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ABSTRACT
We consider inference about a scalar coefficient in a linear regression with spatially correlated errors. Recent
suggestions for more robust inference require stationarity of both regressors and dependent variables for
their large sample validity. This rules out many empirically relevant applications, such as difference-in-
difference designs. We develop a robustified version of the recently suggested SCPC method that addresses
this challenge. We find that the method has good size properties in a wide range of Monte Carlo designs
that are calibrated to real world applications, both in a pure cross sectional setting, but also for spatially
correlated panel data. We provide numerically efficient methods for computing the associated spatial-
correlation robust test statistics, critical values, and confidence intervals.
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1. Introduction

This article studies inference about linear regression coefficients
estimated from spatially correlated data. In a simple version of
the model

yl = xlβ + el, (1)

where all variables are scalars, E[el|xl] = 0 and (yl, xl, el)
are associated with the observed spatial location sl ∈ R

d.
Spatial correlation invalidates inference about β using the
usual heteroscedasticity-robust t-statistic. Several spatial-
correlation methods based on robustified versions of the t-
statistic have been proposed, with the most well-known method
developed in Conley (1999). These approaches estimate σ 2 =
var[n−1/2 ∑n

l=1 ul] where ul = xlel and n denotes the number
of observations. In the usual time series model, the locations
sl are equidistant on a line, so d = 1, and σ 2 (or its limit as
n → ∞) is called the long-run variance of u. In that context,
estimators for σ 2 are called HAC or HAR (Heteroscedastic and
Autocorrelation Consistent/Robust). Spatial-correlation robust
inference generalizes HAC and HAR time series methods to
spatial settings.

As in the time series case, it is difficult to devise spatial
correlation robust inference that continues to work well in small
samples under empirically plausible degrees of spatial depen-
dence; see Ibragimov and Müller (2010), Sun and Kim (2012),
Bester et al. (2016), and Kelly (2019) for corresponding simu-
lation evidence. This is especially true for approaches, such as
Conley (1999), Kelejian and Prucha (2007), and Kim and Sun
(2011), that rely on the standard normal critical value for the t-
statistic by invoking a consistency argument for the estimator of
σ 2. A more promising approach is to explicitly account for the
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sampling variability in the estimator of σ 2, and to correspond-
ingly adjust the critical value, as in Bester, Conley, and Hansen
(2011) and Sun and Kim (2012)—these are analogs of the fixed-
b approach of Kiefer and Vogelsang (2005) and the projection
approach of Müller (2004) to the spatial setting. However, the
appropriate adjustment to the critical value is more complicated
in the spatial setting: As demonstrated by Müller and Watson
(2022a), the distribution of the locations in space also matters,
even in large samples under weak dependence. In particular, if
the distribution of the locations is not uniform, then even under
weak dependence, the asymptotic null distribution of spatial
projection type t-statistics are not Student-t, and fixed-b spatial
t-statistics do not have the same asymptotic distribution as
under iid sampling, invalidating the usual suggestions for deter-
mining the critical value. Müller and Watson (2022a) suggest the
spatial correlation principal components (SCPC) method that
addresses this challenge and provides explicit robustness under
some empirically relevant forms of strong dependence.

In contrast to methods that rely on consistency of the estima-
tor of σ 2, fixed-b type approaches (in time and space), includ-
ing SCPC, rely on the stationarity of ul for their large sample
validity. What is more, the methods require that the asymptotic
properties of weighted averages of xlêl, with êl the OLS residuals,
behave like the weighted averages of the demeaned values of
ul = xlel, which essentially requires (xl, el) to be stationary
and weakly dependent. Yet, in many empirical applications, the
data may exhibit non-stationarities and/or strong dependence.
A simple but important spatial example is when xl is an indicator
for a binary treatment, where treatment is more likely in one
region (the “north”) than another region (the “south”). This
article studies the finite-sample properties of spatial correlation
inference procedures when xl (and/or el) follow empirically
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relevant processes that may be nonstationary or strongly depen-
dent. Our focus is on the SCPC method proposed in Müller and
Watson (2022a) because of its desirable theoretical properties.
We use the performance of a version of the Conley (1999)
method as a benchmark. (A notable exception to the require-
ment of stationarity of ul is the cluster-based method suggested
by Ibragimov and Müller (2010), which remains asymptoti-
cally valid under many forms of variance heterogeneity. How-
ever, small sample simulations show that SCPC performs better
under stationarity, and SCPC also avoids the issue of how to
form the clusters (see Cao et al. 2020).)

We set the stage for the analysis in this article by presenting
finite-sample results for four data generation processes (DGPs).
Each of the models uses a stationary Gaussian process for el, but
differ in the DGP for xl. Specifically, el is generated by a Gaussian
process with covariance function cov(el, e�) = exp(−c||sl −
s�||), where sl and s� denote the spatial locations of el and e�,
and c > 0 is a parameter that governs the strength of the spatial
correlation. This process is the spatial analogue of the time series
AR(1) model, with larger values of c implying less spatial corre-
lation. This process will be used in many places in the article,
and from now on we use the shorthand el ∼ Gexp(c) to denote
a mean zero Gaussian process with this exponential covariance
function. We calibrate the value of c to induce a specific average
pairwise correlation ρ̄ = [n(n − 1)]−1 ∑

l,� �=l corr(el, e�), at
the sample spatial locations, that is, c = cρ̄ solves [n(n −
1)]−1 ∑

l,� �=l exp(−cρ̄ ||sl − s�||) = ρ̄. Thus, if el ∼ Gexp(c0.03),
then the average correlation of el and e� is 0.03 over the sample
locations.

In each of the four models, spatial locations are randomly
selected from the unit interval, so d = 1 and sl ∼ iid U(0, 1).
Thus, this can be viewed as a time series setting with irregular
(random) sampling. We consider more interesting and empiri-
cally relevant spatial designs in Section 3, but this simple design
serves as a useful introduction. The sample size is n = 250.
We construct t-statistics using three estimators for σ . The first
uses the standard Eicker-Huber-White heteroscedastic robust
estimator (HR) that ignores spatial correlation. The second is
a Bartlett kernel estimator (Kernel)—this is Conley’s (1999)
spatial generalization of the well-known Newey-West (1987)
HAC standard error. The third is the SCPC estimator proposed
in Müller and Watson (2022a) which is analogous to projection
based estimators used in time series regressions (e.g., Müller
2004; Phillips 2005; Sun 2013) but tailored to the particular
spatial distribution of the data being studied. Standard normal
critical values are used for HR and Kernel; an “oracle” bandwidth
is used in the Kernel method so the test’s rejection frequency is
as close as possible to its nominal level. The critical value for
SCPC depends on ρ and the spatial locations in the sample;
details are provided in Müller and Watson (2022a) and reviewed
in Section 2.

Table 1 shows null rejection frequencies for tests with 5%
nominal level for each of the four models and three methods. In
the first model, el ∼ Gexp(c0.03) and xl = 1. Here, and for the
other models as well, HR exhibits a large size distortion, which
is expected given the spatial correlation in the data. The Kernel
method has a rejection frequency of 11%, which is a substantial
improvement over HR, but is still far from its 5% nominal value,
even though the best possible bandwidth choice was made. The

Table 1. Rejection frequency of nominal 5% level tests.

Model HR Kernel SCPC

1: xl = 1, el ∼ Gexp(c0.03) 0.51 0.11 0.05
2: xl ∼ Gexp(c0.03/2), el ∼ Gexp(c0.03/2) 0.52 0.14 0.08
3: xl ∼ step function, el ∼ Gexp(c0.03) 0.52 0.20 0.15
4: xl ∼ demeaned random walk, el ∼ Gexp(c0.03) 0.50 0.14 0.08

NOTE: Null rejection frequencies using heteroscedastic robust (HR), spatial kernel
(Kernel), and SCPC inference about β in regression model yl = xlβ + el with n =
250 and sl ∼ iid U(0, 1).

Table 2. Quantiles of conditional null rejection frequencies of nominal 5% level
SCPC tests.

Quantile

Model 0.05 0.25 0.50 0.75 0.95

1: xl = 1, el ∼ Gexp(c0.03) 0.05 0.05 0.05 0.05 0.05
2: xl ∼ Gexp(c0.03/2), el ∼ Gexp(c0.03/2) 0.05 0.06 0.07 0.09 0.11
3: xl ∼ step function, el ∼ Gexp(c0.03) 0.11 0.13 0.14 0.17 0.21
4: xl ∼ demeaned random

walk, el ∼ Gexp(c0.03) 0.05 0.06 0.08 0.09 0.12

NOTE: Quantiles of conditional null rejection frequencies of SCPC given {xl , sl}n
l=1

for inference on β in regression model yl = xlβ + el with n = 250 and sl ∼ iid
U(0, 1).

