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Abstract

We propose a method for constructing con�dence intervals that account for many

forms of spatial correlation. The interval has the familiar �estimator plus and minus a

standard error times a critical value�form, but we propose new methods for construct-

ing the standard error and the critical value. The standard error is constructed using

population principal components from a given �worst-case� spatial correlation model.

The critical value is chosen to ensure coverage in a benchmark parametric model for the

spatial correlations. The method is shown to control coverage in �nite sample Gaussian

settings in a restricted but nonparametric class of models and in large samples whenever

the spatial correlation is weak, i.e., with average pairwise correlations that vanish as the

sample size gets large. We also provide results on the e¢ ciency of the method.
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1 Introduction

Prompted by advances in both data availability and theory in economic geography, inter-

national trade, urban economics, development and other �elds, empirical work using spatial

data has become commonplace in economics. These applications highlight the importance of

econometric methods that appropriately account for spatial correlation in real-world settings.

While important advances have been made, researchers arguably lack practical methods that

allow for reliable inference about parameters estimated from spatial data for the wide-range

spatial designs and correlation patterns encountered in applied work.1 This paper takes a

step forward in this regard.

Speci�cally, we consider the problem of constructing a con�dence interval (or test of a

hypothesized value) for the mean of a spatially-sampled random variable. We propose a

con�dence interval constructed in the usual way, i.e., as the sample mean plus and minus an

estimate of its standard error multiplied by a critical value. The novelty is that the standard

error and critical value are constructed so the resulting con�dence interval has the desired

coverage probability (say, 95%) for a relatively wide range of correlation patterns and spatial

designs. The analysis is described for the mean, but the required modi�cations for regression

coe¢ cients or parameters in GMM settings follow from standard arguments.

To be more precise, suppose that a random variable y is associated with a location s 2
S, where S � Rd. Figure 1 provides two sets of examples. Panel (a) shows three one-
dimensional (d = 1) spatial designs. It begins with the familiar case of regularly spaced

locations, corresponding to the standard time series setting; the next two examples show

irregularly spaced times series with randomly selected locations drawn from a density g,

where g is either uniform or triangular. Panel (b) shows two geographic examples, so d = 2,

for the U.S. state of Texas. In the left panel, locations are randomly selected from a uniform

distribution, while in the right panel locations are more likely to be sampled from areas with

high economic activity, here measured by light intensity as seen from space.2 The goal of this

paper is to construct con�dence intervals with desired coverage, conditional on the observed

locations, for a rich set of possible locations such as those shown in the �gure.

1Ibragimov and Müller (2010), Sun and Kim (2012) and Bester, Conley, Hansen, and Vogelsang (2016),

for instance, �nd nontrivial size distortions of modern methods even in arguably fairly benign designs, and

Kelly (2019) reports very large distortions under spatial correlations calibrated to real-world data.
2The light data are from Henderson, Squires, Storeygard, and Weil (2018).
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Figure 1: Examples of Spatial Designs

Adding some notation, suppose

yl = �+ ul for l = 1; :::; n (1)

where yl is associated with the observed spatial location sl, � is the mean of yl, and conditional

on the observed locations fslgnl=1, ul is an unobserved mean-zero error that is covariance
stationary, that is E[ulu`] = �u(sl � s`) for some covariance function �u : Rd 7! R. Let �y
denote the sample mean, and consider the usual t-statistic

� =

p
n(�y � �0)

�̂
(2)

where �̂2 is an estimator for the variance of
p
n(�y��). Tests of the null hypothesisH0 : � = �0

reject when j� j > cv, where cv is the critical value, and the corresponding con�dence interval
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for � has endpoints �y � cv �̂=
p
n. Inference methods in this class di¤er in their choice of �̂2

and critical value cv.

