed to be I(0). There are now four parameters governing the low frequency

behavior of xt, (µ, δ, σ, r). With dT = [0′
⌊rT ⌋, l

′
T−⌊rT ⌋]

′, the time series for µt can be written

as µ1:T = lTµ+ dT δ. Recalling the notation introduced in Section 3, we now have

X0
T = T−1Ψ0′

Tx1:T = ιq+1µ+ T−1Ψ0′
TdT (r)δ + T−1Ψ0′

Tu1:T ,

which yields the large-sample likelihood

X0
T

a∼ N
(
ιq+1µ+ v0(r)δ, T−1σ2ΩI(0)

)
(44)

with v0(r) the limit of T−1Ψ0′
TdT (r). Analogous to the discussion at the end of Section 3.2,

v0(r) may be conveniently approximated by computing T−1Ψ0′
TdT (r) for a large value of T ,

such as T = 1000.

The posterior for (µ, δ, σ, r) can be formed by sequentially drawing (µ, δ) conditional on

(σ, r) using (27) (or, under a flat prior on (µ, δ), using (28)), drawing σ2 conditional on

(µ, δ, r) using (30), and drawing r conditional on (µ, δ, σ) using a discrete prior and (34).

Empirical Example: We apply this model to TFP growth rates using an uninformative

prior for σ and (δ, µ) and with r ∼ U(0, 1), approximated using a discrete grid with T − 1

points, so each break date is equally likely a priori. Results are summarized in Figure 5 and

panel (f) of Table 2. The posterior points to the 1970s productivity slowdown as a likely

break with a large fall in the value of µt: the 68% credible set for δ is δ ∈ (−1.74,−0.80). ▲

4.3.3 Inference about the ‘Local-Level’ in the Local-Level Model

In this exercise xt is assumed to follow the local-level model (4), that is xt = µ + τ t + et,

where τ t is I(1) and et is I(0). The local-in-time level of xt is µ + τ t. The focus of this

section’s exercise is lTµ + τ̂ 1:T , the realization of the low-frequency trend of the local-level

over the sample period. With TT = T−1Ψ0′
T τ 1:T , we have τ̂ 1:T = Ψ0

TTT , so the posterior for

lTµ+ τ̂ 1:T can be recovered from the posterior for (µ,TT ).

There a variety of ways to compute this posterior; here is one. The unknown quanti-

ties are (TT , µ, σ, g). The joint posterior density can be factored as p (TT , µ, σ, g|X0
T ) =

21Early econometric papers about inference about the break date include Bai (1994), Bai and Perron

(1998) and Bai, Lumsdaine, and Stock (1998); see Perron (2006) for a survey and additional references.
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Figure 5: Break date posterior for the mean of TFP growth rates in the I(0) model

p (TT |X0
T , µ, σ, g ) p (µ, σ, g |X0

T ). Thus, a draw from the joint posterior can be obtained by

first obtaining a draw from (µ, σ, g)|X0
T , and then conditioning on the value of (µ, σ, g) to

obtain a draw from TT |X0
T , µ, σ, g . We discuss each of these in turn.

• (µ, σ, g) |X0
T : Draws can be obtained from the 3-step Gibbs algorithm from Section

4.1.2 used earlier for the LTU model in Section 4.3.1, but with ΩLL(g) replacing

ΩLTU(c) in (41).

• TT |X0
T , µ, σ, g : Note that xt − µ− τ t = et ∼ I(0), and X0

T = ιq+1µ +TT + ET , with

ET = T−1Ψ0
Te1:T . Thus[
x̄1:T − µ

XT

]
= X0

T − ιq+1µ |(TT , µ, σ, g)
a∼ N

(
TT , T

−1σ2ΩI(0)
)
. (45)

Furthermore, τ t ∼ I(1), so

TT |(µ, σ, g) a∼ N
(
0, T−1σ2g2ΩI(1)

)
. (46)

Thus, TT |X0
T , µ, σ, g follows the normal distribution in (27) using (45) as the likelihood

and (46) as the prior.

Empirical Example: The last subsection found a single large break in the level of the TFP

growth rate data, and the model outlined here can be used to get a more nuanced picture
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Figure 6: Low-frequency level component for the growth rate of TFP in the LL model

of the evolution of TFP. Figure 6 shows the posterior median and (point-wise) 68% credible

bands for the low-frequency local-level using the same priors used in Section 4.2.3. The

posterior is largely consistent with the single break model of the last section and suggests

a productivity slowdown in the late 1960s and 1970s. The fall in the level is somewhat

less than in the discrete break model; presumably this reflects the prior for g which puts

relatively more weight on models with little time variation in τ t. ▲

4.4 Comparing Low-Frequency Models

Given observation Y = y, the Bayes factor between two models, say model A with data

density fA(y|θA) and model B with density fB(y|θB), and priors pA(θA) and pB(θB) is

BF =

∫
pA(θA)fA(y|θA)dθA∫
pB(θB)fB(y|θB)dθB

, (47)

which is recognized as the ratio of the marginal likelihoods. As discussed in Section 6.6 the

Bayes factor provides a summary statistic for the relative fit of the models and priors to the

sample data. Here we provide two empirical examples.

Empirical Example 1: Consider the unemployment rate, and let model A be the I(0)

model and model B be the LTU model using a prior for c expressed in terms of half-life as

h ∼ U(1, 120) (measured in months), and common uninformative priors for (µ, σ2) in both
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models. The Bayes factor can be computed from Xs
T (see equation (75)), and its value is

BF = 1.15. This implies weak evidence in favor of the I(0) model relative to the LTU model

with h ∼ U(1, 120). ▲
Empirical Example 2: As discussed in Section (4.3), the discrete break model and the LL

model provide similar patterns for the estimated level of the growth rate of TFP. Does one

of these models provide a significantly better fit? Section 6.6 discusses a bridge sampling

algorithm that can be used to compute the Bayes comparing the discrete break model (A)

and LL model (B). As is evident in equation (47) and discussed in Section 6.6, priors matters

for the Bayes factor, and this example uses priors with comparable sized breaks in the level of

the series over the sample period. In the break model, we use the prior δ ∼ N (0, T−1σ2ϖ2)

for the level shifts. In the LL model, the change in level over the entire sample period is

N (0, T−1σ2g2). For comparability we use the same prior ϖ ∼ g ∼ U(0, 30). This allows

for a standard deviation of the level change that is up to 30 times as large as the standard

deviation of x̄1:T in the stable model. For the ‘break date’ parameter r in the discrete break

model, we use the prior r ∼ U(0, 1). Finally, we use the same uninformative prior for (µ, σ2)

in both models. The resulting Bayes factor is BF = 1.04, so there is little difference in the

fit in the two models using these priors.

In both empirical examples, the data do not offer strong evidence that one of the models

fits better than the other. This reflects the similarity of the low-frequency models, as well as

the paucity of low-frequency information in the sample data, with an effective sample size

of q = 14 in both examples. ▲

4.5 Inference about Low-Frequency Covariation

With xt an n × 1 vector of times series, Section 3 defined low-frequency covariation (σLF
ij )

between xi,t and xj,t as the population covariance between the low-frequency trends, x̂i,t and

x̂j,t. And, with X0
T the (q+1)×n matrix of low-frequency averages, the section showed that

σLF
ij ∝ tr(Vij) where Vij is the covariance matrix of X0

i and X0
j . This subsection discusses

Bayes inference about these low-frequency covariances and related correlation and linear

regression parameters.22

22The classic literature on multivariate spectral analysis, summarized in textbooks such as Brillinger

(1975), Brockwell and Davis (1991), Granger and Newbold (1976), Hannan (1970) and Priestley (1981)
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Multivariate inference requires a multivariate model. Section 2 presented five widely-used

univariate models of low-frequency variability, and these were used in the examples above.

While it is relatively straightforward to extend these models for multivariate time series, there

are two important challenges. The first is conceptual: A multivariate model needs to describe

the persistence of each of the univariate series in xt, but also any linear combination of the

univariate series. For example, each series might be I(1), but a particular linear combination

might be I(0); that is, the variables might be cointegrated (Engle and Granger (1987)). The

second challenge is practical: as we have stressed, low-frequency analysis is a small-sample

statistical problem, so parsimony is important. The five univariate models were extremely

parsimonious, with each requiring at most three parameters, a mean (µ), a scale (σ), and

a single persistence parameter (d, c, or g). Generically, multivariate models increase the

number of parameters by a O(n2) factor, seriously taxing the small-sample information.

The Bayes analysis in this section starts with the multivariate I(0) model which can be

analyzed using standard results for i.i.d. normal samples. We then consider a low-frequency

factor model, which models the n times series in terms of k common factors and n series-

specific disturbances. With k small, this model is relatively parsimonious even for large

n.

4.5.1 Low-Frequency Covariance in the I(0) Model

In the I(0) model, V = Σ ⊗ Iq+1, where the n × n matrix Σ = [σij] is the long-run

covariance matrix for xt. This Kronecker structure simplifies the calculations: the low-

frequency covariance of x̂i,t and x̂j,t is σ
LF
ij ≈ T−1 tr(Vij) = T−1(q + 1)σij. The task then is

simply to compute the posterior of the long-run covariance matrix. With a flat prior on µ,

the posterior can be computed from XT data with large sample likelihood

vec(XT )
a∼ N

(
0, T−1Σ⊗ Iq

)
. (48)

discusses covariation over different frequency bands for I(0) processes. This is also discussed in an early

Handbook chapter by Granger and Watson (1984). Long-run relations involving I(1) series are the subject

of the literature on cointegration, with classic references including Engle and Granger (1987) and Johansen

(1988). Watson (1994) is an early Handbook chapter on the topic, and Hansen (2022) provides an up-to-date

textbook treatment.
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With an inverse Wishart prior for Σ, the posterior is given by (32). The posteriors for the

long-run correlations (ρLFij ), regression coefficients (βLF
ij ), etc., follow directly.

Empirical Example. Suppose that the TFP and per-capita GDP growth rates plotted in

Figure 2 follow an I(0) model. Panel (g) of Table 2 summarizes the posterior for ρLF and

βLF , the low-frequency regression coefficient of GDP growth onto TFP growth, where the

posterior uses a flat prior for µ and an uninformative prior for Σ (corresponding to ν → 0

and Λ → 0 in (32); cf. Chapter 3.6 of Gelman, Carlin, Stern, and Rubin (2004)). If the log-

levels of TFP and GDP were I(1) and cointegrated, Σ would be singular and ρLF = 1. The

posterior in Table 2 shows that the correlation is large (the posterior mean is ρLF = 0.80),

but markedly different than unity. As for βLF , the one-sector neoclassical growth model

provides a benchmark of βLF ≈ 1/(1 − α), where α is labor’s share of aggregate income;

with α ≈ 2/3 the benchmark yields βLF ≈ 1/(1 − 2/3) = 1.5. The I(0) posterior suggests

values of βLF lower than this benchmark value. ▲

4.5.2 A Low-Frequency Factor Model

Consider the following factor model for xt ∈ Rn

xt = µ+ λf t + et (49)

where ft denotes the unobserved common factors, λ denotes the factor loadings, and et de-

notes a vector of mutually independent errors (sometimes called uniquenesses) that capture

the residual variability in the series.23 The specifics of the model depend on the num-

ber of factors in ft and the stochastic processes for ft and et = [e1,t, . . . , en,t]
′. The as-

sumptions used here are motivated by the empirical example discussed below; specifically,

ft = ft is a scalar that follows the local-level model, ej,t follow stationary I(dj) models and

{ft, e1,t, e2,t, . . . , en,t} are independent. (Modifying these assumptions to accommodate other

processes is straightforward.) We parameterize the scales of the variables in terms of a single

overall scale, say σ, use this parameter for the scale of ft, and parameterize the scales of ej,t

as ωjσ for j = 1, ..., n.

The parameters are thus (µ, σ, g,d,ω,λ) with d = (d1, . . . , dn) and ω = (ω1, . . . , ωn).

23Textbook treatments of the classical factor model can be found, for example, in Chapter 14 of Anderson

(1984) and Lawley and Maxwell (1971). Sargent and Sims (1977) and Geweke (1977) are early applications

of factor analysis using frequency domain methods.
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The posterior is easily computed using a Gibbs algorithm. To begin, X0
T can decomposed

as

X0
T = ιq+1µ

′ + FTλ
′ + ET (50)

where FT = T−1Ψ0′
T f1:T and similarly for ET . The local-level model for ft yields

FT
a∼ N

(
0, T−1σ2ΩLL(g)

)
. (51)

The I(dj) model for ej,t implies that the jth column of ET satisfies

Ej,T
a∼ N

(
0, T−1σ2ω2

jΩ
FR(dj)

)
, (52)

so that

vec(X0
T ) |(µ, σ, g,d,ω,λ)

a∼ N
(
Hµ, T−1σ2

((
λλ′ ⊗ΩLL(g)

)
+V(ω,d)

))
(53)

where H = (In ⊗ ιq+1) and V(ω,d) is a block diagonal matrix with jth block given by

ω2
jΩ

FR(dj) (from (52)). Note also that

vec(X0
T − ιq+1µ

′)
∣∣(FT ,λ,µ, σ

2,ω,d
) a∼ N

(
vec (FTλ

′) , T−1σ2V(ω,d)
)
. (54)

This structure leads to a 4-step Gibbs algorithm:

1. Draw from (µ, σ2) |(X0
T , g,d,ω,λ) . This can be done using using Steps 1 and 2 in

Section 4.1.2 with (53) as the likelihood.

2. Draw from FT |(X0
T ,µ, σ

2, g,d,ω,λ) . From (27) this is conditionally normal dis-

tributed using (54) as the likelihood and (51) as the prior. (Note: vec(FTλ
′) =

(λ⊗ Iq)FT = (In ⊗ FT )λ.)

3. Draw from (g,ω,d) |(X0
T ,FT ,µ, σ

2,λ) . This is done is two steps:

(a) Draw g |(FT , σ
2) . This is a draw from the posterior of a univariate local-level

model as described in Section 4.2.3.

(b) Draw from (ω,d) |(X0
T ,FT ,µ, σ

2,λ) . With Yj,T = X0
j,T − ιq+1µj −FTλj = Ej,T ,

this is a draw from (ωj, dj) |(Yj,T , σ
2) for j = 1, . . . , n. Each draw is from the

posterior of a univariate fractional model as described in Section 4.1.2.
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4. Draw from λ|(X0
T ,FT ,µ, σ, g,d,ω). Using a normal prior, λ ∼ N (µλ,Σλ) and the

likelihood (54), this is a draw from the normal posterior (27).

Empirical Example. We use a LL-factor model with a single factor and I(dj) uniquenesses

to describe the low-frequency properties of the five growth rates (TFP, GDP, consumption,

investment, labor compensation) plotted in Figure 2. In the factor model, the scale of ft and

λ are not separately identified and we normalize the factor loading λ1 on TFP to unity. We

posit independent priors for the remaining parameters: the prior for µj is flat, the prior for

σ2 is uninformative, λj ∼ N (1.5, 4) for j ̸= 1, ω2
j ∼ IG(0.1, 4), ln(g) ∼ U (ln(0.1), ln(500))

approximated by a discrete grid of 101 equally spaced points, and dj ∼ U(−0.49, 0.49)

approximated using 101 grid points. Selected posterior results are summarized in Table 3.

The factor loading for GDP is larger than the low-frequency regression coefficient found in

the last subsection, consistent with a measurement error interpretation of the uniquenesses

in the factor model. The negative values of dj suggest a tendency for the log-levels of the

variables to revert to the local linear trend generated by the factor and (in the case of GDP

and labor compensation) lead to a high low-frequency correlation between the factor and the

series. The values of σ and g suggest that the factor is somewhat less variable and persistent

than in the previously estimated univariate LL model for TFP. ▲

A more ambitious empirical exercise is described in Müller, Stock, and Watson (2022)

who use a version of the factor model to model the long-run evolution of per-capita GDP

for 113 countries. The are a number of complications not present in the five-variable model.

For example, the panel data set is unbalanced, the country-specific terms (the analogues of

ei,t in (49)) are correlated within small groups of countries, and it is advantageous to employ

hierarchical (rather than i.i.d.) priors for country specific parameters with that many units

in the cross sections. Strategies for handling these complications are presented in Müller,

Stock, and Watson (2022).

4.6 Predictive Distributions for Long-Horizon Forecasts

In this section we take up the problem of predicting the value of x̄T+1:T+h, the average value

of xt from time period T + 1 through time T + h, using the sample data x1:T . When xt

are growth rates (or first differences) of the variables of interest, predictions of the average

x̄T+1:T+h immediately translate into predictions of the level at time T + h of the variables
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Table 3: Posterior Mean and Quantiles for Selected Parameters in the 5-variable  
LL-Factor Model 

 
Parameter/ 

Variable 
Posterior 

Mean 
Posterior Quantiles 

0.05 0.17 0.50 0.83 0.95 
(a) Common Parameters 

s (scale) 2.08 1.06 1.48 2.03 2.69 3.28 
g (LLM) 9.67 0.13 0.28 1.81 8.38 27.63 
sDf  0.034 0.001 0.002 0.014 0.059 0.143 

(a) Factor Loadings 
TFP 1 1 1 1 1 1 
GDP 2.30 1.54 1.78 2.21 2.81 3.36 

Consumption 1.83 1.16 1.37 1.76 2.28 2.74 
Investment 2.67 1.00 1.66 2.62 3.68 4.51 
Lab. Comp. 2.82 1.85 2.16 2.72 3.46 4.12 

(b) d  
TFP 0.20 -0.12 0.03 0.22 0.37 0.44 
GDP -0.25 -0.48 -0.43 -0.28 -0.07 0.09 

Consumption 0.13 -0.23 -0.05 0.16 0.31 0.41 
Investment -0.20 -0.47 -0.41 -0.24 0.01 0.22 
Lab. Comp. -0.23 -0.47 -0.42 -0.26 -0.03 0.16 

(c) w 

TFP 0.84 0.20 0.28 0.52 1.21 2.46 
GDP 0.94 0.19 0.28 0.60 1.45 2.66 

Consumption 0.78 0.17 0.24 0.45 1.12 2.41 
Investment 15.60 2.16 4.55 11.91 24.05 37.68 
Lab. Comp. 3.20 0.52 1.00 2.42 4.89 7.50 

 
 

Table 3: Posterior mean and quantiles for selected parameters in the 5-variable LL-Factor

model

of interest.

The goal is to find the predictive distribution for x̄T+1:T+h. We impose two constraints

on the problem that make it amenable to the framework of this chapter. First, we consider

problems in which h is of the same order as T , so that x̄T+1:T+h also becomes a smooth

average over values of xt, just like X0
T . Second, we restrict the conditioning information to

X0
T , and thus only use the low-frequency averages in the analysis. Intuitively, one might

expect that higher-frequency sample variation is not very helpful for predicting x̄T+1:T+h

with h large, at least under known low-frequency dynamics, and Müller and Watson (2016)

provide corresponding numerical evidence.

Taken together, these constraints mean that we are interested in determining the distri-

bution of one sample average (x̄T+1:T+h) given another set of averages (X0
T ), and the results
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in Section 8 formally show that

T 1/2

[
vec(X0

T − ιq+1µ
′)

x̄T+1:T+h − µ

]
⇒ N

(
0,

[
V11 V12

V21 V22

])
.

This yields the large-sample approximation[
vec(X0

T )

x̄T+1:T+h

]
a∼ N

([
µ⊗ ιq+1

µ

]
, T−1

[
V11 V12

V21 V22

])
(55)

and the familiar multivariate normal conditional distribution

x̄T+1:T+h

∣∣(X0
T ,µ,V)

a∼ N
(
µ+V21V

−1
11

(
vec(X0

T − ιq+1µ
′)
)
, T−1(V22 −V21V

−1
11 V12)

)
.

(56)

If µ = µ(θ) and V = V(θ) depend on an unknown parameter θ, then the predictive dis-

tribution becomes a mixture of the normal distribution in (56), with mixing weights equal

to the posterior distribution of θ given the observation X0
T . Thus, predictive distributions

can be obtained by augmenting the Gibbs sampler for θ by an additional step that draws

x̄T+1:T+h from (56) given θ.

A leading case is the univariate I(0) model with V11 = σ2Iq+1, V22 = (h/T )σ2 and V12 =

0, with posterior for θ = (µ, σ2) under uninformative priors. In this case, the predictive

distribution is Student-t with q degrees of freedom, location x̄1:T , and scale
√
(h−1 + T−1) s2

with s2 = TX′
TXT/q, that is

x̄T+1:T+h − x̄1:T√
(h−1 + T−1) s2

∣∣∣∣∣X0
T

a∼ Student-tq. (57)

See Gelman, Carlin, Stern, and Rubin (2004), page 77.

4.6.1 Two Examples

I(0) Model: The first example uses the univariate I(0) model to form the predictive

distributions for average TFP and GDP growth over the next 25 and 50 years. The variables

are measured quarterly, so these correspond to h = 100 and 200 quarters. For TFP the

sample mean is x̄1:T = 1.21 and s = 3.83 with q = 14. Plugging these values into (57)

yields the predictive distribution for x̄T+1:T+h. Selected quantiles are shown in panel (a)

of Table 4. Writing x̄T+1:T+h = µ + (x̄T+1:T+h − µ) highlights the two independent sources
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Table 4: Mean and Quantiles for Predictive Distributions 
 

Variable Forecast 
Horizon 
(Years) 

Mean Quantiles 
0.05 0.17 0.50 0.83 0.95 

(a) I(0) model 
TFP 

 
25 1.21 0.42 0.76 1.21 1.65 1.99 
50 1.21 0.59 0.85 1.21 1.56 1.83 

GDP 25 1.80 0.74 1.20 1.80 2.41 2.87 
50 1.80 0.96 1.32 1.80 2.28 2.65 

(b) LL-Factor model 
TFP 25 1.01 -0.02 0.46 1.03 1.56 1.97 

50 1.04 -0.01 0.53 1.07 1.55 1.98 
GDP 25 1.59 -0.03 0.80 1.64 2.35 3.03 

50 1.57 -0.22 0.85 1.66 2.30 3.07 
(c) LL-Factor model, conditional on = 1.21  

GDP 25 1.80 0.87 1.27 1.80 2.32 2.74 
50 1.79 0.94 1.33 1.79 2.24 2.63 

 

xTFP,T+1:T+h

Table 4: Mean and selected quantiles for predictive distributions

of uncertainty about x̄T+1:T+h in the I(0) model: the first is uncertainty about µ with

µ|(X0
T , σ)

a∼ N (x̄1:T , σ
2/T ), and the second is uncertainty about the future with (x̄T+1:T+h−

µ)|(X0
T , σ)

a∼ N (0, σ2/h). The first does not depend on the forecast horizon and the second

falls as h increases. Thus, as evident in the table, the predictive density narrows as the

forecast horizon increases from 25 to 50 years. ▲

LL-Factor Model: The second example uses the 5-variable local-level factor model to

construct joint predictive distributions for each of the five variables, again over 25-year and

50-year horizons. Panel (b) of Table 4 summarizes the marginal predictive distributions

for average TFP and GDP growth rates. Comparing these predictive distributions to those

from the I(0) model for TFP highlights three features. First, the factor model includes

persistent local-level and I(d) components, so it implies more uncertainty about the values

of x̄T+1:T+h than the I(0) model. Second, because average growth rates decreased over

the sample period, the LL factor model extrapolates this slower growth into the future,

so the mean of the predictive density is lower. Finally, in the I(0) model, the predictive

distribution narrows as the forecast horizon increased. In the LL model, as the horizon

increases, uncertainty about the average value of the I(0) component falls, but uncertainty

about the I(1) component increases, and the predictive distributions may first narrow and

then increase as the forecast horizon increases.

An advantage of the multivariate model is that it produces multivariate predictive distri-
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butions that can be used for conditional forecast exercises. Panel (c) of Table 4 summarizes

one such exercise, and shows the predictive distribution of the growth of GDP conditional on

TFP growth taking on its sample average value over the forecast period, that is, conditional

on x̄TFP,T+1:T+h = 1.21. ▲

5 Frequentist Inference: Examples

This section uses several examples to illustrate frequentist inference about low-frequency

features of economic time series. As in the Bayes section, inference involves the mean and

covariance matrix of a small sample of approximately normal observations, X0
T . Section 7

discusses the statistical foundation of frequentist inference in this context. Here we discuss

the application of frequentist methods to a subset of the inference problems considered in

Section 4. We begin with the frequentist analysis in the I(0) model.

