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Abstract

We propose a method for constructing confidence intervals that account for many

forms of spatial correlation. The interval has the familiar ‘estimator plus and minus a

standard error times a critical value’ form, but we propose new methods for constructing

the standard error and the critical value. The standard error is constructed using

population principal components from a given ‘worst-case’ spatial correlation model.

The critical value is chosen to ensure coverage in a benchmark parametric model for the

spatial correlations. The method is shown to control coverage in finite sample Gaussian

settings in a restricted but nonparametric class of models and in large samples whenever

the spatial correlation is weak, i.e., with average pairwise correlations that vanish as the

sample size gets large. We also provide results on the efficiency of the method.
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1 Introduction

Prompted by advances in both data availability and theory in economic geography, inter-

national trade, urban economics, development and other fields, empirical work using spatial

data has become commonplace in economics. These applications highlight the importance of

econometric methods that appropriately account for spatial correlation in real-world settings.

While important advances have been made, researchers arguably lack practical methods that

allow for reliable inference about parameters estimated from spatial data for the wide-range

spatial designs and correlation patterns encountered in applied work.1 This paper takes a

step forward in this regard.

Specifically, we consider the problem of constructing a confidence interval (or test of a

hypothesized value) for the mean of a spatially-sampled random variable. We propose a

confidence interval constructed in the usual way, i.e., as the sample mean plus and minus an

estimate of its standard error multiplied by a critical value. The novelty is that the standard

error and critical value are constructed so the resulting confidence interval has the desired

coverage probability (say, 95%) for a relatively wide range of correlation patterns and spatial

designs. The analysis is described for the mean, but the required modifications for regression

coefficients or parameters in GMM settings follow from standard arguments.

To be more precise, suppose that a random variable y is associated with a location s ∈
S, where S ⊂ Rd. Figure 1 provides two sets of examples. Panel (a) shows three one-

dimensional (d = 1) spatial designs. It begins with the familiar case of regularly spaced

locations, corresponding to the standard time series setting; the next two examples show

irregularly spaced times series with randomly selected locations drawn from a density g,

where g is either uniform or triangular. Panel (b) shows two geographic examples, so d = 2,

for the U.S. state of Texas. In the left panel, locations are randomly selected from a uniform

distribution, while in the right panel locations are more likely to be sampled from areas with

high economic activity, here measured by light intensity as seen from space.2 The goal of this

paper is to construct confidence intervals with desired coverage, conditional on the observed

locations, for a rich set of possible locations such as those shown in the figure.

1Ibragimov and Müller (2010), Sun and Kim (2012) and Bester et al. (2016), for instance, find nontrivial

size distortions of modern methods even in arguably fairly benign designs, and Kelly (2019) reports very large

distortions under spatial correlations calibrated to real-world data.
2The light data are from Henderson et al. (2018).

1



 
(a) Three One-Dimensional Spatial Designs 

 
Regularly spaced 

 
 

Uniform spatial density 

 
 

Triangular Spatial Density 

 
 
 

(b) Two Geographic Spatial Designs 
 

Uniform spatial density 
 

‘Light’ spatial density 

 
 

Figure 1: Examples of Spatial Designs

Adding some notation, suppose

yl = µ+ ul for l = 1, ..., n (1)

where yl is associated with the observed spatial location sl, µ is the mean of yl, and conditional

on the observed locations {sl}nl=1, ul is an unobserved mean-zero error that is covariance

stationary, that is E[ulu`] = σu(sl − s`) for some covariance function σu : Rd 7→ R. Let ȳ

denote the sample mean, and consider the usual t-statistic

τ =

√
n(ȳ − µ0)

σ̂
(2)

where σ̂2 is an estimator of σ2, the variance of
√
n(ȳ − µ). Tests of the null hypothesis

H0 : µ = µ0 reject when |τ | > cv, where cv is the critical value, and the corresponding
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confidence interval for µ has endpoints ȳ± cv σ̂/
√
n. Inference methods in this class differ in

their choice of σ̂2 and critical value cv.

The case of regularly-spaced time series observations (the first example in Figure 1) is the

most well-studied version of this problem. There, Var(
√
n(ȳ−µ)) is the long-run variance of y,

and traditional choices for σ̂2 are kernel-based consistent estimators such as those proposed in

Newey and West (1987) and Andrews (1991), and inference uses standard normal critical val-

ues. A more recent literature initiated by Kiefer et al. (2000) and Kiefer and Vogelsang (2005)

accounts for the sampling uncertainty of kernel-based σ̂2 by considering “fixed-b” asymptotics

where the bandwidth is a fixed fraction of the sample size, which leads to a corresponding

upward adjustment of the critical value. Closely related are projection estimators of σ̂2 where

the number of projections is treated as fixed in the asymptotics, as in Müller (2004)?, Phillips

(2005), Sun (2013), and others, leading to Student-t critical values. These newer methods

are found to markedly improve size control under moderate serial correlation compared to

inference based on standard normal critical values. (For example, see the numerical results

in Lazarus et al. (2018).)

The econometrics literature on the derivation of spatial HAR inference is smaller, but has

developed along similar lines: Conley (1999), Kelejian and Prucha (2007) and Kim and Sun

(2011) derive consistent variance estimators, Bester et al. (2016) (also see Rho and Vogelsang

(2019)) study the spatial analogue of the fixed-b kernel estimators, Sun and Kim (2012) suggest

a spatial projection-based estimator, and Ibragimov and Müller (2010, 2015)??, Bester et al.

(2011) and Cao et al. (2020) derive asymptotically justified spatial HAR inference based on

a finite number of clusters.

This paper makes progress over this literature by developing a method that (i) accounts

for sampling uncertainty in σ̂2; (ii) controls size under a restricted but nonparametric form

of strongly correlated ul; (iii) is asymptotically valid under generic weakly correlated ul. The

second property sets it apart from all previously mentioned methods; in a time series set-

ting, Robinson (2005) and Müller (2014) derive inference under parametric forms of strong

dependence, and Dou (2019) derives optimal inference under a non-parametric form of strong

dependence under a simplifying Whittle-type approximation to the implied covariance matri-

ces.

The remainder of the paper is organized as follows. Section 2 defines the new method. It

uses a projection-type variance estimator, where the projection weights are spatial correlation
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principal components from a given ‘worst case’ benchmark correlation matrix. We correspond-

ingly refer to the method as SCPC. Section 3 studies its small sample size control in Gaussian

models. We derive a generic result about size control of t-statistics in a nonparametric class

of covariance matrices, and apply it to study the robustness of SCPC under a large class of

persistent processes defined in spectral terms. We note that both the basic idea of SCPC,

as well as some of the results in Section 3 could potentially also be applied to settings other

than (1), such as to HAR inference for data generated from spatial autoregressive models,

or network data, but we do not pursue this further in this paper. Section 3 concludes with

some numerical evidence on size control of SCPC under heteroskedasticity and mismeasured

locations.

Section 4 studies the efficiency of the SCPC confidence interval. We compare its ex-

pected length to the length of confidence intervals derived from previously suggested spatial

t-statistics, and to a lower bound that holds for all confidence intervals that, like SCPC,

control size over a wide range of persistent spatial processes.

We turn to a large sample analysis in Section 5. We derive the asymptotic distribution

of projection and fixed-b spatial t-statistics, including the SCPC t-statistic, and find that the

density of the locations g plays a key role in their limiting distributions. This dependence is

present even under weak correlation, that is, when the average correlation across observations

shrinks to zero as n → ∞. Notably, only when g is constant (that is, when the density is

uniform) does the asymptotic distribution under weak correlation coincide with the asymp-

totic distribution induced by i.i.d. data. Thus, the usual suggestions for critical values, such

as student-t critical values for projection t-statistics, are not generically valid under weak

dependence for non-constant g. We suggest an alternative, easy-to-implement choice for the

critical value that restores asymptotic validity under generic weak correlation, which is part

of the definition of the SCPC method in Section 2.

Section 6 concludes with a brief discussion on how to apply SCPC in more general regres-

sion or GMM settings. Software for conducting SCPC inference for regression coefficients is

available for STATA and Matlab.3

3The most recent implementation of the software is available at https://www.princeton.edu/~mwatson/.
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2 Spatial Correlation Principal Components

This section provides details for computing the SCPC t-statistic, critical value and associated

confidence interval. The definition of the SCPC t-test and critical value involves, among other

things, various covariance matrices and probability calculations. We stress at the outset that

these are used to describe the required calculations, and they are not assumptions about

the probability distribution of the data under study. We study finite sample and asymptotic

properties of the SCPC t-test under general conditions in Sections 3 and 5 below.

Let y = (y1, y2, ..., yn)′ and similarly for s = (s1, s2, ..., sn)′, u = (u1, u2, ..., un)′ and the

vector of residuals û = (û1, û2, ..., ûn)′. Let l denote an n×1 vector of 1s, and M = I−l(l′l)−1l′.

Consider a benchmark Gaussian ‘exponential’ covariance matrix for u with covariance function

E[ulu`] = exp(−c||sl−s`||) for c > 0. (Because the t-statistic is scale invariant, the assumption

that E[u2
l ] = 1 is without loss of generality.) Let Σ(c) denote the n×n covariance matrix of u in

this model. Let c0 denote a predetermined value of c that is meant to capture an upper bound

on the spatial persistence in the data. (The choice of c0 is discussed below). Let r1, r2, ..., rn

denote the eigenvectors of MΣ(c0)M corresponding to the eigenvalues ordered from largest

to smallest, and normalized so that n−1r′jrj = 1 for all j. The scalar variable n−1/2r′jû has

the interpretation as the jth population principle component of û|s ∼ N (0,MΣ(c0)M). The

SCPC estimator of σ2 based on the first q of these principal components is

σ̂2
SCPC(q) = q−1

q∑
j=1

(n−1/2r′jû)2, (3)

and the corresponding SCPC t-statistic is

τSCPC(q) =

√
n(ȳ − µ0)

σ̂SCPC(q)
. (4)

The critical value cvSCPC(q) of the level-α SCPC test is chosen so that size is equal to α

under the Gaussian benchmark model with c ≥ c0. That is, cvSCPC(q) satisfies

sup
c≥c0

P0
Σ(c)(|τSCPC(q)| > cvSCPC(q)|s) = α, (5)

where P0
Σ means that the probability is computed under the null hypothesis in the Gaussian

model with covariance matrix Σ, y|s ∼ N (lµ0,Σ(c)).

The final ingredient in the method is the choice of q. Let EΣ=I[2σ̂SCPC(q) cvSCPC(q)|s]

denote the expected length of the confidence interval constructed using τSCPC(q) under the
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Gaussian i.i.d. model y|s ∼ N (lµ, I). SCPC chooses q to make this expected length as small

as possible, that is qSCPC solves

min
q≥1

EΣ=I[2σ̂SCPC(q) cvSCPC(q)|s] = min
q≥1

√
8n−1/2q−1/2 cvSCPC(q)

Γ((q + 1)/2)

Γ(q/2)
(6)

with the equality exploiting the fact that qσ̂2
SCPC(q)|s ∼ χ2

q in the Gaussian i.i.d. model.

Remark 2.1. The primary concern in the construction of σ̂2 is downward bias. Recall that

the eigenvector r1 maximizes h′MΣ(c0)Mh among all vectors h of the same length, the second

eigenvector r2 maximizes h′MΣ(c0)Mh subject to h′r1 = 0, and so forth, and for any q ≥ 1,

the n × q matrix (r1, . . . , rq) maximizes tr H′MΣ(c0)MH among all n × q matrices H with

n−1H′H = Iq. Thus, the SCPC method selects the linear combinations of û in the estimator

of σ2 that have the largest variance in the benchmark model with c = c0, under the constraint

of being unbiased in the i.i.d. model.

Remark 2.2. The choice of q trades off the downward bias in σ̂2
SCPC(q) that occurs when q

is large and its large variance when q is small. Both bias and variance lead to a large critical

value, and (6) leads to a choice of q that optimally trades off these two effects to obtain

the shortest possible expected confidence interval length in the i.i.d. model. In Section 4 we

consider an alternative choice of q that minimizes expected length under c = 2c0.

Remark 2.3. SCPC requires that the researcher chooses a value for c0 which represents the

highest degree of spatial correlation allowed by the method. One way to calibrate c0 is via

the average pairwise correlation of the spatial observations

ρ̄ =
1

n(n− 1)

n∑
l=1

∑
`6=l

Cor (yl, y` |sn )

that is, c0 is chosen so that it implies a given value ρ̄0 of ρ̄. For example, ρ̄0 =

(0.003, 0.01, 0.03, 0.10) implies very weak, weak, strong and very strong correlation, respec-

tively.

To put these values into perspective, recognize that the standard deviation of ȳ relative

to its value under i.i.d. sampling, say γn, satisfies γ2
n = Var[

√
nȳ]/Var[yl] = 1 + (n− 1)ρ̄, and

therefore γn measures the increase in the length of the confidence interval with σ known rela-

tive to its i.i.d. counterpart. The parameter γn also governs the size distortion associated with

using the standard t-statistic (i.e., based on i.i.d. sampling) when y is spatially correlated; for
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example, the rejection frequency for a nominal 5% level test is approximately P(|Z| > 1.96/γn)

with Z ∼ N (0, 1). With n = 500, ρ̄ = (0.003, 0.01, 0.03, 0.10) yields γn = (1.6, 2.4, 4.0, 7.1)

and approximate rejection frequencies of (0.21, 0.42, 0.62, 0.78) using t-statistics constructed

under an erroneous i.i.d. assumption.

Alternatively, in the equally spaced time series model, note that γ2
n is the long-run variance

of the process in multiples of its variance. For an AR(1) process with coefficient φn, γ2
n =

(1 + φn)/(1− φn) and φn ≈ 1− (2/ρ̄)n−1 for large n. Using n = 500 and the four values of ρ,

φ500 = (0.43, 0.72, 0.88, 0.96). In their study of HAR inference in time series, Lazarus et al.