SCPC method is designed to have small sample validity in this
setting, so the null rejection probability is exactly 5%.

In Model 2, xl and el are independent and followGexp(c0.03/2)

processes. Here ul = xlel is non-Gaussian but with the same
covariance function as the Gexp(c0.03) process. Yet the rejec-
tion frequencies of both Kernel and SCPC increase by 3%,
which is primarily driven by the difference between xlêl and the
demeaned version of xlel.

In Models 3 and 4, el ∼ Gexp(c0.03) and xl is nonstationary.
In Model 3, xl is a zero-mean step function with xl = −0.15 for
the 85% of the locations closest to s = 0 and xl = 0.85 for the
remaining locations closest to s = 1. This induces a further size
distortion in both Kernel and SCPC. In the final DGP, xl follows
a demeaned random walk, which results in rejection frequencies
similar to Model 2.

Table 2, which focuses on SCPC, presents a more nuanced
view of the rejection frequencies in Models 2–4 by summarizing
rejection frequencies conditional on the values of xl and sl in
each experiment. That is, in these experiments, (xl, sl) are sam-
pled as described above, and rejection frequencies are computed
over repeated draws of el. This process is repeated for many
random draws of (xl, sl), and the table reports selected quantiles
of the resulting distribution of rejection frequencies. The 95th
quantile indicates null rejection frequencies larger than 11% in
Models 2–4: a researcher unluckily enough to observe these
values of (xl, sl) and using a nominal 5% SCPC test, would in
fact be using a test with conditional null rejection probability
larger than 11%.

Taken together these experiments suggest that SCPC offers
substantial improvements on methods that ignore spatial corre-
lation (and improvements over Kernel), but may exhibit quan-
titatively important size distortions for some DGPs. This raises
two questions. First, how well does the method perform for the
range of DGPs typically encountered in empirical work? And
second, are there modifications that enhance its performance in
situations where it performs poorly? We take up both questions
in this article.



1052 U. K. MÜLLER AND M. W. WATSON

To answer the first, we begin by augmenting the simple
regression model to include additional control variables and
allow clustering of observations by location. This setup covers
panel data models with fixed effects, difference-in-difference
designs, and clustered versions of spatial-correlation-robust
standard errors. We model empirically relevant spatial designs
by considering the spatial density of economic activity over the
continental United States and the location of countries over the
globe. We generate the sptatially correlated variables using para-
metric models, but also by sampling variables from the World
Development Indicators (WDI) dataset from the World Bank.
This dataset contains hundreds of variables for many countries
over several years, and thus provides a wide range of spatial
patterns in both cross-section and panel-data regressions.

To answer the second question, we propose a modification
of the SCPC method so that it also controls size, conditional
on the regressors, for a particular conditionally heteroscedastic
Gaussian model for el. The details are described below. While
not offering perfect size control in all settings, this modification
provides a quantitatively important improvement over SCPC in
several of the models we consider.

The outline of the article is as follows. In Section 2 we
outline the spatial regression model and inference methods.
Notably, the section presents a method for robustifying SCPC
inference to control size after conditioning on the values of the
regressors and locations. Section 3 presents experiments using
the spatial distribution of economic activity in each of the 48
states making up the continental U.S. and hundreds of variables
chosen from the World Bank’s WDI dataset. The results indicate
that the conditional-SCPC method developed in Section 2.3
offers improved size control over SCPC, which in turn improves
upon Kernel for a wide range of empirically relevant process
for both cross-section and panel-data regressions with clustered
standard errors. Several of these results use Gexp(c) processes
for the error term, and Section 4 studies the robustness of
the conclusions to other spatial processes, including condi-
tional heteroscedasticity in the regression error. Section 5 takes
up three issues. The first two are computational: evaluating
the critical value for the spatial-correlation robust t-statistics
and computing the statistics when n is very large. The third
involves using SCPC in IV regressions. The final section offers
some concluding remarks. Software for conducting conditional-
SCPC inference for regression coefficients is available in STATA
and Matlab. Links to the software are available at https://www.
princeton.edu/~mwatson/.

2. Setup

This section has three purposes. First, it presents the spatial
regression model used in our analysis. Second, it provides details
for t-statistic inference using the SCPC and Kernel methods.
Finally, it proposes a robustification of the SCPC critical value
so that the method controls size, conditional on the regressors
and locations, for a particular heteroscedastic model that we
describe.

2.1. Spatial Regression Model

The spatial regression model is
yi,l = xi,lβ + z′

i,lγ + ei,l (2)

where l = 1, . . . , n indexes clusters (or groups, entities, etc.)
and i = 1, . . . , ml identifies the ml individual observations in
cluster l. The total number of observations is N = ∑n

l=1 ml.
The model with ml = 1 for all l is the cross-section spatial
regression model, and ml > 1 allows for clustering and panel
data. Cluster l is associated with location sl ∈ R

d. The variable
xi,l is a scalar, and β is the parameter of interest. The k×1 vector
zi,l allows for additional regressors that may include fixed-effect
indicators, and ei,l is the regression error.

The following notation will prove useful. The ml × 1 vector
xl = (x1,l, x2,l, . . . , xml ,l)

′ collects the x-variables for cluster l,
and the N × 1 vector X = (x′

1, x′
2, . . . , x′

n)
′ collects the x-

variables in the sample. The vectors and matrices zl, el, Z, e as
well as the n × 1 vector of locations s are defined analogously.
We denote sample second-moments as Sxx = n−1 ∑n

l=1 x′
lxl and

Sxy = n−1 ∑n
l=1 x′

lyl, where dividing by n instead of N simplifies
the formulas below. We assume (without loss of generality) that
the regressors x have been residualized with respect to z so
that X′Z = 0. (If Xo is the vector of untransformed versions
of xi,l in (2) then X = (I − Z(Z′Z)−1Z′)Xo.) This simplifies
the expressions for the OLS estimator for β and other statistics.
Using this notation, the OLS estimator for β is β̂ = S−1

xx Sxy =
β +S−1

xx n−1 ∑n
l=1 ul, where ul = x′

lel. The OLS residuals are êi,l,
and ûl = x′

l êl. These are collected in the vectors u, ê and û.
Inference about β is based on the t-statistic

τ = Sxx
√

n(β̂ − β0)

σ̂
(3)

where σ̂ 2 is an estimator of σ 2 = var
(
n−1/2 ∑n

l=1 ul
)

and β0 is
the null value of β .

2.2. Two Spatial Correlation Robust Inference Methods

The results summarized in Tables 1 and 2 rely on two inference
methods. The Kernel method estimates σ 2 by

σ̂ 2
K = 1

n
∑
l,�

K
( ||sl − s�||

bn

)
ûlû� (4)

where K is the Bartlett weighting function, K(x) = 1 − |x| for
|x| ≤ 1 and K(x) = 0 otherwise, and bn > 0 is a bandwidth
parameter. Empirical researchers typically use standard normal
critical values for the resulting t-statistic, relying on maxl,� ||sl −
s�||/bn → ∞ as n → ∞ arguments in Conley (1999). We
implement the “oracle” version of this method that combines
the standard normal critical value with the value of bn that
minimizes the small sample size distortion in each experiment.
This choice of bn is infeasible in practice, but yields a useful
lower bound on size distortions associated with the method. (As
specified in (4), σ̂ 2

K ≥ 0 is not guaranteed when d > 1. In the
case of d = 2, Conley (1999) suggests using the product of two
univariate Bartlett kernels based on distance in each of the two
dimensions. This produces a positive semidefinite estimator of
σ 2, but it is not invariant to rotation of the spatial axes. In our
calculations we use the spectral decomposition of the Bartlett
weights in (4) with negative eigenvalues set to zero.)

The SCPC method of Müller and Watson (2022a) is based on
a principal component estimator of σ 2 based on a pre-specified
“worst-case” exponential covariance function conditional on

https://www.princeton.edu/~mwatson/
https://www.princeton.edu/~mwatson/
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the observed locations. Suppose that ul ∼ Gexp(c), and let �(c)
be the corresponding n × n covariance matrix of u evaluated
at the sample locations s, so that the l, � th element of �(c) is
�l,�(c) = exp(−c||sl − s�||). Let ρ̄(c) denote the resulting aver-
age pairwise correlation ρ̄(c) = [n(n − 1)]−1 ∑

l
∑

� �=l �l,�(c).
Suppose a researcher desires a test that controls size for values
of ρ̄ that may be as large as ρ̄ = ρ̄max, for a given value of
ρ̄max. The results summarized in Tables 1 and 2 are based on
ρ̄max = 0.03, for instance. Let cmin satisfy ρ̄(cmin) = ρ̄max,
where the notation emphasizes that ρ̄(c) is a decreasing function
of c. Note that �(cmin) is the worst case covariance matrix for u
in the sense that it induces the largest value of σ 2 among all �(c)
with ρ̄ ≤ ρ̄max.