5.1 Frequentist Inference in the I(0) Model

In the multivariate I(0) model, vec(X0
T )

a∼ N (µ⊗ ιq+1, T
−1Σ⊗ Iq+1), where Σ is the long-

run covariance matrix of the xt process. Section 3.4 considered both Bayes and frequentist

inference about the mean. As discussed there, frequentist inference coincides with Bayes

inference using uninformative priors.

Here we focus on Σ. Imposing location invariance amounts to dropping x̄1:T from the

analysis, so inference relies on XT , where vec(XT )
a∼ N (0, T−1Σ⊗ Iq). Recall from Section

3.3 that the covariance matrix of the low-frequency trends, x̂t was denoted by ΣLF , and

from Section 4.5.1 that ΣLF ∝ Σ in the I(0) model. Thus, the low-frequency correlations

(ρLF ) and regression coefficients (βLF ) coincide with correlations and regression coefficients

implied by Σ.

Letting X′
j,T denote the j-th row of XT , that is the j-th cosine weighted average of each

of the n series in xt, then
√
TXj,T

a∼ i.i.d.N (0,Σ) for j = 1, ..., q. Thus, inference about Σ

(or ΣLF ) involves the covariance matrix from a multivariate sample with q i.i.d. zero-mean

normal observations. This is a standard problem in multivariate analysis (e.g., Anderson

(1984), or, in this context, Müller and Watson (2017)).

In particular, let S = (T/q)X′
TXT denote the sample second moment matrix. Then,
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qS
a∼ W(Σ, q), the Wishart distribution with scale matrix Σ and q degrees of freedom. S is

the MLE of Σ, and ρ̂ij = Sij/
√

SiiSjj is the MLE for the associated correlation coefficient,

ρij. Confidence intervals for ρij (= ρLFij ) can be constructed from ρ̂ij using the methods

discussed in Anderson (1984), Section 4.2.2.

Finite-sample normal linear regression theory provides a basis for inference about the

long-run regression coefficients. For example, consider the regression of one element of

x̂t, denoted by ŷt, on a subset of others elements, denoted ẑt, where ẑt is k × 1. Then

the standard linear regression results apply: partitioning XT , Σ and S appropriately, the

regression coefficients are β = Σ−1
ZZΣZY , β̂ = S−1

ZZSZY is the MLE with β̂|ZT
a∼ N (β, σ2S−1

ZZ)

where σ2 = ΣY Y − ΣY ZΣ
−1
ZZΣZY , s

2 = (SY Y − SY ZS
−1
ZZSZY )/(q − k) is an asymptotically

unbiased estimator for σ2 with (q − k)s2/σ2 a∼ χ2
q−k, (β̂ − β)′SZZ(β̂ − β)/s2 a∼ Fk,q−k and

β̂i/ SE(β̂i)
a∼Student-t q−k where SE(β̂i) is the square root of the i-th diagonal element of

s2S−1
ZZ .

Long-run prediction intervals are also easy to construct in the I(0) model. From

(x̄T+1:T+h − x̄1:T )
′S−1(x̄T+1:T+h − x̄1:T )

h−1 + T−1

a∼ Hotelling-T 2
q

it is straightforward to construct prediction intervals that contain realizations of x̄T+1:T+h

with any pre-specified probability in repeated samples. Note that these intervals coincide

with the uninformative prior Bayes predictive intervals of Section 4.6.

Empirical Examples: Table 5 collects confidence sets for the examples considered in

this section. The first panel shows the confidence sets for the mean growth rate of TFP;

these coincide with the Bayes credible sets shown earlier in Table 2. The next panel shows

confidence intervals for the correlation between GDP and TFP and the regression coefficient

for the regression of GDP onto TFP. These can be compared to the results shown earlier

in Table 2. Notice that the frequentist confidence intervals for β in Table 5 coincide with

the Bayes credible intervals shown in Table 2; this is another example of the coincidence

of uninformative prior Bayes and frequentist inference. The top panel of Table 6 contains

frequentist prediction intervals for future average growth rates of TFP and GDP taken

directly from the Bayes predictive distributions under uninformative priors presented earlier

in Table 4. ▲

47



 10 

 
 Table 5: Confidence sets for selected parameters 

 
Parameter Coverage 

 67% 90% 
(a) TFP Growth Rate, I(0) model 

µ 0.98 to 1.43 0.81 to 1.61 
(b) Bivariate TFP and GDP Growth Rates 

(i) I(0) model 
rLF 0.68 to 0.88 0.56 to 0.91 

bLF (GDP onto TFP) 0.88 to 1.32 0.71 to 1.49 
(ii) Bivariate (A,B,c,d) model from Müller Watson (2018) 

rLF 0.62 to 0.87 0.35 to 0.91 
bLF (GDP onto TFP) 0.87 to 1.39 0.40 to 1.59 

(c) $/£ Real Exchange Rate, LTU model 
(i) F: r ~ U(0.5,0.999) 

r 0.89 to 0.97 0.86 to 0.99 
half-life 5.7 to 25.2 4.5 to 113.1 

(ii) F: h ~ U(1,100) 
r 0.94 to 0.98 0.91 to 0.99 

half-life 11.0 to 37.9 7.3 to 75.7 
(d) Daily Realized Volatility, I(d) model 

d 0.44 to 0.71 0.36 to 0.81 
(e) TFP Growth Rate, LLM 

g 2.6 to 18.0 1.5 to 25.3 
(f) Unemployment Rate, LTU model 

µ  5.17 to 6.09 3.90 to 6.68 
µ (with Müller and Norets 

(2016) adjustment) 
4.85 to 6.20 4.06 to 6.79 

 
 

Table 5: Confidence intervals for selected parameters

5.2 Frequentist Inference about Persistence

This section discusses hypothesis tests and confidence intervals for the persistence parameters

in the LTU, LL and I(d) models. We consider location and scale invariant procedures, so that

we can treat Xs
T = XT/

√
X′

TXT as the effective observation. From (38) the large-sample

density of Xs
T is

f (xs
T |ϑ) = C |ΩXX(ϑ)|−1/2 (xs′

TΩ
−1
XX(ϑ)x

s
T

)−q/2
(58)

where ΩXX and the parameter ϑ are model specific: ϑ equals c, g, and d for the LTU, LL

and I(d) models, respectively, and C is a constant.
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Table 6: Prediction sets for long-run forecasts  

 
 

Variable Forecast Horizon 
(Years) 

Coverage 

  67% 90% 
(a) I(0) model 

TFP 25 0.76 to 1.65 0.42 to 1.99 
 50 0.85 to 1.56 0.59 to 1.83 

GDP 25 1.20 to 2.41 0.74 to 2.87 
 50 1.32 to 2.28 0.96 to 2.65  

(b) (b,c,d) model from Müller Watson (2016) with q = 12 
TFP 25 -0.38 to 1.85 -1.31 to 2.57 

 50 -0.64 to 2.10 -1.80 to 3.05 
GDP 25 0.40 to 2.52 -0.74 to 3.30 

 50 0.10 to 2.50 -1.22 to 3.74 
 

 s 
Table 6: Prediction sets for long-run forecasts

5.2.1 Point-Optimal Tests for the I(1) and I(0) Models

Location and scale invariant point optimal tests of H0 : ϑ = ϑ0 versus H1 : ϑ = ϑ1 reject

the null hypothesis for large values of the likelihood ratio statistic f(Xs
T |ϑ1)/f(X

s
T , ϑ0).

Equivalently, given the form of the likelihood (58), the tests reject for large values of the

ratio of the generalized sum of squares

X′
TΩ

−1
XX(ϑ0)XT

X′
TΩ

−1
XX(ϑ1)XT

. (59)

Two important applications are tests for the I(1) null (unit-root tests) and tests for the I(0)

null (stationarity tests).

Unit Root (I(1)) Test: Unit root tests such as the well-known augmented-Dickey-Fuller

test (Dickey and Fuller (1979)) or its efficient counterpart (Dufour and King (1991), Elliott,

Rothenberg, and Stock (1996), Elliott (1999)) are tests of H0 : c = 0 in the LTU model.

Implementing these tests requires choosing the number of autoregressive lags to capture the

I(0) dynamics in the process. Choosing too few lags results in size distortions, while choosing

too many lags results in a loss of power (see Ng and Perron (1995) for discussion); this is

analogous to the bandwidth problem in HAC estimation discussed in Section 3.4. Following

the discussion there, an alternative is to base the test on the q low-frequency averages XT .

From (59), the point-optimal low-frequency unit root test H0 : c = 0 versus H1 : c = c1
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rejects for large values of the test statistic

LFUR =
X′

TΩ
LTU
XX (0)−1XT

X′
TΩ

LTU
XX (c1)−1XT

. (60)

The full-frequency analysis in Elliott (1999) shows that the point-optimal test using c1 = 10

has good power properties for a wide range of values of c under the alternative, and a

calculation shows that this holds for the low-frequency version as well.

To obtain the p-value of LFUR, simply generate many (say N = 10, 000) independent

draws of X
(l)
T ∼ N (0,ΩLTU

XX (0)), evaluate the corresponding value of LFUR(l) with XT re-

placed by X
(l)
T in (60), l = 1, . . . , N , and compute the fraction of draws of LFUR(l) that are

larger than the data realization LFUR.

Empirical Example: Applying this test to the real exchange rate data plotted in Figure

1 with q = 22 yields LFUR = 0.829. The p-value is 0.053. ▲

This LFUR test supposes xt = µ + ut, where ut follows a LTU process, so it allows xt

to have a non-zero mean under the alternative. Thus, it corresponds to Dickey-Fuller tests

that include a constant term. If instead, xt includes a time trend, so that xt = µ0+µ1t+ut,

a modification is required. This modification is discussed in Müller and Watson (2008) and

involves changing the low-frequency weights in ΨT so that they are orthogonal to both the

time trend and the constant. Before presenting the modification, it is useful to highlight a

feature of the cosine weights in ΨT mentioned earlier (see footnote 12): namely, that the

columns of ΨT are the eigenvectors corresponding to the largest q eigenvalues of the T × T

covariance matrix of a demeaned random walk. The time-trend modification replaces these

with the eigenvectors corresponding to the q− 1 largest eigenvalues of the covariance matrix

of the demeaned and detrended random walk, that is, the eigenvectors of T−2MTATA
′
TMT ,

where ATA
′
T is the random-walk covariance matrix of Section 3.2 with i, j-th element equal

to min(i, j), MT = IT −ZT (Z
′
TZT )

−1Z′
T , and ZT the T × 2 matrix with [1, t] in its t-th row.

The elimination of the trend reduces the number of available observations for frequencies

below 2q/T by one to q − 1. For concreteness, call these new weights Ψτ
T , the new q − 1

dimensional low-frequency averages Xτ
T = Ψτ ′

T x1:T , and, via (15) the new covariance matrix

ΩLTU,τ
XX (c). The resulting LFURτ test has the same form as (60) after replacing XT and Ω

with these trend-adjusted values.
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Stationarity (I(0)) Test: Tests of the I(0) null have been developed in the context of the

LL model, whereH0 : g = 0 corresponds to the I(0) model (see Nyblom (1989), Kwiatkowski,

Phillips, Schmidt, and Shin (1992) and Elliott and Müller (2006)) and in the related problem

of testing for a unit moving average root (e.g., Saikkonen and Luukkonen (1993a, 1993b)).

Implementation of these tests requires consistent estimation of the long-run variance, again

raising issues of the appropriate choice of bandwidth with implications for the test’s size

and power, and as before, an alternative is to use the low-frequency averages XT . The

corresponding point optimal test for the alternative H1 : g = g1 takes the form (59) using

the covariance matrix ΩLL
XX(g) = Iq + g2Ω

I(1)
XX , where Ω

I(1)
XX is given in (14). This yields the

low-frequency stationarity (LFST) test that rejects for large values of

LFST =
X′

TΩ
LL
XX(0)

−1XT

X′
TΩ

LL
XX(g1)

−1XT

=
X′

TXT

X′
T (Iq + g21Ω

I(1)
XX)

−1XT

=

∑q
j=1X

2
j,T∑q

j=1Xj,T (1 + g21/(jπ)
2)−1

. (61)

Müller and Watson (2008) show that the test using g1 = 10 has good power for a wide

range of values values of g. The p-value of LFST can be computed in perfect analogy to

the p-value of LFUR by generating many (say N = 10, 000) independent draws of X
(l)
T ∼

N (0,ΩLL
XX(0)) ∼ N (0, Iq) and computing the fraction of draws of LFST(l) larger than the

realized value LFST.24

Empirical Example: Applying this test to the TFP growth rate data plotted in Figure 1

with q = 14 yields LFST = 1.87. The p-value is 0.035, so the I(0) null is rejected at the 5%

but not 1% level. ▲

5.2.2 Confidence Sets for Persistence Parameters

As discussed in Section 7, confidence intervals can be constructed by inverting tests, and

confidence intervals with small average length are obtained by inverting powerful tests. Here

we present confidence intervals for persistence parameters based on inverting the family of

tests H0 : ϑ = ϑ0, indexed by ϑ0. An issue is the appropriate alternative for each of these

tests. As discussed in Section 7.2.2, a sensible to way proceed is to use a single alternative

that encompasses many values of ϑ; the associated composite alternative can be transformed

24Wright (2000b) suggests using stationarity tests to construct confidence sets for cointegrating coefficients,

noting that if yt and xt are cointegrated, then yt−βxt is I(0), where β is the cointegrating coefficient. Müller

and Watson (2013) study the efficiency of this suggestion using the low-frequency methods discussed here.

51



into a simple mixture alternative with associated mixing weights described by the c.d.f. F .

The resulting alternative becomes Ha : ϑ is drawn from F . The weight function F is

application specific and determines the values of ϑ where the test has greatest power. When

such a family of level α tests is inverted to obtain a confidence set for ϑ, then by construction

this set minimizes the F -weighted average length among all level 1− α confidence sets.

For computational convenience, it is useful to choose F with discrete support {ϑi}nϑ
i=1 and

p.m.f. f(ϑi), say. The resulting likelihood ratio statistic is

LRF (X
s
T , ϑ0) =

∑nϑ

i=1 f(X
s
T |ϑi)f(ϑi)

f(Xs
T |ϑ0)

=

∑nϑ

i=1 |ΩXX(ϑi)|−1/2 (X′
TΩ

−1
XX(ϑi)XT

)−q/2
f(ϑi)

|ΩXX(ϑ0)|−1/2 (X′
TΩ

−1
XX(ϑ0)XT

)−q/2
.

(62)

Critical values for the resulting tests depend on ϑ0 and F , but are readily computed via

Monte Carlo simulations from XT
a∼ N (0, T−1ΩXX(ϑ0)). Thus, the test rejects the null

hypothesis when LRF (X
s
T , ϑ0) > cvF (ϑ0), and the confidence set collects the values of ϑ0

that are not rejected.

Empirical Examples: We show four examples that parallel the examples used in Section

4.2. Results are summarized in Table 5. The first two examples construct confidence intervals

for c in the LTU model using the real exchange rate data, where, as in the Bayes section, we

report results using the more familiar parameters, ρ = 1 − c/T and the half-life parameter

h which solves 1/2 = e−c(h/T ). The first example uses a weighting function F chosen so that

ρ = 1− c/T is uniformly distributed on 0.5 to 0.999, so the tests focus power on these values

of the AR(1) parameter. Recall this distribution was used as the prior in the Bayes version

of this problem. The second example is the same as the first, but now F is chosen so the

implied half-life, h (measured in years), is distributed U(1, 100); again, this was used as a

prior in the Bayes version of this problem. The other examples also use the Bayes priors

for F : the next example constructs confidence intervals for d in the I(d) model using the

realized volatility data d ∼ U(−0.4, 1.4) under F ; the final example constructs confidence

intervals for g in the LL model using the TFP growth rate data where ln(g) ∼ U(0.1, 500)
under F . In all cases, the F distributions are approximated using a 200-point grid, the test

is implemented for 500 values of ϑ0, and the values not-rejected are collected to form the

confidence set.

We make two comments about the frequentist confidence intervals reported in Table 5.

First, they are similar to, albeit somewhat wider than their Bayes counterparts in Table 2.
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This is the price that frequentist inference pays for uniform coverage. Second, and focusing

on the confidence intervals for the LTU persistence parameters for the real exchange rate:

the confidence intervals depend on the weighting function F just as the Bayes credible sets

depend on the prior. The confidence interval for ρ that is constructed to minimize expected

average length under the weight function F with ρ ∼ U(0.5, 0.999) is wider and shifted to

the left compared to the expected length minimizing confidence interval using the weight

function h ∼ U(1, 100). This is similar to the associated Bayes credible intervals for ρ shown

in Table 2. ▲

5.3 Frequentist Inference Using Least Favorable Distributions

The low-frequency univariate models are characterized by a location parameter µ, a scale

parameter σ, and a persistence parameter ϑ. When interest focuses on ϑ, the additional

parameters (µ, σ) complicate frequentist tests (which are required to control size for all val-

ues of the (ϑ, µ, σ) included in the null hypothesis); the parameters (µ, σ) are hence suitably

referred to as nuisance parameters. The last sub-section focused on ϑ, but invariance restric-

tions fortuitously eliminated the other two parameters, µ and σ. Said differently, location

and scale invariance led us to use the transformed data Xs
T instead of the original data X0

T ,

and the probability distribution of Xs
T depended only on ϑ. These types of invariance and

related equivariance restrictions turn out to be useful tools for simplifying frequentist infer-

ence in the face of nuisance parameters. Section 7 provides a general discussion. Another

useful concept discussed in Section 7 is a least favorable distribution (LFD) for the nuisance

parameters that, essentially, allows them to be averaged out of the problem. In some prob-

lems involving inference about low-frequency parameters, these LFDs can be approximated

using the numerical methods discussed in Section 7.5. This leads to specialized problem-

specific frequentist inference procedures that can be embedded into software for carrying out

tests and forming confidence intervals. The remainder of this section discusses examples of

this approach, where the required software is available in the online replication files for this

chapter.
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5.3.1 Inference about the Mean in a Highly Persistent Stationary Process

Section 4.3.1 presented Bayes methods for inference about the mean of stationary LTU pro-

cess. Here we revisit the problem and apply frequentist methods. The density of X0
T (see

(41)) is characterized by µ, the parameter of interest, and (σ, c) are nuisance parameters.

The derivation of frequentist hypothesis tests and confidence intervals involves invariance

considerations and the determination of an approximate least favorable distribution for c.

Section 7 provides a general discussion and provides details for this application; see in partic-

ular the test statistic (128) and confidence set (129).25 We have implemented these methods

and they are incorporated in the software available in the online replication files.

Empirical Example: Table 5 shows the resulting confidence intervals for the mean of the

unemployment rate. As in Section 5.2.2, the confidence intervals require a weighting function

F , which in this case involves the value of c. As in the other applications, we parameterize

this using the half-life parameter h, and here choose F so that h is uniformly distributed

between 1 and 120 months. Results are shown for confidence intervals with shortest expected

length (see (128) and (129)) and that incorporate the Müller and Norets (2016b) credibility

restriction (equation (136)). ▲

5.3.2 Inference about Low-Frequency Covariability

Section 4.5 discussed Bayes inference about low-frequency covariability. As highlighted there,

a key challenge involves the potentially large number of parameters needed to describe the

low-frequency variability for a vector of time series. This problem is particularly challenging

for frequentist inference because of the need to control the size of tests and the coverage rate

of confidence intervals uniformly over these parameters.

Müller and Watson (2018) take up this problem for n = 2. Specifically, they consider a

model in which the 2× 1 vector xt evolves as

xt = µ+Aτ t + et

where et follows a bivariate I(0) process with long-run covariance matrix Σe, A is an uncon-

strained 2× 2 matrix, and τ t = (τ 1,t, τ 2,t)
′ with τ i,t independent scale-normalized processes

25Also see Müller (2014).
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that generalize and nest the LTU and I(d) model, governed by two parameters. The low-

frequency evolution of xt is thus characterized by a 13-dimensional parameter. Invariance

and equivariance restrictions reduce this number, but a high dimensional nuisance param-

eters remains. Finding an approximate least favorable distribution for such a high dimen-

sional nuisance parameter space is a computational challenge and requires careful numerical

methods described in Section 7.5.3. Müller and Watson (2018) carry out the required calcu-

lations for inference about low-frequency correlations (ρLF ) and bivariate linear regression

coefficients (βLF ) for various significance levels and values of q. The online replication files

include software that carries out the resulting tests and constructs the associated confidence

intervals.

Empirical Example: Table 5 shows 67% and 90% for the low-frequency correlation be-

tween TFP and GDP growth rates and linear regression coefficient.

These intervals are similar to, although slightly wider, than the confidence intervals pred-

icated on the I(0) assumption. The increased width of the intervals reflect their guaranteed

coverage over the wide range persistence, location, and scale parameters allowed in the 13-

parameter model. ▲

5.3.3 Long-Horizon Prediction Intervals

Section 4.6 described Bayes methods for constructing predictive distributions for x̄T+1:T+h,

the average values of xt over the out-of-sample period T+1 through T+h, based on the sam-

ple data X0
T . As discussed there, when T and h are large, (X0

T , x̄T+1:T+h) are approximately

jointly normally distributed. If the parameters of this distribution were known, the distribu-

tion of x̄T+1:T+h|X0
T is approximately normal, with mean and variance given by the familiar

conditional normal formula. When the parameters are unknown, the predictive distribution

becomes a mixture of these conditional normal distributions, with mixing weights equal to

the posterior distribution of the joint law of (X0
T , x̄T+1:T+h). Bayes prediction intervals, that

is intervals that contain future realizations of x̄T+1,T+h with a pre-specified posterior proba-

bility can be computed directly the from this mixture. Frequentist inference about x̄T+1,T+h

is similarly simplified by the joint normality of (X0
T , x̄T+1:T+h), but frequentist prediction

intervals with level 1−α must contain the future value with probability of at least 1−α for

all fixed model parameters over repeated samples.
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Müller and Watson (2016) takes up this problem in the context of a univariate time

series model that encompasses and generalizes the LTU, I(d) and LL models from Section 2.

This encompassing model is characterized by five parameters, three persistence parameters,

a location parameter, and a scale parameter. The combination of invariance considerations

together with numerically determined least favorable distributions are used to produce pre-

diction intervals that are nearly efficient (in the sense of having smallest weighted average

length) among all invariant intervals of the required coverage probability. Software for con-

structing these prediction sets is included in the online replication files.

Empirical Example: Table 6 shows 67% and 90% univariate prediction sets for the average

growth rates of TFP and GDP over the next h = 25 and 50 years. These are computed using

q = 12, because they rely on the least favorable distributions computed in Müller and Watson

(2016), who used this value of q. These prediction intervals, which allow for a general model

of persistence, are markedly wider than the I(0) intervals or the Bayes prediction intervals

reported in Table 4. Evidently, the data are compatible with low-frequency dynamics that

are more persistent than the I(0) model, so that the frequentist coverage guarantee forces the

interval to include the wide range of future growth rates that correspond to those dynamics.

▲

6 Bayesian Inference: Concepts and Methods

Sections 3-5 presented several examples of inference about low-frequency features of stochas-

tic processes describing economic variables. The examples used Bayes and frequentist meth-

ods. In the following two sections we review the requisite Bayes and frequentist concepts and

methods. While the examples considered throughout these sections relate to low-frequency

inference,26 the concepts and methods are generally applicable in econometrics.

This section reviews Bayes methods. Much of the material presented here is discussed

in textbooks, often with more details and alternative examples, such as in Gelman, Carlin,

Stern, and Rubin (2004), Geweke (2005) and Robert (2007).

26To simplify the exposition, we treat the asymptotic normal distributions derived in Section 3.2 as exact

in Sections 6 and 7.
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6.1 Likelihood, Prior, Posterior

Bayesian analysis is conceptually straightforward: the uncertainty about all unknowns is

described using the language of probability, and this uncertainty is updated from the data

by applying Bayes rule. Formally, Bayesian analysis involves three ingredients: the prior, the

likelihood, and the posterior. In the context of a parametric model with parameter θ ∈ Θ ⊂
Rk, the researcher posits a prior distribution with density p that describes the uncertainty

about θ before taking the data information into account. For notational simplicity, we assume

that p is the probability density function of a continuous random variable, but almost all of

the subsequent discussion goes through with p representing the probability mass function if

Θ is finite or countable, or, more generally, a density relative to some dominating measure.