(2018) considered models with n = 200 and φ = 0.7, corresponding to ρ ≈ 0.03.

Remark 2.4. In the regular spaced time series case, the SCPC eigenvectors, rj are numeri-

cally close to the weights of the equal weighted cosine (EWC) projection estimator considered

in Müller (2004, 2007), Lazarus et al. (2018) and Dou (2019). This is not surprising, since the

corresponding cosines are the limit of the eigenvectors of MΣ(c0)M as c0 → 0 (cf. Theorem 1

of Müller and Watson (2008)). What is more, the SCPC choice of q is also numerically close

to the corresponding optimal choice of q in Dou (2019). So when applied to time series, SCPC

comes close to replicating Dou’s (2019) suggestion for optimal inference, with c0 representing

the upper bound for the degree of persistence. The same is true in a spatial design in Rd, with

arbitrary d, if the locations happens to fall on a line segment with approximately uniform

empirical distribution.

Remark 2.5. The SCPC method with c0 calibrated by a choice of ρ̄0 is invariant to the

scale of the locations {sl}nl=1 7→ {asl}nl=1 for a > 0, and (in contrast to Sun and Kim’s (2012)

and Conley’s (1999) suggestion) also to arbitrary distance preserving transformations, such

as rotations.

Remark 2.6. We suggest determining qSCPC for α = 5%, and then using the same qSCPC at all

other significance levels α, and for the computation of p-values. This avoids discontinuities

that arise from the dependence of qSCPC on α, and is computationally convenient. In the

following we excusively focus on 5% level tests.

Remark 2.7. The discussion focuses on inference about the mean, but all the results extend

to regression and GMM problems using standard arguments. For example, in the simple linear

regression wl = xlβ + εl, where β is the parameter of interest, xlεl replaces ul in the analysis,

and the test can be constructed as described above using yl = β̂ + xlε̂l/(n
−1
∑n

i=1 x
2
i ), where

β̂ is the OLS estimator and ε̂l is the residual. Details are provided in Section 6.
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Table 1: SCPC for Different Choices of ρ̄0 in the U.S. States Spatial Designs

ρ̄0 = 0.003 ρ̄0 = 0.01 ρ̄0 = 0.03 ρ̄0 = 0.10

Uniform Spatial Designs g = guniform

∆1/2(c0) in % 〈0.7, 1.0, 1.1〉 〈1.3, 1.8, 2.1〉 〈2.5, 3.4, 3.9〉 〈5.4, 7.0, 8.0〉
qSCPC 〈38, 42, 46〉 〈11, 12, 13〉 〈8, 8, 9〉 〈5, 6, 6〉

Expected length 〈1.02, 1.02, 1.03〉 〈1.10, 1.12, 1.13〉 〈1.28, 1.30, 1.31〉 〈1.64, 1.68, 1.70〉
“Light” Spatial Designs g = glight

∆1/2(c0) in % 〈0.2, 0.4, 0.7〉 〈0.5, 0.9, 1.5〉 〈0.9, 1.9, 3.0〉 〈2.3, 4.6, 6.9〉
qSCPC 〈44, 47, 50〉 〈14, 18, 20〉 〈6, 8, 9〉 〈4, 5, 6〉

Expected length 〈1.02, 1.02, 1.02〉 〈1.05, 1.06, 1.07〉 〈1.12, 1.16, 1.24〉 〈1.38, 1.51, 1.61〉

Notes: Entries are 5th, 50th and 95th percentiles of the distribution of across the 240 location draws

in the U.S. states spatial design. ∆1/2(c0) is the distance that leads to a correlation of 1/2 measured

in multiples of largest distance in sample, and expected length is computed in the i.i.d. model and

measured in multiples of the known-σ interval length 2 · 1.96σ/
√
n.

U.S. states spatial designs: SCPC inference is conditioned on the value of the locations, s,

observed in the sample. To gauge how well the method is likely to perform in applications, we

use 480 different values of s. The values are generated by randomly drawing n = 500 locations

within the boundaries of each of the 48 contiguous U.S. states. The density of locations g

within each state is either uniform (guniform), or it is proportional to light measured from space

(glight) as a proxy for economic activity; the bottom panel of Figure 1 shows two values of

s that were drawn using Texas. We draw five sets of n = 500 independent locations under

each density g ∈ {guniform, glight} for a total of 240 (= 48 states × 5 location draws ) sets of

locations s = {sl}500
l=1 using guniform and 240 using glight.

Table 1 reports the 5th, 50th and 95th percentiles of selected SCPC properties across these

240 location draws for different values of ρ̄0 for each g ∈ {guniform, glight}. In the table and

throughout the paper, we use the notation 〈·, ·, ·〉 to indicate these three quantiles of some

statistic that describes each location s. The first row of the table shows the quantiles of the

‘half-life’ distance ∆1/2(c0) satisfying exp(−c0||r − s||) = 1/2 whenever ||r − s|| = ∆1/2(c0),

measured in multiples of the largest distance ∆max = maxl,` ||sl − s`||. For example, when

ρ̄0 = 0.03, the median half-life distance is 1.9% of the maximum distance across the 240 values

of s generated from the glight density. The next row of the table shows the quantiles for the

values of qSCPC chosen by (6), and the final row shows the implied expected length of the SCPC

confidence interval relative to the length of the known-σ interval with endpoints ȳ±1.96σ/
√
n.

The results shown in the table indicate, for example, that a researcher using the SCPC t-
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statistic chosen to accommodate spatial correlation as large as ρ̄0 = 0.03 will typically use

q ≈ 8 principal components and the resulting confidence interval will be, on average, roughly

20% to 30% longer than the known-σ confidence interval. This is slightly larger than the

Student-t confidence interval using q = 8 principal components in an i.i.d. model because

SCPC is “bias aware” and chooses the critical value to control size under ρ̄0 = 0.03.

Remark 2.8. The U.S. states spatial designs will be used throughout the paper to illustrate

the properties of the SCPC t-statistic.

Remark 2.9. The supremum over c ≥ c0 in (5) plays an important role to guarantee asymp-

totic size control under weak correlations; see Section 5.4 below. At the same time, as one

might intuit, in most designs, the condition binds at the smallest value c = c0. In the

U.S. states spatial designs, the null rejection probabilities of SCPC under c0 have percentiles

〈5.0%, 5.0%, 5.0%〉 and 〈4.7%, 5.0%, 5.0%〉 for g = guniform and g = glight, respectively. The

condition doesn’t always bind at c = c0 because ȳ and σ̂SCPC(q) are in general dependent, a

feature that is discussed more in Section 4.

3 Finite-Sample Size Control in Gaussian Models

In this section, we study the size control of spatial t-statistics in Gaussian models where

y ∼ N (lµ,Σ) for some Σ. Conditioning on the locations s is implicit. While our main

interest is on the SCPC t-statistic, many of our results apply more generally to t-statistics

(2) with a quadratic form estimator of σ̂2,

τ(WW′) =

√
n(ȳ − µ0)

σ̂
=

l′(y−µ0l)√
y′WW′y

σ̂2 = n−1y′WW′y = n−1u′WW′u (7)

for some n × q matrix W, 1 ≤ q ≤ n − 1 satisfying W′l = 0. Note that for any positive

semi-definite n × n matrix Q, σ̂2 = n−1û′Q′û can be represented in this way. For future

reference, it will be useful to define the n× (q + 1) matrix W0 = [l,W].

By construction, SCPC controls size in exponential Gaussian models with c ≥ c0, that

is in exponential models with spatial persistence less than the c0-benchmark model. Our

goal in this section is to investigate SCPC size control for covariance matrices outside of this

exponential class. Thus, let V denote a set of covariance matrices. A test using the t-statistic

τ 2(WW′) with critical value cv and level α controls size under V if supΣ∈V P0
Σ(τ 2(WW′) >

cv2) ≤ α.
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For our purposes, the interesting set of covariance matrices V are those that exhibit less

spatial persistence than Σ(c0) (recall that c0 was chosen to represent an upper bound on

persistence in the data). In time series data, long-run persistence is intimately related to the

slope of the spectrum near frequency zero. An analogous result holds for spatial persistence,

and in Section 3.2 we use this to characterize a set of covariance matrices V with less spatial

persistence than Σ(c0). While the resulting V is a nonparametric set of covariance matrices, we

show that elements in V can be represented as mixtures of covariance matrices in a parametric

class, say Σp(θ), θ ∈ Θ, that is V = {Σ : Σ =
∫

Θ
Σp(θ)dΠ(θ) for some probability distribution

Π}. This motivates studying size control over arbitrary mixtures of a set of parametric

covariance matrices Σp(θ)—see Theorem 2 below.

The next two subsections carry out this analysis, and we find that SCPC controls size

over a large class of processes that are less persistent than the Σ(c0) worst-case benchmark

in the U.S. states spatial designs. Section 3.3 briefly analyzes the null rejection properties of

SCPC under heteroskedasticity and mismeasured locations.

3.1 Generic Results

The following is a useful result for computing the null rejection frequency of τ 2(WW′) for a

given covariance matrix Σ.

Lemma 1. Assume y ∼ N (lµ0,Σ) and let Ω = W0′ΣW0. For cv > 0, define D(cv) =

diag(1,− cv2 Iq) and A = D(cv)Ω, and let (ω0, ω1, ..., ωq) denote the eigenvalues of A ordered

from largest to smallest. Then with (Z0, Z1, ..., Zq) ∼ N (0, Iq+1),

(i) ω0 > 0, and ωi ≤ 0 for i = 1, ..., q;

(ii) P0
Σ (τ 2(WW′) > cv2) = P (

∑q
i=0 ωiZ

2
i > 0) = 1

π

∫ 1

0

x
q−1
2 (1 − x)1/2

∏q
i=1(x −

(ωi/ω0))1/2dx.

Remark 3.1. Result (i) and the first equality in (ii) follow from standard calculations. The fi-

nal equality in (ii) is shown in Bakirov and Székely (2005); this result makes it straightforward

to compute the null rejection frequency by evaluating the integral via numerical quadrature.

We now turn to an analytic result about size control for a set V of covariance matrices

with elements that are a mixture of covariance matrices from a parametric class. Specifically,

suppose for a given Σ0, cv is such that P0
Σ0

(τ 2(WW′) > cv2) = α. Let Σp(θ), θ ∈ Θ be a
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parametric class of covariance matrices. We seek conditions under which

P0
Σ1

(τ 2(WW′) > cv2) ≤ α for Σ1 =

∫
Θ

Σp(θ)dΠ(θ) (8)

for a probability distribution Π. Let λj(·) denote the jth largest eigenvalue of some matrix.

Theorem 2. Let Ω0 = W0′Σ0W
0, Ω(θ) = W0′Σp(θ)W0, and assume Ω0 and Ω(θ), θ ∈ Θ

are full rank. Suppose A0 = D(cv)Ω0 is diagonalizable, and let P be its eigenvectors. Let

A(θ) = P−1D(cv)Ω(θ)P and Ā(θ) = 1
2
(A(θ) + A(θ)′). Suppose A0 and A(θ), θ ∈ Θ are

scale normalized such that λ1(A0) = λ1(A(θ)) = 1. Let

ν1(θ) = λq(−Ā(θ))− λ1(Ā(θ))λq(−A0)− (λ1(Ā(θ))− 1)

νi(θ) = λq+1−i(−Ā(θ))− λ1(Ā(θ))λq+1−i(−A0) for i = 2, . . . , q.

If
∑j

i=1 νi(θ) ≥ 0 for all θ ∈ Θ and 1 ≤ j ≤ q, then (8) holds for all Π.

Remark 3.2. The theorem is based on the following logic: First, as shown in Lemma 1, the

eigenvalues of A0 and A(θ) (or, equivalently, of D(cv)Ω(θ)) govern the rejection probability

of τ 2(WW′) under Σ0 and Σp(θ). Given the scale normalization λ1(A0) = λ1(A(θ)) = 1, if

λj(A(θ)) ≤ λj(A0) for all j ≥ 2, then, using the notation in Lemma 1, ωi(A(θ)) ≤ ωi(A0)

which yields P0
Σp(θ)(τ

2(WW′) > cv2) ≤ P0
Σ0

(τ 2(WW′) > cv2). Second, the integral represen-

tation in part (ii) of Lemma 1 can be used to show that the null rejection probability of the

t-statistic is Schur convex in these negative eigenvalues, so that the inequality holds whenever

the negative eigenvalues of A(θ) weakly majorize those of A0. Majorization inequalities about

eigenvalues of sums of matrices and additional calculations then extend this further to the

result in Theorem 2.

Remark 3.3. In the appendix we prove a more general result: If for some probability distri-

bution Π on Θ,
j∑
i=1

∫
νi(θ)dΠ(θ) ≥ 0 for all 1 ≤ j ≤ q, (9)

then (8) holds. The conditions stated in Theorem 2 guarantee that (9) holds for all Π.

Remark 3.4. If for some θ0 ∈ Θ, Σ0 = Σp(θ0), then νi(θ0) = 0 for 1 ≤ j ≤ q, so the

inequalities of the theorem have no ‘minimal slack’ and potentially apply also to parametric

models with a covariance matrix Σp(θ) that takes on values arbitrarily close to Σ0.
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3.2 SCPC Size Control Under Alternative Forms of Persistence

The problem of estimating the variance of ȳ is intimately linked to the properties of the

spectral density close to zero. In the time series case, the long-run variance (that is, the

variance of
√
nȳ) converges to the spectral density at frequency zero, multiplied by 2π, as n→

∞ for a large class of weakly dependent stationary processes. From this perspective, the aim of

correlation robust inference is to extract information about the variance of ȳ by extrapolating

the observed variability of weighted averages that contain information about the spectrum

close to the origin, such as low-frequency periodogram ordinates. Such an extrapolation

can only be successful under some a priori smoothness of the spectral density close to zero

(cf. Pötscher (2002)), so in this perspective, specification of a worst case benchmark model

amounts to the specification of a bound on the smoothness of the spectral density close to

zero. This motivates an application of Theorem 2 to a class of covariance matrices that is

defined in terms of a class of underlying spectral densities.