The location model studied in Müller and Watson (2022a) is
a special case of the spatial regression (2) with ml = 1, xl = 1
and zl = 0 for all l. The corresponding residuals are ul − u.
Let 1 denote a n × 1 vector of 1’s and M1 = In − 1(1′1)−11′.
The matrix M1�(cmin)M1 denotes the associated covariance
matrix of u − ū1. For inference about the mean, the SCPC
estimator of σ 2 uses the weighted averages of ul−u with weights
constructed from the eigenvectors of M1�(cmin)M1. These are
the principal components of u − ū1 under Gexp(cmin) evaluated
at the observed locations s. In the regression model considered
in this article, ul − u cannot be computed from the data without
imposing the true values of (β ,γ ) so ûl is used in place of ul −
u; a straightforward calculation shows that this substitution is
justified in large samples when (el,ul) are stationary and weakly
dependent.

Let rj denote the eigenvector of M1�(cmin)M1 correspond-
ing to the jth largest eigenvalue, normalized so that r′

jrj/n = 1.
(See Figure 6 in Section 5.2 for an example of these eigenvec-
tors.) The SCPC estimator of σ 2, based the first q principal
components, is

σ̂ 2
SCPC(q) = 1

q

q∑
j=1

(n−1/2r′
jû)2, (5)

and the resulting t-statistic will be denoted as τSCPC. The critical
value for τSCPC is denoted by cvSCPC and is chosen so that the
t-test controls size for all values of c ≥ cmin (equivalently,
ρ̄ ≤ ρ̄max) in the asymptotically equivalent location model with
u ∼ N (0, �(c)). Details for computing cvSCPC are provided in
Section 5.1.

SCPC inference requires two parameters, q, the number of
principal components used to construct σ̂SCPC, and ρmax (or
cmin), the largest average spatial correlation for which size is con-
trolled. For a given value of ρmax, Müller and Watson (2022a)
suggest choosing q to minimize the expected length of the 95%
confidence interval under the iid model with � = In. The opti-
mal value of q involves a tradeoff. With the critical value fixed,
the expected length of the confidence interval falls as q increases.
But, a larger q means that a larger critical value is needed to
control coverage. This tradeoff worsens for larger values of ρmax,
so the optimal value of q is a decreasing function of ρmax. There
are other possible rules for choosing q, but, as a practical matter
it is useful to use the same value of q for tests with different
significance levels, and for the location model, results in Müller
and Watson (2022a) suggest that minimizing the expected 95%

confidence interval length under the iid benchmark yields a
value of q that works well for a range of values of c.

The choice of ρmax requires more nuanced judgment. One
useful guide is to consider the ratio of the standard deviation
of β̂ under spatial correlation to its value under iid sampling.
This ratio is given by γn = √

1 + (n − 1)ρ. The results reported
in Table 1 used ρmax = 0.03 with n = 250 and thus allowed
for a value of γn as large as 2.9. To put this value in perspec-
tive, for the sample mean from an AR(1) time series model,
γn = 2.9 corresponds to an AR coefficient equal to 0.79 and
a local-to-unity coefficient equal to 53. Ultimately, the choice
of ρmax is problem specific and requires the researcher to con-
sider how much spatial correlation may be present in their
application.

As discussed in Müller and Watson (2022a) the SCPC
method has several desirable properties for inference in the
location model. We list four. First, size is controlled in the Gaus-
sian model for ul ∼ Gexp(c) for any value of c ≥ cmin. Second, in
large-n samples, size control is not limited to Gaussian Gexp(c)
settings, but holds more generally in covariance stationary
models with weak dependence. (In the context of the spatial
regression model, the asymptotic arguments let n, the number
of clusters, grow large. There is no restriction on cluster size or
on the number of additional regressors, such as fixed effects,
beyond the requirement that ul = x′

lel is covariance stationary
and weakly dependent.) Third, in finite-sample settings, size
control extends to Gaussian models with spectra that are weakly
less steep than that ofGexp(cmin), and SCPC confidence intervals
enjoy a near optimality property in terms of their expected
length for confidence intervals that control coverage for this
class of spectra.

These results suggest that SCPC inference will perform well
in an important class of spatial regression models. Of course, the
finite-sample results hold only up to the approximation error in
ûl ≈ ul − u, but the large-n sample results—including size con-
trol for models outside the Gexp(c) class—hold under stationar-
ity and weak dependence. That said, the simulations reported
in the introduction suggest non-negligible size distortions in
finite-sample settings with stationary, but spatially persistent
data (Model 2), and more concerning size distortions when xl is
nonstationary (Model 3). As it turns out, these size distortions
can be eliminated or mitigated by using an alternative critical
value chosen to control size after conditioning on the regressors.
We outline that modification in the next section.

2.3. Conditional SCPC Inference

The required modification is straightforward: instead of com-
puting the critical value for τSCPC so that size is controlled in
the location model under u ∼ N (0, �(c)), c ≥ cmin, we
additionally impose that size is also controlled in the regression
model (2) under a set of conditional distributions of u (and û)
given V = (X, Z) (and in both cases, also conditional on the
locations s). This amounts to specifying the distribution of e
given V, which we assume to be Gaussian, e|V ∼ N (0, �e|V). To
motivate our parameterization of �e|V, note that randomness in
β̂ is driven by the random variable n−1/2 ∑

l ul, with conditional
variance equal to
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var

(
n−1/2

∑
l

ul|V
)

= n−1
∑
l,�

x′
lE[ele′

�|V]x�. (6)

This highlights two distinct issues: first, how to parameterize the
covariance of e between clusters (l �= �), and second, how to
parameterize within-cluster covariation.

To focus on the first issue, consider the cross-section regres-
sion (ml = 1 for all l), so that xl and el are scalars and between-
cluster covariation is the only relevant issue. A straightforward
modification of the SCPC formulation assumes that el|V ∼
Gexp(c), so that el is independent of V. Examination of (6) shows
that, using this formulation, realizations with xlx� < 0 result
in a lower value of var

(
n−1/2 ∑

l ul|V
)

than realizations with
x’s of the same magnitude with xlx� > 0. This formulation
lacks robustness in this respect. A more robust formulation
sets el = sign(xl) · al, where al|V ∼ Gexp(c); this yields
var

(
n−1/2 ∑

l ul|V
) = n−1 ∑

l,� |xlx�| exp(−c||sl − s�||) in the
model with ml = 1.

We extend this to the panel-data regression model using

el = xs
l al, (7)

where xs
l = xl/(x′

lxl)
1/2 and al is scalar with al ∼ Gexp(c). This

yields var
(
n−1/2 ∑

l ul|V
) = ∑

l,�(x′
lxl)

1/2(x′
�x�)

1/2 exp(−c||sl
− s�||). Note that this expression for the variance reduces to that
of the cross-section regression when ml = 1 for all l.

This formulation has several desirable features. First, it is a
tractable extension of SCPC, leading to computations that are
no harder than those of the baseline SCPC method irrespective
of the cluster sizes ml (we discuss computational issues in Sec-
tion 5.1). Second, as c → ∞ it yields var

(
n−1/2 ∑

l ul|V
) =∑n

l=1
∑ml

i=1 x2
i,l which coincides with the variance in the model

where e ∼ N (0, IN). Third, while the conditionally singular
within-cluster model for el might look restrictive at first glance,
it plays no role in analysis beyond its effect on the variance
ul. Furthermore, a straightforward calculation shows that the
conditionally singular model in (7) yields the largest variance
of ul among all models with tr[var(el|V)] = 1, and in this sense
maximizes the effect of within-cluster covariation on the vari-
ance of β̂ . We note that a potential limitation of the formulation
in both the cross section and panel regression is the assumption
that el is mean independent of the entire set of regressors V.

We use (7) to modify the critical value for SCPC as follows.
First, we compute cvSCPC as in the last section. We then also
compute a new critical value, say cvV, chosen so that the t-test
controls size for all values of c ≥ cmin (equivalently, ρ̄ ≤ ρ̄max)
in the regression model with al|V ∼ Gexp(c). The conditionally-
robust critical value for SCPC is then the larger of cvSCPC and
cvV,

cvC-SCPC = max(cvSCPC, cvV).

Section 5.1 provides details for computing cvV and cvC-SCPC.
We stress that, by conditioning on V, the C-SCPC critical value
robustifies τSCPC inference to allow for arbitrary nonstationary
behavior in the regressors.

In what follows we will investigate rejection frequencies of
τSCPC using cvSCPC and using cvC-SCPC. We will refer to these
methods as SCPC, and C-SCPC, respectively.

Table 3. Distribution of conditional null rejection frequencies of nominal 5% C-
SCPC tests.