The parametric model describes the distribution of the data Y ∈ Y by its density f(y|θ),
which is indexed by θ. Again, we treat this as the density of a continuous random variable,

but this is easily generalized. For a given realization Y = y, f(y|θ) viewed as a function of

θ, is called the likelihood.

By Bayes rule, the posterior density p(θ|y) is proportional to the product of the prior

and the likelihood

p(θ|y) ∝ p(θ)f(y|θ) (63)

where the constant of proportionality is the reciprocal of the marginal likelihood m(y) =∫
Θ
p(θ)f(y|θ)dθ, so that by construction, p(θ|y) is a probability density function.

We illustrate the concepts in this section by the following example.

Example MEAN(a). Consider inference about the mean in a local-to-unity model, as in

Section 4.3.1 above. Under the approximation (13), X0
T ∼ N (ιq+1µ, T

−1σ2ΩLTU(c)). Here

θ = (µ, σ, c) ∈ Θ = R×(0,∞)2. With prior density p(θ), the posterior density is proportional

to

p(θ|x0
T ) ∝ p(θ)σ−q−1|ΩLTU(c)|−1/2 exp

[
−1

2
T (x0

T − ιq+1µ)
′ΩLTU(c)−1(x0

T − ιq+1µ)/σ
2
]
.

(64)

With (µ, σ) treated as continuous and c constrained to take values on a finite grid {ci}nc
i=1, the

right hand side viewed as a function of c ∈ {ci}nc
i=1 is proportional to the posterior probability

mass function conditional on (µ, σ). ▲

The computational challenge in Bayesian statistics is that it is often difficult to obtain

closed-form expressions for the marginal posterior distribution of elements of θ. And as
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soon as θ is moderately high-dimensional, one cannot simply rely on numerical integration

to obtain such marginal densities from (63). A large literature has developed numerical

approaches to deal with this difficulty. Subsection 6.4 below reviews some basic methods

that are often sufficient to obtain accurate posterior approximations in applications like those

considered in this chapter.

6.2 Credible Sets

Suppose we are interested in a particular real-valued function of the parameter θ, γ = h(θ),

with h : Θ 7→ Γ ⊂ R. Let p(γ|y) be the posterior density of γ induced by the posterior

density p(θ|y). The posterior uncertainty about γ is usefully described by a set that covers,

say, 95% of the posterior mass. Such a set Γ̂(y) is called a credible set of level 95%.

The two most common forms of level 1−α credible sets are the highest posterior density

(HPD) set

Γ̂HPD(y) = {γ : p(γ|y) > C}

where the constant C is chosen such that
∫
Γ̂HPD(y)

p(γ|y)dγ = 1 − α, and the equal-tailed

interval

Γ̂ET (y) = [LET (y), UET (y)],

∫ LET (y)

−∞
p(γ|y)dγ =

∫ ∞

UET (y)

p(γ|y)dγ = α/2.

The HPD set is the shortest credible set of given level 1 − α. The equal-tailed interval

is relatively easier to compute from a random sample of posterior draws. It also can be

appealing in some contexts for the endpoints to have the interpretation of posterior quantiles,

so that from the perspective of the posterior distribution, it is equally likely that γ falls below

the lower endpoint, or above the upper endpoint of the credible interval.

6.3 Uninformative Priors and Invariance

For some likelihoods, (63) defines a posterior distribution even when the prior density is

not integrable, that is when
∫
Θ
p(θ)dθ does not exist. Such priors are called improper. It is

sometimes useful to consider improper priors when attempting to be uninformative about θ.

One systematic approach to obtaining uninformative priors is the theory of invariance.

Intuitively, invariance imposes the restriction that the posterior distribution, and correspond-

ingly the credible set, change in a predetermined fashion when the data is transformed in a
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particular way. For instance, it might make sense to require that the posterior distribution

of a persistence parameter remains unaffected by scale changes of the data, such as those

induced by changing the units of measurement.

A general discussion of the derivation of invariant priors is outside the scope of this

chapter. See Chapter 6 of Berger (1985) or Chapter 7 of Robert (2007) for introductions

and references. Here we note that the natural invariant prior for a (scalar) location parameter

is the improper constant prior density, and the natural invariant prior density for a scale

parameter σ is the improper density 1/σ. In the presence of both a location and scale

parameter, the joint invariant prior on (µ, σ) has density 1/σ.

Example MEAN(b). We consider a prior with density p(θ) = pc(c)/σ. The posterior

density (64) is then proportional to

p(θ|x0
T ) ∝ pc(c)σ

−q−2|ΩLTU(c)|−1/2 exp
[
−1

2
T (x0

T − ιq+1µ)
′ΩLTU(c)−1(x0

T − ιq+1µ)/σ
2
]
.

(65)

The marginal posterior for (µ, c) is obtained by integrating out σ. After the change of

variables ν = 1
2σ2T (x

0
T − ιq+1µ)

′ΩLTU(c)−1(x0
T − ιq+1µ), we find

p(µ, c|x0
T ) ∝ pc(c)|ΩLTU(c)|−1/2[(x0

T − ιq+1µ)
′ΩLTU(c)−1(x0

T − ιq+1µ)]
−(q+1)/2

∫ ∞

0

ν(q−1)/2e−νdν

∝ pc(c)|ΩLTU(c)|−1/2[(x0
T − ιq+1µ)

′ΩLTU(c)−1(x0
T − ιq+1µ)]

−(q+1)/2

∝ pc(c)|ΩLTU
XX (c)|−1/2(x′

TΩ
LTU
XX (c)−1xT )

−q/2ŝ(xT , c)
−1 × (66)[

(µ− x̄1:T + m̂(xT , c))
2

q · ŝ(xT , c)2
+ 1

]−(q+1)/2

where

m̂(xT , c) = ΩLTU
x̄X (c)ΩLTU

XX (c)−1xT (67)

ŝ(xT , c)
2 = (ΩLTU

x̄x̄ (c)−ΩLTU
x̄X (c)ΩLTU

XX (c)−1ΩLTU
Xx̄ (c))x′

TΩ
LTU
XX (c)−1xT/q (68)

and the last line follows from tedious but straightforward manipulations. Thus, conditional

on c, the posterior distribution of (µ− x̄1:T + m̂(xT , c))/ŝ(xT , c) is Student-t with q degrees

of freedom, or, equivalently, the distribution of µ is equal to a Student-t distribution scaled

by ŝ(xT , c) and shifted by x̄1:T − m̂(xT , c).

The marginal posterior distribution for c may be obtained by integrating out µ in (66).

Noting that the density of the scaled and shifted Student-t distribution integrates to unity,
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we obtain that the posterior density for c is proportional to

pc(c)|ΩLTU
XX (c)|−1/2(x′

TΩ
LTU
XX (c)−1xT )

−q/2. (69)

In particular, with c ∈ {ci}nc
i=1, the unconditional posterior distribution for µ is a finite

mixture of Student-t distributions scaled by ŝ(xT , ci) and shifted by m̂(xT , ci), with mixing

weights proportional to (69) evaluated at c ∈ {ci}nc
i=1.

Note that the transformation of x0
T → aσx

0
T + ιq+1aµ with (aµ, aσ) ∈ R× (0,∞) induces

the transformations x̄1:T − m̂(xT , c) → aσ(x̄1:T − m̂(xT , c)) + aµ and ŝ(xT , c) → aσŝ(xT , c),

for all c. Since scale changes of xT do not change the relative values of (69), the posterior

distribution of c is unaffected. Thus, in this example, the improper prior density 1/σ on

(µ, σ) induce a posterior distribution and corresponding equal-tailed or HPD sets for µ that

change in accordance with scale and location changes of the observation x0
T . ▲

6.4 Markov Chain Monte Carlo Posterior Samplers

As noted above, for many inference problems it is not possible to analytically determine the

marginal posterior distribution of the parameters of interest. Instead, posterior distributions

are typically obtained by generating a random sample θ(l), l = 1, . . . , N from the posterior

distribution for some large N . Quantiles and moments of the posterior distribution of θ or a

function of θ, γ = h(θ), are then approximated by the corresponding quantiles and moments

of θ(l) and γ(l) = h(θ(l)), l = 1, . . . , N .

Most algorithms do not generate an i.i.d. sample θ(l), but rather a Markov chain with the

posterior distribution as the stationary distribution; these are called Markov chain Monte

Carlo (MCMC) simulators. Since the posterior distribution is unknown, the starting value

θ(0) is initialized at a value that is reasonably close to the posterior mode, a first batch of burn-

in draws from the MCMC simulator is discarded (say, 20% of the total draws) to mitigate

the effect of this initial condition, and posterior quantities of interest are computed from the

remaining draws. Strongly autocorrelated chains are said to mix poorly, and the stronger

the autocorrelation in the draws θ(l), the larger N needs to be for the moments and quantiles

computed from the N draws to be accurate estimates of their posterior counterparts. In

practice, one can get a sense of the approximation quality by computing autocorrelation

robust confidence intervals. It is also useful to check convergence by visually inspecting the
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evolution of θ(l) as a function of l (so-called trace plots), and to check that the initial θ(0)

has indeed no lasting influence by generating multiple chains with different starting values.

6.4.1 Gibbs Sampling

Decompose the parameter θ ∈ Θ ⊂ Rk into two components θ = (θI , θII) ∈ RkI × RkII

with kI + kII = k. Suppose the posterior distribution is such that we know how to draw θI

conditional on the value of θII , and we also know how to draw θII conditional on θI . If θ
(l) =

(θ
(l)
I , θ

(l)
II ) is a draw from the posterior distribution, and we draw θ

(l+1)
I from the conditional

distribution of θI |θII = θ
(l)
II , then by the definition of the conditional distribution, (θ

(l+1)
I , θ

(l)
II )

also has distribution equal to the posterior distribution. If we further draw θ
(l+1)
II from the

conditional distribution θII |θI = θ
(l+1)
I , then by the same logic, θ(l+1) = (θ

(l+1)
I , θ

(l+1)
II ) has

distribution equal to the posterior distribution. Repeating these two steps thus yields a

Markov chain with stationary distribution equal to the posterior distribution of θ. The same

approach readily extends to the case where θ is decomposed into more than two components,

as for example in Section 4.1.2.

Example MEAN(c). In Example MEAN(b) we derived the posterior distribution for

µ analytically, but it is easy to derive a Gibbs sampler that treats each element of

θ = (µ, σ, c) as its own block. Comparing the posterior (65) as a function of µ with a

normal density, we see that the conditional distribution of µ given (σ, c) is normal with

mean ι′q+1Ω
LTU(c)−1x0

T/(ι
′
q+1Ω

LTU(c)−1ιq+1) and variance σ2(T ι′q+1Ω
LTU(c)−1ιq+1)

−1. Sim-

ilarly, (65) implies that the posterior distribution of σ−2T (x0
T−ιq+1µ)

′ΩLTU(c)−1(x0
T−ιq+1µ)

conditional on (µ, c) is chi-squared with q+1 degrees of freedom, so that a conditional draw

of σ can be generated by dividing
√
T (x0

T − ιq+1µ)′ΩLTU(c)−1(x0
T − ιq+1µ) by the square

root of a randomly generated chi-squared random variable. Finally, conditional on (µ, σ),

the posterior for c is a discrete random variable taking on values in {ci}nc
i=1 with probabilities

proportional to (65). Let vi, i = 1, . . . , nc be equal to right hand side of (65) with c ∈ {ci}nc
i=1,

and let Vi =
∑

j≤i vj. A random draw from this conditional distribution is then given by cJ

where J = 1 +
∑nc

i=1 1[Vi ≤ UVnc ], where U is uniform U ∼ U(0, 1). ▲

Gibbs sampling is a very powerful technique. However, in some settings it can produce

highly correlated draws. Suppose, for instance, that the posterior distribution for θ =

(θI , θII) ∈ R2 is bivariate normal with a correlation coefficient that is close to one. Then the

61



conditional distributions θI |θII and θII |θI are much less variable than their unconditional

distributions, so that Gibbs sampling only very slowly visits the entire posterior distribution,

resulting in a poorly mixing Markov chain. The remedy is to draw θ jointly, which in this

case is easily done (and Gibbs sampling is unnecessary). This message holds more generally:

mixing is improved by combining highly correlated parameters into blocks that are drawn

jointly.

6.4.2 Metropolis-Hastings Algorithm

The goal of MCMC is to generate draws from the posterior distribution with density p(θ|y).
Now suppose we were to draw θ̃

(l)
i.i.d. from density g(θ) instead, where g has the same

support as p(θ|y), but g(θ) ̸= p(θ|y). Then averages of γ̃(l) = h(θ̃
(l)
) obviously do not con-

verge to the corresponding functions of the posterior distribution of γ = h(θ). In particular,

values of θ where p(θ|y) is larger than g(θ) are under sampled. One approach to address this

imbalance is to give these draws a correspondingly larger weight when computing averages

of θ̃
(l)
. This is the key idea underlying importance sampling that is reviewed in Section 7.5.1

below in a different context.

An alternative approach to address the imbalance is count the under-sampled draws

θ̃
(l)

repeatedly in the computation of the averages. For instance, if p(θ2|y)/g(θ2) is twice

as large as p(θ1|y)/g(θ1), then we would regain balance between these two values if in the

construction of θ(l) from θ̃
(l)
, we always included realizations of θ̃

(l)
= θ2 twice. Alternatively,

we could generate a Markov Chain θ(l) as follows: Whenever θ(l) = θ2, we flip a coin and

set θ(l+1) = θ2 if the coin shows heads, and only take another random draw θ(l+1) with

probability density g if the coin shows tails. In this manner, the reweighting is accomplished

by random repetitions, with the expected number of repetitions equal to two. If this “random

repetition” correction is applied to all possible pairs of θ1, θ2 ∈ Θ then the resulting Markov

Chain is overall properly balanced, with the intended posterior distribution as the stationary

distribution.

This random repetition is the basis for the Metropolis-Hastings simulation method. For-

mally the Metropolis-Hastings algorithm for an independent proposal g(θ) is shown in Al-

gorithm 1.

Note that the acceptance probability u in (70) of the proposed move θp depends on the
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Algorithm 1 Metropolis Hastings with independent proposal

1. Draw θp from density g, and let U ∼ U(0, 1) be independent of θp.

2. Compute

u = min

(
p(θp|y)
g(θp)

g(θ(l))

p(θ(l)|y)
, 1

)
(70)

3. If U < u, set θ(l+1) equal to θp. Otherwise, set θ(l+1) = θ(l).

posterior density only through the ratio

p(θp|y)
p(θ(l)|y)

=
p(θp)f(y|θp)
p(θ(l))f(y|θ(l))

,

so that only the prior and likelihood are needed. The Metropolis-Hastings algorithm thus

does not involve the value of the marginal likelihood. Since computing the marginal likeli-

hood can be a challenging task, this is a highly appealing feature. In practice, the proposal

density g in the independent Metropolis-Hastings algorithm must be reasonably close to the

target p(θ|y) to ensure that the resulting chain mixes well.

Example MEAN(d). Consider Example MEAN(b) with (µ, σ) already integrated out, so

that c is the only remaining parameter in the problem, and the posterior is proportional

to (69). There is no need to employ the Metropolis-Hastings algorithm to characterize this

discrete distribution, but for illustration purposes, suppose we wanted to. Let g be the

uniform distribution on the nc points {ci}nc
i=1. Given c(l), we generate c(l+1) as follows: Let J

be a uniformly drawn index J ∈ {1, . . . , nc}. We accept the move from c(l) to the proposed

value cJ if U is smaller than the ratio of (69) evaluated at c = cJ and c = c(l), respectively,

and set c(l+1) = c(l) otherwise. ▲

The Metropolis-Hastings idea extends to the case where θp is drawn from a distribution

that depends on the current value θ(l), so that g becomes a conditional density. In that case,

the balancing through repetition is more delicate, since one must also take into account how

often the current value would have been generated from the potential new value θp. See

Algorithm 2.

A common choice for the general proposal is a conditional distribution centered at θ(l).

This ensures that with θ(l) reasonably close to the posterior mode, the proposal automatically
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Algorithm 2 Metropolis-Hastings with general proposal

1. Draw θp from density g(·|θ(l)), and let U ∼ U(0, 1) be independent of θp.

2. Compute

u = min

(
p(θp|y)
g(θp|θ(l))

g(θ(l)|θp)
p(θ(l)|y)

, 1

)
(71)

3. If U < u, set θ(l+1) equal to θp. Otherwise, set θ(l+1) = θ(l).

focusses on part of the parameter space with relatively high posterior density. The choice

for the step size (that is the size of the move from θ(l) to θp) faces a trade-off: too small steps

lead to too little exploration of the posterior distribution, and too large steps lead to too

few accepted moves. A reasonable compromise in many problems is a step size that leads to

about 25% acceptance probability (cf. Roberts, Gelman, and Gilks (1997)).

Note that if the density g(θp|θ(l)) is such that θp ∼ θ(l)+ ν, where ν has a symmetric dis-

tribution and is independent of θ(l), then g(θ(l)|θp) = g(θp|θ(l)). The acceptance probability

in (71) then simplifies to

min

(
p(θp|y)
p(θ(l)|y)

, 1

)
(72)

yielding the classic Random Walk Metropolis-Hastings algorithm. In general, this simpli-

fication will only be possible in unbounded parameter spaces Θ, and sometimes θ is repa-

rameterized for that purpose. Alternatively, one can trivially think of the actual parameter

space Θ as a subset of Rk, and treat the constraint θ ∈ Θ as part of the prior. In this way,

whenever θp /∈ Θ, p(θp|y) = 0, so that the proposal is rejected and the chain remains in its

previous state θ(l+1) = θ(l). Note that it is incorrect to apply the Random Walk acceptance

formula (72) with θp drawn directly from the truncated distribution of θ(l) + ν with support

equal to Θ (or, equivalently, to re-draw ν until θ(l) + ν ∈ Θ before checking acceptance).

Example MEAN(e). As an alternative to Example MEAN(d), suppose we employ a ran-

dom walk type proposal for c(l). Let J (l) ∈ {1, . . . , nc} be the current index, c(l) = cJ(l) ,

and let Jp the index of the proposed move for c. With P (ν = 1) = P (ν = −1) = 1/2, the

proposed Jp is equal to J (l+1) ± 1 with equal probability. If Jp = 0 or Jp = nc + 1, then set

J (l+1) = J (l). Otherwise, accept the proposed move with probability equal to (72). ▲
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It is also straightforward to apply the Metropolis-Hastings algorithm within a Gibbs

sampler, that is to generate a draw of, say, θ
(l+1)
I given θ

(l)
II in the notation of Section 6.4.1.

The algorithms then still applies with θ now playing the role of θI , and p(·|y) equal to the

density p(·|y, θ(l)II ).

Example MEAN(f). In the context of Example MEAN(c), instead of drawing c directly

from the conditional discrete distribution in each Gibbs step, we could instead employ a

Metropolis-Hastings approach. The only difference to the discussion in Examples MEAN(d)

and MEAN(e) would be that now, the ratio p(θp|y)/p(θ(l)|y) in (70) and (71) corresponds

to ratios of (65) rather than (69), evaluated at the proposed and current value of c and

(µ, σ) = (µ(l), σ(l)). ▲

6.5 Geweke (2004) Test

The MCMC methods outlined above are conceptually straightforward, but coding mistakes

are inevitable. Geweke (2004) discusses how the internal logic of MCMC posterior simulators

can be used to produce practical checks on MCMC computer code. The algorithm is a simple

application of Gibbs sampling reviewed above, except that the sampling is augmented by

also sequentially drawing Y: Let θ(l+1) be a draw from p(θ|y(l)), and let y(l+1) be a draw

from Y|θ(l+1). The stationary distribution of θ(l) in this chain is the prior distribution. If

these augmented MCMC simulations produces a distribution of draws for θ that differs from

the prior, then the code that purports to generate a draw from p(θ|y(l)) is wrong. This

produces a powerful check on the correctness of the code.

Example MEAN(g). In the context of Example MEAN(c), the augmentation step simply

consists of drawing x
0,(l+1)
T from N (µ(l)ιq+1, T

−1σ2,(l)ΩLTU(c(l))). ▲

If Y is very informative about θ, then the augmented chain mixes poorly. To avoid this,

one can run the test with the number of observations in Y artificially reduced relative to

the actual application – in the context of low-frequency inference, this amounts to running

the test with a small value of q.

One might be tempted to visually inspect the similarity of the prior distribution with the

distribution from the augmented chain. We found that Algorithm 3 more reliably detects

problems.
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Algorithm 3 Geweke (2004) Test

1. Draw many (say, 100,000) i.i.d. draws θ from the prior distribution with density p(θ).

Compute the 5, 10, . . . , 95 percentiles of θi from these draws for i = 1, . . . , k, where θi

is the ith element of θ.

2. Initialize the joint state (θ,y) via a random draw of θ(0) from the prior, and y(0) drawn

from Y|θ(0). Now draw θ(l+1)|θ(l),y(l) as if one wanted to generate a MCMC chain for

the posterior distribution given data Y = y(l). For each l, perform the augmentation

step with y(l+1) drawn from Y|θ(l+1).

3. If the total number of draws N of θ(l) generated so far is divisible by 1000, compute t-

statistics ti for the percentiles of {θ(l)i }Nl=1 relative to the corresponding values computed

in Step 1, treating batches of size B = N/100 as being independent. Concretely, if Qi

is the 100λ prior percentile of θi computed in Step 1, then

ti =
10(λ̂− λ)√

1
99

∑100
j=1(λ̂j − λ̂)2

(73)

with λ̂j = B−1
∑jB

l=(j−1)B+1 1[θ
(l)
i < Qi] and λ̂ = 100−1

∑100
j=1 λ̂j.

4. Continue to run the chain and monitor the values of the t-statistics (73) across the

percentiles and i. As N becomes large, the largest absolute value of these t-statistics

should become and remain reasonably small (say, smaller than 4).
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Algorithm 3’s implementation of the Geweke test has two attractive features. First, by

considering many percentiles of the elements of θ, the algorithm can detect subtle deviations

from the prior distribution of θ. Second, the batched t-statistic in Step 3 collects more and

more draws of θ(l) in each of the 100 batches. Thus, even with high serial correlation in the

draws, the batch averages λ̂j become independent across j (and individually Gaussian by a

central limit theorem) as N grows sufficiently large. Thus, if everything is coded correctly,

any given t-statistic converges in distribution to a Student-t distribution with 99 degrees of

freedom, making values above 4 in absolute value highly unlikely even after computing the

maximum of a fairly large set of t-statistics.

When the Geweke test indicates a problem, it is often possible to isolate the coding error

by considering each Gibbs block separately, that is, by keeping subsets of the parameter

fixed in Algorithm 3.

6.6 Marginal Likelihoods and Bayes Factors

Suppose we entertain two models A and B for the observables Y, with associated parameters

θA ∈ ΘA and θB ∈ ΘB, priors pA(θA) and pB(θB), and data densities fA(y|θA) and fB(y|θB).
Let the prior probability thatY is generated by model A or B be equal to πA and πB = 1−πA,

respectively, and denote the posterior probabilities by p(A|y) and p(B|y) = 1−p(A|y). Bayes
rule then implies that the posterior odds ratio is

p(A|y)
p(B|y)

=
πA

πB

· mA(y)

mB(y)
(74)

where mA(y) =
∫
ΘA
pA(θA)fA(y|θA)dθA and mB(y) =

∫
ΘB

pB(θB)fB(y|θB)dθB are the

marginal likelihoods of the two models. Expression (74) may be used for Bayes model

averaging to determine the mixing weights in the posterior density of a common feature of

interest γ = hA(θA) = hB(θB), p(γ|y) = p(A|y)pA(γ|y)+p(B|y)pB(γ|y), where pA(γ|y) and
pB(γ|y) are the posterior densities of γ under model A and B, respectively.