The case of regularly-spaced time series observations (the �rst example in Figure 1) is the

most well-studied version of this problem. There, Var(
p
n(�y � �)) is the long-run variance of

y, and traditional choices for �̂2 are kernel-based consistent estimators such as those proposed

in Newey and West (1987) and Andrews (1991), and inference uses standard normal critical

values. A more recent literature initiated by Kiefer, Vogelsang, and Bunzel (2000) and Kiefer

and Vogelsang (2005) accounts for the sampling uncertainty of kernel-based �̂2 by considering

��xed-b�asymptotics where the bandwidth is a �xed fraction of the sample size, which leads

to a corresponding upward adjustment of the critical value. Closely related are projection

estimators of �̂2 where the number of projections is treated as �xed in the asymptotics,

as in Müller (2004), Phillips (2005), Sun (2013), and others, leading to Student-t critical

values. These newer methods are found to markedly improve size control under moderate serial

correlation compared to inference based on standard normal critical values. (For example,

see the numerical results in Lazarus, Lewis, Stock, and Watson (2018).)

The econometrics literature on the derivation of spatial HAR inference is smaller, but has

developed along similar lines: Conley (1999), Kelejian and Prucha (2007) and Kim and Sun

(2011) derive consistent variance estimators, Bester, Conley, Hansen, and Vogelsang (2016)

(also see Rho and Vogelsang (2019)) study the spatial analogue of the �xed-b kernel estimators,

Sun and Kim (2012) suggest a spatial projection-based estimator, and Ibragimov and Müller

(2010, 2015), Bester, Conley, and Hansen (2011) and Cao, Hansen, Kozbur, and Villacorta

(2020) derive asymptotically justi�ed spatial HAR inference based on a �nite number of

clusters.

This paper makes progress over this literature by developing a method that (i) accounts

for sampling uncertainty in �̂2; (ii) controls size under a restricted but nonparametric form of

strongly correlated ul; (iii) is valid under generic weakly correlated ul. The second property

sets it apart from all previously mentioned methods; in a time series setting, Robinson (2005)

and Müller (2014) derive inference under parametric forms of strong dependence, and Dou

(2019) derives optimal inference under a non-parametric form of strong dependence under a

simplifying Whittle-type approximation to the implied covariance matrices.

The remainder of the paper is organized as follows. Section 2 de�nes the new method. It

uses a projection-type variance estimator, where the projection weights are spatial correlation

principal components from a given �worst case�benchmark correlation matrix. We correspond-
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ingly refer to the method as SCPC. Section 3 studies its small sample size control in Gaussian

models. We derive a generic result about size control of t-statistics in a nonparametric class

of covariance matrices, and apply it to study the robustness of SCPC under a large class of

persistent processes de�ned in spectral terms. We note that both the basic idea of SCPC,

as well as some of the results in Section 3 could potentially also be applied to settings other

than (1), such as to HAR inference for data generated from spatial autoregressive models,

or network data, but we do not pursue this further in this paper. Section 3 concludes with

some numerical evidence on size control of SCPC under heteroskedasticity and mismeasured

locations.

Section 4 studies the e¢ ciency of the SCPC con�dence interval. We compare its ex-

pected length to the length of con�dence intervals derived from previously suggested spatial

t-statistics, and to a lower bound that holds for all con�dence intervals that, like SCPC,

control size over a wide range of persistent spatial processes.

We turn to a large sample analysis in Section 5. We derive the asymptotic distribution

of projection and �xed-b spatial t-statistics, including the SCPC t-statistic, and �nd that the

density of the locations g plays a key role in their limiting distributions. This dependence is

present even under weak correlation, that is, when the average correlation across observations

shrinks to zero as n ! 1. Notably, only when g is constant (that is, when the density is
uniform) does the asymptotic distribution under weak correlation coincide with the asymp-

totic distribution induced by i.i.d. data. Thus, the usual suggestions for critical values, such

as student-t critical values for projection t-statistics, are not generically valid under weak

dependence for non-constant g: We suggest an alternative, easy-to-implement choice for the

critical value that restores asymptotic validity under generic weak correlation, which is part

of the de�nition of the SCPC method in Section 2.

Section 6 concludes with a brief discussion on how to apply SCPC in more general regres-

sion or GMM settings.