3.2.1 Spatial Case

If the covariance function σu in (1) is isotropic, then its spectrum f : Rd 7→ [0,∞) at frequency

ω ∈ Rd can be written as function of the scalar ω = ||ω||, that is f(ω) = f(ω) for some

f : R 7→ [0,∞). Since the null rejection probability of spatial t-statistics does not depend on

the scale of σu, it is without loss of generality to normalize f(0) = 1. The spectrum of the

benchmark covariance function exp(−c||s− r||) is

fbnch
c (ω) =

c3

(c2 + ω2)3/2
. (10)

By construction, SCPC controls size in the benchmark model with c ≥ c0, and f0 = fbnch
c0

is the spectral density with the steepest decline at the origin in the benchmark model. A

spectral density f would naturally be considered less persistent than f0 if r(ω) = f(ω)/f0(ω)

is (weakly) monotonically increasing in |ω|, since this implies that f has relatively more mass

at higher frequencies.

Note that any symmetric function r : R 7→ R with r(0) = 1 that is increasing in |ω|
with limω→∞ r(ω) = M ≥ 1 can be written in the form r(ω) = 1 + (M − 1)Π(|ω|) =

Π(|ω|) + M(1 − Π(|ω|)) for some CDF Π on [0,∞). Since Π(|ω|) =
∫

1[θ ≤ |ω|]dΠ(θ)

and 1 − Π(|ω|) =
∫

1[θ > |ω|]dΠ(θ), any such r can therefore be written as the mixture
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r(ω) =
∫
rstep
θ (ω)dΠ(θ) with rstep

θ (ω) = 1[θ ≤ |ω|] + M · 1[θ > |ω|]. Moreover, if we define

rstep
0 (ω) = 1, then by letting Π have some mass on θ = 0, we can further induce any value for

limω→∞
∫
rstep
θ (ω)dΠ(θ) smaller or equal to M .

Rewriting these representations in terms of f(ω) = r(ω)f0(ω) thus yields that any f such

that f(ω)/f0(ω) is (weakly) monotonically increasing in |ω| and limω→∞ f(ω)/f0(ω) ≤M can

be written as a mixture f(ω) =
∫
f step
θ (ω)dΠ(θ), where f step

0 = f0 and for θ > 0

f step
θ (ω) = 1[|ω| ≤ θ]f0(ω) + 1[|ω| > θ]M · f0(ω). (11)

Here, f step
θ (ω) is equal to the benchmark spectrum f0(ω) for ω ≤ θ and jumps to M · f0(ω)

for larger values of ω. Let Σstep
θ be the covariance matrices induced by f step

θ , θ ≥ 0.

Since SCPC controls size at Σ0 = Σ(c0), one can apply Theorem 2 to the SCPC t-statistic

with ρ̄ = 0.03 to the parametric class Σstep
θ in the U.S. states spatial designs. Numerical

experimentation shows that for g = guniform, we may choose M = 10 for all 240 locations s.

Thus, in those designs, SCPC controls size under all isotropic spectral densities f(ω) = f(||ω||)
such that f(ω)/f0(ω) is monotonically increasing in |ω| with limω→∞ f(ω)/f0(ω) ≤ 10.

It turns out that for some location draws generated under g = glight, some of the νj(θ)

defined in Theorem 2 are negative. So instead, we let f0 in (11) be flatter than fbnch
c0

, weakening

the claim about size control. In particular, we let f0 = fbnch
c̃0

, with c̃0 > c0, and determine

for what kind of values of c̃0 the claim holds again for M = 10. Across the 240 locations

generated under g = glight, the percentiles of the ratios c̃0/c0 are 〈1.00, 1.04, 1.18〉, so SCPC

controls size for a large class of spectral densities that are nearly as steep as fbnch
c0

close to the

origin.

3.2.2 Regularly-Spaced Time Series Case

A particularly interesting application of these ideas is the familiar time series case with

sl = l/n ∈ S = [0, 1]. The benchmark model then simply becomes an AR(1) process with co-

efficient φn = e−c/n. Due to aliasing, the spectral density, h, of a stationary regularly-spaced

time series is usefully defined on the interval [−π, π], h : [−π, π] 7→ R. We again normalize

h(0) = 1. The corresponding benchmark spectral density is proportional to

hbnch
c (λ) ∝ 1

(1 + φ2
n − 2φn cos(λ))

, λ ∈ [−π, π].
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As in the spatial case, a spectral density h would naturally be considered less persistent than

h0 if h(λ)/h0(λ) is (weakly) monotonically increasing in |λ|, motivating the consideration of

mixtures of hstep
θ (λ) = 1[|λ| ≤ θ]h0(ω) + 1[|λ| > θ]M · h0(ω).

Numerical experimentation using the expressions in Theorem 2 now shows that the SCPC

t-statistic applied to the time series case controls size for these mixtures for M = 5 and

h0 = hbnch
c̃0

with c̃0 = 1.03c0 for n ∈ {50, 100, 200, 500}.

Remark 3.5. Taking limits as n → ∞ yields a corresponding asymptotic robustness state-

ment: The function f0(ω) = limn→∞ h0(ω/n) = c̃2
0/(ω

2 + c̃2
0) is the ‘local-to-zero’ spectral

density (cf. Müller and Watson (2016, 2017))?? of a local-to-unity process with parameter

c̃0. Consider any process with spectral density h = hn whose local-to-zero spectral density

f(ω) = limn→∞ hn(ω/n) is such that f(ω)/f0(ω) is monotonically increasing in |ω| with

limω→∞ f(ω)/f0(ω) ≤ 5 and that satisfies the CLT in Müller and Watson (2016, 2017). Ap-

plication of Theorem 2 then implies that the SCPC t-test controls asymptotic size for all such

processes.

3.3 SCPC Size Control Under Heteroskedasticity and Mismea-

sured Locations

We now briefly study size control of SCPC in the U.S. states spatial designs if either the

variance of ul is a function of the location, or the locations are mismeasured.

The first experiment is a heteroskedastic model where ul = ψ(sl)ũl, with ũl following the

benchmark model with c = c0. We let logψ increase or decrease linearly from logψ(s) =

0 to logψ(s) = log 3 moving from the most westward to the most eastward location, or

from north to south. The largest of the four rejection frequencies of SCPC has percentiles

〈4.6%, 4.9%, 5.3%〉 and 〈5.1%, 6.4%, 8.7%〉 under guniform and glight, respectively. We conclude

that heteroskedasticity does not seem to be a major driver of size distortions.

The second experiment investigates location measurement error of a form studied in Con-

ley and Molinari (2007). Specifically for each location, s∗l = sl + el where s∗l is the mea-

sured location, sl is the true location and el is the measurement error. The error term is

el = (e1,l, e2,l) with e1,l the north-south and e2,l the east-west coordinate and ei,l i.i.d.U(−δ, δ)
over i and l, and δ = 0.0375H with H the length of the smallest square that encompasses

all locations, corresponding to medium “level 4” errors in Conley and Molinari’s (2007) clas-

sification. The null rejection frequencies of SCPC have percentiles 〈5.3%, 5.6%, 6.1%〉 and
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〈5.1%, 7.3%, 17.5%〉 under guniform and glight, respectively. Evidently, measurement error of

this sort has little effect on the size of SCPC under uniformly distributed locations, but can

lead to substantial size distortions for some highly concentrated spatial distributions.

4 Efficiency of SCPC

In this section we study the average length of SCPC intervals. We again focus exclusively on

a Gaussian finite sample framework, so we adopt the notation of the last section. We consider

two comparisons. First, we compare SCPC to previously proposed spatial t-statistics. Second,

we assess absolute efficiency by computing a lower bound on the average length of a length-

optimal confidence interval.

For the latter comparison, we consider confidence intervals CI(y) ⊂ R of the form

CI(y) = [ȳ − δ(û),ȳ + δ(û)] (12)

with a margin-of-error estimator δ : Rn 7→ [0,∞) that is a scale equivariant function of the

residuals û, δ(λû) = λδ(û) for all λ > 0, but is otherwise unrestricted. We want to compare

the SCPC interval with a version of CI(y) that, like SCPC, has good coverage P0
Σ(µ ∈ CI(y))

over a range of potential spatial correlation patterns Σ ∈ V . The metric for measuring

efficiency is the expected length EΣ(c1)[
∫

1[x ∈ CI(y)]dx] in the SCPC benchmark model

y ∼ N (lµ,Σ(c1)) for a given c1 > c0, or expected length in the i.i.d. model, c1 → ∞. We

compare these expected lengths in the U.S. states spatial designs, using c1 = 2c0, c1 = 5c0, or

c1 →∞ (i.e., the i.i.d. model).

As in Section 3, we take a spectral perspective to guide our choice of V : Intuitively, for

a method that seeks to minimize expected length under c1, it is hardest to control size if

the spectral density is proportional to f = f1 = fbnch
c1

for high frequencies, but steeper for

lower frequencies, so that the variance of ȳ is larger than one would expect based on an

extrapolation using high frequency variation. As discussed in the last section, the choice of ρ̄0

and hence c0 of SCPC is usefully thought of as specifying the the worst-case steepest spectral

density f = f0 = fbnch
c0

. This motivates a choice of a putative “least favorable” continuous

spectral density of the form

fkink
θ (ω) = 1[|ω| ≤ θ]f0(ω) + 1[|ω| > θ]

f0(θ)

f1(θ)
f1(ω)
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so that fkink
θ coincides with f0 over low frequencies, has a kink at ω = θ, after which it

coincides with a scaled version of f1. Let Σkink
θ denote the implied covariance matrix, and set

V = Vkink = {Σkink
θ : θ ≥ 0}.

This construction is not applicable to the i.i.d. case, since setting f1 equal to a constant

does not yield an integrable spectral density. Instead, define f∆(ω) = 1[|ω| ≤ θ](f0(ω)−f0(θ)),

and let fR(ω) = f0(ω) − f∆(ω), so that f0(ω) = f∆(ω) + fR(ω). In obvious notation, the

corresponding covariance matrices satisfy Σ(c0) = Σ∆(θ)+ΣR(θ). Since fR(ω) is a continuous

density that is flat for |ω| ≤ θ, and that follows the same decline as f0(ω) for |ω| > θ, it

also contributes to the overall persistence of Σ(c0). Thus, replacing ΣR(θ) by λ1(ΣR(θ))In

reduces overall persistence, motivating the construction of Σkink
θ in the i.i.d. case as Σkink

θ =

Σ∆(θ) + λ1(ΣR(θ))In.

As one would expect given the results of Section 3, SCPC controls size in the U.S. states

spatial designs under Vkink, or at least nearly so: With αSCPC(θ) = P0
Σkink
θ

(τ 2
SCPC > cv2

SCPC),

the distribution of supθ≥0 αSCPC(θ) has 95th percentile smaller than 5.2% under g = guniform

for all considered values of c1, and smaller than 7.3% under g = glight. To keep things on an

equal footing, we allow CI the same degree of undercoverage, that is we consider the problem

inf
δ
EΣ(c1)[

∫
1[x ∈ CI(y)]dx] s.t. PΣkink

θ
(µ /∈ CI(y)) ≤ max(αSCPC(θ), α) for all θ ≥ 0. (13)

In words, we seek the confidence interval with the shortest expected length in the Σ(c1) model

among all confidence intervals of the form (12) that are as robust as the SCPC interval under

Σkink
θ , θ ≥ 0.

Since θ is one-dimensional, one can apply the numerical techniques of Elliott et al.

(2015) and Müller and Wang (2019) to obtain an informative lower bound on the objec-

tive infδ EΣ(c1)[
∫

1[x ∈ CI(y)]dx] that holds for any CI(y) of the form (12) that satisfies the

constraint in (13).

We compare these lower bounds on expected lengths with five confidence intervals based on

spatial t-statistics: (i) the SCPC t-statistic as defined in Section 2; (ii) an alternative version

of the SCPC t-statistic that chooses q to minimize expected length in the Σ(c1) model with

c1 = 2c0 (alt-SCPC); (iii) a t-statistic based on a Bartlett-type kernel variance estimator with

bandwidth equal to 0.3 of the largest distance of all observations, ∆max = maxl,` ||sl − s`||,
that is k(sl, s`) = max(1− 0.3||sl− s`||/∆max, 0) (Bartlett Kernel); (iv) Sun and Kim’s (2012)

projection t-statistic with k1 = 1, k2 = 2 Fourier weights for a total of q = 2(k1+k2+k1k2) = 10
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Figure 2: 5th, 50th and 95th Percentiles of Average Confidence Interval Lengths in U.S. States

designs

weighted averages (Fourier Projection); (v) Ibragimov and Müller’s (2010) cluster t-statistic

with q = 9 equal-sized clusters (Cluster).4 All five methods use a critical value so that size is

controlled in the benchmark model with c ≥ c0. (The following results are nearly unchanged

if in addition, one also imposes the coverage constraint in (13).)

Figure 2 reports the 5th, 50th and 95th percentiles of the distribution of expected lengths

under c1 →∞ (the i.i.d. case), c1 = 2c0 and c1 = 5c0, in multiples of the length of the known-

σ interval with endpoints ȳ ± 1.96σ/
√
n. (In the guniform designs, the expected lengths are

often not very variable, so the 5th and 95th percentiles are sometimes hidden by the median

marker in Figure 2.) In the uniform spatial designs, and with c1 → ∞ in the light designs,

the SCPC interval comes reasonably close to being as short as the lower bound, and performs

better than the alternative confidence intervals. The differences between SCPC and alt-SCPC

are small throughout, motivating our choice of qSCPC to minimize length in the i.i.d. model.