The first factor πA/πB in (74) is the prior odds ratio, and the second BF = mA(y)/mB(y)

is called the Bayes factor. It indicates how strongly the data favors model A relative to

model B, and may be used for model selection without specifying the model priors πA and

πB. Note that the Bayes factor still depends on the parameter priors pA(θA) and pB(θB)

– even if maxθA fA(y|θA) is much larger than maxθB fB(y|θB), the Bayes factor may still
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be small if pA(θA) is sufficiently small for the values of θA that lead to a large likelihood

fA(y|θA). In particular, if we view an improper prior as the limit of a sequence of more-

and-more vague priors that necessarily put less-and-less prior mass in any compact subset

of the parameter space, this implies that in general, Bayes factors are not meaningful under

improper priors. One exception to this rule are the usual uninformative priors on location

and scale parameters if they are common to both models.27

Example MEAN(h). Consider the Bayes factor between the local-to-unity model with

parameter θA = (µ, σ, c) and the I(0) model with parameter θB = (µ, σ), using the same

uninformative prior on (µ, σ). Noting that the constants of proportionality in the derivations

leading to (69) are the same also in the I(0) model, we obtain from Ω
I(0)
XX = Iq

BF =

∑nc

i=1 pc(ci)|ΩLTU
XX (ci)|−1/2(x′

TΩ
LTU
XX (ci)

−1xT )
−q/2

(x′
TxT )−q/2

. ▲ (75)

In general, the marginal likelihood cannot be obtained in closed-form, and for models

with a high dimensional parameter, the computation of the Bayes factor can be difficult.

The literature contains many suggestions; see Gelman, Carlin, Stern, and Rubin (2004),

Geweke (2005) and Robert (2007) for discussion and references. Here we highlight Meng

and Wong’s (1996) Bridge sampling, which we have found to be particularly useful. The

approach requires that the two models have parameters that live on the same space Θ. This

is often not naturally the case, but can be achieved by a suitable reparameterization that

potentially “ignores” some elements of θ in the computation of the likelihood for one of the

models (see the examples below).

To motivate the method, note that for any function κ : Θ 7→ R the Bayes factor can be

written as

BF =
mA(y)

mB(y)
=

∫
Θ
κ(θ)pA(θ)fA(y|θ) · pB(θ)fB(y|θ)

mB(y)
dθ∫

Θ
κ(θ)pB(θ)fB(y|θ) · pA(θ)fA(y|θ)

mA(y)
dθ

=

∫
Θ
κ(θ)pA(θ)fA(y|θ) · pB(θ|y)dθ∫

Θ
κ(θ)pB(θ)fB(y|θ) · pA(θ|y)dθ

=
EB[κ(θ)pA(θ)fA(y|θ)]
EA[κ(θ)pB(θ)fB(y|θ)]

(76)

27One way to see this is by noting that integrating out these priors yields the likelihood of a maximal

invariant (see Section 7.3), so the resulting Bayes factors are recognized as Bayes factors in a proper-prior

limited-information Bayes exercise with the maximal invariant as the only observation.
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as long as κ is such that the integrals exist, where EA and EB are expectations over the

posterior densities pA(θ|y) and pB(θ|y) which can be approximated by averages over draws

generated from posterior samplers. The question then becomes choosing the function κ to

efficiently compute BF.

The function κ is usefully chosen in a way that minimizes the variance of the ratio of

these averages, and Meng and Wong (1996) suggest a corresponding default choice of

κ(θ) =
1

pA(θ|y) + pB(θ|y)
∝ 1

pA(θ)fA(y|θ) + BF ·pB(θ)fB(y|θ)
. (77)

With this choice of κ, and defining rA/B(θ|y) = pA(θ)fA(y|θ)
pB(θ)fB(y|θ) and rB/A(θ|y) = pB(θ)fB(y|θ)

pA(θ)fA(y|θ) , we

obtain

BF =
EB[

rA/B(θ|y)
rA/B(θ|y)+BF

]

EA[
rB/A(θ|y)

1+BF ·rB/A(θ|y) ]
. (78)

Meng and Wong (1996) suggest a simple iterative scheme to solve this equation with expec-

tations replaced by averages over posterior draws to obtain an estimator of BF, leading to

Algorithm 4.

Bridge sampling determines the Bayes Factor by evaluating the relative probability of

draws from model A under model B, and vice versa. The choice of κ in (77) ensures that

even if these probabilities are very lopsided for some draws, the estimator still behaves

reasonably well, since the random variables in (78) always take on values between zero

and one. It is nevertheless important that pA(θ|y) and pB(θ|y) have some overlap, since

otherwise the averages in (79) are dominated by a few terms. This in turn requires a suitable

parameterization.

Example MEAN(i). As an alternative to (75), consider computing the Bayes factor by

Algorithm 4. For the common parameter space, let Θ = ΘA ∋ (µ, σ, c), so that

fA(y|θ) = (2π)−(q+1)/2(σ2/T )−(q+1)/2|ΩLTU(c)|−1/2

exp
[
−1

2
T (x0

T − ιq+1µ)
′ΩLTU(c)−1(x0

T − ιq+1µ)/σ
2
]

fB(y|θ) = (2π)−(q+1)/2(σ2/T )−(q+1)/2

exp
[
−1

2
T (x0

T − ιq+1µ)
′(x0

T − ιq+1µ)/σ
2
]

and in the I(0) model B, the parameter c, which is the last element of θ, does not enter

fB(y|θ). We must still specify a prior pB,c(c) for c under model B. It is permissible but
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Algorithm 4 Meng and Wong’s (1996) Bridge Sampling Approximation to the Bayes Factor

1. For some large NA and NB, use a posterior sampler to generate NA posterior draws

θ
(l)
A , l = 1, . . . , NA and θ

(l)
B , l = 1, . . . , NB, from models A and B, respectively.

2. Compute and store {rA/B(θ
(l)
B |y)}NB

l=1 and {rB/A(θ
(l)
A |y)}NA

l=1.

3. Initialize BF(0) = 1 and repeat until convergence

BF(i+1) =
N−1

B

∑NB

l=1

rA/B(θ
(l)
B |y)

rA/B(θ
(l)
B |y)+BF(i)

N−1
A

∑NA

l=1

rB/A(θ
(l)
A |y)

1+BF(i) ·rB/A(θ
(l)
A |y)

. (79)

unwise to use a degenerate prior pB,c(c) that puts all mass on one value c0 of c — this would

lead to rB/A(θ
(l)
A |y) to be identically zero for all posterior draws θ

(l)
A from the LTU model

with last element different from c0, reducing the effective sample size in the computation of

the average in the denominator of (79) by an order of nc. A reasonable default is rather to

use the same prior on c in both models, pB,c = pA,c. ▲

Example BRKvsLL. Consider the Bayes factor between the discrete break model (model

A) and the local-level model (model B), as in Section 4.4. As discussed there, consider a

normal prior on the break magnitude δ ∼ N (0, T−1σ2ϖ2), so that conditional on (µ, σ,ϖ, r),

X0
T ∼ N

(
ιq+1µ, T

−1σ2(Iq+1 +ϖ2v0(r)v0(r)′)
)

and the natural parameters in model A are θA = (µ, σ,ϖ, r) ∈ ΘA. Model B’s natural

parameter is θB = (µ, σ, g). Let the common parameter space be Θ = ΘA ∋ θA = θ, where

in model B, g = ϖ and r does not enter fB(y|θ). Under this parameterization, the variance

of the level change over the whole sample is governed by the third element of θ, and has the

same units. Also, we use the same prior on r in both models. These choices help induce

substantial overlap in the posterior densities pA(θ|y) and pB(θ|y).
Algorithm 4 now requires running a Gibbs MCMC chain for each model under these priors

and parameters, and subsequent computation of rA/B(θ|y) and rB/A(θ|y). ▲

When pA(θ|y) and pB(θ|y) are too distinct for Algorithm 4 to work well, one ap-

proach is to construct a sequence of models pj(θ|y), j = 0, . . . ,M with p0(θ|y) = pA(θ|y)
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and pM(θ|y) = pB(θ|y) that form a “bridge” between the two models. With BFj =

mj−1(y)/mj(y) in obvious notation, we have

BF =
mA(y)

mB(y)
=

M∏
j=1

BFj . (80)

If the “intermediate” models pj(θ|y) are chosen so that each pair of neighboring models has

a sufficient overlap, one can reliably estimate BFj for all j = 1, . . . ,M via Algorithm 4, and

then compute the Bayes Factor of interest via (80).

Example I0vsI1. Suppose we want to compute the Bayes factor between the I(0) (model

A) and the I(1) (model B) using uninformative priors on (µ, σ), analogous to the previous

example. As in MEAN(h), this can be computed directly via

BF =
|ΩI(0)

XX |−1/2(x′
T (Ω

I(0)
XX)

−1xT )
−q/2

|ΩI(1)
XX |−1/2(x′

T (Ω
I(1)
XX)

−1xT )−q/2

where Ω
I(0)
XX = Iq.

For illustrative purposes, consider computing BF with the methods discussed here,

without analytically integrating out the scale parameter θ = σ over the uninformative

prior with density 1/σ. For large q, the overlap between XT ∼ N (0, T−1σ2Ω
I(0)
XX) and

XT ∼ N (0, T−1σ2Ω
I(1)
XX) is small. We thus construct a “bridge” between the I(0) and I(1)

models via the LTU model: in the jth model, XT ∼ N (0, T−1σ2Ωj) with Ωj = ΩLTU
XX (cj)

and cj > cj+1, Ω0 = Ω
I(0)
XX and ΩM = Ω

I(1)
XX . Here we normalize the covariance matrices such

that, say, trΩj = q in all models. Under this normalization, ΩLTU
XX (c) → Ω

I(0)
XX as c → ∞,

and ΩLTU
XX (c) → Ω

I(1)
XX as c → 0, so we can make the intermediate models as close to each

other as necessary by picking appropriate values for cj and the number of models M .

We can thus apply Algorithm 4 M times to compute BFj = mj−1(y)/mj(y) by running

MCMC chains for model j − 1 and j, j = 1, . . . ,M , and obtain BF from (80). Of course,

in this construction, we really only need to run the chain once for each model, and for

0 < j < M compute and store both the ratios rj−1/j(θ
(l)
j |y) and rj+1/j(θ

(l)
j |y) from the

posterior draws θ
(l)
j . ▲
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7 Frequentist Analysis: Concepts and Methods

This section discusses several frequentist concepts with a focus on methods for constructing

powerful hypothesis tests and efficient confidence intervals in parametric small sample prob-

lems. The celebrated Neyman-Pearson (NP) lemma is the cornerstone for these methods.

NP tests are designed for situations in which both the null and alternative hypothesis are

simple, in the sense that they completely specify the probability distribution of the random

variable under study. In practice, hypotheses are often composite, in the sense that they re-

strict, but do not completely specify the probability distribution. Complications associated

with composite hypotheses can be handled by averaging over the probability distributions,

leading to concepts called weighted average power and least favorable distributions, or by im-

posing invariance restrictions. This section provides a detailed discussion of these frequentist

concepts. The section’s running examples are low-frequency inference problems, but aside

from these examples, the discussion is general and can be read independently of the other

sections of this chapter.

7.1 Hypothesis Tests and Confidence Sets

Bayesian analysis uses the formalism of probability to make statements about the distribution

of parameter values in a given sample. In contrast, frequentist analysis seeks to provide

guarantees about the properties of inference in repeated samples from the same model and

parameters.

The data Y ∈ Y has density f(y|θ), indexed by the parameter θ ∈ Θ ⊂ Rk. Let

Θ0,Θ1 ⊂ Θ be proper subsets of the parameter space Θ. As in the last section, we again

assume Y to be a continuous random vector, but all of the following goes through for a

density f(y|θ) with respect to some other dominating measure.

A hypothesis test φ of

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 (81)

is a function φ : Y 7→ [0, 1], where φ(y) = 1 means “H0 is rejected” and φ(y) = 0 means

“H0 is not rejected” for the realization Y = y. It is mathematically convenient to allow

tests φ(y) to take on values between zero and one, which are interpreted as the probability

of rejecting H0 given data Y = y, since this ensures the existence of most powerful tests in
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great generality, as discussed in the next section. In practice, however, such randomized tests

are unattractive, as different researchers are not guaranteed to arrive at the same conclusion

after having observed the same data.

In this notation, the rejection probability of a test is simply its expectation, Eθ[φ(Y)] =∫
φ(y)f(y|θ)dy, where the θ subscript in the expectation denotes the data generating

value. The size of the test is the largest rejection probability under the null hypothesis,

supθ∈Θ0
Eθ[φ(Y)], and a test is of level α if its size is smaller or equal to α. The power func-

tion of the test is given by the Θ1 7→ [0, 1] function Eθ[φ(Y)]. The aim in hypothesis testing

is to construct a test φ with high power given a particular level α, such as the commonly

used value of α = 0.05. A low pre-specified level α guarantees that mistaken rejections of

H0 are rare in repeated samples, no matter which value θ ∈ Θ0 generated the data.

An important special case of a hypothesis test specifies the value of a parameter of

interest γ = h(θ), where h : Θ 7→ Γ ⊂ R. The null hypothesis then becomes H0 : γ = γ0,

or, in the above notation, H0 : θ ∈ Θ0 = {θ : h(θ) = γ0}. Suppose we have a family of

non-randomized level α hypothesis tests φγ0
: Y 7→ {0, 1} indexed by the value of γ under

the null hypothesis, so that for each γ0, Eθ[φγ0
(Y)] ≤ α for all θ ∈ Θ0. Given a particular

realization Y = y, suppose we collect the values of γ0 for which the test φγ0
(y) does not

reject in a set Γ̂(y) = {γ0 : φγ0
(y) = 0}, so that Γ̂ : Y 7→ G maps data into the set of Borel

subsets G of Γ. This inversion of a family of level α tests φγ0
yields a confidence set of level

1 − α, since in repeated samples, Γ̂(Y) contains the true value of γ with probability of at

least 1− α:

Pθ(γ0 ∈ Γ̂(Y)) = 1− Pθ(φγ0
(Y) = 1) ≥ 1− α for all θ ∈ {θ : h(θ) = γ0} and γ0 ∈ Γ. (82)

Intuitively, the set Γ̂ is constructed by trying out all values of γ0 ∈ Γ, so at some point, the

true value is considered. But by definition of a level α test, the true value is then rejected

with probability of at most α. Thus, with at least 1− α probability over repeated samples,

the true value is contained in the set Γ̂(Y). Similarly, given a confidence set Γ̂ satisfying the

inequality in (82), we can define a corresponding family of tests via φγ0
(y) = 1[γ0 /∈ Γ̂(y)],

which by construction is of level α. There is thus an exact equivalence between a family of

level α hypothesis tests about the value of γ and a level 1 − α confidence set for γ, as one

can always obtain one from the other.
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7.2 Most Powerful Tests

7.2.1 Neyman-Pearson Lemma

If a null or alternative hypothesis fully specifies the data density, then the hypothesis is called

simple, and otherwise it is called composite. The most straightforward hypothesis testing

problem involves a simple null hypothesis and a simple alternative hypothesis,

H0 : θ = θ0 against H1 : θ = θ1. (83)

For this case, the Neyman-Pearson Lemma shows that the most powerful test rejects for

large values of the likelihood ratio statistic f(y|θ1)/f(y|θ0). Intuitively, the region of y

where f(y|θ1)/f(y|θ0) is large provides the largest rejection probability under θ1 for a given

constraint on the rejection probability under θ0.

Lemma 1. The most powerful level α test of (83) is of the form

φ∗(y) =


1 if f(y|θ1) > cv f(y|θ0)
κ if f(y|θ1) = cv f(y|θ0)
0 if f(y|θ1) < cv f(y|θ0)

where 0 ≤ κ ≤ 1 and cv ≥ 0 are such that Eθ0 [φ
∗(Y)] = α, that is, for any other level α test

φ, Eθ1 [φ
∗(Y)] ≥ Eθ1 [φ(Y)].

Proof. If cv = 0, Eθ1 [φ
∗(Y)] =

∫
f(y|θ1)dy = 1, so there is nothing to prove. Thus

assume cv > 0 in the following. Let φ be any other level α test. Then by definition of φ∗,

(f(y|θ1)− cv f(y|θ0))(φ∗(y)− φ(y)) ≥ 0 for all y ∈ Y . Therefore∫
f(y|θ1)(φ∗(y)− φ(y))dy − cv

∫
f(y|θ0)(φ∗(y)− φ(y))dy ≥ 0. (84)

From
∫
f(y|θ0)φ∗(y)dy = α and

∫
f(y|θ0)φ(y)dy ≤ α,

∫
f(y|θ0)(φ∗(y) − φ(y))dy ≥ 0.

Thus (84) implies
∫
f(y|θ1)(φ∗(y) − φ(y))dy ≥ 0 or equivalently,

∫
f(y|θ1)φ∗(y)dy ≥∫

f(y|θ1)φ(y)dy, which was to be shown. ■

When f(Y|θ1)/f(Y|θ0) has a continuous distribution under θ0, then no randomization

via κ is necessary, and the optimal test φ∗(y) = 1[f(y|θ1) ≥ cv f(y|θ0)] is simply character-

ized by the critical value cv.28

28In practice, cv may be approximated by taking N i.i.d. draws Y(l) under θ = θ0, and by computing the

1− α quantile of {f(Y(l)|θ1)/f(Y(l)|θ0)}Nl=1.
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Example PERS(a). Consider inference about the value of c in the local-to-unity model,

using the cosine transform as the observations. For now, suppose σ2 = 1 is known; we discuss

the unknown σ2 case in Section 7.3 below. Then under approximation (13), we have

XT ∼ N (0, T−1ΩLTU
XX (c)). (85)

By Lemma 1, the most powerful test of H0 : c = c0 against H1 : c = c1 rejects for large

values of
|ΩLTU

XX (c1)|−1/2

|ΩLTU
XX (c0)|−1/2

exp[−1
2
TX′

TΩ
LTU
XX (c1)

−1XT ]

exp[−1
2
TX′

TΩ
LTU
XX (c0)−1XT ]

or, equivalently, for large values of the test statistic

TX′
TΩ

LTU
XX (c0)

−1XT − TX′
TΩ

LTU
XX (c1)

−1XT . (86)

Since (86) has a continuous distribution under any c ≥ 0, the optimal test rejects if and only

if (86) is larger than the critical value. The critical value is equal to the 1 − α quantile of

(86) with XT drawn from (85) with c = c0. ▲

7.2.2 Weighted Average Power Maximizing Tests

Suppose the null hypothesis is simple, but the alternative hypothesis is composite

H0 : θ = θ0 against H1 : θ ∈ Θ1. (87)

The NP lemma provides the form of the best test of H0 : θ = θ0 against H1 : θ = θ1, for a

specific value of θ1 ∈ Θ1. If these tests happen to be the same function of y for all values of

θ1 ∈ Θ1, then this test is uniformly most powerful. In many instances, however, a uniformly

most powerful test does not exist, since the power functions of the NP tests cross. Sometimes

the point-optimal NP test that maximizes power against a single alternative θ1 ∈ Θ1 turns

out to have good power against all alternatives; see King (1987) for discussion and examples.

A more systematic approach to handle composite alternatives draws on the classic de-

cision theory approach of minimizing weighted average risk. In the context of (87), this

leads to the objective of maximizing weighted average power, a solution concept that was

prominently applied in econometrics by Andrews and Ploberger (1994). Formally, with a
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weighting function that corresponds to the c.d.f. F on Θ1,
29 the weighted average power of

a test φ is

WAP =

∫
Θ

Eθ[φ(Y)]dF (θ).

The WAP criterion is a scalar summary of the power properties of φ, with F describing the

importance of various alternatives. By a change of the order of integration, we obtain

WAP =

∫
Θ

∫
φ(y)f(y|θ)dy · dF (θ)

=

∫
φ(y)

∫
Θ

f(y|θ)dF (θ) · dy

=

∫
φ(y)f1(y)dy

with f1(y) =
∫
Θ
f(y|θ)dF (θ). Note that f1 is a probability density function, since it is

nonnegative and
∫
f1(y)dy =

∫ ∫
Θ
f(y|θ)dF (θ) · dy =

∫
Θ

∫
f(y|θ)dy · dF (θ) = 1. Thus

maximizing WAP is equivalent to maximizing power against the single alternative H∗
1 : “the

density ofY is given by f1.” But the NP lemma provides the form of the optimal test between

two single alternatives. The WAP maximizing test of (87) thus rejects for large values of

f1(y)

f(y|θ0)
=

∫
f(y|θ)dF (θ)
f(y|θ0)

and if f1(Y)/f(Y|θ0) has a continuous distribution, then the WAP maximizing test is of the

simple form 1[f1(y) > cv f(y|θ0)].

Example PERS(b). The weighted average power maximizing test of H0 : c = c0 with

σ2 = 1 known rejects for large values of∫
|ΩLTU

XX (c)|−1/2 exp[−1
2
TX′

TΩ
LTU
XX (c)−1XT ]dF (c)

|ΩLTU
XX (c0)|−1/2 exp[−1

2
TX′

TΩ
LTU
XX (c0)−1XT ]

or, equivalently, for large values of∫
|ΩLTU

XX (c)|−1/2 exp[−1
2
TX′

TΩ
LTU
XX (c)−1XT + 1

2
TX′

TΩ
LTU
XX (c0)

−1XT ]dF (c) (88)

with critical value equal to the 1 − α quantile of (88) with XT distributed as (85) under

c = c0. ▲
29We allow F to be the c.d.f. of a continuous or discrete random variable, and write the expectation of the

function ψ : Θ 7→ R with respect to F as the Riemann-Stieltjes integral
∫
ψ(θ)dF (θ). If F is characterized

by the p.d.f. f , then
∫
ψ(θ)dF (θ) corresponds to

∫
ψ(θ)f(θ)dθ, and if F describes a discrete distribution

with support {θi}nθ
i=1 and p.m.f. f(θ), then

∫
ψ(θ)dF (θ) is shorthand for

∑nθ

i=1 ψ(θi)f(θi).
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Now consider the construction of confidence intervals. Specifically, suppose k = 1, so that

θ ∈ Θ ⊂ R, and assume that γ = h(θ) is a one-to-one transformation with inverse function

h−1 : Γ 7→ Θ. Let φ∗
γ0

be a level α non-randomized WAP maximizing test of H0 : h(θ) = γ0,

which is equivalent to H0 : θ = θ0 = h−1(γ0), with weighting function F on Θ that does

not depend on γ0. Let Γ̂∗(y) = {γ0 : φ∗
γ0
(y) = 0} be the resulting level 1 − α confidence

set. Note that the length of Γ̂∗(y) is given by
∫
1[γ0 ∈ Γ̂∗(y)]dγ0 =

∫
(1− φ∗

γ0
(y))dγ0. The

expected length of Γ̂∗ under θ is thus given by Eθ[
∫
(1−φ∗

γ0
(Y))dγ0], and F -weighted average

expected length is equal to (cf. Pratt (1961))∫
Θ

Eθ

[∫
(1− φ∗

γ0
(Y))dγ0

]
dF (θ) =

∫ ∫
(1− φ∗

γ0
(y))f1(y)dydγ0. (89)

Since for each γ0, φ
∗
γ0

maximizes
∫
φ∗
γ0
(y)f1(y)dy among all level α tests, we conclude that

the confidence set Γ̂∗ minimizes F -weighted average expected length among all level 1 − α

confidence sets.

Example PERS(c). The F -weighted average expected length minimizing confidence set

for c for σ2 = 1 known collects all values of c0 for which the test based on (88) does not

reject. Note that for a given F , this requires determination of the critical value of (88) for

all c0. ▲

7.2.3 Least Favorable Distributions

Now suppose the null hypothesis is composite, and the alternative hypothesis is simple,

H0 : θ ∈ Θ0 against H1 : the density of Y is f1. (90)

While we use the density formulation for the alternative hypothesis from the last subsection,

f1(y) = f(y|θ1) is included as a special case.

Consider this testing problem from the perspective of game theory: An econometrician

seeks to discriminate between H0 and H1 using data Y, and plays against an adversarial

nature that controls the value of θ under the null hypothesis. A randomized strategy of

nature corresponds to a distribution Λ with support in Θ0. The econometrician’s optimal

response to nature playing Λ is to use the NP test φΛ of

HΛ : the density of Y is fΛ(y) =

∫
f(y|θ)dΛ(θ) against H1 : the density of Y is f1.

(91)
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Note that any level α test of H0 is necessarily a level α test of HΛ, for any Λ, since

supθ∈Θ0
Eθ[φ(Y)] ≤ α implies

∫
φ(y)fΛ(y)dy =

∫
Eθ[φ(Y)]dΛ(θ) ≤ α. The level constraint

in (90) is therefore more severe than in (91), so that the econometrician’s best response to

nature playing Λ generically allows for a more powerful test. The adversary nature knows

this, so its best strategy is to play a least favorable distribution Λ∗ that induces the best

response φΛ∗ to also satisfy the more severe level constraint supθ∈Θ0
Eθ[φΛ∗ ] ≤ α, and thus

induces low power.