2 Spatial Correlation Principal Components

This section provides details for computing the SCPC t-statistic, critical value and associated

con�dence interval. The de�nition of the SCPC t-test and critical value involves, among other

things, various covariance matrices and probability calculations. We stress at the outset that

these are used to describe the required calculations, and they are not assumptions about
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the probability distribution of the data under study. We study �nite sample and asymptotic

properties of the SCPC t-test under general conditions in Sections 3 and 5 below.

Let y = (y1; y2; :::; yn)
0 and similarly for s = (s1; s2; :::; sn)

0; u = (u1; u2; :::; un)
0 and the

vector of residuals û = (û1; û2; :::; ûn)0. Let l denote an n�1 vector of 1s, andM = I�l(l0l)�1l0.
Consider a benchmark Gaussian �exponential�covariance matrix for u with covariance function

E[ulu`] = exp(�cjjsl�s`jj) for c > 0. (Because the t-statistic is scale invariant, the assumption
that E[u2l ] = 1 is without loss of generality.) Let�(c) denote the n�n covariance matrix of u in
this model. Let c0 denote a predetermined value of c that is meant to capture an upper bound

on the spatial persistence in the data. (The choice of c0 is discussed below). Let r1; r2; :::; rn
denote the eigenvectors of M�(c0)M corresponding to the eigenvalues ordered from largest

to smallest, and normalized so that n�1r0jrj = 1 for all j. The scalar variable n
�1=2r0jû has

the interpretation as the jth population principle component of ûjs � N (0;M�(c0)M). The
SCPC estimator of �2 based on the �rst q of these principal components is

�̂2SCPC(q) = q�1
qX
j=1

(n�1=2r0jû)
2; (3)

and the corresponding SCPC t-statistic is

� SCPC(q) =

p
n(�y � �0)

�̂SCPC(q)
: (4)

The critical value cvSCPC(q) of the level-� SCPC test is chosen so that size is equal to �

under the Gaussian benchmark model with c � c0. That is, cvSCPC(q) satis�es

sup
c�c0

P0�(c)(j� SCPC(q)j > cvSCPC(q)js) = �; (5)

where P0� means that the probability is computed under the null hypothesis in the Gaussian
model with covariance matrix �, yjs � N (l�0;�(c)).
The �nal ingredient in the method is the choice of q. Let E�=I[2�̂SCPC(q) cvSCPC(q)js]

denote the expected length of the con�dence interval constructed using � SCPC(q) under the

Gaussian i.i.d. model yjs � N (l�; I). SCPC chooses q to make this expected length as small
as possible, that is qSCPCsolves

min
q�1

E�=I[2�̂SCPC(q) cvSCPC(q)js] =min
q�1

p
8n�1=2q�1=2 cvSCPC(q)

�((q + 1)=2)

�(q=2)
(6)

with the equality exploiting the fact that q�̂2SCPC(q)js � �2q in the Gaussian i.i.d. model.
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Remark 2.1. The primary concern in the construction of �̂2 is downward bias. Recall that
the eigenvector r1 maximizes h0M�(c0)Mh among all vectors h of the same length, the second

eigenvector r2 maximizes h0M�(c0)Mh subject to h0r1 = 0, and so forth, and for any q � 1,
the n � q matrix (r1; : : : ; rq) maximizes trH0M�(c0)MH among all n � q matrices H with

n�1H0H = Iq. Thus, the SCPC method selects the linear combinations of û in the estimator

of �2 that have the largest variance in the benchmark model with c = c0, under the constraint

of being unbiased in the i.i.d. model.

Remark 2.2. The choice of q trades o¤ the downward bias in �̂2SCPC(q) that occurs when q
is large and its large variance when q is small. Both bias and variance lead to a large critical

value, and (6) leads to a choice of q that optimally trades o¤ these two e¤ects to obtain the

shortest possible expected con�dence interval length in the i.i.d. model.

Remark 2.3. SCPC requires that the researcher chooses a value for c0 which represents the
highest degree of spatial correlation allowed by the method. One way to calibrate c0 is via

the average pairwise correlation of the spatial observations

�� =
1

n(n� 1)

nX
l=1

X
` 6=l

Cor (yl; y` jsn )

that is, c0 is chosen so that it implies a given value ��0 of ��. For example, ��0 =

(0:003; 0:01; 0:03; 0:10) implies very weak, weak, strong and very strong correlation, respec-

tively.