In the light design with c1 = 2c0, SCPC performs somewhat worse than the other confidence

intervals, and all intervals are much longer than the lower bound. The latter effect is due to

ȳ being far from the efficient estimator of µ when c1 is small and the location distribution is

4The assignment of locations to clusters is performed sequentially, where at each step, we minimize (across

yet unassigned locations) the maximal distance over clusters (among those that have not yet been assigned n/q

locations). Cluster distances are computed from the northwest, northeast, southeast and southwest corners

of the location circumscribing rectangle, and in the q = 9 case, also from the mid-points of the four sides of

this rectangle, and its center.

17



not uniform: the population R2 of a regression of ȳ on û has percentiles of 〈26%, 47%, 59%〉
under g = glight and c1 = 2c0. Thus, there exist margin-of-error functions δ(û) in (12) that

exploit this partial information about the realization of ȳ, leading to small lower bounds that

are even below the length of the known-σ interval in some cases.

Remark 4.1. These efficiency results imply a limit on the possibility of using data-dependent

methods to learn about the value of the worst-case correlation c0: For example, consider an

approach that pre-tests whether there is any spatial correlation (that is, whether c0 can be

chosen arbitrarily large), and that conservatively reverts to a very wide interval if it detects

any correlation. If one could devise a pre-test that reliably indicates the presence or absence

of spatial correlation, then one could easily construct a function δ that (i) controls size under

Vkink; and (ii) is nearly as efficient as the oracle interval in the i.i.d. case. But given our lower

bound results, such a function cannot exist. The same argument applies to pre-tests that seek

to determine whether, say, c0 can safely be chosen five times as large as a given value, while

still trying to control size if it cannot.

More generally, any attempt to estimate Σ from the data and to use this value for inference

about µ must either yield confidence intervals that are not much shorter than SCPC, at least

in the uniform designs and the i.i.d. light designs; or fail to control size under Vkink. For

example, consider a plug-in estimator σ̂2
PI of σ2 = l′Σl/n with Σ in the Matérn class, so

that the spectral density is proportional to (c2 + ω2)−1−ν , ν, c > 0. Suppose we estimate the

Matérn scale parameter, c > 0 and ν ∈ {1/2, 3/2, 5/2} by maximizing the Gaussian likelihood

(this grid of values for ν is computationally convenient, since it yields simple expression for

the covariance function). We find that in the U.S. states spatial designs with g = guniform, the

confidence interval with endpoints ȳ ± 1.96σ̂PI/
√
n induces non-coverage probabilities with

percentiles 〈21%, 22%, 23%〉 in the Vkink class with c1 = 5c0.

5 Large-Sample Analysis of Spatial t-Statistics

This section extends the results for finite-sample Gaussian models to large-sample non-

Gaussian settings. The discussion is facilitated using notation that emphasizes the sample

size, and we do by appending a subscript n to many of the variables defined previously. For

example, the t-statistic defined in (2) will be denoted τn, and so forth for other variables.

The large-sample distribution of τn depends on two characteristics of the model. The

first is the covariance function of the ul process, that is, the covariance between ul and u` at

locations sl, s` ∈ S. The second is the distribution of locations s that are sampled. The first

sub-section provides a large-n framework for characterizing these two features of the model.
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With this framework in hand, the following subsections discuss the large sample normality of

the linear functions W0′
nun that determine the null distribution of τn, extensions for kernel-

based t-statistics, the implications of these results for size control of SCPC-based inference,

and the key role that the density g of s plays in these results even under weak correlation.

5.1 Sampling and Large-n Framework

This subsection provides assumptions on sampling of the spatial locations, the spatial corre-

lation properties of u conditional on the locations, and the set of weight functions used to

determine the weighted averages of un that enter the t-statistic τn. We discuss these in turn.

Spatial locations: The spatial locations sl are chosen from S, a compact subset of Rd.

Sample locations are selected as i.i.d. draws from a distribution G with density g, which is

continuous and positive on S.

Correlation properties of un|sn: The average pairwise correlation of ul, conditional on the

sample locations sn, is ρ̄n = 1
n(n−1)

∑n
l=1

∑
`6=l Cor (ul, u` |sn ). When ρ̄n = 0, un |sn is white

noise. When ρ̄n = Op(1) (and not op(1)), we will say the process exhibits strong correlation.

When ρ̄n = Op(1/c
d
n) where cn is a sequence of constants with cn →∞, we follow Lahiri (2003)

and say the process exhibits weak correlation. As shown in the next section, the large-sample

distribution of τn is different under weak and strong correlation.

Distribution of un|sn: The following asymptotic framework, adapted from Lahiri (2003),

is useful for modelling weak and strong correlation. Let B be a zero-mean stationary random

field on Rd with continuous covariance function E[B(s)B(r)] = σB (s− r), and B and sn are

independent. To avoid pathological cases, we assume
∫
σB(s)ds > 0 and B is nonsingular in

the sense that inf ||f ||=1

∫ ∫
f(r)f(s)σB(s− r)dG(r)dG(s) > 0 with ||f ||2 =

∫
f 2(s)dG(s). Let

cn denote a sequence of constants with either cn →∞ or cn = c > 0. We consider a triangular-

array framework with ul = B(cnsl) for sl ∈ S, so that σu(s) = σB(cns). A calculation shows

that ρ̄n = Op(1/c
d
n), so the sequence cn characterizes weak and strong correlation as described

above.

The sequence cn determines the ‘infill’ and ‘outfill’ nature of the asymptotics. To see

this, note that the volume of the relevant domain for the random field B is cdn vol(S), where

vol(S) is the volume of S. The average number of sample points per unit of volume is then

n/(cdn vol(S)). If cdn ∝ n, the volume of the domain is increasing, while the number of points

per unit of volume is not; this is the usual outfill asymptotic sampling scheme. On the other
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hand, when cn = c, a constant, the volume of the domain is fixed, and the number of points

per unit of volume is proportional to n; this is the usual infill sampling. Finally, when cn →∞
with cdn = o(n) the sampling scheme features both infill and outfill asymptotics.

Weight Functions: Finally, we specify a set of weighting functions. Specifically, for j =

1, . . . , q, let wj : S 7→ R denote a set of continuous functions that satisfy
∫
wj(s)dG(s) = 0.

We introduce the following notation involving these functions: w(s) is a q × 1 vector-valued

continuous function with w(s) = (w1(s), ..., wq(s))
′; w0(s) = (1,w(s)′)′; Wn is a n× q matrix

with lth row given by w(sl)
′, and W0

n is a n × (q + 1) matrix with lth row given by w0(sl)
′

so that W0
n = [ln,Wn].

Remark 5.1. In our framework, locations sl are sampled within S for a fixed and given

S. But nothing changes in our derivations if instead we treated the observations yl as being

indexed by cnsl ∈ cnS, as in Lahiri (2003), or any other one-to-one transformation of sl. The

essential characteristic is the dependence pattern over the spatial domain of the observations

which is governed by cn and B.

5.2 Large-Sample Behavior of Weighted Averages

As is evident from equation (7), the t-statistic is a function of weighted averages of the

elements of un. This subsection discusses the large-sample distribution of such weighted

averages. These results involve weak convergence (i.e., convergence in distribution) where our

interest lies in these limits conditional on the locations sn. With this in mind, for Xn and

X p-dimensional random vectors, we use the notation Xn|sn ⇒p X to denote E[h(Xn)|sn]
p→

E[h(X)] for any bounded continuous function h : Rp 7→ R. This notion of weak convergence

in probability is weaker than almost sure weak convergence of conditional distributions, but

nevertheless ensures that the limiting distribution is not induced by the randomness in the

locations sn.

Lemma 3. (i) (strong correlation) Suppose cn = c > 0 and B is a Gaussian process. Then

n−1W0′
nun|sn ⇒p X ∼ N (0,Ωsc)

with

Ωsc =

∫ ∫
w0(r)w0(s)′σB(c(r − s))dG(r)dG(s).

(ii) (weak correlation) Let an = cdn/n. Suppose cn → ∞, an → a ∈ [0,∞), and the

assumptions of Lahiri’s (2003) Theorem 3.2 hold. Then

a1/2
n n−1/2W0′

nun|sn ⇒p X ∼ N (0,Ωwc)
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with

Ωwc = aσB(0)V1 +

(∫
σB(s)ds

)
V2

where

V1 =

∫
w0(s)w0(s)′g(s)ds and V2 =

∫
w0(s)w0(s)′g(s)2ds.

Remark 5.2. Note that the variance of
∑n

l=1 w0(sl)ul conditional on sn is

Var

[
n∑
i=1

w0(sl)ul |sn

]
=
∑
l

∑
`

w0(sl)w
0(s`)

′σu(sl − s`)

=
∑
l

∑
`

w0(sl)w
0(s`)

′σB(cn (sl − s`)). (14)

The strong-correlation covariance matrix, Ωsc, is recognized as the large-n analogue of this

expression after appropriate normalization and averaging over the locations. The weak-

correlation covariance matrix, Ωwc, differs from Ωsc in two ways. First, because cn → ∞
in the weak-correlation case, and σB(r) vanishes for large |r|, the second term in Ωwc is recog-

nized as the limit of Ωsc as the double integral concentrates entirely on ‘the diagonal’ where

r ≈ s. Second, as outfill becomes more important (that is, an = cdn/n gets larger), variances

become more important relative to covariances; this explains the first term in Ωwc.

Remark 5.3. In the strong-correlation case, normality is assumed. That said, CLTs have

been established also for strongly correlated models when d = 1 (i.e., the time series case),

such as Taqqu (1975), Phillips (1987) or Chan and Wei (1987), and to a lesser extent also

for d > 1, as in Wang (2014) or Lahiri and Robinson (2016). For the weak correlation case,

large-sample normality follows from Theorem 3.2 in Lahiri (2003), which imposes mixing and

moment conditions on B.

Remark 5.4. The regularly-spaced time series analogue of part (i) of Lemma 3 is the con-

vergence n−1W0′
nun|sn ⇒ X =

∫ 1

0
w0(s)B(cs)ds. The result in part (ii) has no such analogue,

as the complications arise precisely under non-uniformly distributed locations.

Remark 5.5. The factor
∫
σB(s)ds in front of V2 is the spatial analogue of the long-run

variance of the process B. In this integral, the distances are weighted as if s was uniform on

Rd. This is a consequence of the i.i.d. sampling assumption on sl: Under weak correlation,

only observations very close to each other are meaningfully correlated, and with g continuous,

the density of the locations sl is locally flat in a small enough neighborhood around any given

point s ∈ S. This asymptotic approximation hence requires that the observed sn is such that

the empirical distribution of sl − s` is approximately uniform conditional on ||sl − s`|| being

small. If B is assumed isotropic, a sufficient condition is that ∆l,` = ||sl−s`|| has an empirical
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distribution that is reasonably well approximated by a density proportional to ∆d−1 close to

the origin.

Remark 5.6. The form of V2 is recognized as the limit covariance matrix in a model where the

observations are independent, with variance proportional to g(sl). Thus, V2 is what one would

obtain for the limit covariance matrix under a specific form of non-stationarity. Intuitively,

a high density area does not only yield many observations, but under spatial correlation, the

variance contribution is further amplified by the resulting high average correlation.

5.3 Large-Sample Distribution of Spatial t-Statistics

5.3.1 Projection Variance Estimators

Lemmas 1 and 3 lead to the following representation for the limiting distribution of

τ 2
n(WnW

′
n).

Theorem 4. With Ω ∈ {Ωsc,Ωwc}, ωi defined in Lemma 1, and (Z0, Z1, ..., Zq)
′ ∼ N (0, Iq+1),

under the assumptions of Lemma 3, P (τ 2
n(WnW

′
n) > cv2 |sn)

p→ P
(
Z2

0 >
∑q

i=1(− ωi
ω0

)Z2
i

)
under the null hypothesis.

Remark 5.7. In the general weak correlation case with arbitrary spatial density g, Ωwc =

aσB(0)V1 +
(∫

σB(s)ds
)
V2. Because τ 2

n is a scale-invariant function of un, it is without loss

of generality to normalize the scale of σB(·) so that aσB(0) +
∫
σB(s)ds = 1. Under this

normalization

Ωwc = κV1 + (1− κ)V2 (15)

where κ is scalar with 0 ≤ κ < 1. Thus, the limit distribution of τ 2
n is seen to depend on

σB only through the scalar κ; the matrices V1 and V2 are functions of the weights w0 and

the spatial density g. The scalar κ thus completely summarizes the large sample effect of

alternative underlying random fields B and weak correlation sequences cn →∞.

Remark 5.8. When g is constant, so the spatial distribution is uniform, V1 ∝ V2 and Ωwc ∝∫
w0(s)w0(s)′ds. In a leading case with orthogonal wj of length 1/

√
q,
∫
wj(s)wi(s)dG(s) =

q−11[i = j], Ωwc ∝ diag(1, q−1Iq). Thus the asymptotic rejection probability becomes the

corresponding quantile of the F1,q distribution, a result familiar from the limiting distribution

of projection based squared t-statistics in the regularly spaced time series case. Importantly,

while this result holds under constant g, it does not hold for other spatial distributions, so

that the typical HAR results about inconsistent variance estimators for regularly spaced time

series under weak dependence do not carry over to the spatial case.

For example, consider Sun and Kim (2012) inference in the U.S. states spatial design with

g = glight and n → ∞. Suppose we use k1 = 1 and k2 = 2 Fourier weights, so that the total
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number of weighted averages is q = 2(k1 + k2 + k1k2) = 10, and Sun and Kim (2012) suggest

using the critical value from a student-t distribution with 10 degrees of freedom (corresponding

to computing the critical value under κ → 1, or equivalently, under i.i.d. sampling). Under

a weak-correlation sequence with κ = 0, so that Ωwc = V2, a direct calculation shows that

these nominal 5% level tests have asymptotic null rejection probabilities with percentiles

〈6.2%, 10.3%, 30.0%〉 across the 48 U.S. states.

In contrast, for the Ibragimov and Müller (2010) cluster t-statistic with clusters defined

by a partition of S into q subregions, the special structure of the corresponding weighting

functions w implies that the lower right q × q block of Ωwc is diagonal irrespective of g,

which guarantees asymptotic validity of the student-t q critical value by virtue of Bakirov and

Székely’s (2005) result about the small sample validity of the usual t-test with heteroskedastic

observations at conventional significance levels (cf. Remark 5.6).