Quantile

Model cmin Avg 0.05 0.25 0.50 0.75 0.95

xl = 1, el ∼ Gexp(c0.03) c0.03 0.05 0.05 0.05 0.05 0.05 0.05
xl ∼ Gexp(c0.03/2),

el ∼ Gexp(c0.03/2) c0.03/2 0.04 0.03 0.03 0.04 0.04 0.05
xl ∼ Gexp(c0.03/2),

el ∼ Gexp(c0.03/2) c0.03 0.06 0.04 0.05 0.06 0.06 0.07
xl ∼ step function,

el ∼ Gexp(c0.03) c0.03 0.05 0.04 0.04 0.05 0.05 0.05
xl ∼ demeaned random

walk, el ∼ Gexp(c0.03) c0.03 0.05 0.05 0.05 0.05 0.05 0.05

NOTE: Quantiles of conditional null rejection frequencies of C-SCPC given {xl , sl}n
l=1

for inference on β in regression model yl = xlβ + el with n = 250, sl ∼ iid U(0, 1).
cmin denotes the lower bound on c used in the construction of the C-SCPC critical
value.

Table 3 shows the performance of C-SCPC for the four
models considered in Tables 1 and 2, which reported results for
SCPC. Recall that these models are cross-section regressions,
so ml = 1 for all l, and in Model 2, xl ∼ Gexp(c0.03/2) and
el ∼ Gexp(c0.03/2) so that ul = xlel has a exponential covariance
function with parameter c0.03. Table 3 shows the rejection for
Model 2 with cvC-SCPC computed using c0.03/2 (which is the
DGP of el) and using c0.03 (which is the correlation of ul). In
both cases, and in the other models, C-SCPC offers improved
size control, across the range of xl realizations. Note that in the
models in Table 3, el ∼ Gexp(c), which is different than the
model used to compute cvC-SCPC, namely (7). This provides a
hint about the robustness properties of C-SCPC over alternative
DGPs, something that we investigate more fully in the following
sections.

We find the results summarized in Tables 1–3 both enlight-
ening and encouraging. That said, they are based on what are
arguably contrived designs and do not feature panel data. The
next section examines the performance of the methods in more
empirically relevant designs.

3. Size Control of Spatial-Correlation Robust
t-statistics

The various t-statistics discussed above have probability
distributions that depend on two distinct features of the
population under study: (i) the spatial process that generates
(y(s), x(s), z(s)) for arbitrary locations s ∈ R

d, and (ii)
the probability distribution that governs which locations are
sampled, that is the spatial distribution of s. This section reports
results from a variety of experiments in which we choose both
features to mimic empirically plausible settings.

In particular, we consider two sets of spatial distributions.
The first involves drawing locations from each of the 48 con-
tinental U.S. states where the spatial density is proportional to
economic activity within the state, and where economic activity
is proxied by the intensity of light measured from space. These
experiments yield 48 distinct spatial densities with different
support (the boundaries for the states) and shapes (the con-
centration of economic activity within the state), and was used
previously in Müller and Watson (2022a). The second set of
experiments uses data from countries scattered over the globe.
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Figure 1. Spatial densities for four U.S. states
NOTE: These are densities of light, as measured from space, estimated from data provided in Henderson, Squires, Storeygard, and Weil (2018).

We use two methods for generating realizations of (y(s), x(s),
z(s)). The first, used in the U.S. states designs, generates data
from parametric models like those used in the experiments
already discussed. The second, used in the country designs,
uses actual data sampled from the World Bank’s World Data
Indicators (WDI) dataset.

3.1. 48 U.S. States

The first set of experiments use data generated from designs
that capture the spatial distribution of economic activity in the
48 continental United States. Economic activity is proxied by
light intensity which is estimated using the fine grid of light
measurements reported in Henderson, Squires, Storeygard, and
Weil (2018). States differ by their shape and spatial concentra-
tion of economic activity, and Figure 1 shows four examples.
Looking across 48 states allows us to study the behavior of the
test statistics under a wide range of empirically-relevant spatial
distributions.

In the 48-states experiments, realizations of (y(s), x(s), z(s))
are generated from parametric models that focus on stylized
characteristics of data used in empirical work. We begin by
discussing experiments for cross-section regressions (ml = 1
in Equation (2)) and then discuss panel regressions. Table 4
summarizes the experiments for cross-section regressions. The
first experiment is a benchmark with xl = 1, el ∼ Gexp(c0.03)
and no additional control variables. In Experiments 2–6, xl
and el are generated by independent Gexp(c) models, where
the experiments differ in the values of c and whether addi-
tional control variables are included. In Experiments 7–10, xl
is generated by a step function with a shift between southern

Table 4. Spatial regression designs using U.S. states spatial distributions of loca-
tions.

Design al xl zl

1 Gexp(c0.03) 1 none
2 Gexp(c0.03) Gexp(c0.03) 1
3 Gexp(c0.03) Gexp(c0.03) none
4 Gexp(c0.03) Gexp(c0.03) [1,Gexp(c0.03)3]
5 Gexp(c0.03) iidN (0, 1) 1
6 Gexp(c0.03) iidN (0, 1) [1,Gexp(c0.03)3]
7 Gexp(c0.03) Step(0.50) 1
8 Gexp(c0.03) Step(0.15) 1
9 Gexp(c0.03) Step(0.50) [1,Gexp(c0.03)3]
10 Gexp(c0.03) Step(0.15) [1,Gexp(c0.03)3]
11 Gexp(c0.03) (1 + wl)vl , wl ∼ Step(0.5),

vl ∼ Gexp(c0.03) 1
12 Gexp(c0.03) (1 + wl)vl , wl ∼ Step(0.15),

vl ∼ Gexp(c0.03) 1
13 Gexp(c0.03) random walk 1
14 Gexp(c0.03) random walk [1,Gexp(c0.03)3]
NOTE: The regression model is yl = xlβ + z′

l γ + el with el = al or el =
sign(xl) · al , with sl ∼ iid from a U.S. state-specific density with examples
given in Figure 1. All Gexp processes are mutually independent. In Designs 7–
12, Step(λ) is a step function that is equal to 0 for the southern most �λn

observations and 1 otherwise. Random walk xl are approximated by Gexp(c) for
a small c. Gexp(c)3 in the zl column denotes 3 independent realizations of a
Gexp process. xl is residualized with respect to zl in all models. All models use
n = 250.

and northern locations; these regressors are stylized versions of
spatially correlated binary treatments. In Experiments 11 and
12, xl is generated by a Gexp(c) model with spatial heteroscedas-
ticity, and in 13 and 14, xl follows a spatial random walk. In all
experiments reported in this article, the xl regressor is projected
off the control regressors to ensure

∑n
l=1 x′

lzl = 0. We present
results for el ∼ Gexp(c) and el = sign(xl) · al with al ∼ Gexp(c),
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Figure 2. Null rejection frequencies for 5% nominal tests: spatial regressions, 48-states experiments.
NOTE: The bars show the 5th through 95th quantiles of the distribution of rejection frequencies conditional on the regressors for nominal 5% tests. Squares denote the
mean of the distribution, which is the unconditional rejection frequency. See Table 4 and the text for a description of the experiments.

the latter model is used to compute the critical value of C-SCPC.
All simulations use n = 250. The null rejection frequency of
nominal 5% level tests is analytically computed for each draw of
{xl, zl, sl}n

l=1, which yields a distribution of rejection frequencies
for each experiment.

Figure 2 shows the 5th and 95th quantiles, and the mean of
these conditional null rejection probabilities. Results are shown
for Kernel, SCPC, and C-SCPC. The SCPC critical value is
computed using c0.03 in all experiments. (In Experiments 2–6,
x and e follow independent Gexp(c) processes so that ul = xlel
has the Gexp(2c) covariance function. Thus, the c-value used
to compute cv is smaller than the c-value used to generate for
u in these experiments. A smaller critical value (and larger
rejection frequency) results when 2c is used to compute cv.)
The critical value of C-SCPC is computed using the value of c
that generated el. Figure 2 does not show results for the usual
heteroscedasticity-robust version of the t-statistic that ignores
spatial correlation; suffice it to say the resulting test yields null
rejection frequencies that greatly exceed its nominal 5% level.

The results for this rich set of spatial designs is similar to
what we found earlier in the simple U(0, 1) spatial design. We
highlight four results.

First, despite the optimal choice of bandwidth, the Kernel
method suffers from substantial size distortions. This is con-
sistent with a large body of research that finds similar size
distortions in time series regressions using HAC standard errors
together with standard normal critical values. (These size distor-

tions were documented in an early contribution by den Haan
and Levin (1997). Lazarus et al. (2018) provide a recent set of
simulations and references.)