To put these values into perspective, recognize that the standard deviation of �y relative

to its value under i.i.d. sampling, say 
n, satis�es 

2
n = Var[

p
n�y]=Var[yl] = 1 + (n � 1)��.

The parameter 
n governs the size distortion associated with using the standard t-statistic

(i.e., based on i.i.d. sampling) when y is spatially correlated; for example, the rejection fre-

quency for a nominal 5% level test is approximately P(jZj > 1:96=
n) with Z � N (0; 1).
With n = 500, �� = (0:003; 0:01; 0:03; 0:10) yields 
n = (1:6; 2:4; 4:0; 7:1) and approximate re-

jection frequencies of (0:21; 0:42; 0:62; 0:78) using t-statistics constructed under an erroneous

i.i.d. assumption.

Alternatively, in the equally spaced time series model, note that 
2n is the long-run variance

of the process in multiples of its variance. For an AR(1) process with coe¢ cient �n, 

2
n =

(1+ �n)=(1� �n) and �n � 1� (2=��)n�1 for large n. Using n = 500 and the four values of �;
�500 = (0:43; 0:72; 0:88; 0:96). In their study of HAR inference in time series, Lazarus, Lewis,
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Stock, and Watson (2018) considered models with n = 200 and � = 0:7; corresponding to

� � 0:03.

Remark 2.4. In the regular spaced time series case, the SCPC eigenvectors, rj are numeri-
cally close to the weights of the equal weighted cosine (EWC) projection estimator considered

in Müller (2004, 2007), Lazarus, Lewis, Stock, and Watson (2018) and Dou (2019). This is

not surprising, since the corresponding cosines are the limit of the eigenvectors ofM�(c0)M

as c0 ! 0 (cf. Theorem 1 of Müller and Watson (2008)). What is more, the SCPC choice of

q is also numerically close to the corresponding optimal choice of q in Dou (2019). So when

applied to time series, SCPC comes close to replicating Dou�s (2019) suggestion for optimal

inference, with c0 representing the upper bound for the degree of persistence. The same is

true in a spatial design in Rd, with arbitrary d, if the locations happens to fall on a line
segment with approximately uniform empirical distribution.

Remark 2.5. The SCPC method with c0 calibrated by a choice of ��0 is invariant to the

scale of the locations fslgnl=1 7! faslgnl=1 for a > 0, and (in contrast to Sun and Kim�s (2012)
and Conley�s (1999) suggestion) also to arbitrary distance preserving transformations, such

as rotations.

U.S. states spatial designs: SCPC inference is conditioned on the value of the locations, s,

observed in the sample. To gauge how well the method is likely to perform in applications, we

use 480 di¤erent values of s. The values are generated by randomly drawing n = 500 locations

within the boundaries of each of the 48 contiguous U.S. states. The density of locations g

within each state is either uniform (guniform), or it is proportional to light measured from space

(glight) as a proxy for economic activity; the bottom panel of Figure 1 shows two values of

s that were drawn using Texas. We draw �ve sets of 500 independent locations under each

density g 2 fguniform; glightg for a total of 240 (= 48 states � 5 location draws ) sets of locations
s = fslg500l=1 using guniform and 240 using glight.
Table 1 reports the 5th, 50th and 95th percentiles of selected SCPC properties across these

240 location draws for di¤erent values of ��0 for each g 2 fguniform; glightg. In the table and
throughout the paper, we use the notation h�; �; �i to indicate these three quantiles of some
statistic that describes each location s. The �rst row of the table shows the quantiles of the

�half-life�distance �1=2(c0) satisfying exp(�c0jjr � sjj) = 1=2 whenever jjr � sjj = �1=2(c0),

measured in multiples of the largest distance �max = maxl;` jjsl � s`jj. For example, when
��0 = 0:03, the median half-life distance is 1:9% of the maximum distance across the 240
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Table 1: SCPC for Di¤erent Choices ��0 of in U.S. States Spatial Designs