More formally, we have the following result taken from Elliott, Müller, and Watson (2015)

(also see Theorem 3.8.1 of Lehmann and Romano (2005)).

Theorem 1. Suppose Λ and Λ∗ are probability distributions with support in Θ0.

(a) Let φ be any level α test of (90). For any Λ, the best level α test φΛ of (91) has at

least as much power as φ.

(b) If Λ∗ is such that the best level α test of (91) with Λ = Λ∗, φΛ∗, is also of level α in

(90), then φΛ∗ is the best level α test of H0.

Proof. (a) The test φ is also of level α under HΛ, since∫
φ(y)fΛ(y)dy =

∫
Θ0

∫
φ(y)f(y|θ)dy · dΛ(θ)

≤ sup
θ∈Θ0

∫
φ(y)f(y|θ)dy ≤ α.

But φΛ is the best level α test of HΛ against H1, so its power is no smaller than the power

of φ.

(b) From part (a), no level α test φ of (90) can have higher power than φΛ∗ . ■

Note that part (a) of Theorem 1 provides a set of upper bounds on power in the original

problem (90), indexed by arbitrary probability distributions Λ with support in Θ0. Since in

many problems it is hard to analytically derive a least favorable distribution, these upper

bounds provide a useful benchmark for the relative efficiency of an ad hoc or numerically

determined test. We discuss how to exploit this for the construction of a demonstrably

nearly power maximizing test in Sections 7.5.2 and 7.5.3 below.

Example MEAN(j). Reconsider inference about the mean in the local-to-unity model, but

now from a frequentist perspective. Suppose σ2 = 1 is known, so that

X0
T ∼ N (µιq+1, T

−1ΩLTU(c)). (92)
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We want to test

H0 : µ = µ0, c ∈ C0 (93)

for some given set C0 ⊂ (0,∞) and maximize weighted average power for some weighting

function F that corresponds to a probability distribution over (µ, c). By the reasoning of

Section 7.2.2, this corresponds to maximizing power against the single alternative H1 : the

density of X0
T is f1(x

0
T ), where

f1(x
0
T ) ∝

∫
|ΩLTU(c)|−1/2 exp

[
−1

2
T (x0

T − µιq+1)
′ΩLTU(c)−1(x0

T − µιq+1)
]
dF (µ, c).

The hypothesis testing problem (93) is characterized by the nuisance parameter c under

the null hypothesis. Let Λ be a probability distribution for c with support in C0, such as a

distribution that puts all its mass on a single value c0 ∈ C0, or a distribution that puts 30%

probability on c0,1 ∈ C0 and 70% probability on c0,2 ∈ C0, and so forth. By the NP lemma,

the best level α test φΛ of HΛ : µ = 0, c ∼ Λ against H1 rejects for large values of∫
|ΩLTU(c)|−1/2 exp

[
−1

2
T (X0

T − µιq+1)
′ΩLTU(c)−1(X0

T − µιq+1)
]
dF (µ, c)∫

|ΩLTU(c)|−1/2 exp
[
−1

2
T (X0

T − µ0ιq+1)′ΩLTU(c)−1(X0
T − µ0ιq+1)

]
dΛ(c)

, (94)

and the critical value is equal to the 1 − α quantile of (94) with X0
T distributed as in (92)

under µ = µ0 and c randomly drawn from Λ. The power of this test φΛ is the probability

that it exceeds the critical value with X0
T distributed as (92) under (µ, c) randomly drawn

from F . By Theorem 1 (a), there cannot exist a level α test φ of (93) whose power against

H1 exceeds the power of φΛ, and this holds for any choice of Λ. Part (b) says that if the test

φΛ happened to also be of level α under (93), then φΛ is in fact the best level α test of H0

against H1. ▲

Consider the related problem of constructing a short confidence set. Similar to the

discussion at the end of Section 7.2.2, this involves the family of hypothesis testing problems

indexed by γ0 ∈ Γ

H0 : h(θ) = γ0 against H1 : the density of Y is f1(y) =

∫
Θ

f(y|θ)dF (θ). (95)

As in (89), the F -weighted average expected length of a level 1 − α confidence set Γ̂(y) =

{y : φγ0
(y) = 0} obtained by inverting level α tests φγ0

of (95) is equal to∫
Θ

Eθ[

∫
1[γ0 ∈ Γ̂(y)]dγ0]dF (θ) =

∫ ∫
(1− φγ0

(y))f1(y)dydγ0. (96)
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Let φΛγ0
be the non-randomized level α NP test of the null hypothesis HΛγ0

: the den-

sity of Y is
∫
f(y|θ)dΛγ0

(θ) for some distribution Λγ0
with support on {θ : h(θ) = γ0}

against H1. By Theorem 1 (a),
∫
(1 − φγ0

(y))f1(y)dy ≥
∫
(1 − φΛγ0

(y))f1(y)dy, so∫ ∫
(1−φΛγ0

(y))f1(y)dydγ0 is a lower bound for the F -weighted average expected length for

any level 1− α confidence set of γ. Thus, if there exists a family of least favorable distribu-

tion Λ∗
γ0

and corresponding level α non-randomized tests φΛ∗
γ0
, then the resulting confidence

set minimizes (96) among all level 1 − α confidence sets. We conclude that weighted aver-

age expected length optimal confidence sets are obtained by determining a family of least

favorable distributions for the family of hypothesis tests (95).

Example MEAN(k). If for each µ0, we specify an arbitrary distribution Λ = Λµ0
on c,

then the F -weighted expected length of the set for µ obtained by inverting level 1− α tests

based on (94) is a lower bound on the F -weighted expected length of any valid level 1 − α

confidence set. In absence of specific information about plausible values of µ, it might be

unattractive to have to specify a weighting function for µ. An alternative approach based

on invariance is discussed in Section 7.3 below. ▲

Example BRK(a). Consider the problem of inference for the break date, as in Section

4.3.2. Suppose for now that the pre-break mean µ = 0 and the variance σ2 = 1 are known,

so that from (44)

X0
T ∼ N

(
δv0(r), T−1Iq+1

)
. (97)

Let F be the weighting function on (r, δ) such that under F , δ ∼ N (0, T−1ϖ2) and r ∼
U(0, 1) with r independent of δ. Note that with δ ∼ N (0, T−1ϖ2) and given r

X0
T ∼ N

(
0, T−1(Iq+1 +ϖ2v0(r)v0(r)′)

)
. (98)

The best level α test of H0 : r = r0, δ ∼ Λr0 against H1 : (r, δ) ∼ F rejects for large values

of ∫ 1

0
|Iq+1 +ϖ2v0(r)v0(r)′|−1/2 exp[−1

2
TX0′

T (Iq+1 +ϖ2v0(r)v0(r)′)−1X0
T ]dr∫

exp[−1
2
T (X0

T − δv0(r0))′(X0
T − δv0(r0))]dΛr0(δ)

(99)

with critical value equal to the 1−α quantile of (99) with X0
T distributed as (97) with r = r0

and δ drawn randomly from Λr0 . The F -weighted expected length of any valid level 1 − α

confidence set for r is bounded below by the F -weighted expected length of the set obtained

by collecting the values of r0 for which this family of tests, indexed by r0, doesn’t reject. ▲
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7.3 Invariance

As already briefly mentioned in the discussion of invariant priors, in many inference problems

it can make sense to impose the restriction that a transformation of the data leads to a

corresponding transformation of confidence sets, or does not alter the decision of a hypothesis

test. For example, it might be reasonable to impose the restriction that alternative units of

measurement of the data Y should not affect the decision to reject a hypothesis. Imposing

invariance can be particularly useful for frequentist inference because it often reduces the

dimension of the effective parameter space, which in turn simplifies the inference problem.

See Chapter 6 of Lehmann and Romano (2005), Chapter 3 of Lehmann and Casella (1998)

and Chapter 6 of Berger (1985) for alternative expositions and additional references.

7.3.1 Groups and Transformations

First, some background on transformations. Let g : A×Y 7→ Y be a group of transformations

of the data, with transformations indexed by a ∈ A, and the group operation equal to

the composition of two transformations. By definition of a group, we have the following

properties: (i) for all a1, a2 ∈ A, there exists a3 ∈ A such that g(a2, g(a1,y)) = g(a3,y) for all

y ∈ Y ; (ii) for all a ∈ A, there exists an inverse element a−1 ∈ A such that g(a−1, g(a,y)) = y

for all y ∈ Y ; and (iii) there exists the identity transformation, that is for some a ∈ A,

g(a,y) = y for all y ∈ Y . (Associativity is guaranteed, because a composition of functions

is always associative.)

Let f(·|θ) denote the density of Y given θ ∈ Θ. Assume that the probability model is

formally invariant, that is the density of g(a,Y) is f(·|ḡ(a, θ)) for all a ∈ A and θ ∈ Θ and

some class of transformations ḡ : A×Θ 7→ Θ; the density of Y under θ is thus the same as

the density of g(a,Y) under ḡ(a, θ). In other words, the distribution of transformed data is

equal to the distribution of untransformed data under a transformed parameter value. As

is easily checked, the class of transformations ḡ on the parameter space then also forms a

group.

Finally, assume that, as the parameter θ is transformed to ḡ(a, θ), the parameter of

interest γ = h(θ) is transformed in a way that only depends on a and h(θ), that is

h(ḡ(a, θ)) = ĝ(a, h(θ)), for all θ ∈ Θ and a ∈ A (100)
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for some ĝ : A× Γ 7→ Γ. The class of transformations ĝ again forms a group. We assume in

the following that ĝ is one-to-one in the sense that for all a ∈ A and γ1, γ2 ∈ Γ

ĝ(a, γ1) = ĝ(a, γ2) implies γ1 = γ2. (101)

The parameter of interest remains unaffected by the transformation if γ 7→ ĝ(a, γ) is the

identity transformation, that is, if ĝ(a, h(θ)) = h(θ) for all θ and a ∈ A. In that case one

may want to restrict attention to tests of the null hypothesis H0 : h(θ) = γ0 that remain

correspondingly invariant, that is

φ(g(a,y)) = φ(y), for all a ∈ A and y ∈ Y . (102)

Example PERS(d). Recall the problem of inference about c in the local-to-unity model

with observation XT ∼ N (0, T−1σ2ΩLTU
XX (c)), but without assuming σ2 is known. This prob-

lem is indexed by the two dimensional parameter θ = (c, σ) ∈ (0,∞)2. Consider the group

of scale transformations g(a,xT ) = axT , for a ∈ A = (0,∞). These transformations form

a group, since (i) g(a2, g(a1,xT )) = g(a2a1,xT ), (ii) 1/a is the inverse element of the trans-

formation indexed by a and (iii) a = 1 indexes the identity transformation. Furthermore,

from g(a,XT ) ∼ N (0, T−1a2σ2ΩLTU
XX (c)), we see that the problem is formally invariant with

ḡ(a, θ) = (c, aσ). With c the parameter of interest, h(θ) = γ = c, trivially h(ḡ(a, θ)) = c for

all a ∈ A, so that ĝ(a, h(θ)) = c is the identity transformation. Thus, one might want to

restrict attention to tests of H0 : c = c0 that are scale invariant, φ(axT ) = φ(xT ) for all xT

and a > 0. ▲

In other problems, the transformations affect the parameter of interest, that is ĝ(a, γ) is

not the identity transformation. It then does not make sense to impose (102). Rather, one

might reasonably demand that the decision to reject H0 : h(θ) = γ0 when observing Y = y

should be the same as the decision to reject H0 : h(θ) = ĝ(a, γ0) when observing Y = g(a,y),

for all a ∈ A. This amounts to a constraint on the entire family of hypothesis tests, indexed

by γ0, that define a confidence set Γ̂ for γ. In particular, a set estimator Γ̂ : Y 7→ G of

γ = h(θ) is invariant (or equivariant) if

Γ̂(g(a,y)) = ĝ(a, Γ̂(y)) (103)

for all a ∈ A and y ∈ Y , where ĝ(a,Γ0) = {ĝ(a, γ) : γ ∈ Γ0} for all Γ0 ∈ G ⊂ Γ. In

other words, the set estimator applied to transformed data should yield the same set as

transforming the set obtained from applying the estimator to untransformed data.
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Example MEAN(l). Without the assumption that σ2 is known, the problem becomes

one of observing X0
T ∼ N (µιq+1, T

−1σ2ΩLTU(c)), θ = (µ, σ, c) ∈ Θ = R × (0,∞)2 and

γ = h(θ) = µ. Consider the group of transformations that changes the scale and location of

x0
T . Formally, let a = (aµ, aσ) ∈ A = R× (0,∞), so that the three groups introduced above

are given by

g(a,x0
T ) = aσx

0
T + ιq+1aµ

ḡ(a, θ) = (aσµ+ aµ, aσσ, c)

ĝ(a, γ) = aσγ + aµ

with inverse element indexed by a−1 = (−aµ/aσ, 1/aσ). This problem is formally in-

variant, since the distribution (and hence density) of g(a,X0
T ) = aσX

0
T + ιq+1aµ ∼

N ((aσµ+aµ)ιq+1, T
−1a2σσ

2ΩLTU(c)) corresponds to the distribution ofX0
T under the parame-

ter ḡ(a, θ) = (aσµ+aµ, aσσ, c). An invariant confidence set Γ̂(x0
T ) satisfies Γ̂(aσx

0
T+ιq+1aµ) =

{aσγ + aµ : γ ∈ Γ̂(x0
T )}, for all a ∈ A and x0

T ∈ Rq+1. ▲

Note that (103) includes the special case where ĝ is the identity transformation. The

invariance requirement for the confidence set Γ̂ then merely amounts to having to invert a

sequence of invariant tests H0 : h(θ) = γ0, where invariant tests satisfy (102).

Example PERS(e). All scale invariant confidence sets Γ̂(xT ) ⊂ (0,∞) for c, that is,

confidence sets that satisfy Γ̂(xT ) = Γ̂(axT ) for all a > 0, can be obtained by inverting a

family of scale invariant tests of H0 : c = c0. ▲

Example BRK(b). Reconsider inference for the break date, but without assuming µ and σ2

are known, so that X0
T ∼ N (µιq+1+ δv

0(r), T−1σ2Iq+1), θ = (µ, δ, σ, r) ∈ Θ = R2× (0,∞)×
[0, 1] and γ = h(θ) = r. With g(a,x0

T ) the group of scale and location transformations, as

in Example MEAN(l) above, we have ḡ(a, θ) = (aσµ + aµ, aσδ, aσσ, r) and ĝ(a, γ) = γ. An

invariant confidence Γ̂(X0
T ) set for r satisfies Γ̂(aσx

0
T + ιq+1aµ) = Γ̂(x0

T ), for all a ∈ A and

x0
T ∈ Rq+1. ▲

7.3.2 Maximal Invariants

Transformations can be thought of as sending a given value y ∈ Y around an orbitO(y) ⊂ Y ,

that is, any value inO(y) is equivalent to y up to a transformation, O(y) = {g(a,y) : a ∈ A}.
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LetM : Y 7→ Y select a particular value on the orbit, that is,M(y) = y for some y ∈ O(y0),

and M(y) = M(y0) for all y ∈ O(y0). Then M(y) is a maximal invariant that satisfies (i)

invariance: M(g(a,y)) = M(y) for all y ∈ Y , a ∈ A (since points on an orbit are identical

up to a transformation); and (ii) maximality: M(y1) = M(y2) implies that y1 = g(a,y2)

for some a ∈ A (since points on different orbits cannot be transformed into each other by a

group action).

This particular construction of a maximal invariant yields the useful decomposition

y = g(O(y),M(y)) for all y ⊂ Y (104)

where O : Y 7→ A indexes the group action that recovers the original y from M(y). The

identity (104) immediately yields φ(y) = φ(g(O(y),M(y))) for all tests φ : Y 7→ [0, 1], and

further applying the definition of an invariant test (102) implies

φ(y) = φ(M(y)), (105)

that is, any invariant test φ can be written as a function of the maximal invariant M(y).

Similarly, (104) and (103) imply that any invariant set estimator Γ̂ can be written in the

form

Γ̂(y) = ĝ(O(y), Γ̂(M(y))). (106)

If one is committed to constructing an invariant test or invariant set estimator Γ̂, it therefore

suffices to determine their value onM(Y) = {M(y) : y ∈ Y}, since the values of φ and Γ̂ for

any y ∈ Y\M(Y) are determined by (105) and (106). Thus, the invariance structure makes

M(Y) ∈M(Y) the effective observation.

Example PERS(f). Consider scale invariant inference about c in the LTU model. One

choice for M(xT ) is M(xT ) = xs
T = xT/

√
x′
TxT , and correspondingly, O(xT ) =

√
x′
TxT .

Thus (105) shows that all scale invariant tests of H0 : c = c0 can be written as functions

of M(xT ) = xs
T , and, recalling that ĝ is the identity transformation in this example, (103)

shows that all invariant confidence sets for c can be written in the form Γ̂(xT ) = Γ̂(xs
T ). ▲

Example MEAN(m). One choice for M(x0
T ) is M(x0

T ) = (0,xs′
T )

′ with xs
T = xT/

√
x′
TxT ,

so that O(x0
T ) = (x̄1:T ,

√
x′
TxT ). Equation (106) implies that all invariant set estimators for

µ are of the form {
x̄1:T +

√
x′
TxTγ : γ ∈ Γ̂((0,xs′

T )
′)
}
. ▲ (107)
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Example BRK(c). With the same choice forM(x0
T ) and O(x

0
T ) as in Example MEAN(m),

we obtain that any invariant confidence set for r is of the form Γ̂((0,xs′
T )

′). Note that

Xs
T ∼ XT/

√
X′

TXT with XT ∼ N (δv(r), T−1σ2Iq), where v(r) are the last q elements of

v0(r). ▲

We now show how invariance also reduces the effective parameter space. Let M̄ : Θ 7→ Θ

select a particular value on the orbit O(θ) = {ḡ(a, θ) : a ∈ A}. Then M̄ is a maximal

invariant for the group ḡ that acts on the parameter space. Furthermore, in analogy to

(104), we have the identity

θ = ḡ(Ō(θ), M̄(θ)) for all θ ∈ Θ (108)

where Ō : Θ 7→ A indexes the group action that recovers the original θ from M̄(θ).

The formal invariance of the problem now yields the following result (cf. Theorem 6.3.2

of Lehmann and Romano (2005) and Lemma 3 of Müller and Norets (2016b)).

Lemma 2. If a problem is formally invariant, then

(a) the distribution of M(Y) depends on θ only through M̄(θ);

(b) for any invariant Γ̂, the distribution of (1[h(θ) ∈ Γ̂(Y)],M(Y)) with Y drawn from

density f(·|θ) is the same as the distribution of (1[h(M̄(θ)) ∈ Γ̂(Y)],M(Y)) with Y drawn

from density f(·|M̄(θ)).

Proof.

(a) For any Borel set B on Y ,

Pθ(M(Y) ∈ B) = Pḡ(Ō(θ),M̄(θ))(M(Y) ∈ B) (by (108))

= PM̄(θ)(M(ḡ(Ō(θ),Y)) ∈ B) (by formal invariance)

= PM̄(θ)(M(Y) ∈ B) (by invariance of M).

(b) Let B0 be a Borel set on {0, 1} × Y . Then

Pθ((1[h(θ) ∈ Γ̂(Y)],M(Y)) ∈ B0)

= Pḡ(Ō(θ),M̄(θ))((1[h(ḡ(Ō(θ), M̄(θ))) ∈ Γ̂(Y)],M(Y)) ∈ B0) (by (108))

= PM̄(θ)((1[h(ḡ(Ō(θ), M̄(θ))) ∈ Γ̂(g(Ō(θ),Y))],M(ḡ(Ō(θ),Y))) ∈ B0) (by formal invariance)

= PM̄(θ)((1[h(ḡ(Ō(θ), M̄(θ))) ∈ Γ̂(g(Ō(θ),Y))],M(Y)) ∈ B0) (by invariance of M)
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= PM̄(θ)((1[ĝ(Ō(θ), h(M̄(θ))) ∈ Γ̂(g(Ō(θ),Y))],M(Y)) ∈ B0) (by (100))

= PM̄(θ)((1[ĝ(Ō(θ), h(M̄(θ))) ∈ ĝ(Ō(θ), Γ̂(Y))],M(Y)) ∈ B0) (by (103))

= PM̄(θ)((1[h(M̄(θ)) ∈ Γ̂(Y)],M(Y)) ∈ B0) (by (101)). ■

Lemma 2 (a) shows that the distribution of the maximal invariant M(Y) is fully charac-

terized by the value of M̄(θ). Thus, in deriving the optimal invariant test, one only needs to

consider the set of distributions for the effective observationM(Y) in the effective parameter

space θ ∈ M̄(Θ) = {M̄(θ) : θ ∈ Θ}. This can be a much simpler problem.

Example PERS(g). We can choose M̄(θ) = (c, 1) and Ō(θ) = σ, so Lemma 2 (a) asserts

that the distribution of M(XT ) = Xs
T only depends c. Since all tests can be written as

functions of M(XT ), the problem of deriving a scale invariant tests of H0 : c = c0 and

unknown σ given observation XT has been transformed to the problem of testing H0 : c = c0

given observation Xs
T , whose distribution does depend on nuisance parameters. Since the

density of Xs
T is given by (38), a straightforward application of the NP lemma shows that

the best test of H0 : c = c0 against H1 : c = c1 in this latter problem rejects for large values

of

|ΩLTU
XX (c1)|−1/2|ΩLTU

XX (c0)|1/2
(Xs′

TΩ
LTU
XX (c1)

−1Xs
T )

−q/2

(Xs′
TΩ

LTU
XX (c0)−1Xs

T )
−q/2

.

This is equivalent to rejecting for large values of

Xs′
TΩ

LTU
XX (c0)

−1Xs
T

Xs′
TΩ

LTU
XX (c1)−1Xs

T

and with c0 = 0 this yields the point-optimal scale invariant unit root test (60). ▲

Lemma 2 (b) extends the conclusion of part (a) to the event that a given invariant set

estimator Γ̂(Y) contains the true value. Thus, as in the testing problem, in deriving invariant

set estimators, one can treat M(Y) as the effective observation and M̄(Θ) as the effective

parameter space.

Example PERS(h). With h(M̄(θ)) = h(θ) = c, part (b) of Lemma 2 asserts that the

distribution of (1[c ∈ Γ̂(XT )],M(XT )) = (1[c ∈ Γ̂(Xs
T )],X

s
T ) only depends on c for any scale

invariant confidence interval Γ̂. ▲

Example MEAN(n). We can choose M̄(θ) = (0, 1, c) and Ō(θ) = (µ, σ). With h(M̄(θ)) =

h((0, 1, c)) = 0, Lemma 2 asserts that the distribution of (1[µ ∈ Γ̂(X0
T )],M(X0

T )) under
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θ = (µ, σ, c) is the same as the distribution of

(1[0 ∈ Γ̂(X0
T )],M(X0

T )))

under θ = (0, 1, c). Invariance has reduced the effective parameter space to the one-

dimensional unknown c ∈ (0,∞). ▲

Example BRK(d). We can choose M̄(θ) = (0, δ/σ, 1, r) and Ō(θ) = (µ, σ). With

h(M̄(θ)) = r, part (b) of Lemma 2 asserts that it is without loss of generality to consider the

distribution of (1[r ∈ Γ̂(X0
T )],M(X0

T )) only under values of θ of the form θ = (0, δ/σ, 1, r)

(and indeed, the distribution of M(X0
T ) = (0,Xs′

T )
′ only depends on (δ/σ, r)). ▲

7.3.3 Length Optimal Invariant Confidence Sets

The preceding section showed that in the construction of invariant confidence sets, the

effective observation is M(Y), and the effective parameter space is M̄(Θ). We now discuss

how to use these insights to construct length optimal invariant confidence sets (cf. Müller

and Norets (2016b)).