Second, SCPC does a reasonably good job controlling size in
several designs, but has uncomfortably large size distortions in
some cases. For example, the mean null rejection frequency of
SCPC is over 0.15 when xl is generated by a step function in
Experiments 8 and 10.

The third result is that C-SCPC has much improved size con-
trol, both for models for which the critical value was designed
(that is when el = sign(xl)al with al|V ∼ Gexp(c) as in panel
(b)) but also when el|V ∼ Gexp(c) (panel (a)); this is consistent
with the results from the sl ∼ iid U(0, 1) designs previously
shown in Table 3. One might wonder about the rejection fre-
quencies below 5% evident in panel (b) for some realizations of
{(xl, zl, sl)}n

l=1. These arise when the size constraint is binding
for a value of c other than cmin, reflecting the fact that size is also
controlled for processes that are less spatially correlated than the
DGP used in the experiment.

Finally, the fourth result is that the rejection frequencies for
Kernel and SCPC are somewhat larger in panel (b) than in panel
(a). This reflects the increase in spatial correlation that motived
the construction of the C-SCPC critical value, that is replacing
xlx� (which is sometimes negative) with |xlx�|.

Figure 3 summarizes results from a panel version of these
designs with ml = 4 observations in each of n = 250 clusters.
The panel data models differ from their non-panel counterparts
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Figure 3. Rejection frequencies for 5% nominal tests: spatial panel regressions, 48-states experiments.
NOTE: See notes to Figure 2. The inclusion of fixed effects eliminates Experiment 1 from the spatial panel regressions.

in three ways. First, these designs rely on a cluster version of
the Gexp(c) model, which we now describe. Let wl denote an
m × 1 vector of variables associated with location sl; in our
applications w represents e, x, or one column of z. Within-
cluster covariance is generated by an AR(1) structure with AR
parameter φ, and between-cluster covariation generated by the
exponential covariance function used above. This results in the
covariance function cov(wi,l, wj,�) = φ|i−j| exp(−c||sl − s�||).
The results shown in panel (a) of Figure 3 use data generated as
described in Table 4 with φ = 0.9 for within-cluster covariation
and the values of c shown in the table for between-cluster covari-
ation (unreported results show little sensitivity to the choice
of φ). Results in panel (b) use the same regressors but with el
generated by (7), that is el = xs

l al where al ∼ Gexp(c) is a
scalar process. The second difference is that cluster-specific fixed
effects are included as controls in all models; this eliminates
Experiment 1 in which xl = 1. The third difference concerns
the step-function regressor designs in Experiments 8–12. In the
panel data models these step functions are used to generate the
regressors for the final two observations in each cluster (i = 3 and
4); observations for i = 1 and 2 are set to zero. This produces a
differences-in-differences design where treatment occurs in the
north during the final two time periods and the observations in
the south are untreated throughout.

With these differences, the panel data results in Figure 3
look a lot like its nonpanel counterpart in Figure 2. The most
obvious difference are the more pronounced size distortions for
Kernel and SCPC in Experiments 8 and 10. These arise because

the differences-in-differences design results in a much smaller
effective sample size because only 15% of the clusters are treated.

One might wonder how the power of the different tests
compare. Since the SCPC and C-SCPC methods are based on
the same t-statistic τSCPC, and only differ in their critical val-
ues, the size-adjusted power (or, equivalently, average length of
confidence intervals) of SCPC and C-SCPC are identical. The
critical value of the C-SCPC method not only depends on the
observed locations sl, but also on the observed regressors (xl, zl),
and is “conditional” in this sense. The cost of insisting on such
conditional size control is small: An unreported comparison of
the C-SCPC method in design (7) used to compute cvC-SCPC
with an unconditionally (over (sl, xl, zl)) size-adjusted version
of SCPC reveals small differences in average confidence inter-
val lengths. Finally, comparing SCPC (or C-SCPC) with the
size-adjusted Kernel method reveals the Kernel method to be
somewhat more efficient. This is because σ̂ 2

K is relatively less
variable than σ̂ 2

SCPC, so after the size-adjustment that adjusts
for the larger bias in σ̂ 2

K , the Kernel method is akin to the
oracle t-test that uses the true value of σ 2 in the denomina-
tor. In practice, of course, this size adjustment is not feasible,
so we do not interpret this as a reason to prefer the Kernel
method.

3.2. World Development Indicators

In this section we report results from experiments using data
that are drawn from the World Bank’s World Development Indi-
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cators (WDI) database. Using these series as regressors and/or
error terms allows us to investigate test performance in settings
with data that closely matches empirical applications. We begin
with a short description of the dataset, and then describe the
experiments.

The WDI is a panel dataset containing over 1400 socioeco-
nomic variables for 266 countries. The dataset includes typical
economic measurements like GDP, balance of payments and
national debt, but also measurements of education, health, and
infrastructure. For our purposes, the data present three chal-
lenges: they are measured in a variety of units, some variables
have missing values for some years and countries, and many
series contain large outliers. To address these challenges, we use
logarithms for several of the variables, discard series that cover
fewer than 100 countries, and treat large outliers as missing data.
The supplementary materials describes these steps in detail.
We construct two datasets from the WDI. The first contains
decadal differences for each variable, w2015,l − w2005,l, where
wt,l denotes the value of variable w in year t for country l.
We use these 2015–2005 differences in cross section regres-
sions. The second dataset is a balanced panel containing 10
years of data, from 2006 through 2015; these data are used
for the panel data regressions. There are 749 variables in the
cross section dataset and 644 variables in the panel dataset.
We compute distances between countries via the great-circle
formula.

3.2.1. Mixed Empirical and Parametric Models
The first set of experiments use the WDI variables as regressors
with error terms generated by the parametric models used in the
48-states experiments. Six experiments are run. The first two use
cross-section datasets, using each the dataset’s 749 variables, one
at a time, as the xl regressor. The first experiment includes only a
constant as a control, and the second adds three additional series
chosen at random from the WDI. The other four experiments
use the panel dataset, where each of the 644 series is used as xl.
The panel regressions include country fixed effects, and the four
experiments differ in their inclusion of additional series selected
at random from the WDI and time fixed effects. As in the 48-
states experiments, the error terms are generated as e|V ∼
Gexp(c0.03) with within-cluster covariance parameterized by the
AR(1) model with φ = 0.9 for the panel data experiments,
or as el = xs

l al where a|V ∼ Gexp(c0.03). Table 5 provides a
summary.

Results are depicted in Figure 4 and suggest two conclusions.
First, size distortions are evident for Kernel and SCPC, although
they are not as severe as in some of the 48-states designs. Evi-
dently, the regressors in the WDI exhibit less spatial correlation
than those generated for some of the 48-states experiments.
Indeed, for the WDI experiments, the mean rejection frequency
for SCPC is less than 0.10 in all of the experiments and close
to its nominal 0.05 value in the panel regressions. That said,
null rejection frequencies exceed 0.10 for more than 5% of the
regressors chosen from the WDI datasets. The second conclu-
sion is that C-SCPC has null rejection frequencies close to 0.05
in all experiments and regressors. This is consistent with the
earlier experiments and provides reassuring evidence about size
control C-SCPC.

Table 5. Spatial regression designs using the WDI dataset.

Design Panel z

1 N 1
2 N [1, 3 WDI variables]
3 Y Country fixed effects
4 Y Country and year fixed effects
5 Y [Country fixed effects, 3 WDI variables ]
6 Y [Country and year fixed effects, 3 WDI variables]

NOTE: Experiments 1 and 2 use each of the 749 variables in the 2015–2005 dataset
as xl . Experiments 3–6 use each of the 644 variables in the 2006–2015 panel
dataset as x. xl is residualized with respect to zl in all models. el ∼ Gexp(c0.03)

(with within cluster AR(1) covariances with φ = 0.9 in the panel data models) or
el = xs

l al with al ∼ Gexp(c0.03).

3.2.2. Empirical Models for both Regressor and Dependent
Variable

In a final exercise we generate both regressors and dependent
variables from the WDI dataset. This requires some care to
ensure that (i) we have a well-defined population with known
regression coefficient, and (ii) we control the degree of spatial
correlation in the exercise. The idea is to generate simulated data
by a discrete Markov chain that more likely selects countries that
are geographically close to the previously selected country. With
an appropriate restriction of the transition matrix, the stationary
distribution is uniform across countries, so that the population
regression simply becomes the regression using all countries
in the WDI dataset. Furthermore, by varying the degree of
preference for conditionally closer countries, we can control the
induced average pairwise correlation.

The details are as follows. Suppose we select series labeled y,
x, and (if relevant) z from the WDI dataset, and suppose that
the resulting (xl, yl, zl) provide data for l = 1, . . . , M countries.
Think of these countries as defining a population. The popula-
tion regression is then the OLS regression using data for these
M countries; let u(l) = x′

(l)e(l) with e(l) the residual from this
population regression. We will compute the various HR, Kernel,
SCPC, and C-SCPC tests using random samples drawn from this
population. The challenge is to devise a sampling scheme that
(i) puts uniform weight (1/M) on each of the locations and (ii)
induces a pre-specified average spatial correlation. We do this
using a Markov chain, which we now describe.

