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Abstract 
 
 

Bai and Ng (2002) propose a consistent estimator for the number of static factors in a 

large N and T approximate factor model.  This paper shows how the Bai-Ng estimator can 

be modified to consistently estimate the number of dynamic factors in a restricted 

dynamic factor model.  The modification is straightforward: the standard Bai-Ng 

estimator is applied to residuals obtained by projecting the observed data onto lagged 

values of principal component estimates of the static factors. 

 

Key Words: approximate factor model, dynamic factor model, Bai-Ng estimator
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1.  Introduction 

 

Panel datasets with large time series dimension (T) and cross section dimension 

(N) are being increasingly used in macroeconomics for both forecasting and structural 

analysis.  Often, these data are analyzed in the context of an assumed latent factor 

structure of the form    

 

    Xt = ΛFt + et ,           (1.1) 

 

for t = 1, …, T, where Xt denotes an N×1 vector of observed variables, Ft is an r×1 vector 

of latent factors, Λ is a matrix of coefficients, and et is a vector of errors.  When the 

elements of et have weak cross sectional and serial correlation, the factors Ft summarize 

the important cross covariance properties of the variables.   

A question of fundamental interest is the number of latent factors, r, that are 

required in (1.1).  Significant progress on addressing this problem was made in Bai and 

Ng (2002) who proposed consistent estimators of r based on a penalized least squares 

objective function associated with the classic principal components estimator. However, 

in dynamic models it is important to differentiate between the number of “static” factors 

(necessary to fit the covariance matrix of X) and the number of  “dynamic” factors 

(necessary to fit the spectral density matrix of X).  While the Bai-Ng estimator was 

developed to estimate the number of static factors, this paper shows that it can be easily 

modified to consistently estimate the number of dynamic factors. 



 2 
 

 

Dynamics can be incorporated in the model by assuming that Ft evolves as a 

VAR:  

 

                                                Ft =
1

p

i t i
i

F −
=

Φ∑ + εt              (1.2) 

 

with innovations εt that can be represented as εt = Gηt where G is r×q with full column 

rank and ηt is sequence of shocks with mean zero and covariance matrix Σηη = Iq ; ηt is 

the vector of dynamic factor shocks.  Several papers show how (1.1) and (1.2) can be 

derived from a restricted version of a general dynamic factor model driven by q dynamic 

factors; in this case Ft contains linear combinations of current and lagged values of the 

dynamic factors and (1.1)-(1.2) is analogous to the companion form representation of the 

dynamic factor model.  (See Bai and Ng (2005), Forni, Hallin, Lippi, and Reichlin 

(2005), Giannone, Reichlin, and Sala (2004), and Stock and Watson (2004, 2005).)  

To see how the Bai-Ng estimator might be used to estimate the number of 

dynamic factors, q, substitute (1.2) into (1.1) to obtain 

    

   Yt = Γηt + et            (1.3) 

 

where Yt = Xt − 
1

p
i t ii
F −=

ΛΦ∑  and Γ = ΛG. Thus Yt can be represented as a factor model 

with q factors that correspond to the common shocks ηt. Were Yt observed data, q could 

be consistently estimated by applying the Bai-Ng estimator to Yt.  This is infeasible 

because Yt depends on unknown parameters and lags of the unobserved factors.   
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This paper studies the consistency properties of the Bai-Ng estimator applied to 

t̂Y  = Xt − 1
ˆˆp

i t ii
F −=

Π∑ where ˆ
iΠ is an estimator of ΛΦi and t̂ iF −  is an estimator of Ft−i.  The 

analysis proceeds in two steps.  In the first step, the Bai-Ng estimator is shown to remain 

consistent if the estimation error t̂Y −Yt is sufficiently small (specifically 

2
1 1

ˆ( )T n
it itt i

Y Y
= =

−∑ ∑ = Op[max(N,T)]).  The second step shows that the principal 

components estimator of F and feasible estimators of Π yield estimators îtY  that achieve 

this degree of accuracy.  Together these results yield a feasible consistent estimator of the 

number of dynamic factors. 

The estimator studied in this paper was proposed in Stock and Watson (2005) and 

applied to the problem of estimating the number of dynamic factors in a large panel of 

U.S. macroeconomic time series.  Stock and Watson (2005) did not study the consistency 

properties of the estimator, and that is the purpose of the present paper.  Other estimators 

have also been proposed and used in applied work.  Notably, Forni, Hallin, Lippi and 

Reichlin (2000) suggest informal methods based on the relative size of eigenvalues from 

the estimated spectral density matrix for X, related methods have been proposed and 

applied in the empirical analysis of Forni, Lippi and Reichlin (2003), Giannone, Reichlin 

and Sala (2004) and elsewhere, and Hallin and Liška (2005) show how a consistent 

estimator of q can be constructed from the estimated spectrum. Bai and Ng (2005a) 

propose an estimator for q based on the residual covariance matrix of the VAR in (1.3) 

estimated using the principal components estimator of Ft, and show that the estimator is 

consistent.  Section 3 studies the relative performance of various consistent estimators 

using a simulation study. 
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More generally, the plan of this paper is as follows. Section 2 briefly summarizes 

the Bai-Ng estimator, shows the estimator remains consistent when applied to data 

contaminated with a small amount of measurement error, and uses this result to show that 

the Bai-Ng estimator applied to Ŷ  is a consistent estimator of the number of dynamic 

factors.  A Monte Carlo study is presented in Section 3 to gauge the performance of the 

estimator, Section 4 contains some concluding remarks, and the Appendix includes the 

proofs to the results given in Section 2.  