We first consider the case where ĝ is the identity transformation. We then have Γ̂(y) =

Γ̂(M(y)) from (106), and using Lemma 2 (b)

Eθ

[∫
1[γ0 ∈ Γ̂(Y)]dγ0

]
= EM̄(θ)

[∫
1[γ0 ∈ Γ̂(M(Y))]dγ0

]
,

so that the construction of length optimal invariant confidence sets in the problem of observ-

ing Y with parameter space Θ becomes identical to constructing length optimal confidence

sets in the problem of observingM(Y) with parameter space M̄(Θ): Let fM(y|θ̄) be the den-
sity of M(Y) under θ ∈ M̄(Θ) relative to some dominating measure νM (typically, M(Y) is

not a continuous random vector on Y , even if Y is). For some given weighting function F̄ on

M̄(Θ), the F̄ -weighted average expected length minimizing invariant level 1− α confidence

set is then obtained by inverting a family of level α power maximizing tests of H0 : h(θ) = γ0

against H1 : the density of M(Y) is
∫
fM(y|θ)dF̄ (θ), based on the observation M(Y). If h

is one-to-one on the effective parameter space M̄(Θ) with inverse function h−1 : Γ 7→ M̄(Θ),

then assuming no randomization is necessary, these optimal tests φ∗
γ0

: M(Y) 7→ {0, 1} are

of the form

φ∗
γ0
(y) = 1

[∫
fM(y|θ)dF̄ (θ) > cvγ0

fM(y|h−1(γ0))

]
, (109)

87



as discussed at the end of Section 7.2.2. If the effective parameter space M̄(Θ) is not

a singleton, then each optimal test, indexed by γ0, is characterized by a least favorable

distribution Λ∗
γ0

with support in {θ ∈ M̄(Θ) : h(θ) = γ0}, and is of the form

φ∗
γ0
(y) = 1

[∫
fM(y|θ)dF̄ (θ) > cvγ0

∫
fM(y|θ)dΛ∗

γ0
(θ)

]
(110)

as discussed at the end of Section 7.2.3. In either case, once φ∗
γ0

is determined on M(Y), it

is extended to the original domain Y via (102), that is, φ∗
γ0
(y) = φ∗

γ0
(M(y)) for y ∈ Y .

Example PERS(i). The confidence interval for c obtained by inverting the family of level

α tests of H0 : c = c0 based on∫
|ΩLTU

XX (c)|−1/2

(
X′

TΩ
LTU
XX (c)−1XT

X′
TΩ

LTU
XX (c0)−1XT

)−q/2

dF̄ (c)

for some probability distribution F̄ yields the minimal F̄ -weighted expected length level

1− α confidence interval for c among all scale invariant intervals. ▲

Example BRK(e). For notational ease, define δs = T 1/2δ/σ, so that under θ =

(0, δ/σ, 1, r), XT ∼ N (T−1/2δsv(r0), T
−1Iq). Note that Xs

T = XT/
√
X′

TXT ∼ X/
√
X′X

with X ∼ N (δsv(r0), Iq). Using Theorem 2.1.13 of Muirhead (1982) for the appropriate

change of variables term, we find that the density of Xs
T (relative to the Haar density on the

surface of the q-dimensional unit sphere) is then equal to

f(xs
T |δs, r) =

∫ ∞

0

(2π)−q/2uq−1 exp
[
−1

2
(uxs

T − δsv(r))′(uxs
T − δsv(r))

]
du (111)

= (2π)−(q−1)/2 exp
[
1
2
(δs)2((v(r)′xs

T )
2 − v(r)′v(r))

] ∫ ∞

0

ϕ(u− δsv(r)′xs
T )u

q−1du

where ϕ is the p.d.f. of a standard normal variate, and the remaining integral may be

computed in closed form as in Appendix C.2 of Elliott, Müller, and Watson (2015). Let

F̄ be a probability distribution for (δs, r) such that under F̄ , r ∼ U(0, 1) and δs ∼ N (0, ϖ2).

Consider testing H0 : r = r0 against H1 : (δ
s, r) ∼ F̄ based on observing M(X0

T ) = (0,Xs′
T )

′.

If the probability distribution Λ∗
r0

for δs is least favorable at level α, the best test rejects for

large values of ∫
f(Xs

T |δ
s, r)dF̄ (r, δs)∫

f(Xs
T |δ

s, r0)dΛ∗
r0
(δs)

.
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Equivalently, integrating out δs ∼ N (0, ϖ2) analytically by changing the order of integration

in (111) (as in (98)), the test rejects for large values of∫
|Iq +ϖ2v(r)v(r)′|−1/2[Xs′

T (Iq +ϖ2v(r)v(r)′)
−1

Xs
T ]

−q/2dr∫
f(Xs

T |δ
s, r0)dΛ∗

r0
(δs)

(112)

with critical value equal to the 1 − α quantile of (112) with Xs
T ∼ X/

√
X′X, X ∼

N (δsv(r0), Iq), and δs ∼ Λ∗
r0
. The inversion of these tests yields the confidence set with

smallest expected length under δs = T 1/2δ/σ ∼ N (0, ϖ2) and r ∼ U(0, 1) among all invari-

ant level 1−α confidence sets for r. Also, with Λ∗
r0
replaced by arbitrary distributions for δs,

the inversion of these tests yields a set for r whose expected length under δs ∼ N (0, ϖ2) and

r ∼ U(0, 1) provides a lower bound on the expected length of any valid level 1− α invariant

confidence set. ▲

The case where ĝ is not the identity transformation is more subtle. For γ ∈ Γ and any

invariant set Γ̂, we have

1[γ ∈ Γ̂(y)] = 1[γ ∈ ĝ(O(y), Γ̂(M(y)))] (by (106))

= 1[ĝ(O(y), ĝ(O(y)−1, γ)) ∈ ĝ(O(y), Γ̂(M(y)))]

= 1[ĝ(O(y)−1, γ) ∈ Γ̂(M(y))] (by (101)) (113)

so that from Lemma 2 (b), the coverage probability of Γ̂ is given by

Eθ[1[h(θ) ∈ Γ̂(Y)]] = E
M̄(θ)

[
1[ĝ(O(Y)−1, h(M̄(θ))) ∈ Γ̂(M(Y))]

]
. (114)

Recall that fM(y|θ) is the density of M(Y) under θ ∈ M̄(Θ), and denote by fO(·|y, θ) the
conditional p.d.f. of the scalar random variable ĝ(O(Y)−1, h(θ)) given M(Y) = y under

θ ∈ M̄(Θ). In this notation, (114) for θ̄ = M̄(θ) becomes∫ ∫
1[γ0 ∈ Γ̂(y)]fO(γ0|y, θ̄)fM(y|θ̄)dνM(y)dγ0. (115)

Furthermore, assume that there exists a function gl : A 7→ [0,∞) such that for any Borel

subset Γ0 ⊂ Γ, ∫
1[γ0 ∈ ĝ(a,Γ0)]dγ0 = gl(a)

∫
1[γ0 ∈ Γ0]dγ0, (116)

that is, gl records how the length of Γ0 ⊂ Γ changes by the transformation ĝ(a,Γ0). Then,

with e(M(Y)|θ) = Eθ[gl(O(Y))|M(Y)] for θ ∈ M̄(θ),

Eθ

[∫
1[γ0 ∈ Γ̂(Y)]dγ0

]
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= EM̄(θ)

[∫
1[γ0 ∈ Γ̂(g(Ō(θ),Y))]dγ0

]
(by formal invariance)

= gl(Ō(θ)) · EM̄(θ)

[∫
1[γ0 ∈ Γ̂(Y)]dγ0

]
(by (103) and (116)) (117)

= gl(Ō(θ)) · EM̄(θ)

[
gl(O(Y))

∫
1[γ0 ∈ Γ̂(M(Y))]dγ0

]
(by (106) and (116))

= gl(Ō(θ)) · EM̄(θ)

[
e(M(Y)|M̄(θ))

∫
1[γ0 ∈ Γ̂(M(Y))]dγ0

]
(by iterated expectations)

= gl(Ō(θ))

∫ ∫
1[γ0 ∈ Γ̂(y)]e(y|θ̄)fM(y|θ̄)dνM(y)dγ0 (by Tonelli’s Theorem) (118)

where θ̄ = M̄(θ).

If the effective parameter space after imposing invariance M̄(Θ) is a singleton M̄(Θ) ={
θ̄
}
, then minimizing (118) subject to (115) is simply solved by the set

Γ̂∗(y) =
{
γ0 : e(y|θ̄)fM(y|θ̄) ≤ cv fO(γ0|y, θ̄)fM(y|θ̄)

}
(119)

for y ∈ M(Y), where cv ≥ 0 is such that (114) (or, equivalently, (115)) are equal to

1− α, at least as long as no randomization is necessary. The critical value cv here absorbs

the constant gl(Ō(θ)), so relative to the original parameter space Θ, Γ̂∗ in (119) and its

extension ĝ(O(y), Γ̂∗(M(y))) to y ∈ Y via (106) is uniformly minimal length among all

invariant confidence sets.

Note that (119) amounts to inverting the tests φγ0
:M(Y) 7→ {0, 1}

φγ0
(y) = 1[e(y|θ̄)fM(y|θ̄) > cv fO(γ0|y, θ̄)fM(y|θ̄)] (120)

which have the same structure as NP tests, with fO(γ0|y, θ̄)fM(y|θ̄) playing the role of the

density under the null hypothesis, and e(y|θ̄)fM(y|θ̄) playing the role of the density under

the alternative. The analogy is not exact, however, since these are no longer necessarily

p.d.f.s of Y (or M(Y)).30 Also, the critical value cv is not specific to γ0, but rather ensures

that Eθ̄[φĝ(O(Y)−1,h(θ̄))(M(Y))] = α (cf. (114)).

Example MEAN(o). Suppose c is known, so that the effective parameter space after

imposing invariance is the singleton M̄(θ) = (0, 1, c). With ĝ(a, γ) = aσγ + aµ, (116)

30Instead, fO(z0|z, θ̄)fM (z|θ̄) is the joint p.d.f. of the random vector (Z, Z0) with Z = M(Y) and Z0 =

ĝ(O(Y)−1, h(θ̄)) under θ̄ ∈ M̄(Θ).
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holds with gl(a) = aσ, and recalling that O(X0
T ) = (x̄1:T ,

√
X′

TXT ), e(M(X0
T )|M̄(θ)) =

E[
√
X′

TXT |Xs
T ]. Furthermore, since h((0, 1, c)) = 0, fO(·|Xs

T , c) is the conditional density of

ĝ(O(X0
T )

−1, 0) = −x̄1:T/
√

X′
TXT given Xs

T . Calculations detailed in Appendix B of Müller

and Watson (2016) show that E[
√
X′

TXT |Xs
T ] is proportional to (X

s′
TΩ

LTU
XX (c)−1Xs

T )
−1/2, and

that the conditional distribution of

x̄1:T/
√

X′
TXT − m̂(Xs

T , c)

ŝ(Xs
T , c)

(121)

given Xs
T is Student-t with q degrees of freedom, with m̂(xT , c) and ŝ(xT , c) defined in (67)

and (68). Thus, with fO(·|Xs
T , θ) the density of the implied scaled and shifted Student-t

distribution of −x̄1:T/
√
X′

TXT given Xs
T , the length optimal confidence set (119) is of the

form

Γ̂∗((0,Xs′
T )

′) =

{
γ0 : cv

√
Xs′

TΩ
LTU
XX (c)−1Xs

TfO(γ0|X
s
T , c) ≥ 1

}
where cv is chosen such that P (−x̄1:T/

√
X′

TXT ∈ Γ̂∗(Xs
T )) = 1−α, and for generic X0

T , this

yields the set

Γ̂∗(X0
T ) =

{
x̄1:T +

√
X′

TXTγ0 : cv
√
Xs′

TΩ
LTU
XX (c)−1Xs

TfO(γ0|X
s
T , c) ≥ 1

}
(122)

via (107). Since
√
Xs′

TΩ
LTU
XX (c)−1Xs

T is proportional to the scale ŝ(Xs
T , c) of the scaled and

shifted conditional Student-t distribution of x̄1:T/
√
X′

TXT , this is recognized to equal the

interval x̄1:T−m̂(xT , c)±tq,1−α/2ŝ(xT , c), where tq,1−α/2 is the 1−α/2 quantile of the Student-t
distribution, so it is equal to the Bayesian level 1− α credible set of Section 6.3. ▲

If M̄(Θ) is not a singleton, then the changes to the analysis are analogous to the con-

struction of confidence sets in the presence of nuisance parameters, as discussed in Sections

7.2.2 and 7.2.3. From (117), there is no loss of generality in considering a weighting function

F̄ with support on M̄(Θ). Applying (118), the F̄ -weighted average expected length of the

invariant confidence set Γ̂ is given by∫
Eθ

[
e(M(Y)|θ)

∫
1[γ0 ∈ Γ̂(M(Y))]dγ0

]
dF̄ (θ) = (123)∫ ∫

1[γ0 ∈ Γ̂(y)]

(∫
M̄(Θ)

e(y|θ)fM(y|θ)dF̄ (θ)
)
dνM(y)dγ0.
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And from (115), given a probability distribution Λ̄ with support in M̄(Θ), the Λ̄ weighted

average coverage probability is equal to∫
Eθ[1[h(θ) ∈ Γ̂(Y)]]dΛ(θ) =

∫ ∫
1[γ0 ∈ Γ̂(y)]

(∫
M̄(Θ)

fO(γ0|y, θ)fM(y|θ)dΛ̄(θ)
)
dνM(y)dγ0.

(124)

Minimizing (123) among all functions Γ̂ : M(Y) 7→ G subject to (124) to be at least 1 − α

yields sets of the form

Γ̂Λ̄(y) =

{
γ0 :

∫
M̄(Θ)

e(y|θ)fM(y|θ)dF̄ (θ) ≤ cvΛ̄

∫
M̄(Θ)

fO(γ0|y, θ)fM(y|θ)dΛ̄(θ)
}

(125)

where cvΛ̄ ≥ 0 is such that (124) is equal to 1 − α, at least as long as no randomization is

necessary. This amounts to inverting tests of the form

φγ0
(y) = 1

[∫
M̄(Θ)

e(y|θ)fM(y|θ)dF̄ (θ) > cvΛ̄

∫
M̄(Θ)

fO(γ0|y, θ)fM(y|θ)dΛ̄(θ)
]
. (126)

By the analogous reasoning of Section 7.2.3, any Γ̂Λ̄ in (125) provides a lower bound on

the objective (123) among all level 1 − α confidence sets Γ̂ : M(Y) 7→ G of γ = h(θ) in the

parameter space M̄(Θ). And if Λ̄ = Λ̄∗ is such that Γ̂Λ̄∗ has coverage (114) that is at least

as large as 1− α for all θ ∈ M̄(θ), that is if

sup
θ∈M̄(θ)

Eθ[φĝ(O(Y)−1,h(θ))(M(Y))] = α

then Λ̄∗ is the least favorable distribution, and the resulting invariant confidence set (cf.

(106))

ĝ(O(y), Γ̂Λ̄∗(M(y))) (127)

for y ∈ Y minimizes F̄ -weighted average expected length among all level 1 − α invariant

confidence sets.

This solution might seem complicated. But note that Γ̂Λ̄∗ is fully determined by the

least favorable distribution Λ̄∗ on M̄(Θ) and associated critical value cvΛ̄∗ . As such, the

problem is about as hard to solve as determining a single hypothesis test with a composite

null hypothesis against a composite alternative, as discussed in Section 7.2.3. In contrast,

the case where ĝ is the identity transformation and M̄(Θ) still involves nuisance parameters

requires solving a family of such problems, indexed by γ0.
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Example MEAN(p). With c ∈ C0 unknown, the length-optimal tests (126) are of the form

φγ0
((0,Xs′

T )
′) =

1

[∫
(Xs′

TΩ
LTU
XX (c)−1Xs

T )
−1/2fM(Xs

T |c)dF̄ (c) ≥ cvΛ̄

∫
fO(γ0|Xs

T , c)fM(Xs
T |c)dΛ̄(c)

]
(128)

where cvΛ̄ is such that
∫
Ec[φ−x̄1:T /

√
X′

TXT
((0,Xs′

T )
′)]dΛ̄(c) = α, and a level 1 − α F̄ -

weighted average expected length minimizing invariant confidence set requires determina-

tion of the least favorable distribution Λ̄∗ such that for φγ0
as in (128) with Λ̄ = Λ̄∗,

Ec[φ−x̄1:T /
√

X′
TXT

((0,Xs′
T )

′)] ≤ α for all c ∈ C0. Recognizing that fO(z0|xs
T , c)fM(xs

T |c) is

the joint density of X0s
T = (Z0,X

s′
T )

′ ∼ (−x1:T/
√

X′
TXT ,X

s′
T )

′, which is of the form (38), this

amounts to collecting the values µ such that∫
|ΩLTU

XX (c)|−1/2(Xs′
TΩ

LTU
XX (c)−1Xs

T )
−(q+1)/2dF̄ (c) ≤

cvΛ̄∗

∫
|ΩLTU(c)|−1/2(X̃0s

T (µ)′ΩLTU(c)−1X̃0s
T (µ))−(q+1)/2dΛ̄∗(c) (129)

where X̃0s
T (µ) = ((x1:T − µ)/

√
X′

TXT ,X
s′
T )

′ and all constants are absorbed in the critical

value cvΛ̄∗ .

The weighting function F̄ here trades off the expected length of the resulting interval for

different values of c. For known c and σ = 1, the expected length of the optimal invariant

confidence interval (122) is proportional to√
ΩLTU

x̄x̄ (c)−ΩLTU
x̄X (c)ΩLTU

XX (c)−1ΩLTU
Xx̄ (c) (130)

(cf. (68)), which becomes very large for small c. Implicitly, a flat weighting function F̄ on c

thus puts a lot of emphasis on small values of c, since these values contribute the most to the

weighted average expected length. To compensate for this mechanical effect, it makes sense

to use instead a weighting function F̄ whose density is proportional to some baseline choice

divided by (130).31 In this manner, the F̄ -weighted expected length minimizing confidence

set minimizes the baseline weighted average excess expected length ratios, a form of weighted

average regret of not knowing c. ▲
31This is equivalent to using the baseline choice after normalizing the scales of ΩLTU (c) so that (130) does

not depend on c.
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7.4 Confidence Sets and Credible Sets

7.4.1 Coverage of Credible Sets

Both confidence sets and credible sets of some parameter of interest γ = h(θ) ∈ Γ are

set estimators that map data to subsets of Γ. In practice, both are used to describe the

uncertainty about the true value of γ. By definition, a level 1− α confidence set Γ̂ contains

the true value with probability of at least 1− α

inf
θ∈Θ

Pθ(h(θ) ∈ Γ̂(Y)) ≥ 1− α (131)

while a level 1 − α credible set Γ̂p relative to some prior p(θ) contains 1 − α posterior

probability mass for all realizations Y = y∫
Θ

1[h(θ) ∈ Γ̂p(y)]p(θ|y)dθ = 1− α. (132)

Credible sets are not confidence sets by construction, that is, they do not in general satisfy

(131). Level 1− α credible sets do, however, always have prior weighted coverage of 1− α,

that is ∫
Θ

Pθ(h(θ) ∈ Γ̂p(Y))p(θ)dθ = 1− α (133)

which follows from the definition of the posterior density p(θ|y) in (63) and a change of the

order of integration. In a loose sense, confidence sets are thus more “pessimistic”, as the

infimum in (131) ensures coverage in repeated samples uniformly in θ, while a credible set

only has has frequentist coverage by construction with θ drawn from the prior. The more

pessimistic frequentist approach might be considered attractive when several decision makers

need to be convinced that Γ̂ is large enough relative to its level, at least before having seen

the data, since (131) implies
∫
Pθ(h(θ) ∈ Γ̂(Y))p(θ)dθ ≥ 1− α for all priors p (cf. Robinson

(1977)).

7.4.2 Conditional Properties of Confidence Sets

At the same time, a credible set contains 1 − α posterior probability for all realizations

of y, so its description of level 1 − α uncertainty is always meaningful. In contrast, the

confidence set property (131) does not rule out that for some realizations y, Γ̂(y) is very

short, or even empty. These cases are not necessarily artificial: Müller and Norets (2016b)
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document examples where length optimal confidence sets are empty with positive probability.

Confidence sets are thus not constrained to provide a sensible description of uncertainty for

all y, leading to potentially unreasonably short “overoptimistic” descriptions of level 1− α

uncertainty about γ for some realizations y.

Müller and Norets (2016b) provide references and a detailed analysis of this issue. As

a practical matter, their suggestion is to start with a level 1 − α credible set Γ̂p relative to

some reasonable prior with density p(θ), and to then enlarge it to induce the level 1 − α

confidence set property (131). In this way, the description of uncertainty is guaranteed to

have some attractive properties both before and after having observed the data.32

The enlargement is usefully performed in a way that the weighted average expected length

of the resulting confidence set is minimized, now among all level 1− α confidence sets that

contain the given credible set Γ̂p(y) for all y ∈ Y . This only requires a minor modification of

the corresponding discussions at the end of Sections 7.2.2 and 7.2.3 above: If h is one-to-one

with inverse h−1 : Γ 7→ Θ, as in Section 7.2.2, F -weighted average expected length is now

minimized by a confidence set that inverts a family of tests of the form

φ̃∗
γ0
(y) = 1

[∫
f(y|θ)dF (θ) ≥ cvγ0

f(y|h−1(γ0))

]
1[γ0 /∈ Γ̂p(y)] (134)

and in the presence of nuisance parameters as in Section 7.2.3

φ̃Λ∗
γ0
(y) = 1

[∫
f(y|θ)dF (θ) ≥ cvγ0

∫
f(y|θ)dΛ∗

γ0
(θ)

]
1[γ0 /∈ Γ̂p(y)] (135)

(at least as long as no randomization is necessary). The 1[γ0 /∈ Γ̂p(y)] term ensures that

the tests never reject when the credible set Γ̂p(y) contains γ0, so inversion of the tests yields

supersets of Γ̂p(y). In general, the critical value cvγ0
in (134) and (135) depend on the

choice of prior and form of Γ̂p(y) (equal-tailed or HPD, say), and if the test 1[γ0 /∈ Γ̂p(y)]

is already a level α test of H0 : h(θ) = γ0 for some γ0 ∈ Γ0, then the corresponding critical

value cvγ0
is equal to zero (since no enlargement is necessary to ensure level 1− α coverage

of this value of γ0). The constraint of always including the given credible set thus does not

make the problem of determining length optimal confidence sets any harder.

32Alternatively, one might choose a prior p(θ) that induces the coverage constraint (131) for the credible

set Γ̂p. Müller and Norets (2016a) show that such a prior exists under weak technical assumptions, at least

in a finite parameter space.
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The weighting function F and the prior density p are in principle unrelated in this

construction. But in practice, it often makes sense to use the same distribution, that is, to let

F be the distribution with density p. The inversion of (134) or (135) then yields a confidence

set Γ̂∗ that minimizes p weighted average expected length
∫
Θ
Eθ[
∫
1[γ0 ∈ Γ̂∗(y)]dγ0]p(θ)dθ

among all level 1− α confidence sets that are supersets of Γ̂p(y) for all y.

7.4.3 Conditional Properties of Confidence Sets under Invariance

The enlargement approach of the last subsection readily extends to length optimal invariant

confidence sets, as discussed in Section 7.3.3, as long as the credible set Γ̂p shares the same

invariance property. To be precise, if ĝ is the identity transformation, then the F̄ -weighted

average expected length minimizing invariant confidence set is obtained by simply inverting

tests of the form (109) and (110) multiplied by 1[γ0 /∈ Γ̂p(y)] with appropriately adjusted

critical value, just as in (134) and (135). If ĝ isn’t the identity transformation, length

minimizing sets are constructed via (127) from inverting tests of the form (120) or (126)

multiplied by 1[γ0 /∈ Γ̂p(y)].