Let � be an M × M Markov transition matrix. As is well
known, if � is doubly stochastic (so that columns and rows
sum to 1), then the stationary distribution is uniform. For a
given value of c, let �̃(c) be the M × M transition matrix
such that in row l, the transition probability is proportional to
exp(−c||sl − s�||), � �= l, except that the diagonal of �̃(c) is
zero; thus locations closer to sl are assigned a higher probability
than more distant locations. Let �(c) be the resulting doubly
stochastic matrix after appropriate diagonal scaling, that is,
�(c) = ��̃(c)� for a numerically determined diagonal matrix
� (which is unique up to scale). We generate a sample of size
n of country indices Li ∈ {1, 2, . . . , M}, i = 1, . . . , n from the
stationary Markov chain with transition matrix �(c), with the
first index L1 drawn uniformly.

The average pairwise correlation of u(Li) and u(Li+k) depends
on the parameter c and is easily calculated. For all i ≥ 1 and
k ≥ 0, we have
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Figure 4. Rejection frequencies for 5% nominal tests: spatial regressions, WDI experiments.
NOTE: See Table 5 for a description of the experiments and the notes to Figure 2.

E[u(Li)u(Li+k)] = M−1
M∑

l=1

M∑
�=1

[�(c)k]l�u(l)u(�)

where [�(c)k]l� is the l,� th element of �(c)k. The average
pairwise correlation u(Li) and u(Li+k) is therefore given by

ρ̄ = 2
n(n − 1)

n−1∑
k=1

(n − k)
E[u(L1)u(L1+k)]

E[u2
(L1)

]

= 2
n(n − 1)

n−1∑
k=1

(n − k)
M−1 ∑M

l=1
∑M

�=1[�(c)k]l�u(l)u(�)

M−1 ∑M
l=1 u2

(l)
.

Thus, it is straightforward to numerically obtain the value of c
that induces a given value of ρ̄.

With �(c) determined in this fashion, we generate 5000
random samples of countries and corresponding sample regres-
sors and dependent variable using n = 50 and ρ̄ = 0.03.
Each set of (y, x, z) from the WDI corresponds to a different
population, with associated rejection frequencies for the HR,
Kernel, SCPC, and C-SCPC tests. (To ensure that the Markov
chain can attain ρ = 0.03 without resampling the same locations
frequently, we restrict attention to (y, x, z) variables in the WDI
that exhibit spatial correlation. Specifically we use data in which
the kernel-estimated variance of ul with a bandwidth of 0.3 of
the largest distance in the dataset is at least three times larger
than the HR-estimated variance.) We construct two experiments
using spatial regressions from the decadal difference dataset;
the first includes (y, x), a constant and no additional controls,

Table 6. Rejection frequency of nominal 5% level tests using WDI-Markov-Chain
design.

Model Panel 5th, 50th, and 95th quantiles

HR Kernel SCPC C-SCPC

1 N 0.20, 0.26, 0.33 0.10, 0.15, 0.24 0.09, 0.14, 0.21 0.04, 0.08, 0.14
2 N 0.21, 0.27, 0.36 0.11, 0.17, 0.27 0.10, 0.17, 0.27 0.03, 0.08, 0.18
3 Y 0.23, 0.27, 0.33 0.08, 0.14, 0.21 0.06, 0.10, 0.18 0.04, 0.08, 0.12
4 Y 0.23, 0.27, 0.32 0.08, 0.15, 0.22 0.07, 0.11, 0.19 0.04, 0.08, 0.14

NOTE: See text for description of the design. Models 1 and 2 include constants as
control variables and Models 3 and 4 include country fixed effects; Models 2 and
4 include 3 additional regressors selected at random from the WDI datasets.

and the second adds three randomly selected additional series
as controls. Similarly we construct two experiments using panel
regressions from the 2006 to 2015 dataset, where fixed country
effects are included the first, and the second adds three addi-
tional randomly selected series. Table 6 shows the 5th, 50th, and
95th quantiles of rejection frequencies across 200 populations
generated in this fashion.

These experiments differ from those reported earlier in two
distinct ways. First, as emphasized above, the values of both e
and x correspond to real-world data; so, for example, neither
is generated by a Gaussian model as in the earlier experiments.
Second, earlier experiments used n = 250, while these use n = 50,
where the smaller sample size reflects the fact that many of the
series in the WDI are available for as few as M = 100 countries.
The rejection frequencies for these experiments share some of
the features of the earlier experiments, but there are notable
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differences. For example, the smaller sample size means that
HR rejects less frequently; the rejection frequencies fall from
around 50% in Table 1 to half that value in Table 6. Kernel
and SCPC improve on HR, but (as in some of the previous
experiments) exhibit quantitatively important size distortions.
C-SCPC does better, with a median rejection frequency of 8%—
close the nominal 5% value—although for 5% of the DGPs,
the rejection frequency exceeds 0.15 for the spatial (non-panel)
regressions.

4. Conditional Size Control in More General Models

In this section we carry out three exercises to investigate the
size properties of C-SCPC under alternative processes for the
regression errors. The first considers processes with covariance
functions with different decay properties than the exponential
Gexp(c) processes. The second considers regression errors that
are conditionally heteroscedastic. The third considers errors
that exhibit excess spatial correlation with ρ > ρmax.

4.1. Size Control with Alternative Spatial Covariance
Functions

We carry out a straightforward but instructive exercise.
Specifically, we carry out C-SCPC inference as in the other
experiments—that is using ρ̄max = 0.03 and using the critical
value cv chosen so that conditional size is controlled for
el = xs

l al where al ∼ Gexp(c) for c ≥ cρ̄max —however, we now
use non-Gexp stochastic processes to generate the errors el or al.
In particular, we generate the errors from five different Matérn
processes and study the robustness for all values of ρ̄ ≤ ρ̄max
for each of these five processes.

The Matérn class of stochastic processes is indexed by the
parameter θ = (ν, c), where ν and c are positive constants. If
a follows a Matérn process, its covariance function σa(r − s)
depends on the locations only through � = ||r − s||, with
σa(�) ∝ (c�)νKν(c�), where Kν is modified Bessel function of
the second kind. When ν ∈ {1/2, 3/2, 5/2, ∞}, the expression
for the covariance simplifies:

• ν = 1/2: σa(�) ∝ exp[−c�]
• ν = 3/2: σa(�) ∝ (1 + �c) exp[−c�]
• ν = 5/2: σa(�) ∝ (

3 + 3�c + �2c2) exp[−c�]
• ν = ∞: σa(�) ∝ exp[−c2�2/2].
So ν = 1/2 is the exponential model used throughout the article
but the other processes have different decay. We consider these
four processes together with the process with ν = 1/4. Gneiting
(2013) shows that for ν > 1/2, the Matérn covariance function
is not positive definite when distances are measured by the great-
circle formula. So in this section, we instead map each country’s
location on the surface of the earth into a point in R

3, and then
use the Euclidian norm to compute distances. This effectively
also changes the covariance matrices for ν = 1/2, providing an
additional degree of separation from the baseline specification.

We rerun the 48-states and WDI experiments from Fig-
ures 2–4 using the same regressors but with errors generated
by the Matérn processes with ν ∈ {1/4, 1/2, 3/2, 5/2, ∞}. For
each process we find a range of values of c to trace out values

of ρ̄ ∈ (0.001, ρ̄max) with ρ̄max = 0.03, and generate errors for
each value of c. We record the largest rejection frequency over
each of the processes and c-values. As in the previous exper-
iments, this generates a distribution of rejection frequencies
over realizations of {xl, zl, sl} but now the rejection frequencies
represent the largest rejection frequency over this Matérn class
with ρ̄ ≤ ρ̄max. Figure 5 summarizes the results, showing for
each experiment the 5th, 50th, and 95th quantiles.

The results are reassuring: the 95th percentile of the rejection
frequency across all values of {xl, zl, sl} is less that 0.09 across
all five Matérn models, for all values of ρ̄ ∈ (0.001, ρ̄max) and
for all of the experiments shown in the figure. In most experi-
ments the 95th percentile rejection frequency is less than 0.07.
We conclude that C-SCPC inference is robust for this class of
DGPs.