 

2. Assumptions and Asymptotic Results 

2.1  Review of Existing Work with a Small Extension 

We begin by reviewing results for the model (1.1) under a standard set of 

assumptions.  Transposing (1.1) and stacking the T equations yields  

  

   X  = FΛ′ + e       (2.1) 

 

where X is T×N, F is T×r, Λ is N×r, and e is T×N. The t′th rows of X, F and e are Xt′, Ft′, 

and et′; the i’th row of Λ is λi′; the i’th element of Xt is Xit and similarly for eit, so that Xit 

= λi′Ft + eit.  

Asymptotic properties of various statistics generated by this model have been 

studied in Stock and Watson (2002), Bai and Ng (2002), Bai (2003), and Bai and Ng 

(2005a, 2005b) under a similar set assumptions.  The focus is on datasets in which both N 

and T are large, so that the asymptotics assume that , →∞N T  jointly (equivalently that 

( )=N N T  with lim ( )T N T→∞ = ∞ ).  The minimum value of N and T plays an important 
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role in the analysis and this value is denoted by sNT = min(N,T). The remaining 

assumptions concern moments and dependence properties of the variables; for the 

purposes of this paper, the following assumptions suffice:  

 

(A.1)  ( ) .t t rE F F I′ =  

 

(A.2)  E(λiλi′) = ΣΛΛ, where ΣΛΛ is a diagonal matrix with elements σii >σjj >0 for i<j.  

(When Λ is deterministic, ΣΛΛ  is interpreted as the limiting empirical average.)   

 

(A.3)  1

1
.

T p

t t r
t

T F F I−

=

′→∑  

(A.4)  1

1
.

N p

i i
i

N λ λ−
ΛΛ

=

′→Σ∑  

(A.5)   (NT)−1 2 2

1 1
0

N T p

it e
i t

e σ
= =

→ >∑∑ . 

 

(A.6)  For some integer m ≥ 2 and for all integers j ≤ m, Etrace[(ee′)j] = 

O(NT×max[N,T]j−1). 

 

(A.7)  
2

2

1 1 1

( )
T T N

i t is
t s i

E F e O NTλ
= = =

⎛ ⎞′ =⎜ ⎟
⎝ ⎠

∑∑ ∑ .   

 

(A.8)  2

1 1
( )

T N

i i it
t i

E e O NTλ λ
= =

′ =∑∑ . 
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(A.9)  
2

1 1

( )
N T

t it
i t

E F e O NT
= =

=∑ ∑ . 

 

Assumptions (A.1)-(A.5) rule out explosive or trending behavior in both the time 

series and cross section dimensions; the particular values of E(FtFt′) and E(λiλi′) listed in 

(A.1) and (A.2) are normalizations (because ΛFt = ΛHH−1Ft for arbitrary H), and 

assumption (A.5) rules out degenerate cases in which the factors explain all of the 

variance of the Xit’s.  Assumption (A.6) limits the variability and dependence in the errors 

eit. For j = 1, it implies that 2
1 1

( )N T
iti t

E e
= =∑ ∑ = O(NT); for j = 2, it implies that 

( ) ( )2 2

1 1 1 1 1 1
( max[ , ])N N T T T N

it jt it i pi j t t i
e e e e O NT N Tττ= = = = = =

= = ×∑ ∑ ∑ ∑ ∑ ∑ , and so forth for 

larger values of j.  Assumptions (A7)-(A9) limit the dependence across elements of Λ, F 

and e.  Importantly, all of these assumptions hold for sequences of i.i.d. random variables 

with the appropriate number of moments, and assumptions (A6)-(A9) can be interpreted 

as relaxing the i.i.d. assumption to allow weak dependence. 

The Bai-Ng estimators of r are based on penalized least squares objective 

functions.  The penalty function depends on a deterministic function g(N,T) that satisfies 

g(N,T) → 0 and NTsδ g(N,T) → ∞ for δ = (m − 1)/m, where m is given in assumption (A6). 