Remark 5.9. For SCPC and other estimators, the weights w(s) are estimated using the

sample locations sn. Lemma 12 in the appendix provides conditions under which the result

in Theorem 4 continues to hold for estimated weights ŵ(s).

5.3.2 Kernel Variance Estimators

This subsection discusses how these results can be generalized so they apply to kernel-based

variance estimators, σ̂2
n(MnKnMn) and associated t-statistics τ 2

n(MnKnMn), where the n×n
matrix Kn has (l, `) element equal to k(sl, s`) for a positive semidefinite continuous kernel

k : S × S 7→ R. Since in our framework, sl ∈ S for a fixed sampling region S, and k does

not depend on n, these kernel estimators are spatial analogues of fixed-b time series long-run

variance estimators considered by Kiefer and Vogelsang (2005), as also investigated by Bester

et al. (2016).

Let K̂n = MnKnMn, and note that the (l, `) element of K̂n is k̂n(sl, s`) with

k̂n(r, s) = k(r, s)− n−1

n∑
l=1

k(sl, s)− n−1

n∑
`=1

k(r, s`) + n−2

n∑
l=1

n∑
`=1

k(sl, s`). (16)

To begin, consider a simpler problem using a kernel that replaces the sample means in (16)

with populations means

k̄(r, s) = k(r, s)−
∫
k(u, s)dG(u)−

∫
k(r, u)dG(u) +

∫ ∫
k(u, t)dG(u)dG(t). (17)

By Mercer’s Theorem, k̄(r, s) has the representation

k̄(s, r) =
∞∑
i=1

λiϕi(s)ϕi(r) (18)
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where (λi, ϕi) are the eigenvalues and eigenfunctions of k̄, with eigenvalues ordered from

largest to smallest, normalized so that
∫
ϕi(s)ϕj(s)dG(s) = 1[i = j]. By definition of an eigen-

function, for λi > 0, ϕi(·) = λ−1
i

∫
k̄(·, s)ϕi(s)dG(s), so ϕi is continuous, and

∫
ϕi(s)dG(s) = 0.

Consider the problem with a truncated version of k̄,

k̄q(s, r) =

q∑
i=1

λiϕi(s)ϕi(r).

We can directly apply Theorem 4 using wj(s) = λ
1/2
j ϕj(s). Specifically, let K̄n,q be an

n × n matrix with (l, `) element equal to k̄q(sl, s`). Then u′nK̄n,qun = u′nWnW
′
nun so that

τ 2
n(K̄n,q) = τ 2

n(WnW
′
n), and P

(
τ 2
n(K̄n,q) > cv2 |sn

) p→ P
(
Z2

0 >
∑q

i=1(− ωi
ω0

)Z2
i

)
by Theorem

4.

To extend this result to the original problem, it is useful to reformulate it in terms of

eigenvalues of linear operators. Specifically, denote by L2
G the Hilbert space of functions

S 7→ R with inner product 〈f1, f2〉 =
∫
f1(s)f2(s)dG(s). Normalize Ωwc = κV1 + (1− κ)V2,

as in (15). A tedious but straightforward calculation (see (29) in the appendix) shows that

the eigenvalues ωi of A = D(cv)Ω with Ω = {Ωsc,Ωwc} are also the eigenvalues of finite rank

self-adjoint linear operators L2
G 7→ L2

G, namely RscTqRsc and RwcTqRwc in the strong and

weak correlation case, respectively, where

R2
sc(f)(s) =

∫
σB(c(s− r))f(r)dG(r)

R2
wc(f)(s) = (κ+ (1− κ)g(s))f(s)

Tq(f)(s) =

∫ (
1− cv2 k̄q(s, r)

)
f(r)dG(r).

This suggests that the limiting rejection probability for the original non-truncated k̄ might

be characterized by the (potentially infinite) number of eigenvalues of the operators RTR :

L2
G 7→ L2

G with R ∈ {Rwc, Rsc}, where

T (f)(s) =

∫ (
1− cv2 k̄(s, r)

)
f(r)dG(r).

The following theorem shows this to be the case, and it also includes the generalization to

sample demeaned kernels (16) instead of (17).

Theorem 5. Let ω0 denote the largest eigenvalue, and ωi, i ≥ 1 the remaining eigenvalues of

RTR for R ∈ {Rwc, Rsc}. Then under the assumptions of Lemma 3, ω0 > 0 and ωi ≤ 0 for

i ≥ 1, and P(τ 2
n(K̂n) > cv2 |sn)

p→ P(Z2
0 >

∑∞
i=1(−ωi/ω0)Z2

i ).
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Remark 5.10. Under weak correlation the limit distribution of kernel-based spatial t-

statistics depends on the spatial density g, since the eigenvalues of RwcTRwc are a function of

g. This is analogous to the results for projection estimators discussed above. Thus, in both

cases, using a critical value that is appropriate for i.i.d. data does not, in general, lead to

valid inference under weak correlation.

Remark 5.11. The framework of Theorem 5 also sheds light on the asymptotic bias of

kernel-based and orthogonal projection estimators under weak correlation. The estimand

σ2 is the limiting variance of a
1/2
n n−1/2

∑n
l=1 ul, which under the normalization (15) is equal

to the (single) eigenvalue of the operator RwcTσ2Rwc with Tσ2(f)(s) =
∫
f(r)dG(r), that is∫

(κ+ (1− κ)g(s))dG(s). The expectation of anσ̂
2
n(K̂n) converges to the trace of the operator

RwcTk̄Rwc with Tk̄(f)(s) =
∫
k̄(s, r)f(r)dG(r), that is

∫
(κ+ (1− κ)g(s))k̄(s, s)dG(s). Thus,

the estimator is asymptotically unbiased for all g if and only if k̄(s, s) = 1. For standard

choices of k, k(s, s) = 1, so the only source of asymptotic bias is the demeaning (and if the

estimator σ̂2
n uses the null value yn − µ0ln instead of the residuals ûn, the asymptotic bias is

zero under the null hypothesis). Moreover, if k(r, s) concentrates around the ‘diagonal’ where

r ≈ s, corresponding to a fixed-b kernel estimator with small b, the demeaning effect is small,

as is the asymptotic variability of anσ̂
2
n(K̂n). Thus, fixed-b kernel estimators with standard

kernel choices and small b yield nearly valid and efficient inference under weak correlation.

In contrast, orthogonal projection estimators where k̄(r, s) = q−1
∑q

i=1 φi(r)φi(s) do not

share this approximate unbiasedness property, even for q large, since
∫
φi(s)

2dG(s) = 1 does

not, in general, imply that k̄(s, s) = q−1
∑q

i=1 φi(s)
2 ≈ 1.

The proof of Theorem 5 involves showing that in large samples, the difference between the

eigenfunctions of the sample demeaned kernel (16) and the population demeaned kernel (17)

becomes small. The following lemma extends and adapts previous results by Rosasco et al.

(2010) to the case of sample demeaned kernels.

Lemma 6. Let (v̂i, λ̂i) with v̂i = (v̂i,1, . . . , v̂i,n)′ be the eigenvector-eigenvalue pairs of n−1K̂n

with λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂n and n−1v̂′iv̂i = 1. For all i with λ̂i > 0, define the S 7→ R functions

ϕ̂i(·) = n−1λ̂
−1

i

n∑
l=1

v̂i,lk̂n(·, sl). (19)

Let λ(j), j = 1, . . . be the unique positive values of λi in descending order, and suppose λ(j)

has multiplicity mj ≥ 1. Then for any p such that λ(p) > 0,

(a) there exist rotation matrices Ô(j) of dimension mj ×mj, j = 1, . . . , p such that with

q =
∑p

j=1mj, ϕ = (ϕ1, . . . , ϕq)
′ and ϕ̂ = (ϕ̂1, . . . , ϕ̂q)

′,

sup
s∈S
||ϕ(s)− diag(Ô(1), . . . , Ô(p))ϕ̂(s)|| = Op(n

−1/2);
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(b)
∑q

i=1(λ̂i − λi)2 = Op(n
−1).

Part (a) shows convergence of the eigenspace corresponding to unique eigenvalues, and

part (b) shows convergence of the eigenvalues.

5.3.3 SCPC t-Statistic

Beyond its use in the proof of Theorem 5, Lemma 6 can be used to establish the large sample

distribution of the SCPC t-statistic for nonrandom q and critical value cv. Note that in this

application of Lemma 6, we are interested in the eigenfunctions of the demeaned covariance

kernel k0(r, s) = exp(−c0||r− s||) of the benchmark model, rather than the eigenfunctions of

a kernel that defines a kernel-based variance estimator.

Recall from Section 2 that ri is the eigenvector of MnΣn(c0)Mn corresponding to the ith

largest eigenvalue, normalized to satisfy n−1r′iri = 1. Let ϕ0
i be the eigenfunction of the kernel

k̄0(r, s) corresponding to the ith largest eigenvalue λ0
i , where k̄0 is the demeaned version of

k0 in analogy to (17). Combining Lemma 6 with a result (Lemma 13 of the appendix) that

suitably accounts for estimated weights yields the following corollary.

Corollary 7. Suppose λ0
q > λ0

q+1 and the assumptions of Lemma 3 hold. Then the convergence

in Theorem 4 holds for τ 2
SCPC(q) = τ 2

n(q−1
∑q

i=1 rir
′
i) with w(s) = (ϕ0

1(s), . . . , ϕ0
q(s))

′/
√
q.

5.4 Asymptotic Size Control under Weak Correlation

As discussed above (see equation (15)), under weak correlation, the asymptotic rejection

probability of τn for finite q can be studied via Ωwc(κ) = κV1+(1−κ)V2, where the covariance

function of B and the sequence cn affects the large-sample distribution of τn only through

the scalar κ ∈ [0, 1). Thus, if cv is such that sup0≤κ<1 P (
∑q

i=0 ωi(κ, cv)Z2
i > 0) = α, where

{ωi(κ, cv)}qi=0 are the eigenvalues of A(κ, cv) = D(cv)Ωwc(κ), then setting cvn ≥ cv for all n

yields inference that is asymptotically robust under all forms of weak correlation covered by

Theorem 3 (ii). In the case of a kernel-based variance estimator, the same holds as long as cv

satisfies sup0≤κ<1 P (
∑∞

i=0 ωi(κ, cv)Z2
i > 0) = α where {ωi(κ, cv)}∞i=0 are the eigenvalues of the

linear operator L(f)(s) =
∫ √

κ+ (1− κ)g(s)
(
1− cv2k̄(s, r)

)√
κ+ (1− κ)g(r)f(r)dG(r).

The value cv depends on the spatial density g, which can be seen directly by inspecting

the form of Ωwc and the operator L. In principle, one could use these expressions to estimate
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cv directly. But this would involve estimates of the spatial density g, which leads to difficult

bandwidth and other choices. We now discuss a simpler approach.

Consider a benchmark model B0 that satisfies the assumptions of Lemma 3 (ii), such as

the Gaussian exponential model introduced in Section 2. Let σ0
B denote the covariance kernel

of B0, and suppose cn,0, is chosen so that an,0 = cdn,0/n→ a0 = 0. For instance, cn,0 = c0 > 0

satisfies this condition, as does cn,0 = n1/d/ log(n). Note that for this model κ = 0. Suppose

cvn = cvn(sn) satisfies

sup
c≥cn,0

P0
Σ(c)(τ

2
n ≥ cv2

n |sn) ≤ α (20)

where P0
Σ(c) is computed under the benchmark model, that is under un|sn ∼ N (0,Σ(c)) with

Σ(c) the covariance matrix of (B0(cs1), ..., B0(csn))′.

Theorem 8. Let cv2
n satisfy (20). Under arbitrary weak correlation in the sense of Lemma

3 (ii), for the SCPC t-statistic and t-statistics covered by Theorems 4 and 5, max(cv2 −
cv2

n, 0)
p→ 0. Consequently, for any ε > 0, lim supn P(P(τ 2

n > cv2
n |sn) > α + ε) → 0, so that

lim supn P(τ 2
n ≥ cv2

n) ≤ α.

The intuition for Theorem 8 is as follows. The critical value cvn in (20) is valid in the

benchmark model for all c ≥ cn,0 and n. Thus, it is also valid along arbitrary sequences

cn ≥ cn,0. Since the cn,0 model has κ = 0, there exists sequences cn ≥ cn,0 that induce any

κ ∈ [0, 1) in the benchmark model; different sequences cn in the benchmark model therefore

trace out all possible limit distributions under generic weak correlation, so that size control

in the benchmark model for all c ≥ cn,0 translates into size control under generic weak

correlation.

For SCPC, the benchmark covariance kernel for B0 is exponential σ0
B(r, s) = exp(−c||r−

s||) and (from equation (5)) the critical value is chosen to satisfy (20) with equality. Thus,

with a fixed value of c0 (or a fixed value of ρ̄0), the SCPC t-test τSCPC(q) controls size in large

samples under generic weak correlation.5

5Technically, the SCPC choice of q in (6) is also a function of the locations of sn, so qSCPC is random.

However, the argument that establishes Theorem 8 can be extended under this complication as long as

qSCPC ≤ qmax almost surely for some finite and fixed qmax. See Theorem 14 in the appendix for a formal

statement.
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6 Extensions to Regression and GMM

The extension of these results to regression and GMM problems follows from standard argu-

ments. For example, consider the linear regression problem

wl = xlβ + z′lδ + εl for l = 1, ..., n (21)

where β is the (scalar) parameter of interest, zl are additional controls in the regression, and

(wl, xl, zl) are associated with location sl. Let x̃l = xl − SxzS
−1
zz zl denote the residual from

regressing xl on zl, where we use the notation Sab = n−1
∑n

l=1 alb
′
l for any vectors al and bl.