Example MEAN(q). Let Γ̂p(x
0
T ) be the level 1− α equal-tailed credible set for µ derived

from the mixture of shifted and scaled Student-t distributions obtained from the uninforma-

tive priors discussed in Section 6.3. As discussed in Example MEAN(b), Γ̂p(x
0
T ) is invariant,

so Γ̂p(x
0
T ) = {x1:T +

√
x′
TxTγ0 : γ0 ∈ Γ̂p((0,x

s′
T )

′)}. Thus, the length-optimally enlarged

level 1− α confidence set for µ inverts tests of the form

1[γ0 /∈ Γ̂p((0,x
s′
T )

′)]1

[∫
(xs′

TΩ
LTU
XX (c)−1xs

T )
−1/2fM(xs

T |c)dF̄ (c) >

cvΛ̄∗

∫
fO(γ0|xs

T , c)fM(xs
T |c)dΛ̄∗(c)

]
(136)

where cvΛ̄∗ is now such that this test is of level α with c drawn randomly from Λ̄∗, and the

least favorable distribution Λ̄∗ is such that this test is of level α for all c ∈ C0. ▲

This approach requires specifying a prior on the original parameter space Θ that induces

Γ̂p to be invariant, such as the flat prior on a location parameter (cf. the discussion in Section

6.3). Alternatively, one might take a limited information approach to the Bayes problem:33

33Cf. Section 4 of Müller and Norets (2016b).
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Recall from Section 7.3.2 that in the construction of invariant confidence sets, the effective

observation is M(Y), and the effective parameter space is M̄(Θ). Under a prior p̄ on M̄(Θ),

consider the Bayesian problem of observing M(Y) = y generated from some θ ∈ M̄(Θ),

and having to form the posterior probability that h(θ) falls into some set Γ̂(y) ⊂ Γ. If the

parameter of interest does not vary with the transformations, that is, if ĝ is the identity

transformation, then this is simply equal to∫
M̄(Θ)

1[h(θ) ∈ Γ̂(y)]p̄(θ|y)dθ (137)

where p̄(θ|y) = p̄(θ)fM(y|θ)/m̄(y) with m̄(y) =
∫
M̄(Θ)

p̄(θ)fM(y|θ)dθ. If ĝ is not the identity
transformation, then from (113), this is the same as the posterior probability of the event

ĝ(O(Y)−1, h(θ)) ∈ Γ̂(y) conditional on observing M(Y) = y. In the notation of Section

7.3.3, this probability is∫
M̄(Θ)

(∫
1[γ0 ∈ Γ̂(y)]fO(γ0|y, θ)dγ0

)
p̄(θ|y)dθ. (138)

From this expression, a Bayesian limited to observing M(Y) ∈ M(Y) (rather than the

original Y ∈ Y) could determine, for each realization M(Y) = y, the shortest subset of Γ so

that (138) is equal to 1−α, or the equal-tailed interval with the property that the posterior

probability of ĝ(O(Y)−1, h(θ)) being above or below the upper and lower end points of an

interval of γ values is equal to α/2, respectively. Either way, the resulting set Γ̂p(y) is a

credible set for ĝ(O(Y)−1, h(θ)) in this limited information problem. Furthermore, extending

this set to all y ∈ Y via Γ̂(y) = ĝ(O(y), Γ̂p(y)) yields an invariant set with the same limited

information interpretation. Note that in this construction, one only has to form a prior p̄ on

the smaller effective parameter space M̄(Θ), and the invariance of the limited information

credible set is obtained by construction.

Example MEAN(r). With M̄(θ) = (0, 1, c), we only specify a prior p̄c on c. Conditional

on c, (121) implies that the posterior distribution of ĝ(O(Y)−1, 0) = −x̄1:T/
√

X′
TXT given

M(X0
T ) = (0,Xs′

T )
′ = (0,xs′

T )
′ is Student-t scaled by ŝ(xs

T , c) and shifted by −m̂(xs
T , c).

From the form of the density of Xs
T , (38), the posterior distribution for c is proportional

to p̄c(·)|ΩLTU
XX (·)|−1/2(xs′

TΩ
LTU
XX (·)−1xs

T )
−q/2, so that the limited information posterior for the

value of x̄1:T/
√
X′

TXT is the corresponding mixture of the scaled and shifted Student-t

distributions over c = ci, i = 1, . . . , nc. Extending this set to all X0
T yields the mixture of
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Student-t distributions scaled by ŝ(xT , ci) and shifted by x̄1:T − m̂(xT , ci), which is the same

as the posterior set derived in Section 6.3 under uninformative priors on (µ, σ). ▲

Example BRK(f). Consider a limited information Bayesian analysis for the break date r

using the prior F̄ on (δs, r). Since ĝ is the identity transformation in this example, the pos-

terior probability (137) can simply be computed from the posterior from (δs, r). Integrating

out δs over the prior δs ∼ N (0, ϖ2), r ∼ U(0, 1) yields the posterior density for r given the

“limited information” observation M(X0
T ) = (0,Xs′

T )
′

p̄(r|Xs
T ) ∝ |Iq +ϖ2v(r)v(r)′|−1/2(Xs′

T

(
Iq +ϖ2v(r)v(r)′

)−1
Xs

T )
−q/2

with constant of proportionality determined by
∫ 1

0
p̄(r|Xs

T )dr = 1, so that the equal-tailed

level 1 − α credible set is equal to Γ̂(X0
T ) = Γ̂((0,Xs′

T )
′) = [LET (X

s
T ), UET (X

s
T )] with∫ LET (xs

T )

0
p̄(r|xs

T )dr =
∫ 1

UET (xs
T )
p̄(r|xs

T )dr = α/2. ▲

7.5 Numerical Determination of Powerful Tests

As discussed above, when nuisance parameters are present under the null hypothesis, pow-

erful tests and short confidence intervals are determined by a least favorable distribution. In

some simple testing problems it is possible to “guess and verify” the least favorable distribu-

tion, but many inference problems are too complex for this strategy. This section discusses

numerical methods for constructing powerful tests using approximate least favorable distri-

butions. The chapter begins with a brief discussion of importance sampling, a well-known

simulation technique for estimating the expected value of a random variable (see, for instance,

Chapter 4.2.2 of Geweke (2005) for a more detailed discussion). In our context, importance

sampling is used to estimate the rejection frequency of tests, which is an important step in

the numerical methods for approximating least favorable distributions.

7.5.1 Importance Sampling

A first-order problem in the numerical determination of tests involves computing a test’s

rejection frequency. And, inverting tests to determine confidence intervals requires these

rejection frequencies for many values of the model’s parameters. For instance, if we want to

use a test statistic to construct a level 1 − α confidence set, one must determine its 1 − α
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quantile under all θ ∈ Θ. With an appropriate definition of the function ψ : Y 7→ R, this
amounts to evaluating Eθ[ψ(Y)] as a function of θ ∈ Θ.

One approach is to discretize Θ = {θi}nθ
i=1, and to draw, say, 10,000 (i.e., 10k) i.i.d. draws

ofY with density f(·| θi), for each i = 1, . . . , nθ, and to compute ψ(Y) for all of these nθ×10k

draws. But with nθ moderately large, this quickly becomes computationally burdensome. It

is also inefficient, since the distribution of ψ(Y) under θ2 is close the distribution of ψ(Y)

under θ1 as long as the distribution of Y under θ1 and θ2 are close to each other. One can

therefore (also) use the draws generated under θ2 to learn about the distribution of ψ(Y)

under θ1.

This idea is formalized by importance sampling. Let fp be a probability density function

for Y such that f(y|θ)/fp(y) < ∞ for all y ∈ Y , θ ∈ Θ, that is, the support of the density

fp is at least as large as the support of f(y|θ), for all θ. Then

Eθ[ψ(Y)] =

∫
ψ(y)

f(y|θ)
fp(y)

fp(y)dy

= Ep

[
f(Y|θ)
fp(Y)

ψ(Y)

]
where we write Ep for integration over fp. Thus, by the law of large numbers, we can

approximate

Eθ[ψ(Y)] ≈ N−1

N∑
l=1

f(Y(l)|θ)
fp(Y(l))

ψ(Y(l)) (139)

for N large, where Y(l) are i.i.d. draws from the proposal density fp(·). Values of y where

fp(y) > f(y|θ) are oversampled relative to the target distribution, and the importance

sampling weights f(Y(l)|θ)/fp(Y(l)) in (139) downweight these draws of Y in the calculation

of the average. Note that one can use the same set of N draws Y(1), . . . ,Y(N) to obtain

an approximation for Eθ[ψ(Y)], for all θ ∈ Θ. In practice, however, this only works well if

the distribution of the importance sample weights are not too skewed for all θ. This in turn

requires that the proposal density is never much smaller than the target densities f(·|θ), for
all θ. For low-dimensional θ, this can often be achieved by discretizing Θ = {θi}nθ

i=1, and

letting

fp(y) =
1

nθ

nθ∑
i=1

f(y|θi). (140)
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The density (140) is the equal probability mixture of f(y|θi), i = 1, . . . , nθ, so that a draw

with density fp is obtained by letting the random index J ∈ {1, . . . , nθ} be uniformly dis-

tributed, and by then drawing Y under θJ .
34

Even though the evaluation of fp(Y
(l)) under (140) requires nθ density evaluations, im-

portance sampling is still often computationally more efficient than a direct discretization

of Θ with many independent draws for each value: The approximation (139) requires many

fewer total random draws (say, N = 100k in contrast to nθ × 10k draws), and the discretiza-

tion in the construction of the proposal density (140) can be chosen much coarser (say,

nθ = 50) while still allowing for accurate approximations of Eθ[ψ(Y)] for all θ ∈ Θ.

The quality of the approximation (139) may be assessed by its standard error, which is

given by

N−1/2

√√√√N−1

N∑
l=1

(
f(Y(l)|θ)
fp(Y(l))

ψ(Y(l))

)2

−

(
N−1

N∑
l=1

f(Y(l)|θ)
fp(Y(l))

ψ(Y(l))

)2

. (141)

To catch potential errors in the coding of importance sampling, it is useful to check that

N−1
∑N

l=1 f(Y
(l)|θ)/fp(Y(l)) ≈ 1 for all θ ∈ Θ with an approximation accuracy as suggested

by (141).

Example PERS(j). Consider the problem of numerically obtaining the critical values for

the length optimal confidence set with weighting function F̄ . This requires computation of

the 1− α quantiles of

ψc0(X
s
T ) =

∫
|ΩLTU

XX (c)|−1/2

(
Xs′

TΩ
LTU
XX (c)−1Xs

T

Xs′
TΩ

LTU
XX (c0)−1Xs

T

)−q/2

dF̄ (c) (142)

under Xs
T ∼ X/

√
X′X with X ∼ N (0,ΩLTU

XX (c0)), for all c0 ≥ 0. As c0 → ∞, ΩLTU
XX (c0)

becomes proportional to Iq, so effectively the parameter space is compact. Here is an

importance sampling scheme: generate N = 100k draws of X
s,(l)
T , where in each draw,

X ∼ N (0,ΩLTU
XX (c)) with ln c randomly drawn from an equal spaced grid with lower and

upper bound of, say, −3 ln 10 and 3 ln 10. The level 1− α critical value cvc0 then solves

N−1

N∑
l=1

|ΩLTU
XX (c0)|−1/2(X

s,(l)′
T ΩLTU

XX (c0)
−1X

s,(l)
T )−q/2

fp(X
s,(l)
T )

1[ψc0(X
s,(l)) ≤ cvc0 ] ≈ 1− α (143)

34When Θ ⊂ R is a closed interval, it can make sense to include the endpoints repeatedly in the set {θi}nθ
i=1

to compensate for the lack of values of θ smaller or larger than the lower bound or upper bound, respectively.
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where fp(X
s
T ) = n−1

c

∑nc

i=1 |ΩLTU
XX (ci)|−1/2(Xs′

TΩ
LTU
XX (ci)

−1Xs
T )

−q/2 (and we omit constants in

the definition of fp(X
s
T ) that cancel in the ratio (143)). The equation can be solved by a

simple bisection algorithm, exploiting the monotonicity in cvc0 . ▲

7.5.2 Approximating Least Favorable Distributions

We now take up the problem of approximating least favorable distributions. This subsection

and the next present methods discussed in Elliott, Müller, and Watson (2015), and refine-

ments to those methods that we have subsequently found useful in a variety of contexts.

Related numerical methods are discussed in Kempthorne (1987) and Moreira and Moreira

(2013).

Recall from Section 7.2.3 that the solution to the hypothesis testing problem

H0 : θ ∈ Θ0 against H1 : the density of Y is f1 (144)

involves the least favorable distribution. We now discuss a numerical approach to determin-

ing a level α test of (144) that comes demonstrably close to maximizing power.

In this section, we assume that the parameter space Θ0 is sufficiently small such that

an approach based on a given discrete approximation Θ0 ≈ {θi}nθ
i=1 is fruitful.35 More

specifically, this requires that the null rejection probability function Eθ[φ(Y)] on θ ∈ Θ0 is

reasonably well characterized by its values on {θi}nθ
i=1. In practice, this potentially holds if

Θ0 has one or two free parameters, but not if it has five. The next section discusses strategies

for larger Θ0.

Probability distributions Λ on {θi}nθ
i=1 are points in the nθ dimensional simplex. The

defining property of the least favorable distribution Λ∗ is that the level α test φΛ of

HΛ : the density of Y is fΛ(y) =

∫
f(y|θ)dΛ(θ) (145)

for Λ = Λ∗ against H1 is also of level α under {θi}nθ
i=1, that is, Eθi [φΛ∗(Y)] ≤ α for all

i = 1, . . . , nθ. Assuming no randomization is necessary, NP tests of HΛ against H1 are of

the form

1[f1(y) >

nθ∑
i=1

νif(y|θi)] (146)

35The number of points nθ in this section does not need to equate the number of points nθ used in

importance sampling approximations of Section 7.5.1.
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where the non-negative weights νi are the product of the critical value and the probability

mass of Λ on θi. Let {νi}nθ
i=1 ∈ [0,∞)nθ be a guess for the values of νi that characterize the

test φΛ∗ . If we find that the test (146) has null rejection probability larger (smaller) than α

under some θi, then presumably a better guess is obtained by slightly increasing (decreasing)

the corresponding value of νi. This suggests Algorithm 5 (cf. Section 3 of Elliott, Müller,

and Watson (2015)).

The factors ω
(j)
i in Step 4 of Algorithm 5 control the speed at which the weights ν

(j)
i

are adjusted as a function of the discrepancy between the (estimated) rejection probability

R̂P
(j+1)

i and the nominal level α. These factors are slowly increased if the adjustment is in

the same direction iteration after iteration, but quickly decreased otherwise. This algorithm

is computationally fast, even for large N , since after the pre-computations in Step 2, it only

involves additions and multiplications of N × nθ precomputed values.

Example BRK(g). As noted in Example BRK(e), the minimal F̄ -weighted expected length

invariant confidence set for r inverts tests of H0 : r = r0 which involve a least favorable

distribution Λ̄∗
r0

for δs. Suppose we want to control size on the grid of nδs values δs ∈
{0,±0.05, . . . ,±20} = {δsi}

nδs

i=1 (these are the choices of Elliott, Müller, and Watson (2015)

in the “all frequencies” version of the problem). For simplicity, use the same grid also for

the proposal density, so that under fp, X
s
T ∼ X/

√
X′X with an equal probability mixture

of X ∼ N (δsiv(r0), Iq), i = 1, . . . , nδs . Let X
s,(l)
T be the corresponding N = 100k draws, say.

Then Step 2 amounts to computing (dropping all constants that cancel in any ratio of the

densities)

fp(X
s
T ) = n−1

δs

nδs∑
i=1

[(Xs
T − δsiv(r0))

′(Xs
T − δsiv(r0))]

−q/2

f1(X
s
T ) =

∫ 1

0

|Iq +ϖ2v(r)v(r)′|−1/2[Xs′
T

(
Iq +ϖ2v(r)v(r)′

)−1
Xs

T ]
−q/2dr

and f(Xs
T |δ

s
i , r0) as defined in (111), i = 1, . . . , nδs for all Xs

T = X
s,(l)
T , and the test (147) in

Step 3 equals φ(l),(j) = 1[f1(X
s,(l)
T ) >

∑nδs

i=1 ν
(j)
i f(X

s,(l)
T |δsi )]. It would make sense to exploit

the symmetry of the problem in the sign of δs to correspondingly impose the same symmetry

in the weights ν
(j)
i . ▲

Algorithm 5 seeks to identify the least favorable distribution on the discretized parameter

space {θi}nθ
i=1. Given the numerical approximations involved in estimating the null rejection
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Algorithm 5 Approximation of the level α least favorable distribution for Θ0 = {θi}mi=1 in

(144)

1. Draw N i.i.d. draws Y(l) from the proposal density fp, l = 1, . . . , N . ((140) provides

a candidate proposal density.)

2. Compute and store the values of fp(Y
(l)), f1(Y

(l)) and f(Y(l)|θi) for i = 1, . . . , nθ,

l = 1, . . . , N .

3. Set ν
(0)
i = 1, R̂P

(0)

i = α, and ω
(0)
i = 1 for i = 1, . . . , nθ. (These serve as initial guesses

of νi, the rejection probability and a step-size parameter.)

4. Iterating over j = 0, 1, . . . , 399, set

φ(l),(j) = 1[f1(Y
(l)) >

nθ∑
i=1

ν
(j)
i f(Y(l)|θi)], l = 1, . . . , N (147)

and

R̂P
(j+1)

i = N−1

N∑
l=1

f(Y(l)|θi)
fp(Y(l))

φ(l),(j) (148)

ν
(j+1)
i = ν

(j)
i exp

[
ω
(j)
i (R̂P

(j+1)

i − α)
]
,

ω
(j+1)
i =

{
min(1.03ω

(j)
i , 20) if (R̂P

(j+1)

i − α)(R̂P
(j)

i − α) > 0

max(0.5ω
(j)
i , 0.01) otherwise

for i = 1, . . . , nθ.

5. Let ν̂i = ν
(400)
i , ĉv =

∑nθ

i=1 ν̂i and φ̂(y) = 1[f1(y) >
∑nθ

i=1 ν̂if(y|θi)]. The approxi-

mation of the LFD Λ∗ has probability mass λ̂
∗
i = ν̂i/ĉv on θi, i = 1, . . . , nθ, and the

associated test φ̂(y) has critical value equal to ĉv. Its rejection probability under θi

is estimated to equal R̂P
(400)

i with associated standard error (141) evaluated at θ = θi

with ψ(Y(l)) = φ̂(Y(l)) = φ(l),(400).
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probabilities, and the finite number of iterations, it will not deliver the exact least favorable

distribution. What is more, most nuisance parameter spaces are not discrete.

But recall from Theorem 1 (a) of Section 7.2.3 that the power of the level α test φΛ of

HΛ in (145) against H1 provides an upper bound on the power of all level α tests of H0, for

all Λ. Thus, the distribution on {θi}nθ
i=1 obtained in Step 5 of Algorithm 5 can be applied

to obtain such an upper bound. What is more, since the largest rejection probability of φ̂

under θ ∈ {θi}nθ
i=1 is close to α, it is reasonable to expect that its largest rejection probability

under θ ∈ Θ0 is not much larger, at least as long as {θi}nθ
i=1 is a sufficiently fine discretization

of Θ0. Thus, a small increase of its critical value might be enough to obtain a test that is of

level α in Θ0, with power that is only slightly smaller than the power bound.

These considerations suggest Algorithm 6 (cf. Appendix A.3 of Müller and Watson

(2018)).36

If Algorithm 6 is employed in the context of obtaining a level 1 − α confidence set by

inverting φ̂ = φ̂γ0
, as discussed at the end of Section 7.2.3, then equation (96) shows how to

use the power π̂ = π̂γ0
of Step 6 to compute its F -weighted average expected length. What

is more, as discussed there, one can also use the power bound π̄ = π̄γ0
of Step 6 to obtain a

lower bound on this length criterion that holds for all level 1− α confidence sets.

Example BRK(h). Running the algorithm repeatedly for some fine grid of values r0 ∈
{r0,i}nr

i=1 yields a set of level α0 tests φ̂r0,i
, F̄ -weighted power π̂r0,i , and power upper bounds

π̄r0,i , i = 1, . . . , nr. The F̄ -weighted expected length of the level 1− α0 invariant confidence

interval obtained by inverting the tests φ̂r0,i
is n−1

r

∑nr

i=1(1 − π̂r0,i), and n
−1
r

∑nr

i=1(1 − π̄r0,i)

is a lower bound on the F̄ -weighted expected length of any level 1−α0 invariant confidence

interval. ▲

When the confidence set is constrained to be a superset of a given level 1 − α0 cred-

ible set Γ̂p, as discussed in Section 7.4, the algorithm only requires minor modifications:

φ(l),(j) in (147) and the left-hand side of (150) are to be multiplied by 1[γ0 /∈ Γ̂p(Y
(l))],

and correspondingly, φ̂ and φ̄ of Step 6 Algorithm 5 are to be multiplied by 1[γ0 /∈ Γ̂p(y)],

and if the left-hand side of (150) is smaller than α0 even for cv = 0, then set cv = 0, so

that φ̄(y) = 1[γ0 /∈ Γ̂p(y)] (indicating that the inversion of the credible set Γ̂p to a test of

36See Elliott, Müller, and Watson (2015) for an algorithm that more directly targets a given tolerance

between the power upper bound and the power of the level α test.
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Algorithm 6 Determination of a nearly power maximizing level α0 test of (144)

1. Form a finite approximation {θi}nθ
i=1 to Θ0.

2. Apply Algorithm 5, with α = α0 − ε for some small ε > 0 (say, 0.3% for α0 = 5%).

3. Compute supθ∈Θ0
R̂P(θ) with

R̂P(θ) = N−1

N∑
l=1

f(Y(l)|θ)
fp(Y(l))

φ̂(l) (149)

by using a fine discretization of Θ0.

4. If supθ∈Θ0
R̂P(θ) ≥ α0 increase ε and go back to Step 2, or choose a finer discretization

and go back to Step 1.

5. Use bisection to determine the value of cv < ĉv such that the test 1[f1(y) >

cv
∑nθ

i=1 λ̂
∗
i f(y|θi)] is of level α0 under the density

∑nθ

i=1 λ̂
∗
i f(y|θi), that is, cv solves

N−1

N∑
l=1

(
nθ∑
i=1

λ̂
∗
i

f(Y(l)|θi)
fp(Y(l))

)
1

[
f1(Y

(l)) > cv

nθ∑
i=1

λ̂
∗
i f(Y

(l)|θi)

]
≈ α0. (150)

6. Estimate the power π̂ of φ̂ and the power π̄ of φ̄(y) = 1[f1(y) > cv
∑nθ

i=1 λ̂
∗
i f(y|θi)] by

evaluating the tests on N1 i.i.d. draws from f1, for some large N1. If the power π̂ of

the level α0 test φ̂ of (144) is sufficiently close to the upper bound π̄, stop. Otherwise,

decrease ε and go back to Step 2.
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H0 : γ = γ0 is already of level α0). These modifications in particular require evaluating

whether γ0 ∈ Γ̂p(Y
(l)) for all l = 1, . . . , N , which for a two-sided credible set amounts to

comparing the posterior probability of the event {γ < γ0} given observations Y = Y(l) with

the bounds α0/2 and 1− α0/2. Note that all draws Y(l) for which γ0 ∈ Γ̂p(Y
(l)) effectively

drop out of the algorithm, as 1[γ0 /∈ Γ̂p(Y
(l))] = 0. Thus, the sums over the N draws Y(l)

in (148), (149) and (150) may be replaced with sums over the N0 ≤ N values of Y(l) where

γ0 /∈ Γ̂p(Y
(l)). This can yield a substantial reduction in the computational burden of the

algorithm.

Example BRK(i). Let Γ̂p(X
s
T ) be the level 1 − α equal-tailed credible set of Example

BRK(f), so that 1[r0 ∈ Γ̂p(X
s
T )] = 1[α0/2 ≤

∫ r0
0
p̄(r|Xs

T )dr ≤ 1 − α0/2]. When applying

Algorithm 6 to determine the tests of H0 : r = r0 whose inversion yields the minimal F̄ -

weighted average expected length level 1−α0 superset of Γ̂p(X
s
T ), simply multiply φ(l),(j) in

(147) and the indicator function in Steps 5 and 6 of Algorithm 5 by 1[r0 /∈ Γ̂p(X
s
T )]. ▲

As already demonstrated in the examples, under an invariance constraint relative to

transformations that do not affect the parameter of interest, Algorithms 5 and 6 are ap-

plicable by simply treating M(Y) as the observation and M̄(Θ) as the parameter space.