The least squares objective function is conveniently written in terms of the eigenvalues of 

the XX′ moment matrix. Let ωi denote the i’th largest eigenvalue of (NT)−1XX′, and 

consider the least squares problem: 
{ }{ }

min k k
i tFλ

1 2
1 1

( ) ( )N T k k
it i ti t

NT X Fλ−
= =

′−∑ ∑ , where 

k
iλ and k

tF  are arbitrary k×1 vectors.  The usual principal components calculations imply 
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that the average predicted sum of squares associated with the least squares solution is 

given by R(k,X) = 
1

k
ii

ω
=∑ .  Letting 2ˆXσ = 1 2

1 1
( ) N T

iti t
NT X−

= =∑ ∑  denote the average total 

sum of squares, the penalized average sum of squared residuals is PC(k,X) = 2ˆXσ − R(k,X) 

+ kg(N,T), and the Bai-Ng “PC” estimator is  

 

  max0
( ) arg min ( , )

PC

k r
BN X PC k X

≤ ≤
= .    (2.2) 

 

Letting ICP(k,X) = ln[ 2ˆXσ − R(k,X)] + kg(N,T), the Bai-Ng “ICP” estimator is 

 

   max0
( ) arg min ( , )

ICP

k r
BN X ICP k X

≤ ≤
= ,   (2.3) 

 

where rmax  is a finite constant that satisfies r ≤ rmax. 

Consistency of the Bai-Ng estimator is given in the following lemma: 

 

Lemma 1 (Bai-Ng):  Under assumptions (A1)-(A9), ( )
pPC

BN X →  r and ( )
pICP

BN X → r. 

 

As discussed on the last section, we will study consistency of the Bai-Ng 

estimators applied to variables measured with error ( t̂Y  in the notation of the last section).  

The following result shows that the Bai-Ng estimators remain consistent in the presence 

of sufficiently small measurement error. 
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Lemma 2: Suppose (A1)-(A9) are satisfied and X  = X + b where 

1 1 2 1
1 1

( )N T
it p NTi t

T N b O s− − −
= =

=∑ ∑ , then  ( )
pPC

BN X r→  and ( )
pICP

BN X r→ . 

 

Bai and Ng (2002) showed consistency of ( )
PC

BN X  and ( )
ICP

BN X  for δ = 1 

using assumptions like those in A1-A9, but without A6. However, there was an error in 

their proof. As shown in their errata, their proof is valid using a stronger condition on e. 

In particular, for e = Rξ H  where R and H are N×N and T×T matrices with bounded 

eigenvalues, ξ is required to be a T×N matrix of independently distributed random 

variables with mean zero and bounded 7th moments. 

 

2.2 Consistent Estimation of the Number of Dynamic Factors 

The results from Lemma 2 suggest that the estimators ˆ( )
PC

BN Y  and ˆ( )
ICP

BN Y  

will be consistent for the number of dynamic factors if the error Ŷ −Y  is small.  We 

consider two versions of Ŷ that are sufficiently accurate for this purpose.  Both rely on a 

first-stage estimate of F.  Thus, let F̂  and Λ̂ denote the principal components estimators 

of F and Λ constructed from (2.1) using a consistent estimator of r. Let   

1 2
ˆ ˆ ˆ( , ,..., )pΦ Φ Φ denote the OLS estimators from the regression of t̂F  onto ( 1

ˆ ˆ,...,t t pF F− − ). 

The first version of Ŷ  is  

 

  
1

ˆ ˆ ˆˆ
p

A
t t i t i

i
Y X F −

=

= − ΛΦ∑ .     (2.4) 
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The second version of Ŷ  uses direct estimates of the regression of Xt onto lags of Ft.  Let 

1 2
ˆ ˆ ˆ( , ,..., )OLS OLS OLS

pΠ Π Π denote the OLS estimators from the regression of Xt  onto 

( 1
ˆ ˆ,...,t t pF F− − ). The second version of Ŷ  is  

 

   
1

ˆ ˆˆ
p

B OLS
t t i t i

i
Y X F −

=

= − Π∑       (2.5) 

 

which does not impose the cross-equation constraint Πi = ΛΦi.  

Consistency of the Bai-Ng estimator for q is then readily shown if (i) the factor 

model (1.3) for Y satisfies the analogues of conditions (A.1)-(A.9) above, and (ii) the 

estimators F̂ , Λ̂ , Φ̂  and ˆ OLSΠ  are sufficiently accurate. Thus to begin, assume that 

(A.1)-(A.9) hold with η replacing F and Γ replacing Λ.  (Note that the normalization in 

(A.1)-(A.2) can be achieved by appropriate choice of G.)  Stock and Watson (2002) and 

Bai (2003) discuss the accuracy of the estimators F̂  and Λ̂  under assumptions like those 

listed as (A.1)-(A.9) above.  As in Bai and Ng (2005), Φ̂will be T1/2-consistent under a 

standard set of assumptions for the VAR for Ft:  

(A10) Let Ft = 1( ,..., )t t pF F− −
′′ ′ , then 

(i) the stochastic process {Ft} is stationary and ergodic; 

(ii) E(FtFt′) is non-singular; 

(iii) vec(Ftηt′)  is a martingale difference sequence with finite second moments. 

 

Finally, accuracy of ˆ OLSΠ  requires the additional assumption: 



 10 
 

 

 

(A.11)  
2

1 1

( )
N T

t it
i t

E e O NT
= =

=∑ ∑F . 

 

We then have:  

 

Theorem: Consider the model (1.1)-(1.3). Suppose that (1.1) satisfies (A.1)-(A.9), that 

the analogous assumptions are satisfied for (1.3) and that (A.10) is satisfied. Then  

(a) ˆ( )
pPC ABN Y →q and ˆ( )

pICP ABN Y →q. 