Suppose Sx̃x̃
p→ σ2

x̃x̃ > 0 and n−1/2
∑n

l=1 x̃lεl|s⇒p N (0, σ2
x̃ε). Then

√
n(β̂ − β)|s⇒p N (0, σ2)

where σ2 = σ2
x̃ε/σ

4
x̃x̃. Spatial correlation affects inference in this model through σ2

x̃ε which

incorporates potential correlation between x̃lεl and x̃`ε` at spatial locations sl and s`.

Thus, suppose that x̃lεl satisfies the assumptions previously made for ul. Then a straight-

forward calculation shows that setting

yl = β̂ +
x̃lε̂l

n−1
∑n

l=1 x̃
2
l

in the analysis of the previous sections leads to analogous results with β replacing µ as

the parameter of interest. The extension to GMM inference, potentially with clustering, is

analogous; see, for instance, Section 4.4 of Müller (2020).

As usual, these extensions require that x̃lεl (or its GMM analogue) is stationary. This may

be implausible is some applications. Müller and Watson (2022) investigate the performance

of SCPC inference in regression models with a range of non-stationary processes for xl and or

el. That paper also takes up the problem of computing the SCPC test statistic in applications

with very large n.

A Appendix

Proof of Lemma 1: with X = W0′u = (X0,X
′
1:q)
′ and Z = (Z0, Z1, ..., Zq)

′ we have

P
(
τ 2(WW′) > cv2

)
= P

(
X2

0

X′1:qX1:q

> cv2

)
= P

(
X2

0 − cv2 X′1:qX1:q > 0
)
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= P (X′D(cv)X > 0) = P(Z′Ω1/2D(cv)Ω1/2Z > 0)

= P

(
q∑
i=0

ωiZ
2
i > 0

)

where the last equality follows by similarity of the matrices Ω1/2D(cv)Ω1/2 and D(cv)Ω. The

claim about the sign of the eigenvalues follows from Lemma 10 below. �

The proof of Theorem 2 relies on some preliminary results.

Lemma 9. For any two q× q positive semi-definite matrices B1 and B2 and vectors v1,v2 ∈
Rq, and all p ∈ [0, 1],

ς(p) = (pv1 + (1− p)v2)′(Iq + pB1 + (1− p)B2)−1(pv1 + (1− p)v2)

− pv′1(Iq + B1)−1v1 − (1− p)v′2(Iq + B2)−1v2 ≤ 0.

Proof. We first show that ς(p) is convex. Write G(p) = Iq + pB1 + (1 − p)B2. The first

derivative of the nonlinear part of 1
2
ς(p) is given by

(v1−v2)′G(p)−1(pv1 +(1−p)v2)− 1
2
(pv1 +(1−p)v2)′G(p)−1(B1−B2)G(p)−1(pv1 +(1−p)v2)

so that the second derivative of 1
2
ς(p) equals

(v1 − v2)′G(p)−1(v1 − v2)− 2(v1 − v2)′G(p)−1(B1 −B2)G(p)−1(pv1 + (1− p)v2)

+ (pv1 + (1− p)v2)′G(p)−1(B1 −B2)G(p)−1(B1 −B2)G(p)−1(pv1 + (1− p)v2).

With ∆(p) = G(p)−1/2(v1 − v2) and r(p) = −G(p)−1/2(B1 − B2)G(p)−1(pv1 + (1 − p)v2),

the second derivative may be rewritten as(
∆(p)

r(p)

)′(
Iq Iq
Iq Iq

)(
∆(p)

r(p)

)
≥ 0

and convexity follows. Thus maxp∈[0,1] ς(p) ≤ max(ς(1), ς(0)) = 0.

Lemma 10. Let A1 =
∫

P−1D(cv)Ω(θ)PdF (θ). The q + 1 eigenvalues of A1 are real, and

only one is positive, and the same holds for A(θ), θ ∈ Θ. Furthermore, λ1(A1) ≥ 1.

Proof. By similarity, the eigenvalues of A1 are equal to those of PA1P
−1, which in turn is

similar to the symmetric matrix(
l′Σ1l l′Σ1W̃

W̃′Σ1l W̃′Σ1W̃

)1/2(
1 0

0 −Iq

)(
l′Σ1l l′Σ1W̃

W̃′Σ1l W̃′Σ1W̃

)1/2
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with W̃ = (l,W/ cv), and the first claim follows for A1. The claim for A(θ) follows from the

same argument.

For the last claim, let h̄ : R 7→ R

h̄(t) = 1− tl′Σ1l + t2l′Σ1W̃(Iq + tW̃′Σ1W̃)−1W̃′Σ1l.

Note that h̄(t) is weakly decreasing in t > 0, since with H̃ = −tW̃(Iq + tW̃′Σ1W̃)−1W̃′Σ1l

h̄′(t) = −

(
l

H̃

)′(
Σ1 Σ1

Σ1 Σ1

)(
l

H̃

)
< 0.

The characteristic polynomial of A1 is given by

det

(
s− l′Σ1l l′Σ1W̃

−W̃′Σ1l sIq + W̃′Σ1W̃

)
= (s− l′Σ1l + l′Σ1W̃(sIq + W̃′Σ1W̃)−1W̃′Σ1l) det(sIq + W̃′Σ1W̃)

= sh̄(s−1) det(sIq + W̃′Σ1W̃)

so that λ1(A1) satisfies h̄(1/λ1(A1)) = 0. Similarly, 1/λ1(A(θ)) = 1 is a root of

hθ(t) = 1− tl′Σ(θ)l + t2l′Σ(θ)W̃(Iq + tW̃′Σ(θ)W̃)−1W̃′Σ(θ)l.

By Lemma 9, for any t > 0,

l′Σ1W̃(Iq + tW̃′Σ1W̃)−1W̃′Σ1l

=

(∫
W̃′Σ(θ)ldF (θ)

)′(
Iq + t

∫
W̃′Σ(θ)W̃dF (θ)

)−1(∫
W̃′Σ(θ)ldF (θ)

)
≤

∫
l′Σ(θ)W̃(Iq + tW̃′Σ(θ)W̃)−1W̃′Σ(θ)ldF (θ).

Thus, h̄(t) ≤
∫
hθ(t)dF (θ), and from hθ(1) = 0 for all θ, h̄(1) ≤ 0. Since h is decreasing, its

root 1/λ1(A1) must thus be smaller than unity, and the conclusion follows.

Proof of Theorem 2: Proceeding as in the proof of Lemma 1, PΣ1(τ
2(WW′) > cv2) =

P (Z2
0 ≥

∑q
i=1 η̄iZ

2
i ) with η̄i = λi (−A1) /λ1(A1). By Lemma 10, η̄i ≥ 0 for i = 1, . . . , q. For

future reference, note that PΣ0(τ
2(WW′) > cv2) = α yields P (Z2

0 ≥
∑q

i=1 ηiZ
2
i ) ≤ α for

ηi = λi (−A0).

In the following, we write a ≺ b for two vectors a,b ∈ Rk to indicate that b majorizes a,

that is, with the elements of ai and bi sorted in descending order,
∑j

i=1 ai ≤
∑j

i=1 bi for all
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j = 1, . . . , k, and
∑k

i=1 ai =
∑k

i=1 bi. Let Ā1 = 1
2
(A1 + A′1). From Theorems 9.F.1 and 9.G.1

in Marshall et al. (2011)

(λ1(−A1), . . . , λq+1(−A1)) ≺ (λ1(−Ā1), . . . , λq+1(−Ā1)) (22)

≺
(∫

λ1(−Ā(θ))dF (θ), . . . ,∫
λq(−Ā(θ))dF (θ),

∫
λq+1(−Ā(θ))dF (θ)

)
.

Since
∫
λq+1(−Ā(θ))dF (θ) = −

∫
λ1(Ā(θ))dF (θ) and λq+1(−A1) = −λ1(A1), we have

−λ1(A1) +

q∑
j=1

λj(−A1) = −
∫
λ1(Ā(θ))dF (θ) +

q∑
j=1

∫
λj(−Ā(θ))dF (θ).

The majorization result (22) further implies

λ1(A1) ≤ λ1(Ā1) ≤
∫
λ1(Ā(θ))dF (θ) (23)

so that also

(λ1(−A1), . . . , λq(−A1)) ≺
(∫

λ1(−Ā(θ))dF (θ), . . . ,∫
λq−1(−Ā(θ))dF (θ),

∫
λq(−Ā(θ))dF (θ)−

(∫
λ1(Ā(θ))dF (θ))− λ1(A1)

))
.

with the elements still sorted in descending order. Thus, with η̃i =
∫
λi(−Ā(θ))dF (θ)/λ1(A1)

for i = 1, . . . , q − 1 and

η̃q =

∫
λq(−Ā(θ))dF (θ)− (

∫
λ1(Ā(θ))dF (θ))− λ1(A1))

λ1(A1)

we have (η̄1, . . . , η̄q) ≺ (η̃1, . . . , η̃q). From the integral representation of Lemma 1 (ii),

the application of the Schur-Ostrowski criterion (Theorem 3.A.4 in Marshall et al. (2011))

shows that P (Z2
0 ≥

∑q
i=1 aiZ

2
i ) is Schur convex in (a1, . . . , aq), so that P (Z2

0 ≥
∑q

i=1 η̄iZ
2
i ) ≤

P (Z2
0 ≥

∑q
i=1 η̃iZ

2
i ).

Now applying (23), η̃∗i =
∫
λi(−Ā(θ))dF (θ)/

∫
λ1(Ā(θ))dF (θ) ≤ η̃i for i = 1, . . . , q − 1,

and since from Lemma 10, λ1(A1) ≥ 1, also

η̃∗q =

∫
λq(−Ā(θ))dF (θ)− (

∫
λ1(Ā(θ))dF (θ)− 1)∫

λ1(Ā(θ))dF (θ)
≤ η̃q
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provided ∫
λq(−Ā(θ))dF (θ)−

(∫
λ1(Ā(θ))dF (θ)− 1

)
≥ 0. (24)

Since P(Z2
0 ≥

∑q
i=1 η̃iZ

2
i ) is a decreasing function in η̃i, P (Z2

0 ≥
∑q

i=1 η̃iZ
2
i ) ≤

P (Z2
0 ≥

∑q
i=1 η̃

∗
iZ

2
i ) . By Theorem 3.A.8 of Marshall et al. (2011), the Schur-convexity of

P (Z2
0 ≥

∑q
i=1 aiZ

2
i ) in (a1, . . . , aq) and P (Z2

0 ≥
∑q

i=1 ηiZ
2
i ) ≤ α, it now suffices to show that∑j

i=1 η̃
∗
q+1−i ≥

∑j
i=1 ηq+1−i for all 1 ≤ j ≤ q, and since ηq ≥ 0, this also ensures that (24)

holds. This latter condition may be rewritten as
∑j

i=1

∫
νi(θ)dΠ(θ) ≥ 0, and the result

follows. �

Proof of Lemma 3: (i) Since B is Gaussian, n−1W0′
nun|sn ∼ N (0,Ωn) with Ωn =

n−2
∑

l,` w
0(sl)w

0(s`)
′σB(c (sl − s`)). It thus suffices to show that Ωn

p→ Ωsc.

We have Ωn = σB(0)n−2
∑

l w
0(sl)w

0(sl)
′ + n−2

∑
l 6=` w

0(sl)w
0(s`)

′σB(c (sl − s`)), and

||n−2
∑

l w
0(sl)w

0(sl)
′|| ≤ n−1 sups∈S ||w0(s)||2 → 0. Furthermore,

E

[
1

n(n− 1)

∑
l 6=`

w0(sl)w
0(s`)

′σB(c (sl − s`))

]
= E[w0(s1)w0(s2)′σB(c (s1 − s2))] = Ωsc

and with w0
i (s) the ith element of w0(s),

E

( 1

n(n− 1)

∑
l 6=`

w0
i (sl)w

0
j (s`)

′σB(c (sl − s`))

)2


=
(n− 2)(n− 3)

n(n− 1)
E[w0

i (s1)w0
j (s2)′σB(c (s1 − s2))]E[w0

i (s3)w0
j (s4)′σB(c (s3 − s4))]

+
4(n− 2)

n(n− 1)
E[w0

i (s1)w0
j (s2)′σB(c (s1 − s2))w0

i (s1)w0
j (s3)′σB(c (s1 − s3))]

+
2

n(n− 1)
E[w0

i (s1)w0
j (s2)′σB(c (s1 − s2))w0

i (s1)w0
j (s2)′σB(c (s1 − s2))]

so that Var[ 1
n(n−1)

∑
l 6=`w

0
i (sl)w

0
j (s`)

′σB(c (sl − s`))] = O(n−1), and therefore Ωn
p→ Ωsc.

(ii) By the Cramér-Wold device, it suffices to obtain the desired convergence for fixed linear

combinations. Thus, for υ ∈ Rq+1, define wυ : S 7→ R via wυ(s) = υ′w0(s), a continuous

function on a compact set S. We apply Lahiri’s (2003) Theorem 3.2, in the notation λn , cn,

Xi , sl, ωn(λ−1
n x) , wυ(s) and s2

1n ,
∫
wυ(s)

2g(s)ds. For any h ∈ Rd∫
wυ(s+ c−1

n h)wυ(s)g(s)2ds∫
wυ(s)2g(s)ds

→
∫
wυ(s)

2g(s)2ds∫
wυ(s)2g(s)ds

, Q1
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since the density g is also continuous, so Lahiri’s Condition (S.1) holds. If an → a > 0,

then n/cdn → a−1 , C1, and the result follows from Lahiri’s equation (3.4). If an → 0, then

n/cdn →∞ and a
1/2
n n−1/2 = (cdn/n

2)1/2, so the result follows from Lahiri’s equation (3.5). �

Proof of Theorem 4: In the notation of Lemma 3, with X = (X0,X
′
1:q)
′ and Z =

(Z0, . . . , Zq)
′ we have P (τ 2

n(WnW
′
n) > cv2 |sn)

p→ P
(
X2

0/(X
′
1:qX1:q) > cv2

)
from Lemma 3

and the continuous mapping theorem, so the result follows as in the proof of Lemma 1. �

The proof of Theorem 5 requires a number of technical preliminaries.