4.2. Size Control with an Alternative Form of Conditional
Heteroscedasticity

The construction of the critical value cvV for C-SCPC was
based on a particular form of heteroscedasticity (7). Here we
investigate the effect of an alternative form of heteroscedas-
ticity. To be specific, let �0 denote the covariance matrix for
e from the models summarized in panels (a) of Figures 2–
4. We now consider heteroscedastic versions of these error
processes with e|X ∼ N (0, D�0D′) where D is a diagonal
matrix whose ith element for the lth cluster is (1 + x2

i,l)
1/2,

and where the regressors for each experiment are scaled so that
N−1 ∑

i,l x2
i,l = 1.

Detailed results are presented in the supplementary materi-
als, but the key takeaways can be gleaned from a few summary
statistics from the models in Figure 2(a). For the 13 models
with spatial variation in x, the average rejection frequency in
the baseline (7) models for the 5% level C-SCPC tests is 0.04;
this increases only slightly to 0.06. The largest rejection fre-
quency is observed in Model 8, with an average rejection fre-
quency of 0.10. These results indicate that after averaging over
realizations of x, size distortions associated with conditional
heteroscedasticity of the sort studied here are relatively minor.
That said, the results in supplementary materials indicate more
dispersion in the rejection frequencies after conditioning on
x, so size distortions are larger for some realizations of the
regressors.

4.3. Size Control and Expected Length of Confidence
Intervals as a Function of ρmax

SCPC and C-SCPC are designed to control size for processes
with average pairwise correlation bounded above by ρmax. But
what if a user misjudges the spatial correlation in the process
under study and chooses a value of ρmax that is too small? A
simple experiment highlights some of the key issues. In par-
ticular, we re-ran the experiments summarized in panel (a) of
Figures 2–4, computing the C-SCPC test statistics and critical
values as we did previously, that is with ρmax = 0.03, but we
generated the regression errors using the exponential model
with ρ = 0.10, so they exhibited substantially more spatial
correlation than the models in Section 3.
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Figure 5. Largest rejection frequency across a set of Matérn processes.
NOTE: See the text for a description of the experiments and the notes to Figure 2.

Again, detailed results are presented in the supplementary
materials, but summary statistics from the models in Figure 2(a)
tell much of the story. For the 13 models with spatial variation in
x, the average rejection frequency shown in Figure 2(a) is 0.04;
this increases only slightly to 0.07 when the errors are generated
from the model with ρ = 0.10. This somewhat surprising result
occurs because the C-SCPC rejection frequency is determined
by the spatial correlation in u = x′e, which may exhibit sub-
stantially less spatial correlation than e. However, in the location
model with x = 1, u = e and the rejection frequency increases to
0.15 in the model with ρ = 0.10 and ρmax = 0.03.

A related question involves the effect of the choice of ρmax
on the expected length of confidence intervals. Suppose a
researcher constructs a C-SCPC confidence interval using a
large value of ρmax (say ρmax = 0.10) to guard against under-
coverage, when in fact the data are generated by a model where
ρ is much smaller than ρmax. What is the cost of this extra
robustness in terms of increased average length of the C-SCPC
confidence interval? We consider the extreme version of this
where the data is generated by the iid model e ∼ N (0, In),
and consider ρmax = 0.1, 0.03, 0.01, 0.003. We find that the
average ratio of the C-SCPC interval length over the oracle
±1.96σ interval length is approximately 1.55, 1.20, 1.10, and
1.05 in most of the designs, respectively. The cost of the default
value ρmax = 0.03 is thus about a 20% increase in confidence
interval lengths. See the supplementary materials for further
details.

5. Critical Values, IV Regression and Computation

5.1. Computing cvSCPC and cvV Critical Values

Let �(c) denote the n × n covariance matrix using an expo-
nential covariance function with parameter c evaluated at the
sample locations s. Let R denote the n × q matrix whose
columns are the eigenvectors of M1�(cmin)M1 corresponding
the largest q eigenvectors. These eigenvectors are used to com-
pute σ̂ 2

SCPC (see Equation (5)). The rejection region for the τSCPC
test using a critical value cv corresponds to values of u that
satisfy |τSCPC| > cv, or equivalently

u′11′u − cv2 q−1û′RR′û > 0. (8)

The critical values cvSCPC and cvV use this expression to com-
pute rejection frequencies under different probability laws for u.
We discuss these in turn.

The cvSCPC critical value uses ul ∼ Gexp(c), so that
var(u|s) = �(c). It uses the regression model with xl = 1
and zl = 0 so that ûl = ul − ū. Because the columns of R
are eigenvectors of M1�(cmin)M1, R′1 = 0, so R′û = R′u; this
implies that the values of û in (8) can be replaced with u.

Let h = W′u with W = [1, R], and let �(c) = W′�(c)W
denote its (q + 1) × (q + 1) covariance matrix. The rejection
region can then be written as h′D(cv)h > 0, where

D(cv) =
[

1 0
0 − cv q−1Iq

]
.
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The rejection frequency under normality is P(h′D(cv)h >

0) with h ∼ N (0, �(c)). This probability can be efficiently
computed using a formula in Bakirov and Székely (2005). (See
Lemma 1 in Müller and Watson (2022a).) The critical value
cvSCPC is chosen to satisfy

Pc≥cρ̄max (h′D(cvSCPC)h > 0) = α

where α is the desired size of the test.
The cvV critical value uses ul = x′

lel with el = xs
l al where

al|(X, Z, s) ∼ Gexp(c) and computes the probability of (8)
conditional on (X, Z, s). Some new notation helps explain the
details of the calculation. Let � denote the N × n matrix

� =

⎡⎢⎢⎢⎣
x1 0 · · · 0
0 x2 0
...

. . .
0 0 xn

⎤⎥⎥⎥⎦
and let �s denote the analogous matrix using xs

l in place of xl.
Then e = �sa and u = �′e = �′�sa. Let MV = IN −
V(V′V)−1V with V =(X, Z). Then ê = MVe and û = �′ê =
�′MVe = �′MV�sa.

Paralleling the discussion of cvSCPC, let h̃ = W̃′a with
W̃ = [�′

s�1, �′
sMV�R]. Under a|(X, Z, s) ∼ N (0, �(c)),

h̃|(X, Z, s) ∼ N (0, �̃(c)) with �̃(c) = W̃′�(c)W̃. The remain-
ing calculations are identical to those of cvSCPC with (h̃, �̃)

replacing (h, �).

5.2. Computing SCPC Eigenvectors for Large n

The SCPC estimator for σ 2 given in (5) relies on the eigenvec-
tors, ri, of the n × n matrix M1�(cmin)M1. When n is large
(say, n is much larger than 3500) computing these eigenvectors
is a challenging computational task. However, it is possible to
accurately approximate ri by first computing eigenvectors using
only ñ < n randomly selected locations and then extending
these to encompass all n locations. This is a version of the
so-called Nyström method (see, for instance, Rasmussen and
Williams 2005 for discussion and references).

The idea of the extension is most easily explained if we
initially ignore the demeaning by M1. So for now, suppose we
seek the eigenvectors vi of the n × n matrix K= �(cmin) with
(l, �) element k(sl, s�) = exp (−cmin||sl − s�||) corresponding
to the q largest eigenvalues λi. Since Kvi = λivi, we trivially
have vi = λ−1

i Kvi for λi > 0. If we put the original locations
in random order, then the first ñ locations {s̃l}ñ

l=1 are a random
subset of size ñ < n of all n observed locations. Let K̃ be the
corresponding ñ× ñ matrix computed from the first ñ locations,
with ith eigenvalue-eigenvector pair (λ̃i, ṽi), where ñ−1ṽ′

iṽi = 1.
One natural way to extend the ñ×1 vector ṽi to the n×1 vector
vi is via vi ≈ v̂i = λ̃−1

i K̃0ṽi, where the n × ñ matrix K̃0 has (l, �)
element k(sl, s�), l = 1, . . . , n, � = 1, . . . , ñ. Note that the first
ñ elements of v̂i are identical to ṽi, and for l > ñ,

v̂i,l = λ̃−1
i

ñ∑
�=1

ṽi,lk(sl, s�), (9)

so this method approximates the value of vl at the additional
locations by a weighted average of the kernel k, with weights pro-
portional to the eigenvector computed from the first ñ locations.

We now show that this approach is asymptotically justi-
fied. We assume that the (non-stochastic) sequence of locations
{sl}n

l=1 is such that the empirical distribution function Gn con-
verges in distribution to the continuous distribution G, where G
has compact support S ⊂ R

d. A calculation shows that under
this assumption, also sups∈S |Gñ(s) − G(s)| p→ 0 as ñ, n →
∞, where the probability is induced by the randomness in the
subset {s̃l}ñ

l=1. It therefore suffices to argue that convergence in
distribution of Gn induces convergence of the eigenvectors in a
suitable sense.

To this end, let L2
G denote the Hilbert space of functions

S �→ R with inner product 〈f1, f2〉 = ∫
f1(s)f2(s)dG(s).