(b) In addition, suppose that (A.11) is satisfied. Then ˆ( )
pPC BBN Y →q and ˆ( )

pICP BBN Y →q. 

 

The remaining ingredient in the testing problem is p, the number of lags in the 

VAR.  It is straightforward to show that, under the usual VAR assumptions, p can be 

estimated consistently by BIC. 

In some models, innovations in a subset of the Xt variables may depend on only a 

subset of the dynamic shocks ηt. For example in Bernanke, Boivin and Eliasz (2005) and 

Stock and Watson (2005), Xt is partitioned into a set of  “slow moving” variables and 

other variables, Xt = ( Slow
tX ′ Other

tX ′)′ where innovations in Slow
tX  depend on only a subset 

of the ηt.  It is straightforward to show that the size of this subset can be consistently 

estimated (NSlow,T → ∞)  using 
IPC

BN applied to the relevant subset of elements of Ŷ . 
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3. Comparing the Estimators Using Simulated Data  

3.1  Experimental Design 

The experimental design is taken from Bai and Ng (2005a) where four data 

generating processes (DGPs) are considered. 

DGPs.  In the first design (DGP1), Xit = λi′Ft + eit and Ft = ΦFt−1 + Gηt, where Ft 

is 5×1 and ηt is 3×1, so that r = 5 and q = 3; {λi}, {eit}, and {ηt} are mutually 

independent, with {λi}and {ηt}  i.i.d. standard normal random variables/vectors; Φ is a 

diagonal matrix with elements (0.2, 0.375, 0.55, 0.725, 0.90), and the columns of G are 

randomly chosen from the unit sphere and are independent of the other random variables.  

To allow cross sectional dependence in the idiosyncratic errors, et is N(0, Ω), where Ωij = 

ρ|i−j|. Results are presented for ρ = 0 and ρ = 0.5. 

DGP2 is the same as DGP1, but with r = 3 and Φ = 0.5×I3. 

In the final two designs, Xt is a moving average of factors ft that follow an AR 

(DGP3) or MA (DGP4) process. In DGP3, Xit = (λi0 + λi1L)′ft + eit and ft = φft−1 + ηt, 

where ft is 2×1, so that r = 4 and q = 2.  This model can be written as (1.1) and (1.2) with 

Ft = (ft′  ft−1′)′, λi′ = (λi0′  λi1′),  Φ = 
2

0
0I

φ⎡ ⎤
⎢ ⎥
⎣ ⎦

, and G = [ I2  02×2]′. The factor loadings and 

errors are generated as in DGP1, and φ = 0.5×I2. In DGP4, Xit = (λi0 + λi1L + λi2L2 )′ft + eit 

and ft = (I2 + ΘL)ηt, where ft is 2×1, so that r = 6 and q =2. In this design Ft = (ft′  ft−1′  

ft−2′)′, but now Ft follows an MA process, so that the VAR in (1.2) serves as an 

approximation.  The MA coefficient matrix is diagonal with elements 0.2 and 0.9.  

Estimators. The 
ICP

BN estimators are implemented using the penalty factor 

g(N,T) = ln(sNT)/A, where A = NT/(N+T).  (This is the “ICP2” penalty factor in Bai and 
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Ng (2002).)  r is estimated using ( )
ICP

BN X , where X is the standardized version of the 

data generated by DGP1-DGP4, and where rmax = 10.  q is estimated using ˆ( )
ICP ABN Y  

and ˆ( )
ICP BBN Y  constructed using an estimated VAR(2) for t̂F .  

Two alternative estimators, 3q̂  and 4q̂  from Bai and Ng(2005a), were also 

constructed. These estimators use the eigenvalues of the residual covariance matrix of the 

VAR for t̂F  to estimate q. Specifically, let 
1

ˆ ˆˆ p
it t t ii

F Fε −=
= − Φ∑  where t̂F  is the r̂ ×1 

vector of factors estimated by principal components using the normalization N−1 ˆ ˆ′Λ Λ = Ir 

and T−1 ˆ ˆF F′ = diag(σii), 1
ˆˆ 1

ˆ ˆ ˆT
t tt p

Tεε ε ε−
= +

′Σ = ∑  denote the estimated covariance matrix, and 

denote the ordered eigenvalues of ˆˆ
ˆ
εεΣ  by c1 ≥ c2 ≥ … ≥ r̂c . Let D1,k = ˆ2 2 1/ 2

1 1
[ / ]r

k ii
c c+ =∑  

and D2,k = ˆ ˆ2 2 1/ 2
1 1

[ / ]r r
i ii k i

c c
= + =∑ ∑ ; the estimators are 2/5

3 1,ˆ min [ : / ]k k NTq k D m s= < , and 

2/5
4 2,ˆ min [ : / ]k k NTq k D m s= < , where m is a positive constant.  Following Bai and 

Ng(2005a) we implement these estimators using m = 1.0. 

 

3.2 Results 

Results are shown in Table 1 for each DGP and various values of N and T=100. 