When the transformations affect the parameter of interest, length optimal confidence sets

still invert tests that have a NP-like structure, cf. (126). Note that for the determination

of coverage, this test only needs to be evaluated at the “true” value ĝ(O(Y)−1, h(θ)). For

simplicity, we focus in the following on the case where the support of ĝ(O(Y)−1, h(θ)) does

not vary in θ ∈ M̄(Θ). The effective observations are then (Z, Z0) with Z = M(Y) and

Z0 = ĝ(O(Y)−1, h(θ)) (cf. footnote 30). Algorithm 5 and steps 1-5 of Algorithm 6 can thus

be employed with parameter space M̄(Θ), f1(z, z0) =
∫
e(z|θ)fM(z|θ)dF̄ (θ) replacing f1(y),

f(z, z0|θ) = fO(z0|z, θ)fM(z|θ) replacing f(y|θ), and by choosing a suitable proposal density

fp(z, z0) for (Z, Z0), such as a mixture of f(z, z0|θ).
For the analogue of Step 6 of Algorithm 6, we have using (118)

Eθ

[∫
1[γ0 ∈ Γ̂(Y)]dγ0

]
=

∫ ∫
1[γ0 ∈ Γ̂(y)]e(y|θ)fM(y|θ)

fp(y, γ0)
fp(y, γ0)dνM(y)dγ0

= Ep

[
1[Z0 ∈ Γ̂(Z)]e(Z|θ)fM(Z|θ)

fp(Z, Z0)

]
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and for the F̄ -weighted average expected length (123), we obtain∫
Eθ

[∫
1[γ0 ∈ Γ̂(Y)]dγ0

]
dF̄ (θ) = Ep

[
1[Z0 ∈ Γ̂(Z)]f1(Z, Z0)

fp(Z, Z0)

]
.

An importance sampling estimate of this quantity is thus given by

N−1

N∑
l=1

f1(Z
(l), Z

(l)
0 )

fp(Z(l), Z
(l)
0 )

(1− φ
Z

(l)
0
(Z(l))) (151)

where φz0(z) is the family of tests corresponding to the set Γ̂.

In contrast to Step 6 of Algorithm 6, this estimate does not require drawing any new

random variables. Applying (151) to the tests φ̂ and φ̄ of Step 6 yields the F̄ -weighted

average expected length of the feasible level 1−α0 invariant confidence set implied by φ̂, and

a lower bound on that length for all level 1−α0 invariant confidence sets. Remarkably, these

estimates do not require the determination of the length of any realized set directly, which

would be computationally more demanding. The necessary modifications to the algorithm

in order to obtain the length-optimal superset of a given level 1 − α0 credible set Γ̂p are

exactly as before.

Example MEAN(s). We have Z0 = −x̄1:T/
√
X′

TXT and Z = M(X0
T ) = (0,Xs′

T )
′, Xs

T =

XT/
√
X′

TXT , so the effective observation is equivalently X0s
T = (−Z0,X

s′
T )

′ = X0
T/
√

X′
TXT

with X0
T ∼ N (0, T−1ΩLTU(c)). A natural proposal is to generate N i.i.d. draws X

0s,(l)
T

distributed like X0s
T with c drawn uniformly from c ∈ {ci}nc

i=1. From (38),

f(x0s
T |c) = C|ΩLTU(c)|−1/2(x0s′

T ΩLTU(c)−1x0s
T )−(q+1)/2

so that

fp(x
0s
T ) = Cn−1

c

nc∑
i=1

|ΩLTU(ci)|−1/2(x0s′
T ΩLTU(ci)

−1x0s
T )−(q+1)/2

and from the calculations in Appendix B in Müller and Watson (2016),

f1(x
0s
T ) = C

√
2π

∫
|ΩLTU

XX (c)|−1/2(xs′
TΩ

LTU
XX (c)−1xs

T )
−(q+1)/2dF̄ (c)

for the same constant C. In the context of computing the expected length of sets via (151),

it is important to keep track of the constants of proportionality in the densities, which here

yields an additional factor of
√
2π.
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In order to impose that the confidence set is a superset of a level 1 − α0 credible set

Γ̂p(X
s
T ) for Z0 given the limited informationXs

T under prior F̄ , one needs to evaluate 1[Z
(l)
0 /∈

Γ̂p(X
s,(l)
T )]. With Γ̂p(X

s,(l)
T ) the equal-tailed set discussed in Example MEAN(r), this is most

easily accomplished by computing, for each (X
s,(l)
T , Z

(l)
0 ), the posterior probability of the

event Z0 ≤ Z
(l)
0 from the mixture of Student-t distributions described there, and by checking

whether this probability falls into the interval [α0/2, 1− α0/2]. ▲

7.5.3 Algorithms for Larger Θ0

When the parameter space Θ0 is large, there are several computational challenges. First,

it is not obvious how to construct a proposal density that avoids highly skewed importance

weights under all θ. Second, for large Θ0 it is impossible to enumerate all potential points

of support for an (approximate) least favorable distribution. Third, given any candidate

level α test, it is not possible to check that it is indeed of level α by computing its rejection

probability over a fine grid of values. This section discusses two algorithms that address

these challenges that were developed in Müller and Watson (2018) and described in their

Appendix A.3.

Consider first the construction of an appropriate proposal density. The major threat to

accurate approximations via importance sampling is that for some θ and draws Y(l) from the

proposal density fp, the importance sampling weights f(Y(l)|θ)/fp(Y(l)) become very large.

One way to avoid this is to construct fp in a way that minimizes supy∈Y,θ∈Θ0
f(y|θ)/fp(y).

This is a potentially hard problem in general, especially if y is high dimensional. For mod-

erately low dimensional y (say, less than 50), we found Algorithm 7 to be effective.

The algorithm constructs fp as an equal probability mixture of f(y|θ) with θ taking on

a finite number of distinct values θ(i), i = 1, 2, . . . , j + 1. (It may make sense to form a

mixture of densities f̃(y|θ) with thicker tails instead, such as a multivariate normal with

moderately larger variance, as long as it remains easy to generate draws from the mixture.)

For most problems, f(y|θ) is a quickly evaluated smooth function of both θ and y, so that

even though the maximization in (152) is high dimensional, standard hill climbing techniques

such as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm can be applied. It is not

necessary to obtain the global maximizer in each iteration; rather it suffices to eventually

capture all θ that lead to large importance weights. For θ ∈ {θ(i)}ji=1, f(y|θ)/f
(j)
p (y) is

bounded above by j. Instead of the vague stopping criterion in 2.c, one may alternatively
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Algorithm 7 Proposal determination for large Θ0

1. Initialize f
(1)
p (·) = f(·|θ(1)) for some θ(1) ∈ Θ0.

2. Iterating over j = 1, 2 . . .,

(a) Numerically determine

max
y∈Y,θ∈Θ0

f(y|θ)
f
(j)
p (y)

. (152)

(b) Set f
(j+1)
p (y) = (j + 1)−1

∑j+1
i=1 f(y|θ

(i)), where θ(j+1) is the maximizer of (152).

(c) Stop iterating when the maximized values f(y|θ)/f (j)
p (y) in (152) stabilize.

stop if, say, 200 randomly chosen starting values for a BFGS maximization do not yield a

value of f(y|θ)/f (j)
p (y) that is larger than some fixed value M , such as M = 50. In general,

importance sampling estimates from N draws are at least as precise than those from an

i.i.d. Monte Carlo estimate with N/M draws (cf. equation (141)).

Now consider the issue that large Θ0 cannot usefully be approximated with discrete grids.

A potential solution here is again iterative: Build up an appropriate set of support points

of the approximate least favorable distribution by including values of θ that lead to over

rejections. A major advantage of the importance sampling approximation to the rejection

probability is that it is a smooth function in θ, so hill climbing techniques can be applied to

identify points of over rejection. A basic version of such an algorithm is given as Algorithm

8.

The numerical maximization in (153) is best approached with hill climbing techniques,

such as the BFGS algorithm, and often benefits from explicitly programming the derivative.

Here discrete parameter spaces (such as a finite set of local-to-unity parameters) is a major

hindrance. One approach to obtain a smooth version is to form a quadratic interpolation on

a finite grid of precomputed inverted covariance matrices, which ensures continuity of the

first derivative of the likelihood, and thus (153).

In practice, it often makes sense to collect several (distinct) values of θ that lead to an

over rejection in Step 4.b as potential support points for the LFD to avoid numerous and

relatively costly recomputations of the LFD weights in Step 4.a. Similarly, one might also
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Algorithm 8 Determination of a nearly power maximizing level α0 test of (144) for large

Θ0

1. Apply Algorithm 7 to determine fp.

2. Draw N i.i.d. draws Y(l) from density fp, l = 1, . . . , N .

3. Set θ(1) ∈ Θ0 arbitrarily.

4. For j = 1, 2, . . . ,

(a) Apply Algorithm 5 with {θi}nθ
i=1 = {θ(i)}ji=1, and α = α0 − ε for some small ε > 0

(say, 0.5% for α0 = 5%).

(b) Numerically maximize

max
θ∈Θ0

N−1

N∑
l=1

f(Y(l)|θ)
fp(Y(l))

φ(j)(Y(l)) (153)

where φ(j) is the test φ̂ of Step 5 of Algorithm 5 obtained in Step 4a.

(c) If the maximized value in (153) is larger than α0, then set θ(j+1) equal to the

maximizer of (153), and continue the iteration.

(d) Otherwise, exit the iteration and proceed as in Steps 5 and 6 of Algorithm 6.
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drop values of θ(i) to which the LFD assigns near zero weight. Such a modification could

potentially lead to a cycle in the algorithm, but we have not encountered this in practice.

8 A Spectral Analysis Perspective

This section draws the connection between the low-frequency analysis of Section 3 and

spectral analysis. The first subsection derives the limiting covariance matrix of the cosine

transforms in terms of the spectral density of the underlying time series. A calculation shows

that the covariance matrix is determined by the shape of the spectral density close to the

origin, a function we call the local-to-zero spectrum. The second subsection presents a central

limit theorem for smooth weighted averages under general assumptions about the shape of

the local-to-zero spectrum.

8.1 Local-to-Zero Spectra

We are interested in deriving the limit distribution of the cosine transformations of ut.

Suppose ut can be written as a function of some mean-zero second-order stationary stochastic

process vt with spectral density ΥT .
37 We first consider the case where ut is scalar, and

ut = vt. We then turn to ∆ut = vt, as, for instance, in the I(1) model, or, more generally,

in the I(d) model with 1/2 < d < 3/2, and then we take up the vector case.

Let T−1VT be the covariance matrix of cosine weighted averages of vt in a sample of size

T . Note that VT is a function of the autocovariances of vt, which in turn can be written

as a function of the spectrum ΥT . Furthermore, since the cosine weights are smooth, one

would expect that the value of VT is largely determined by the low-frequency properties

of vt, that is, by the behavior of ΥT close to frequency zero. This suggests that one can

obtain asymptotic results under the assumption that for arguments close to zero, ΥT suitably

converges, and this limit behavior of ΥT then determines the limit VT → V.

Specifically, suppose that in the O(T−1) neighborhood of the origin, the suitably scaled

spectral density of vt converges (see assumption (iv) of Theorem 2 below for a precise tech-

37The T subscript on ΥT accommodates “double-array” processes such as the LTU model in which the

AR(1) coefficient depends on T . To ease notation, we omit the corresponding T subscript on vT,t = vt in

this subsection.
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nical assumption on the convergence and the limit function S)

ΥT (λ/T ) → S(λ) (154)

for some S : R 7→ [0,∞). Since the function S(λ) is the large sample limit of the shape of

the original spectrum ΥT close to the origin, we refer to it as the local-to-zero spectrum. For

example, the I(d) model is characterized by a spectral density ΥT (ϕ) that is proportional

to |ϕ|−2d for small ϕ. Thus, with the proper scale normalization of ΥT , (154) holds with a

local-to-zero spectrum S(λ) = C|λ|−2d for some C > 0. As a second example, for ΥT the

spectrum of an AR(1) process with coefficient 1− c/T , a straightforward calculation shows

that after appropriate scale normalization, S(λ) = C/(λ2 + c2).

Classic spectral analysis considers asymptotics where ΥT is a bounded and continuous

function that does not depend on T . In that case, the limit in (154) yields a constant, which

is a flat local-to-zero spectrum, and the limiting properties of VT are as if vt was white noise.

It is the curvature of ΥT in the T−1 neighborhood of the origin as captured by non-flat S

that leads to non-I(0) low-frequency dynamics in the sense of this chapter and that makes

classic spectral analysis results inapplicable.

Consider a weighted average of vt,

WT = T−1/2

T∑
t=1

bT,tvt

where the weights bT,t are such that supt |bT,t − b(t/T )| → 0 for some Riemann integrable

function b : [0, 1] 7→ R. The cosine transforms are an example of WT . Recalling that the

j-th autocovariance of vt is given by
∫ π

−π
ΥT (ϕ)e

−iϕjdϕ with i =
√
−1, we obtain for the

covariance between two such weighted averages, W 1
T and W 2

T

E[W 1
TW

2
T ] = T−1E

[(
T∑

s=1

b1T,svs

)(
T∑
t=1

b2T,tvt

)]

= T−1

T∑
s=1

T∑
t=1

b1T,sb
2
T,tE[vsvt]

= T−1

T∑
s=1

T∑
t=1

b1T,sb
2
T,t

∫ π

−π

ΥT (ϕ)e
−iϕ(t−s)dϕ

= T−1

∫ π

−π

ΥT (ϕ)

(
T∑

s=1

b1T,se
iϕs

)(
T∑
t=1

b2T,te
−iϕt

)
dϕ
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=

∫ πT

−πT

ΥT (λ/T )

(
T−1

T∑
t=1

b1T,te
iλt/T

)(
T−1

T∑
t=1

b2T,te
−iλt/T

)
dλ

→
∫ ∞

−∞
S(λ)

(∫ 1

0

b1(s)eiλsds

)(∫ 1

0

b2(s)e−iλsds

)
dλ. (155)

Thus, for ut = vt and using the cosine weights bT,t = Ψj((t−1/2)/T ) =
√
2 cos(jπ(t−1/2)/T ),

the i,j-th element of the limiting covariance matrix V of the cosine transform of ut are given

by weighted averages of S(λ), with weights of the form
(∫ 1

0
Ψi(s)e

iλsds
)(∫ 1

0
Ψj(s)e

−iλsds
)
.

Now suppose ∆ut = T−1vt, with v0 = 0, that is, ut = T−1
∑t

s=1 vs. Then by summation

by parts, with BT,t−1 = T−1
∑t−1

s=1 bT,s,

W∆
T = T−1/2

T∑
t=1

bT,tut

= −T 1/2

T∑
t=1

BT,t−1∆ut + T 1/2BT,TuT

= T−1/2

T∑
t=1

(BT,T −BT,t−1)vt. (156)

Let B(s) =
∫ s

0
b(r)dr, and note that T−1

∑T
t=1(BT,T −BT,t−1)e

iλt/T →
∫ 1

0
(B(1)−B(s))eiλsds.

Proceeding as for (155) yields

E[W∆1
T W∆2

T ] →
∫ ∞

−∞
S(λ)

(∫ 1

0

(B1(1)−B1(s))eiλsds

)(∫ 1

0

(B2(1)−B2(s))e−iλsds

)
dλ.

Furthermore, by integration by parts,∫ 1

0

(B(1)−B(s))eiλsds =

∫ 1

0
b(s)eiλsds−B(1)

iλ

so that we equivalently obtain

E[W∆1
T W∆2

T ] →
∫ ∞

−∞

S(λ)

λ2

(∫ 1

0

b1(s)eiλsds−B1(1)

)(∫ 1

0

b2(s)e−iλsds−B2(1)

)
dλ. (157)

Consider first the case that B1(1) = B2(1) = 0, which corresponds to weights bT,t that

average to zero. As noted in Section 3.1, the cosine weights have this property. In this

case, the limit in (157) is the same function of the weights b1, b2 and the “pseudo” local-

to-zero spectrum Sp(λ) = S(λ)/λ2 as the limit in the stationary case (155).38 In fact, for

38See Solo (1992) for a related discussion of stochastic processes with non-integrable spectra.
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the parametric models considered in this chapter, this pseudo local-to-zero spectrum is the

natural continuous extension of the local-to-zero spectrum for stationary processes: In the

suitably scaled LTU model, as c→ 0, S(λ) → C/λ2, which is the pseudo-spectrum of the I(1)

model with ut = T−1
∑t

s=1 vs and vt ∼ I(0) (that is, S(λ) in (157) is constant). Similarly,

recall that we defined the fractional model with d ∈ (1/2, 3/2) via ut = T−1
∑t

s=1 vs, vt ∼
I(d−1). Then after suitable normalization, the fractional model ut ∼ I(d), d(−1/2, 3/2) has

limiting spectrum S(λ) = Cλ−2d, and λ−2d → λ−1 as d → 1/2 both from above and below.

In particular, the limiting covariance matrix V in these models is therefore a continuous

function of c ∈ [0,∞) and d ∈ (−1/2, 3/2) as long as the constant with associated weights

bT,t = 1 is not included.

If the integrated weights B1(1) or B2(1) are not zero, then this equivalence between

(155) and (157) does not hold. Intuitively, if the weights do not sum to zero, then the

variance of the weighted average also loads on the unconditional variance of the process,

rather than only on the variance of differences ut − us. But the unconditional variance

diverges as one approaches non-stationarity: In the stationary local-to-unity model for ut,

for instance, Var(T 1/2ut) = O(1) for fixed c, but the variance diverges as c → 0, and the

limit of the variance of T−1/2
∑T

t=1 ut is not well defined. In contrast, in the I(1) model with

ut = T−1
∑t

s=1 vs and vt ∼ I(0), the variance of T−1/2
∑T

t=1 ut = T−1/2
∑T

t=1(1− (t−1)/T )vt

converges to a finite limit.

These notions generalize to vector valued vt ∈ Rn. Let Hn be the space of n×n Hermitian

matrices. Suppose the n× n spectral density matrix ΥT : [−π, π] 7→ Hn of vt satisfies

ΥT (λ/T ) → S(λ)

for some function S : R 7→ Hn. For two sequences of weights bi
T,t ∈ Rn, i = 1, 2, satisfying

supt ||bi
T,t − bi(t/T )|| → 0 for Riemann integrable functions bi : [0, 1] 7→ Rn, define the

weighted averages

W i
T = T−1/2

T∑
t=1

v′
tb

i
T,t and W

∆i
T = T−1/2

T∑
t=1

(
T−1

t∑
s=1

vs

)′

bi
T,t.

Then proceeding as for (155) yields

E[W 1
TW

2
T ] →

∫ ∞

−∞

(∫ 1

0

b1(s)eiλsds

)′

S(λ)

(∫ 1

0

b2(s)e−iλsds

)
dλ,
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and

E[W∆1
T W∆2

T ] →
∫ ∞

−∞

(∫ 1

0

b1(s)(eiλs − 1)ds

)′
S(λ)

λ2

(∫ 1

0

b2(s)(e−iλs − 1)ds

)
dλ.

8.2 A Central Limit Theorem

The inference results of this chapter crucially depend on the large sample Gaussianity of the

suitably scaled cosine transform XT , and not just on the value of the limiting covariance

matrix V discussed in the previous subsection. The following result, due to Müller and

Watson (2016) and Müller and Watson (2017), provides a corresponding CLT.

Theorem 2. Let vT,t =
∑∞

s=−∞ aT,sεt−s, where aT,s are n×n and εt is n× 1. Suppose that

(i) {εt,Ft} is a martingale difference sequence with E[εtε
′
t] = Σε, Σε invertible,

suptE[||εt||2+δ] <∞ for some δ > 0, and

E[||E[εtε′t −Σε|Ft−s]||] ≤ ξs (158)

for some sequence ξs → 0.

(ii) For every ϵ > 0 there exists an integer Lϵ > 0 such that

lim supT→∞ T−1
∑∞

l=LϵT+1

(
T sup|s|≥l ||aT,s||

)2
< ϵ.

(iii)
∑∞

s=−∞ ||aT,s|| < ∞ (but not necessarily uniformly in T ). The spectral density of

vT,t thus exists; denote it by ΥT : [−π, π] 7→ Hn, where Hn is the space of n× n Hermitian

matrices.

(iv.a) Assume that there exists a function S : R 7→ Hn such that
∫ 1

0
||S(λ)||dλ < ∞,∫∞

1
||S(λ)||λ−2dλ <∞ and for all fixed K,∫ K

0

||ΥT (λ/T )− S(λ)||dλ→ 0. (159)

(iv.b) For every diverging sequence KT → ∞, KT ≤ πT ,

T−1

∫ π

KT /T

||ΥT (ϕ)||ϕ−2dϕ =

∫ πT

KT

||ΥT (λ/T )||λ−2dλ→ 0. (160)

(iv.c)

T−1/2

∫ π

1/T

||ΥT (ϕ)||1/2ϕ−1dϕ = T−1/2

∫ πT

1

||ΥT (λ/T )||1/2λ−1dλ→ 0. (161)
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(v) The double array of weights bT,t is such that supt ||bT,t−b(t/T )|| → 0 for a Riemann

integrable function b : [0, 1] 7→ Rn, and supT

∑T
t=2 ||bT,t − bT,t−1||2 <∞.

Then

T−1/2

T∑
t=1

v′
T,tbT,t ⇒ N

(
0,

∫ ∞

−∞

(∫ 1

0

eiλsb(s)ds

)′

S(λ)

(∫ 1

0

e−iλsb(s)ds

)
dλ

)
. (162)

Proof. The claim of the theorem generalizes Theorem 1 of Müller and Watson (2017)

only in the assumptions about the weights bT,t. The properties that are used in the proof

of Müller and Watson (2017) are that supt,T ||bT,t|| is finite, which follows from assumption

(v), that supT

∑T
t=2 ||bT,t − bT,t−1||2 (in their Lemma 1), which is assumed in part (v), and

that sup0≤λ≤K ||T−1
∑T

t=1 bT,te
iλt/T −

∫ 1

0
eiλsb(s)ds|| → 0 (in their Lemma 2), which follows

from

sup
0≤λ≤K

||T−1

T∑
t=1

(bT,t − b(t/T ))eiλt/T || ≤ sup
t

||bT,t − b(t/T )|| → 0

and the Riemann integrability of b. ■

To better understand the role of assumptions (ii) and (iii), consider some leading examples

for scalar series, n = 1. Suppose first that vT,t is causal and weakly dependent with exponen-

tially decaying aT,s, |aT,s| ≤ C0e
−C1s for some C0, C1 > 0, as would arise in causal and invert-

ible ARMA models of any fixed and finite order. Then T−1
∑∞

l=LT+1

(
T sup|s|≥l |aT,s|

)2 → 0

for any L > 0, S(λ) is constant and equal to the long-run variance of vT,t divided by 2π,

and (160) and (161) hold, since ΥT is bounded,
∫∞
KT

λ−2dλ → 0 for any KT → ∞ and

T−1/2
∫ πT

1
λ−1dλ = T−1/2 ln(πT ) → 0.

Second, suppose vT,t is fractionally integrated with parameter d ∈ (−1/2, 1/2). With vT,t

scaled by T−d, aT,s ≈ C0T
−dsd−1, so that T−1

∑∞
l=LT+1

(
T sup|s|≥l |aT,s|

)2 → C2
0

∫∞
L
s2d−2ds,

which can be made arbitrarily small by choosing L large. Further, for ϕ close to zero,

ΥT (ϕ) ≈ C2
0(ϕT )

−2d, so that S(λ) = (2π)−1C2
0λ

−2d. Under suitable assumptions about

higher frequency properties of vT,t, (160) and (161) hold, since T−1
∫ π

KT /T
(ϕT )−2dϕ−2dϕ =∫ πT

KT
λ−2d−2dλ → 0 and T−1/2

∫ π

1/T
(ϕT )−dϕ−1dϕ = T−1/2

∫ πT

1
λ−d−1dλ = T−1/2d−1(1 −

(πT )−d) → 0. For instance, even integrable poles in ΥT at frequencies other than zero

can be accommodated.

Third, suppose vT,t is an AR(1) process with local-to-unity coefficient ρT = 1 −
c/T and innovation variance equal to T−1. Then aT,s = T−1ρsT , s ≥ 0. Thus
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T−1
∑∞

l=LT+1

(
T sup|s|≥l |aT,s|

)2 → ∫∞
L
e−2csds, which can be made arbitrarily small by choos-

ing L large. Further, ΥT (ϕ) = (2π)−1T−2/|1 − ρT e
−iϕ|2, which is seen to satisfy (159) with

S(λ) = (2π)−1(λ2 + c2)−1. Conditions (160) and (161) also hold in this example, since

ΥT (ϕ) ≤ (2π)−1.

Corresponding central limit theorems for a vector of weighted averages of one or multiple

time series follow readily from Theorem 2 by invoking the Cramér-Wold device. If the object

of interest are weighted averages of the non-stationary process uT,t = T−1
∑t

s=1 vT,s, then

one can invoke Theorem 2 after rewriting the weighted average as in (156) above. This

approach can also handle the case where the vector uT,t has components that are of different

integration order.
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