Then by Mercer’s Theorem, k has the representation k(s, r) =∑∞
i=1 λiϕi(s)ϕi(r), where (λi, ϕi) ∈ R×L2

G are eigenvalues and
eigenfunctions of k, with eigenvalues ordered from largest to
smallest, normalized so that

∫
ϕi(s)ϕj(s)dG(s) = 1[i = j] and

ϕi(·) = λ−1
i

∫
k(·, r)ϕi(r)dG(r) for λi > 0. Now proceeding as

in Rosasco, Belkin, and Vito (2010), Müller and Watson (2022a),
and Müller and Watson (2022b) shows that if the eigenvalue λi

is unique, then sups∈S ||ϕ̃i(s) − ϕi(s)|| p→ 0, where ϕ̃i(·) =
λ̃−1

i
∑ñ

�=1 k(·, s�)vi,�. These authors also develop corresponding
results for nonunique eigenvalues.

These ideas and results extend to the problem of considera-
tion here, where we seek to approximate the eigenvectors ri of a
demeaned version of K, namely M1KM1. Define

k̂n(r, s) = k(r, s) − n−1
n∑

l=1
k(sl, s) − n−1

n∑
�=1

k(r, s�)

+ n−2
n∑

l=1

n∑
�=1

k(sl, s�),

so that the (l, �) element of M1KM1 is equal to k̂n(sl, s�). Let
(ω̃i,r̃i) with ñ−1

i r̃′
ir̃i = 1 be the eigenvalues and eigenvectors

of the corresponding matrix M̃1K̃M̃1 computed from the first ñ
locations. Then in analogy to (9), we extend the ñ × 1 vector r̃i
to r̂i ≈ ri via

r̂i,l = ω̃−1
i

ñ∑
�=1

k̂ñ(sl, s�)r̃i,�

= ω̃−1
i

ñ∑
�=1

⎛⎝ exp[−cmin||sl − s̃�||]−

ñ−1
ñ∑

j=1
exp[−cmin||s̃� − s̃j||]

⎞⎠ r̃i,� (10)

where the second equality exploits
∑ñ

l=1 r̃i,l = 0.
The above mentioned convergence results are not directly

applicable, since the demeaned kernel k̂n is a function of the
observed locations {sl}n

l=1, and hence not fixed. However, one
would expect that as n → ∞, k̂n is well approximated by the
population demeaned kernel
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Figure 6. Spatial density and eigenfunctions for Texas.
NOTE: Panel (a) shows the spatial density of light in Texas. Panels (b)–(d) show three of the estimated eigenfunctions of the kernel k using c0.03.

k̄(r, s) = k(r, s) −
∫

k(u, s)dG(u) −
∫

k(r, u)dG(u)

+
∫ ∫

k(u, t)dG(u)dG(t),

with eigenvalue-eigenfunction representation k̄(s, r) =∑∞
i=1 ωiφi(s)φi(r). Lemma 5 in Müller and Watson (2022b)

shows that this is indeed the case, and it implies that if ωi is
unique, then sups∈S ||φ̃i(s) − φi(s)|| p→ 0 as n, ñ → ∞, where
φ̃i(·) = ω̃−1

i
∑ñ

�=1 k̂ñ(·, s�)ri,�. Figure 6 depicts three of the
resulting estimated eigenfunctions φ̃i for the U.S. state of Texas.

This shows that the numerical approximation ri,l ≈ r̂i,l in
(10) is formally justified under n, ñ → ∞ asymptotics, and
numerical experiments suggest that results become fairly stable
with ñ = 1000. In practice, the approximation (10) can be
carried out for several random subsets of ñ locations, followed
by a (sample) principle component analysis to extract the best
approximation to the space spanned by the first q eigenvectors.
This further improves the accuracy of the approximation, and
reduces the artificial randomness induced by the selection of
ñ locations. The resulting algorithm has O(n) running time,
which compares favorably to the O(n2) running time of a basic
implementation of a kernel variance estimator. This algorithm
is implemented in the STATA and Matlab code for C-SCPC
mentioned in Section 1.

5.3. SCPC and C-SCPC for IV Regression

Consider a version of (2) in which ζ is the coefficient on a scalar
endogenous regressor, say pi,l:

yi,l = pi,lζ + z′
i,lγ + ei,l

where pi,l is potentially correlated with ei,l. Suppose xi,l is a scalar
instrument for pi,l, zi,l is a vector of exogenous regressors and
vi,l = (xi,l, zi,l) satisfies the assumptions discussed in the pre-
vious sections. Minor modifications of the methods discussed
above provide SCPC and C-SCPC inference for ζ .

Weak-instrument robust inference about ζ uses the Ander-
son and Rubin (1949) regression

yi,l − pi,lζ0 = xi,lβ + z′
i,lγ + e0

i,l (11)

where the null hypothesis ζ = ζ0 corresponds to β = 0 in the
regression (11). Spatial correlation robust SCPC/C-SCPC tests
of the β = 0 null proceed as described in Sections 2.2 and 2.3.
Note that C-SCPC inference for β = 0 in (11) (equivalently
ζ = ζ0) produces valid inference in Section 2.3’s heteroscedastic
Gaussian model conditional on the instrument and exogenous
regressors (X, Z).

When xi,l is known to be a strong instrument, spatial corre-
lation robust inference can be carried out using the IV t-statistic
constructed with the SCPC estimator for σ . The IV estimator is
ζ̂ IV = S−1

xp Sxy (recall that x and z are uncorrelated in the sample,
so X′Z = 0) so ζ̂ IV = ζ + S−1

xp n−1 ∑n
l=1 x′

lel. The resulting IV
t-statistic has the same form as (3) with ζ̂ IV replacing the OLS
estimator β̂ and Sxp replacing Sxx. SCPC inference then follows
as in Section 2.2 with ûIV

l = x′
l ê

IV
l where êIV

i,l = yi,l − pi,lζ̂
IV −

z′
i,lγ̂

IV .
The case is more complicated for conducting C-SCPC infer-

ence using the τSCPC IV t-statistic. The complication arises
because the IV residuals are given by êIV = Me with M =
IN −[P Z](V′[P Z])−1V′, so that M depends on the (potentially
endogenous) regressors P. Under the C-SCPC heteroscedastic
model, el = xs

l al, so e = �sa and êIV = M�sa. Thus,
if al|(P, X, Z) ∼ Gexp(c) for c ≥ cmin, then C-SCPC has
guaranteed size control conditional on (P, X, Z). That said, if
E(ei,l|pi,l, xi,l, zi,l) �= 0, that is, if p is endogenous, then al
is not independent of (P, X, Z) invalidating the small-sample
conditional size control of C-SCPC.

This discussion has assumed that xi,l is a scalar. When there
are multiple instruments, say x̃i,l, then SCPC inference based on
β̂IV can be conducted using the scalar instrument xi,l = ŵ′x̃i,l,
where ŵ is a vector of weights computed, for example, by 2SLS.
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6. Concluding Remarks

This article has studied the properties of spatial-correlation
robust t-statistics in linear regression and panel models using
data generating processes designed to mimic spatial correlation
patterns relevant for empirical work in economics. We find sig-
nificant size distortions (i.e., over-rejections of the null hypothe-
sis) using standard kernel-based spatial correlation robust stan-
dard errors and standard normal critical values. Size is improved
using a projection-based standard error (called SCPC) and crit-
ical value proposed in Müller and Watson (2022a). That said,
the experiments find uncomfortably large size distortions for
SCPC in some settings, particularly with nonstationary regres-
sors. In this article we propose a modification of the SCPC
method (called C-SCPC), which is designed to induce validity
also conditional on the sample values of the regressors. The
results indicate that C-SCPC has good size control in a wide
variety of empirically relevant settings.

The analysis has focused on inference for a single regres-
sion coefficient. Of course, kernel-based methods are readily
extended to test vector-value regression coefficient coefficients.
But, as in the scalar case, these kernel-based tests will exhibit
significant size distortions when used with large-sample χ2

critical values and applied to spatially correlated data of the sort
studied here. The multivariate extension of SCPC is conceptu-
ally straightforward: principal components under a “worst-case”
benchmark spatial model can be used to estimate the relevant
covariance matrix, and the critical value of the resulting test
statistic can be constructed to guarantee coverage with spatial
correlation less than or equal to the worst-case level. In prac-
tice, implementing such a test requires the nontrivial tasks of
specifying the multivariate worst-case benchmark model and
numerically determining the critical value. The extension to C-
SCPC is less clear-cut as it requires specifying an appropriate
multivariate extension of the heteroscedastic model for el given
in (7). We leave the multivariate extensions SCPC and C-SCPC
to future work.

Supplementary Materials

The supplementary materials include (1) a description of the World Devel-
opments Indicator dataset and additional simulation results referenced in
Section 4 of the article and (2) replication files for results reported in the
article.
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