Panel A shows results with ρ = 0 (so that the eit errors are mutually uncorrelated) and 

panel B shows results with ρ = 0.5 (so that eit are correlated in the cross section). 

Looking first at panel A, five results stand out.  First, the estimators are quite 

accurate for N as small as 50, at least for the simple designs considered.  All of the 

estimators produce the correct answer in more that 98% of the simulations when N = 50, 
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and perform nearly as well when N = 40. Second, the constraint Πi = ΛΦi used by 

ˆ( )
ICP ABN Y  but ignored by ˆ( )

ICP BBN Y  is useful: ˆ( )
ICP ABN Y  has a smaller root mean 

squared error than ˆ( )
ICP BBN Y  in all of the cases considered in the table.  Third, for 

DGP1 and DGP2, ˆ( )
ICP ABN Y  achieves a higher proportion of correct values of q than the 

other estimators; for DGP3 and DGP4, 3q̂  achieves the highest proportion of correct 

values.  Fourth, in DGP1, while ΣFF has rank 5, 2 of its eigenvalues are small and  

( )
IPC

BN X  tends to underestimate the number of static factors when N is large. In spite of 

this, ˆ( )
IPC aBN Y  and ˆ( )

IPC bBN Y  accurately estimate the number of dynamic factors. 

Finally, comparing the results from DGP3 and DGP4, the AR approximation for DGP4 

does not appear to lead to a serious deterioration of performance in any of the estimators.  

Panel B shows that the performance of the 
IPC

BN deteriorates when there is cross 

sectional correlation in the errors: ( )
IPC

BN X  tends to overestimate r, the number of static 

factors, and, while not as severe, this upward bias is also evident in ˆ( )
IPC aBN Y  and 

ˆ( )
IPC bBN Y .  3q̂  and 4q̂  suffer only a small deterioration in accuracy.  Both ˆ( )

IPC
BN Y  

and q̂  provide accurate estimates of the number of dynamic factors when N = 100. 
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4. Summary and Concluding Remarks 

 

This paper has proposed a modification of the Bai-Ng (2002) estimator and shown 

that the modification provides a consistent estimator for the number of dynamic factors in 

an approximate dynamic factor model.  The modification uses a result (Lemma 2) that 

shows that the Bai-Ng estimator remains consistent even when the data are contaminated 

with a suitably small amount of error.  This result may prove useful in other settings, for 

example in models in which the equation for Xit has the form Xit = λi′Ft + βi′Zit + eit, 

where Zit are observed regressors and βi must be estimated.  We leave these calculations 

for future work. 
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Appendix 

This appendix summarizes key details of proofs to the results given in the text.  A 

complete set of proofs are available in the detailed appendix (D-Appendix hereafter) 

available at http://www.wws.princeton.edu/~mwatson.  

 

Proof of Lemma 1: This is a version of Theorem1 and Corollary 1 in Bai and Ng (2002) 

under slightly different assumptions.  See D-Appendix for a detailed proof using the 

assumptions listed above. 

 

Proof of Lemma 2: Let kω  denote the k’th ordered eigenvalue of (NT)−1 XX ′ . As shown 

in D-Appendix, Lemma 2 is implied by (i)  kω − ωk = op(1) for k ≤ r and (ii) kω − ωk = 

Op( NTs δ− ) for k > r.   To verify (i) and (ii), let μ denote the largest eigenvalue of (NT)−1bb′, 

then 

  1/ 2 1/ 22( ) 2( )k k k k kω μ ω μ ω ω μ ω μ+ − ≤ ≤ + +     (2.6) 

 

follows from Horn and Johnson 3.3.16 (1991) .   By the assumption of the lemma, 

trace(bb′) = 1( )p NTO s− , so that μ = Op( 1
NTs− ).  For k ≤ r 

p

k kkω σ→  (D-Appendix R11), so 

that kω − ωk = op(1) for k = 1, …, r follows from (2.6), and this shows (i).  For k > r, 

( )k p NTO s δω −=  (D-Appendix R28), thus (2.6) implies 1 (1 ) / 2( ) ( )k k p NT p NTO s O s δω ω − − +− = + ,  

and this shows (ii). 
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Proof of Theorem 1: Let Φ = (Φ1, Φ2, … , Φp),  Π = ΛΦ, and Ft = 1( ,..., )t t pF F− −
′′ ′ , so that  

Ft = ΦFt + Gηt and Yt = Xt − ΠFt. Let πi′ denote the i’th row of Π and γi′ denote the i’th 

row of Γ, then Xit = ηt′γi + Ft′πi + eit.  The following results are versions of Theorem 1 in 

Bai and Ng (2002) (see D-Appendix): 

 

21 1

1

ˆ ( )
T

t NT t p NT
t

T F J F O s− −

=

− =∑ , where JNT  is an r×r matrix that satisfies JNT 
p

→J a non-

singular matrix,         (2.7)  

 

21

1

ˆ
T

t t
t

T −

=

−∑ NTF J F  = Op( 1
NTs− ),where JNT  is an (pr)×(pr) matrix that satisfies JNT 

p
→  J a 

non-singular matrix,         (2.8) 

 

N−1
2

1

1

ˆ
N

i NT i
i

Jλ λ−

=

′−∑ = Op( 1
NTs− ).       (2.9) 

 

The following lemma is useful:  

Lemma 3: Let ˆiπ denote an estimator of πi and bit =  ˆ ˆiπ′tF − Ft′πi.  If 

2
1 1

1

ˆ
N

i i
i

N π π− −

=

′−∑ NTJ = Op( 1
NTs− ), then 1 1 2

1 1

T N

it
t i

T N b− −

= =
∑∑ = Op( 1

NTs− ). 