Lemma 11. If Xn|sn ⇒p X and Yn
p→ 0, then (Xn + Yn)|sn ⇒p X.

Proof. Let BL be the space of Lipschitz continuous functions Rp 7→ R bounded by one

with unit Lipschitz constant. By Berti et al. (2006), page 93, Xn|sn ⇒p X is equivalent

to suph∈BL |E[h(Xn) − h(X)|sn]| p→ 0, so it suffices to show that suph∈BL |E[h(Xn + Yn) −
h(X)|sn]| p→ 0. Let Y∗n = Yn1[||Yn|| ≤ 1], so that

sup
h∈BL
|E[h(Xn + Yn)− h(X)|sn]| ≤ sup

h∈BL
|E[h(Xn + Y∗n)− h(X)|sn]|+ 2P(||Y∗n|| > 1|sn).

Note that with ∆n(h) = h(Xn + Y∗n)− h(Xn), |∆n(h)| ≤ ||Y∗n|| a.s. for all h ∈ BL, so that

sup
h∈BL
|E[h(Xn + Y∗n)− h(X)|sn]| = sup

h∈BL
|E[∆n(h) + h(Xn)− h(X)|sn]|

≤ sup
h∈BL

(|E[∆n(h)|sn]|+ |E[h(Xn)− h(X)|sn]|)

≤ E[||Y∗n|||sn] + sup
h∈BL
|E[h(Xn)− h(X)|sn]|.

We are left to show that Yn
p→ 0 implies P(||Y∗n|| > 1|sn)

p→ 0 and E[||Y∗n|||sn]
p→ 0.

Consider the latter claim. Suppose otherwise. Then for some ε > 0, and some subsequence

n′ of n, limn′→∞ P(E[||Y∗n′ |||sn′ ] > ε) > ε, so that lim infn′→∞ E[||Y∗n′||] > ε2. But since Y∗n is

bounded, Yn
p→ 0 implies limn→∞ E[||Y∗n||] = 0, a contradiction. A similar argument yields

E[||Y∗n|||sn]
p→ 0, concluding the proof.

Lemma 12. Suppose the mapping ŵ0 : S 7→ Rq+1 is a function of sn (but not of B), and

sup
s∈S
||ŵ0(s)−w0(s)|| p→ 0. (25)

Then Lemma 3 and Theorem 4 continue to hold with Ŵ0
n in place of W0

n, where the ith row

of Ŵ0
n is equal to (1, ŵ(si)

′).
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Proof. We show that Lemma 3 (i) and (ii) continue to hold with w0 replaced by ŵ0. We have

E

( n∑
l=1

(ŵ0
i (sl)− w0

i (sl))u(sl)

)2

|sn

 ≤ sup
s∈S
|ŵ0

i (s)− w0
i (s)|2

∑
l,`

|σB(cn (sl − s`))|

almost surely. Proceeding as in the proof of Lemma 3 (i) now shows that

E[n−2
∑

l,` |σB(c (sl − s`))|] =
∫ ∫
|σB(c(r − s))|g(r)g(s)drds, so n−2

∑
l,` |σB(c (sl − s`))| =

Op(1). Similarly, under the assumptions of part (ii) of Lemma 3, proceeding as in

the proof of Lemma 5.2 of Lahiri (2003) yields E[ann
−1
∑

l,` |σB(cn (sl − s`))|] → aσ2
u +∫

Rd |σB(s)|ds
∫
g(s)2ds. The result thus follows from (25) and Lemma 11.

Lemma 13. In the notation of Lemma 6, suppose Ŵ = L̂Φ̂, where the ith column of the n×q
matrix Φ̂ is v̂i = (ϕ̂i(s1), . . . , ϕ̂i(sn))′ and L̂ = diag(λ̂1, . . . , λ̂q). Under the assumptions of

Lemma 3, cdnn
−2(u′ŴŴ

′
u− u′WW′u)|sn

p→ 0, where W = LΦ, L = diag(λ1lm1 , . . . , λplmp)

and the ith column of Φ is equal to (ϕi(s1), . . . , ϕi(sn))′.

Proof. With Ô = diag(Ô(1), . . . , Ô(p)),

cdnn
−2u′Φ̂L̂

2
Φ̂′u = cdnn

−2u′Φ̂ÔÔ
′
L̂2Ô′ÔΦ̂

′
u = cdnn

−2u′ΦÔ
′
L̂2Ô′Φ′u + op(1)

= cdnn
−2u′ΦÔ

′
L2Ô′Φ′u + op(1) = cdnn

−2u′ΦL2Φ′u + op(1)

where the first equality follows from Ô′Ô = Iq, the second from Lemma 6 (a) and (b) and

the reasoning in the proof of Lemma 12, the third from Lemma 6 (b) and ||cd/2n n−1Ô′Φ′u|| ≤
||Ô|| · ||cd/2n n−1Φ′u|| = Op(1) using Lemma 3, and the fourth from Ô′L2Ô′ = L2 a.s. The

result now follows from Lemma 11.

Proof of Theorem 5: For the first claim, by Theorem 4.4.6 of Harkrishan (2017),

ω0 = sup||f ||=1〈f,RTRf〉, so it suffices to show that for some f ∈ L2
G, 〈f,RTRf〉 > 0. In

the weak correlation case, this holds for f(s) = (κ+ (1− κ)g(s))−1/2, since 〈f,RwcTRwcf〉 =

〈1, T1〉 =
∫ ∫

(1− k̄(r, s))dG(r)dG(s) = 1. In the strong correlation case, the same conclusion

holds by setting f such that Rscf = 1. Such an f exists, because the kernel of R2
sc is equal to

{0} by assumption about σB, so the range of Rsc is L2
G\{0} by Theorem 3.5.8 of Harkrishan

(2017).

Under the null hypothesis, P(τ 2
n(Kn) > cv2 |sn) = P(ξ̂n > 0|sn), where ξ̂n =

cdnn
−2
∑

l,` ulu`(1 − cv2 k̂n(sl, s`)). By construction of λ̂i and ϕ̂i(·) in Lemma 6, for all 1 ≤
l, ` ≤ n, k̂n(sl, s`) =

∑n
i=1 λ̂iϕ̂i(sl)ϕ̂i(s`). For a given q satisfying the assumption of Lemma 6,

and all n > q, let k̂n,q(r, s) =
∑q

i=1 λ̂iϕ̂i(r)ϕ̂i(s) and ξ̂
q

n = cdnn
−2
∑

l,` ulu`(1− cv2 k̂n,q(sl, s`)).
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We now show the last claim, that is P(ξ̂n > 0|sn)
p→ P(

∑∞
i=0 ωiZ

2
i > 0), which is implied by

the following three claims

(i) for any ε > 0 lim
q→∞

lim sup
n→∞

P(|ξ̂n − ξ̂
q

n| > ε) = 0 (26)

(ii) for any fixed q, P(ξ̂
q

n > 0|sn)
p→ P

(
q∑
i=0

ωq,iZ
2
i > 0

)
(27)

(iii) lim
q→∞

P

(
q∑
i=0

ωq,iZ
2
i > 0

)
= P

(
∞∑
i=0

ωiZ
2
i > 0

)
(28)

for some double array of real numbers ωq,i by invoking Lemma 11.

For claim (i), note that for all n > q, ξ̂n ≤ ξ̂
q

n a.s., and

E[ξ̂
q

n − ξ̂n|sn] = cdnn
−2
∑
l,`

σB(cn(sl − s`))

(
n∑

i=q+1

λ̂iϕ̂i(sl)ϕ̂i(s`)

)
≤ λ̂q+1c

d
nn
−2
∑
l,`

σB(cn(sl − s`))

where the inequality follows from tr(AB) ≤ λ1(A) tr B for positive semidefinite matrices A,B

and λ1(A) the largest eigenvalue of A. By the same reasoning as employed in Theorem 12,

cdnn
−2
∑

l,` σB(cn(sl− s`)) = Op(1). Furthermore, by Lemma 6 (b), |λ̂q+1−λq+1| = Oq(n
−1/2),

and limq→∞ λq = 0. Thus (26) follows.

For claim (ii), let ϕ0(s) = 1 and λ0 = 1. By Lemma 6 (a), Lemma 13 and Theorem

1, claim (27) holds, where ωq,i are the eigenvalues of D(cv)Ω for Ω ∈ {Ωsc,Ωwc}, and the

(i + 1), (j + 1) element of Ω is equal to
√
λiλj

∫ ∫
ϕi(s)σB(c(r − s))ϕj(r)dG(s)dG(r) and√

λiλj
∫
ϕi(s)ϕj(s)(κ+ (1− κ)g(s))ds under strong and weak correlation, respectively.

For claim (iii), we first show that these ωq,i are also the eigenvalues of the finite rank

self-adjoint linear operators RTqR, R ∈ {Rsc, Rwc}. To this end, let ϕ∗i (s) =
√
λiRϕi(s).

With d0 = 1 and di = − cv2, we have

RTqR(f)(s) =

∫ ( q∑
i=0

diϕ
∗
i (s)ϕ

∗
i (r)

)
f(r)dG(r)

and the (i + 1), (j + 1) element of Ω stated above is equal to
√
λiλj〈ϕi, R2ϕj〉 =√

λiλj〈Rϕi, Rϕj〉 =
∫
ϕ∗i (s)ϕ

∗
j(s)dG(s). Let v = (v0, . . . , vq)

′ be an eigenvector of D(cv)Ω
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corresponding to eigenvalue ω, D(cv)Ωv = ωv. Then D(cv)Ωv = ωv implies

∫


ϕ∗0(r)ϕ∗0(r) · · · ϕ∗q(r)ϕ
∗
0(r)

− cv2 ϕ∗0(r)ϕ∗1(r) · · · − cv2 ϕ∗q(r)ϕ
∗
1(r)

...
. . .

...

− cv2 ϕ∗0(r)ϕ∗q(r) · · · − cv2 ϕ∗q(r)ϕ
∗
q(r)

 dG(r)v = ωv.

Premultiplying both sides of this equation by (ϕ∗0(s), . . . , ϕ∗q(s)) yields

q∑
j=0

q∑
i=0

vjϕ
∗
i (s)

∫
diϕ

∗
j(r)ϕ

∗
i (r)dG(r) = ω

q∑
j=0

vjϕ
∗
j(s)∫ ( q∑

i=0

diϕ
∗
i (s)ϕ

∗
i (r)

)(
q∑
j=0

vjϕ
∗
j(r)

)
dG(r) = ω

q∑
j=0

vjϕ
∗
j(s) (29)

so
∑q

j=0 vjϕ
∗
j(r) is an eigenvector of RTqR with eigenvalue ω, and since the kernel of RTqR

contains all functions that are orthogonal to {ϕ∗i }
q
i=0, these are the only nonzero eigenvalues.

Now let ω∆
q,i be the eigenvalues of the self-adjoint linear operator R(T − Tq)R. By Kato

(1987) (also see the development on page 911 of Rosasco et al. (2010)), there is an enumeration

of the eigenvalues ωq,i such that

∞∑
i=0

(ωq,i − ωi)2 ≤
∞∑
i=0

(ω∆
q,i)

2 = ||R(T − Tq)R||HS (30)

where ||R(T −Tq)R||HS is the Hilbert-Schmidt norm on the operator R(T −Tq)R : L2
G 7→ L2

G

induced by the norm
√
〈f, f〉. Now ||R(T−Tq)R||HS ≤ ||R||2·||T−Tq||HS (cf. (34) below), and

since T − Tq is an integral operator, ||T − Tq||HS =
∫ ∫ (∑∞

i=q+1 λiϕi(s)ϕj(s)
)2

dG(s)dG(r).

By Mercer’s Theorem, this converges to zero as q →∞, so that

lim
q→∞

∞∑
i=0

(ωq,i − ωi)2 = 0. (31)

Thus using the same order of eigenvalues as in (30), we also have Var[
∑q

i=0 ωq,iZ
2
i −∑∞

i=0 ωiZ
2
i ] ≤ 2

∑∞
i=0(ωq,i − ωi)

2, with the right-hand side converging to zero as q → ∞
by (31). But mean-square convergence implies convergence in distribution, and (28) follows.

For the second claim of the theorem, by Lemma 3, ωq,i ≤ 0 for i ≥ 1, which in conjunction

with (31) implies ωi ≤ 0 for i ≥ 1. �
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Proof of Lemma 6: We initially show a weaker claim than part (a), namely that there

exists a sequence of q × q rotation matrices Ôn = Ôn(sn) with elements Ôn,ij such that

max
i≤q

sup
s∈S

∣∣∣∣∣ϕi(s)−
q∑
j=1

Ôn,ijϕ̂i(s)

∣∣∣∣∣ = Op(n
−1/2). (32)

The proof follows closely the development in Rosasco et al. (2010), denoted RBV

in the following. Let k0(r, s) = k̄(r, s) + 1. Conditional on sn, define the linear op-

erators L2
G 7→ L2

G M(f)(s) = f(s) −
∫
f(r)dG(r), Mn(f)(s) = f(s) −

∫
f(r)dGn(r),

L(f)(s) =
∫
k0(r, s)f(r)dG(r) and Ln(f)(s) =

∫
k0(r, s)f(r)dGn(r) and the derived oper-

ators L̄ = MLM , L̄n = MLnM and L̂n = MnLnMn, so that L̄(f)(s) =
∫
f(r)k̄(r, s)dG(r),

L̄n(f)(s) =
∫
k̄(r, s)f(r)dGn(r) and L̂n(f)(s) =

∫
k̂n(r, s)f(r)dGn(r), where Gn is the empir-

ical distribution of {sl}nl=1.