 

Proof: Write ˆ
tF  = JNTFt + ( ˆ

tF −JNTFt) and ˆiπ = 1− ′
NTJ πi + ( ˆiπ − 1− ′

NTJ πi), so that  

bit  = 1ˆ( )t i iπ π−′ ′′ −NT NTF J J  + 1ˆ( )t t iπ
− ′′− NT NTF J F J  + ˆ( )t t ′− NTF J F 1ˆ( )i iπ π− ′− NTJ . Thus  
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∑
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NT NT
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F J J
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2

1

1

ˆ
N

i i
t

π π
=

⎡ ⎤′−⎢ ⎥⎣ ⎦
∑ -1

NTJ

 

 

and the result follows from 21

1

T

t
t

T −

=
∑ F  = Op(1) (A.10), 2

NTJ
p

→ ||J||2 < ∞, 

2
1 1

1

ˆ
N

i i
t

N π π− −

=

′−∑ NTJ  = Op( 1
NTs− ) (assumption of the lemma), and 

21

1

ˆ
T

t t
t

T −

=

−∑ NTF J F = 

Op( 1
NTs− ) (from (2.8)). 

 

Part (a) of Theorem 1: The feasible OLS estimator of Φ is 

1

1 1

1 1

ˆ ˆ ˆ ˆˆ
T T

t t t t
t p t p

T F T
−

− −

= + = +

⎡ ⎤ ⎡ ⎤′ ′Φ = ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ ∑F F F .  Using Ft = ΦFt + Gηt, t̂F  can be written as 

1 1ˆ ˆ ˆ ˆ( ) ( )t NT t NT t t NT t NT t tF J J G F J F Jη− −= Φ + + − − Φ −NT NT NTJ F J F J F . Thus   

1 1 1 1

1 1 1

1

1

1

ˆ ˆ ˆ ˆ ˆˆ ( ) ( )

ˆ ˆ

T T T

NT NT t t t NT t t NT t t t
t p t p t p

T

t t
t p

J J GT T F J F J T

T

η− − − −

= + = + = +

−

−

= +

⎡ ⎤′ ′ ′Φ − Φ = + − − Φ −⎢ ⎥
⎣ ⎦

⎡ ⎤′×⎢ ⎥
⎣ ⎦

∑ ∑ ∑

∑

-1
NT NT NTJ F F J F J F F

F F

 



 18 
 

 

Straightforward calculations (see D-Appendix) show that each of the terms 1

1

ˆ
T

t t
t p

T η−

= +

′∑ F ,  

1

1

ˆ ˆ( )
T

t NT t t
t p

T F J F−

= +

′−∑ F , and 1

1

ˆ ˆ( )
T

t t t
t p

T −

= +

′−∑ NTF J F F  are Op( 1/ 2
NTs− ), and that 

1

1

ˆ ˆ
T

t t
t p

T −

= +

′∑ F F
p

→J E(FtFt′)J which is nonsingular.  Thus 1ˆ
NTJ −Φ − Φ NTJ  = Op( 1/ 2

NTs− ). 

 

To complete the proof, let ˆˆˆi iπ λ′= Φ , write 1 1ˆ ˆ( )i NT i i NT iJ Jλ λ λ λ− −′ ′= + −  and 

1ˆ
NTJ −Φ = Φ NTJ +( 1ˆ

NTJ −Φ − Φ NTJ ), so that 1ˆi iπ π− ′− NTJ = 1 1ˆ( )NT i NT iJ Jλ λ− −′ ′′Φ −NTJ  

+ 1 1ˆ( )NT NT iJ J λ− − ′′Φ − Φ NTJ  + 1 1ˆˆ( ) ( )NT i NT iJ Jλ λ− − ′′Φ − Φ −NTJ . Thus 
2

1 1

1

ˆ
N

i i
i

N π π− −

=

′−∑ NTJ = 

Op( 1
NTs− ) follows from 1ˆ

NTJ −Φ − Φ NTJ  = Op( 1/ 2
NTs− ) and N−1

2
1

1

ˆ
N

i NT i
i

Jλ λ−

=

′−∑ = Op( 1
NTs− ). Part 

(a) then follows from Lemma 3. 

 

Part (b) of Theorem 1: The feasible OLS estimator of πi is 

ˆOLS
iπ =

1

1 1

1 1

ˆ ˆ ˆ
T T

t t t it
t p t p

T T X
−

− −

= + = +

⎡ ⎤ ⎡ ⎤
′⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑F F F .  

Using Xit = Ft′πi + ηt′γi + eit = 1ˆ
t

−′ ′
NTF J πi − 1ˆ( )t t iπ

− ′′− NT NTF J F J +ηt′γi + eit,  

 

1

1 1

1

1 1 1 1

1 1 1

ˆ ˆˆ

ˆ ˆ ˆ ˆ( ) .

T
OLS
i i t t

t p

T T T

t t t i t t i t it
t p t p t p

T

T T T e

π π

π η γ

−

− −

= +

− − − −

= + = + = +

⎡ ⎤′ ′− = ×⎢ ⎥
⎣ ⎦
⎡ ⎤′ ′′− + +⎢ ⎥
⎣ ⎦

∑

∑ ∑ ∑

NT

NT NT

J F F
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Straightforward calculations (see D-Appendix) show that each of the terms 

2

1 1 1

1 1

ˆ ˆ( )
N T

t t t i
i t p

N T π− − −

= = +

′′−∑ ∑ NT NTF F J F J , 
2

1 1

1 1

ˆ
N T

t t i
i t

N T η γ− −

= =

′∑ ∑F , and 

2
1 1

1 1

ˆ
N T

t t i
i t

N T η γ− −

= =

′∑ ∑F are Op( 1
NTs− ), and that 1

1

ˆ ˆ
T

t t
t p

T −

= +

′∑ F F
p

→J E(FtFt′)J which is 

nonsingular.  Thus 
2

1 1

1

ˆ
N

OLS
i i

i

N π π− −

=

′−∑ NTJ = Op( 1
NTs− ), and the result follows from Lemma 

3. 
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Table 1: Simulation Results 
Cov(eitejt) = ρ|i − j| 

 
A. ρ = 0 

ˆ( )
ICP ABN Y  ˆ( )

ICP BBN Y  3q̂  4q̂  ( )
ICP

BN X  N T 

< q = q > q rmse < q = q > q rmse < q = q > q rmse < q = q > q rmse < r = r > r 
A. DGP1 Xit = λi′Ft + eit; Ft = ΦFt−1 + Gηt; r = 5, q = 3 

20 100 0.00 0.84 0.16 0.84 0.00 0.63 0.37 2.50 0.31 0.69 0.00 0.56 0.15 0.83 0.01 0.41 0.27 0.17 0.56 
30 100 0.00 1.00 0.00 0.07 0.00 0.98 0.02 0.17 0.05 0.95 0.00 0.23 0.04 0.96 0.00 0.20 0.64 0.24 0.12 
40 100 0.00 1.00 0.00 0.01 0.00 1.00 0.00 0.03 0.01 0.99 0.00 0.09 0.01 0.99 0.00 0.08 0.79 0.18 0.03 
50 100 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.05 0.00 1.00 0.00 0.05 0.85 0.14 0.01 
100 100 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.86 0.14 0.00 

B. DGP2  Xit = λi′Ft + eit; Ft = ΦFt−1 + Gηt; r = 3, q = 3 
20 100 0.00 0.85 0.15 0.76 0.00 0.67 0.33 2.31 0.23 0.77 0.00 0.48 0.16 0.84 0.00 0.40 0.00 0.52 0.48 
30 100 0.00 1.00 0.00 0.05 0.00 0.98 0.02 0.16 0.03 0.97 0.00 0.16 0.03 0.97 0.00 0.16 0.00 0.92 0.08 
40 100 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.03 0.00 1.00 0.00 0.04 0.00 1.00 0.00 0.04 0.00 0.99 0.01 
50 100 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 
100 100 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 

C. DGP3 Xit = (λi0 + λi1L)′ft + eit; ft = Φft−1 + ηt; r = 4, q = 2 
20 100 0.00 0.74 0.26 0.79 0.00 0.51 0.49 2.20 0.03 0.95 0.01 0.22 0.00 0.73 0.26 0.66 0.00 0.09 0.91 
30 100 0.00 0.92 0.08 0.28 0.00 0.85 0.15 0.40 0.00 0.99 0.00 0.08 0.00 0.90 0.10 0.41 0.00 0.40 0.60 
40 100 0.00 0.98 0.02 0.15 0.00 0.95 0.05 0.23 0.00 1.00 0.00 0.04 0.00 0.96 0.04 0.24 0.00 0.61 0.39 
50 100 0.00 1.00 0.00 0.06 0.00 0.99 0.01 0.11 0.00 1.00 0.00 0.02 0.00 0.99 0.01 0.12 0.00 0.76 0.24 
100 100 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.99 0.01

D. DGP4  Xit = (λi0 + λi1L + λi2)′ft + eit; ft = (I + ΘL )ηt; r = 6, q = 2 
  20  100  0.00   0.73   0.26   0.81   0.00  0.51  0.49  2.09  0.02  0.97  0.00  0.16   0.01  0.92  0.07  0.32  0.00  0.25  0.75 
  30  100  0.00   0.95   0.05   0.22   0.00  0.88  0.12  0.35  0.00  1.00  0.00  0.04   0.00  0.99  0.01  0.12  0.00  0.69  0.31 
  40  100  0.00   0.99   0.01   0.08   0.00  0.98  0.02  0.13  0.00  1.00  0.00  0.00   0.00  1.00  0.00  0.04  0.00  0.84  0.16 
  50  100  0.00   1.00   0.00   0.03   0.00  1.00  0.00  0.06  0.00  1.00  0.00  0.00   0.00  1.00  0.00  0.00  0.00  0.93  0.07 
 100  100  0.00   1.00   0.00   0.00   0.00  1.00  0.00  0.00  0.00  1.00  0.00  0.00   0.00  1.00  0.00  0.00  0.00  1.00  0.00 
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Table 1 (Continued) 
B. ρ = 0.5 