Let H ⊂ L2
G be the (separable) Reproducing Kernel Hilbert Space (RKHS) of functions

f : S 7→ R with kernel k0 and inner product 〈·, ·〉H satisfying 〈f, k0(·, r)〉H = f(r) and

associated norm ||f ||H. LetK = sups∈S k0(s, s). Define H̄ as the RKHS of functions f : S 7→ R
with kernel k̄, and H1 as the RKHS of functions f : S 7→ R with kernel equal to 1, which

only consists of the constant function. Since k0 = k̄+ 1, H contains all functions that can be

written as linear combinations of H̄ and H1 (see, for instance, Theorem 2.16 in Saitoh and

Sawano (2016)). Thus H contains the constant function, and ||1||H <∞. Furthermore, since

for any f ∈ H, |f(r)| = |〈f(·), k0(·, r)〉H| ≤ ||f ||H · ||k0(·, r)||H ≤
√
K||f ||H, we have

sup
r∈S
|f(r)| ≤

√
K · ||f ||H. (33)

As in RBV, view the operators above as operators on H 7→ H. The operator norm ||A|| of

the operator A : H 7→ H is defined as sup||f ||H=1 ||Af ||H, and A is called bounded if ||A|| <∞.

A bounded operator A is Hilbert-Schmidt if
∑∞

j=1 ||Aej|| < ∞ for some (any) orthonormal

basis ej. The space of Hilbert-Schmidt operators is a Hilbert space endowed with the norm

||A||HS =
√∑∞

j=1〈Aej, Aej〉H, and for any Hilbert-Schmidt operator A and bounded operator

B,

||AB||HS ≤ ||A||HS||B||, ||BA||HS ≤ ||B|| · ||A||HS. (34)

By Theorem 7 of RBV, L and Ln are Hilbert-Schmidt.

Furthermore, for any f ∈ H,

||Mf ||H = ||f −
∫
f(r)dG(r)||H ≤ ||f ||H + ||1||H

∫
f(r)dG(r) ≤ ||f ||H + ||1||H sup

r∈S
|f(r)|
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so that (33) implies that ||M || is a bounded operator. By the same argument, so is Mn

(almost surely). Thus, from (34), also L̄, L̄n and L̂n are Hilbert-Schmidt for almost all sn.

Conditioning on sn throughout, we have the almost sure inequalities ||L̂n − L̄||HS ≤
||L̂n − L̄n||HS + ||L̄n − L̄||HS and, using (34),

||L̂n − L̄n||HS ≤ ||(Mn −M)LnMn||HS + ||MLn(Mn −M)||HS
≤ ||Mn −M || · ||Mn|| · ||Ln||HS + ||Mn −M || · ||M || · ||Ln||HS

as well as

||(Mn −M)f ||H =

∥∥∥∥∫ f(r)dGn(r)−
∫
f(r)dG(r)

∥∥∥∥
H

= ||1||H
∣∣∣∣∫ f(r)dGn(r)−

∫
f(r)dG(r)

∣∣∣∣
= ||1||H

∣∣∣∣∣
〈
f, n−1

n∑
l=1

ζ l

〉
H

∣∣∣∣∣ ≤ ||1||H||f ||H
∥∥∥∥∥n−1

n∑
l=1

ζ l

∥∥∥∥∥
H

with ζ l = k0(·, sl) −
∫
k0(·, r)dG(r) ∈ H. Since sl is i.i.d. with distribution G, E[ζ l] = 0

and ||ζ l||H ≤ 2
√
K a.s. By Hoeffding’s inequality for random elements that take values

in separable Hilbert spaces (cf. equation (3) in RBV), ‖n−1
∑n

l=1 ζ l‖H ≤ 2
√
Kδn−1/2 with

probability of at least 1 − 2e−δ. We conclude that ||Mn −M || = sup||f ||H=1 ||(Mn −M)f ||H
= Op(n

−1/2).

Furthermore, applying the same reasoning as in the proof of Theorem 7 of RBV, ||L̄n −
L̄||HS = Op(n

−1/2). Thus, ||L̂n − L̄||HS = Op(n
−1/2).

The conclusion now follows from similar arguments as employed in Proposition 10 and

12 of RBV. In particular, note that ϕi ∈ H for all i. Furthermore,
∫
ϕi(s)dG(s) =

λ−1
i

∫
ϕi(r)k̄(r, s)dG(r)dG(s) = 0. Thus, with ei =

√
λiϕi ∈ H, Mei = ei,

and 〈ei, ei〉H = 〈ei(·), λ−1
i

∫
k̄(r, ·)ei(r)dG(r)〉H = λ−1

i 〈ei, L̄ei〉H = λ−1
i 〈ei, Lei〉H =

λ−1
i

∫
〈ei(·), k0(r, ·)〉Hei(r)dG(r) = λ−1

i

∫
e2
i (r)dG(r) = 1, so that ei are normalized eigen-

vectors of L̄ : H 7→ H. Since H ⊂ L2
G, these are the only eigenfunctions of L̄ : H 7→ H with

positive eigenvalue, so that the spectrum of L̄ is equal to {λi}∞i=1 (cf. Proposition 8 of RBV).

Also, ϕ̂i ∈ H, and since v̂i is the eigenvector of n−1K̂n with eigenvalue λ̂i, n
−1K̂nv̂i = λ̂iv̂i,

we obtain for λ̂i > 0 that

L̂n(ϕ̂i)(·) =

∫
k̂n(r, ·)ϕ̂i(r)dGn(r) = n−1

n∑
j=1

k̂n(·, sj)ϕ̂i(sj)
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= n−2λ̂
−1

i

n∑
j=1

k̂n(·, sj)
n∑
l=1

v̂i,lk̂n(sj, sl) = n−1

n∑
j=1

k̂n(·, sj)v̂i,j = λ̂iϕ̂i(·)

and ∫
ϕ̂i(r)

2dGn(r) = n−3λ̂
−2

i

n∑
j=1

n∑
`=1

n∑
t=1

v̂i,j k̂n(sj, s`)k̂n(s`, st)v̂i,t = 1.

Furthermore, from
∑n

l=1 v̂i,l = 0, also
∫
ϕ̂i(s)dGn(s) = 0, so that Mnêi = êi. Thus,

with êi =
√
λ̂iϕ̂i ∈ H, 〈êi, êi〉H = 〈êi(·), λ̂

−1

i

∫
k̂n(r, ·)êi(r)dGn(r)〉H = λ̂

−1

i 〈êi, L̂nêi〉H =

λ̂
−1

i 〈êi, Lnêi〉H = λ̂
−1

i

∫
〈êi(·), k0(r, ·)〉Hêi(r)dGn(r) = λ̂

−1

i

∫
êi(r)

2dGn(r) = 1. Therefore êi

are normalized eigenfunctions of L̂n : H 7→ H, and since all f ∈ H that are orthogonal to

êi, i = 1, . . . , n are in the kernel of L̂n, these are the only eigenfunctions of L̄ : H 7→ H with

positive eigenvalue, so the spectrum of L̂n : H 7→ H is equal to {λ̂i}ni=1 (cf. Proposition 9 of

RBV).

Part (b) of the lemma now follows from ||L̂n − L̄||2HS = Op(n
−1) and the development on

page 911 of RBV.

To establish (32), note that with the projection operators P q : H 7→ H and P̂ q : H 7→ H
defined via P q(f)(·) =

∑q
i=1〈f, ei〉Hei(·) and P̂ q(f)(·) =

∑q
i=1〈f, êi〉Hêi(·), by Proposition 6

of RBV, ||P̂ q−P q||HS ≤ 2(λq−λq+1)−1||L̂n− L̄||HS +op(n
−1/2) = Op(n

−1/2). Define the q× q
matrix Õn with i, jth element Õn,ij = 〈êi, ej〉H. Then the j, tth element of Õ′nÕn is given by∑q

i=1 Õn,ijÕn,it =
∑q

i=1〈êi, ej〉H〈êi, et〉H = 〈ej, P̂ q(et)〉H, and 1[j = t] = 〈ej, P q(et)〉H, so that

by the Cauchy-Schwarz inequality∣∣∣∣∣
q∑
i=1

Õn,ijÕn,it − 1[j = t]

∣∣∣∣∣ =
∣∣∣〈ej, (P̂ q − P q)et〉H

∣∣∣
≤ ||P̂ q − P q||HS = Op(n

−1/2).

Thus ||Õ′nÕn−Iq|| = Op(n
−1/2), and with Ôn = (Õ′nÕn)−1/2Õn, also ||Ôn−Õn|| = Op(n

−1/2).

Furthermore, with r̂2
i = λi/λ̂i

p→ 1 using part (b) of the lemma,√
λi||

q∑
j=1

Ôn,ijϕ̂j − ϕi||H = ||r̂i
q∑
j=1

Ôn,ij êj − ei||H

≤ ||
q∑
j=1

Õn,ij êj − ei||H + ||
q∑
j=1

(r̂iÔn,ij − Õn,ij)êj||H

≤ ||(P̂ q − P q)ei||H +

q∑
j=1

|r̂iÔn,ij − Õn,ij|
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≤ ||P̂ q − P q||HS +

q∑
j=1

|r̂iÔn,ij − Õn,ij| = Op(n
−1/2)

so (32) follows from (33).

The claim in part (a) of the lemma now follows by induction from (32): For p = 1, this

follows directly. Suppose the result holds for p − 1, and let ÔB = diag(Ô(1), . . . , Ô(p−1)), so

that

sup
s∈S
||ÔBϕ̂B(s)−ϕB(s)|| = Op(n

−1/2), (35)

with ϕB and ϕ̂B the vector of the first
∑p−1

j=1 mj eigenfunctions. Now let

ÔI =

(
Ô11 Ô12

Ô21 Ô22

)

be the (
∑p

j=1mj) × (
∑p

j=1mj) matrix Ôn of (32) applied with q =
∑p

j=1mj, with

Ô11 of the same dimensions as ÔB. Let ϕI−B and ϕ̂I−B be the mp × 1 vectors of

eigenfunctions with indices
∑p−1

j=1 mj + 1, . . . ,
∑p

j=1 mj, so that by the conclusion of (32),

sups∈S ||Ô11ϕ̂B(s)+Ô12ϕ̂I−B(s)−ϕB(s)|| = Op(n
−1/2) and sups∈S ||Ô21ϕ̂B(s)+Ô22ϕ̂I−B(s)−

ϕI−B(s)|| = Op(n
−1/2). In conjunction with (35), the former yields sups∈S ||(Ô11−ÔB)ϕ̂B(s)+

Ô12ϕ̂I−B(s)|| = Op(n
−1/2), which implies in light of (32) and the linear independence of eigen-

vectors that both ||Ô11−ÔB|| = Op(n
−1/2) and ||Ô12|| = Op(n

−1/2). Since ÔI and ÔB are ro-

tation matrices, Ô′BÔB = Ô′11Ô11 +Ô′21Ô21 = I, so that ||Ô11−ÔB|| = Op(n
−1/2) further im-

plies ||Ô21|| = Op(n
−1/2). We conclude that also sups∈S ||Ô22ϕ̂I−B(s)−ϕI−B(s)|| = Op(n

−1/2),

so that the result for p holds with Ô(p) = Ô22, which concludes the proof. �

Proof of Theorem 8: Suppose max(cv2 − cv2
n, 0)

p→ 0 does not hold. Then

there exists δ > 0 such that lim supn→∞ P(cv2 − cv2
n > δ) > δ. Define κ(κ, cv2) =

P (
∑∞

i=0 ωi(κ, cv)Z2
i > 0), so that sup0≤κ<1 κ(κ, cv2) = α by definition of cv. By continuity

of κ, there exists 0 ≤ κ0 < 1 and cv2 − δ/2 ≤ cv2
0 ≤ cv2 such that κ(κ0, cv2

0) = α. If κ0 = 0,

set cn,1 = cn,0. Otherwise, let cn,1 → ∞ be such that the corresponding an,1 = cdn,1/n → a1

satisfies a1σ
0
B(0)/(a1σ

0
B(0) +

∫
σ0
B(s)ds) = κ0. Now let cv2

n,1 solve P0
Σ(cn,1)(τ

2
n ≥ cv2

n,1 |sn) = α

a.s., so that clearly, cv2
n,1 ≤ cv2

n a.s. for all large enough n. Thus, with An the event that sn

takes on a value such that cv2 − cv2
n′,1 > δ, we also have lim supn→∞ P(An) > δ, and there

exists a subsequence n′ →∞ of n such that P(An′) > δ for all n′.
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For all such n′,

α = P0
Σ(cn′,1)(τ

2
n′ ≥ cv2

n′,1 |An′) ≥ P0
Σ(cn′,1)(τ

2
n′ ≥ cv2 − δ|An′) a.s. (36)

and by Theorem 5, P0
Σ(cn′,1)(τ

2
n′ ≥ cv2 − δ|An′) → κ(κ0, cv2 − δ) > α. This contradicts (36),

and the result follows. �

Theorem 14. Let q̂n be an arbitrary function of sn taking values in Q = {1, 2, . . . , qmax} for

some sample size independent finite and nonrandom qmax. Then for a t-statistic τn(q) that

satisfies the conditions of Theorem 8 for all q ∈ Q with critical value cvn(q) as in (20), for

any ε > 0, lim supn→∞ P(P(τ 2
n(q̂n) > cvn(q̂n)2|sn) > α + ε) = 0.

Proof. Suppose otherwise. Then there exists ε > 0 and a subsequence n′ →∞ such that with

Bn = {sn : P(τ 2
n(q̂) > cvn(q̂)2|sn) > α + ε} ⊂ S, limn′→∞ P(sn′ ∈ Bn′) > ε. Let An,i = {sn :

q̂n = i}, so that limn′→∞
∑qmax

i=1 P(sn′ ∈ Bn′ ∩An′,i) > ε. There hence exists some 1 ≤ q ≤ qmax

and a further subsequence n′′ of n′ such that limn′′ P(sn′′ ∈ Bn′′ ∩ An′′,q) > ε/qmax. But along

this subsequence, q is fixed, so Theorem 8 applies and yields limn′′→∞ P(sn′′ ∈ Bn′′∩An′′,q)→ 0,

yielding the desired contradiction.
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