ˆ( )
ICP ABN Y  ˆ( )

ICP BBN Y  3q̂  4q̂  ( )
ICP

BN X  N T 

< q = q > q rmse < q = q > q rmse < q = q > q rmse < q = q > q rmse < r = r > r 
A. DGP1 Xit = λi′Ft + eit; Ft = ΦFt−1 + Gηt; r = 5, q = 3 

20 100 0.00 0.00 1.00 6.49 0.00 0.00 1.00 6.97 0.32 0.68 0.00 0.58 0.07 0.87 0.06 0.37 0.00 0.00 1.00 
30 100 0.00 0.30 0.70 2.15 0.00 0.02 0.98 5.30 0.06 0.94 0.00 0.25 0.01 0.93 0.07 0.28 0.01 0.03 0.96 
40 100 0.00 0.73 0.27 0.67 0.00 0.32 0.68 2.32 0.01 0.99 0.00 0.09 0.00 0.97 0.03 0.17 0.14 0.19 0.67 
50 100 0.00 0.92 0.08 0.30 0.00 0.70 0.30 0.86 0.00 1.00 0.00 0.05 0.00 0.99 0.01 0.08 0.35 0.31 0.34 
100 100 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.01 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.82 0.18 0.00 

B. DGP2  Xit = λi′Ft + eit; Ft = ΦFt−1 + Gηt; r = 3, q = 3 
20 100 0.00 0.00 1.00 6.28 0.00 0.00 1.00 6.96 0.27 0.73 0.00 0.52 0.04 0.90 0.06 0.33 0.00 0.00 1.00 
30 100 0.00 0.25 0.75 2.14 0.00 0.03 0.97 5.18 0.03 0.97 0.00 0.18 0.00 0.95 0.05 0.24 0.00 0.02 0.98 
40 100 0.00 0.71 0.29 0.73 0.00 0.36 0.64 2.15 0.00 1.00 0.00 0.05 0.00 0.99 0.01 0.09 0.00 0.25 0.75 
50 100 0.00 0.92 0.08 0.30 0.00 0.73 0.27 0.75 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.60 0.40 
100 100 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00

C. DGP3 Xit = (λi0 + λi1L)′ft + eit; ft = Φft−1 + ηt; r = 4, q = 2 
20 100 0.00 0.00 1.00 7.48 0.00 0.00 1.00 7.96 0.03 0.92 0.04 0.28 0.00 0.58 0.42 0.80 0.00 0.00 1.00 
30 100 0.00 0.47 0.53 1.76 0.00 0.08 0.92 5.32 0.00 0.98 0.02 0.15 0.00 0.55 0.45 0.88 0.00 0.00 1.00 
40 100 0.00 0.83 0.17 0.50 0.00 0.48 0.52 1.63 0.00 0.99 0.01 0.10 0.00 0.63 0.37 0.81 0.00 0.03 0.97 
50 100 0.00 0.95 0.05 0.22 0.00 0.80 0.20 0.58 0.00 1.00 0.00 0.06 0.00 0.79 0.21 0.61 0.00 0.15 0.85 
100 100 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.08 0.00 0.90 0.10 

D. DGP4  Xit = (λi0 + λi1L + λi2)′ft + eit; ft = (I + ΘL )ηt; r = 6, q = 2 
20 100 0.00 0.01 0.99 7.51 0.00 0.00 1.00 7.96 0.03 0.97 0.01 0.18 0.00 0.81 0.19 0.49 0.00 0.00 1.00 
30 100 0.00 0.47 0.53 1.75 0.00 0.10 0.90 5.03 0.00 1.00 0.00 0.05 0.00 0.87 0.13 0.41 0.00 0.01 0.99 
40 100 0.00 0.84 0.16 0.48 0.00 0.51 0.49 1.46 0.00 1.00 0.00 0.01 0.00 0.94 0.06 0.28 0.00 0.13 0.87 
50 100 0.00 0.96 0.04 0.21 0.00 0.82 0.18 0.53 0.00 1.00 0.00 0.00 0.00 0.98 0.02 0.16 0.00 0.39 0.61 
100 100 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.98 0.01 
Notes:  The first two columns show the values of N and T used in the simulations. The next four columns summarize the results for the 

estimator ˆ( )
ICP ABN Y ; the columns labeled < q, = q and > q shows the fraction of estimates that were less than , equal to, and greater 

than q; the column labeled rmse is the root mean square error of the estimates. The same entries are provided for the other estimators 

of q. The final three columns summarize the results for the estimates of r. Results are based on 5,000 simulations. 