��0 = 0:003 ��0 = 0:01 ��0 = 0:03 ��0 = 0:10

Uniform Spatial Designs g = guniform
�1=2(c0) in % h0:7; 1:0; 1:1i h1:3; 1:8; 2:1i h2:5; 3:4; 3:9i h5:4; 7:0; 8:0i

qSCPC h38; 42; 46i h11; 12; 13i h8; 8; 9i h5; 6; 6i
Expected length h1:02; 1:02; 1:03i h1:10; 1:12; 1:13i h1:28; 1:30; 1:31i h1:64; 1:68; 1:70i

�Light�Spatial Designs g = glight
�1=2(c0) in % h0:2; 0:4; 0:7i h0:5; 0:9; 1:5i h0:9; 1:9; 3:0i h2:3; 4:6; 6:9i

qSCPC h44; 47; 50i h14; 18; 20i h6; 8; 9i h4; 5; 6i
Expected length h1:02; 1:02; 1:02i h1:05; 1:06; 1:07i h1:12; 1:16; 1:24i h1:38; 1:51; 1:61i

Notes: Entries are 5th, 50th and 95th percentiles of the distribution of across the 240 location draws
in the U.S. states spatial design. �1=2(c0) is the distance that leads to a correlation of 1/2 measured
in multiples of largest distance in sample, and expected length is in i.i.d. model measured in multiples
of the oracle interval length 2 � 1:96�=

p
n.

values of s generated from the glight density. The next row of the table shows the quantiles

for the values of qSCPC chosen by (6), and the �nal row shows the implied expected length

of the SCPC con�dence interval relative to the length of the oracle interval with endpoints

�y � 1:96�=
p
n. The results shown in the table indicate, for example, that a researcher using

the SCPC t-statistic chosen to accommodate spatial correlation as large as ��0 = 0:03 will

typically use q � 8 principal components and the resulting con�dence interval will be, on

average, roughly 20% to 30% longer than the (infeasible) oracle con�dence interval. This is

slightly larger than the Student-t con�dence interval using q = 8 principal components in an

i.i.d. model because SCPC is �bias aware�and chooses the critical value to control size under

��0 = 0:03.

Remark 2.6. The U.S. states spatial designs will be used throughout the paper to illustrate
the properties of the SCPC t-statistic. To economize on space, we exclusively focus on ��0 =

0:03.

Remark 2.7. The supremum over c � c0 in (5) plays an important role to guarantee as-

ymptotic size control under weak correlations; see Section 5.4 below. At the same time, as

one might intuit, in most designs, the condition binds at the smallest value c = c0. In the

U.S. states spatial designs, the null rejection probabilities of SCPC under c0 have percentiles

h5:0%; 5:0%; 5:0%i and h4:7%; 5:0%; 5:0%i for g = guniform and g = glight, respectively.
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3 Finite-Sample Size Control in Gaussian Models

In this section, we study the size control of spatial t-statistics in Gaussian models where

y � N (l�;�) for some �. Conditioning on the locations s is implicit. While our main
interest is on the SCPC t-statistic, many of our results apply more generally to t-statistics

(2) with a quadratic form estimator of �̂2,

�(WW0) =

p
n(�y � �0)

�̂
=

l0(y��0l)p
y0WW0y

�̂2 = n�1y0WW0y = n�1u0WW0u (7)

for some n � q matrix W, 1 � q � n � 1 satisfying W0l = 0. Note that for any positive

semi-de�nite n � n matrix Q, �̂2 = n�1û0Q0û can be represented in this way. For future

reference, it will be useful to de�ne the n� (q + 1) matrixW0 = [l;W].

We �rst establish two generic results about the null rejection probability of t-statistics of

the form (7). We then apply these results to obtain robustness results for the SCPC t-statistic.

3.1 Generic Results

The following is a useful result for computing the null rejection frequency of � 2(WW0) for a

given covariance matrix �.

Lemma 1. Assume y � N (l�0;�) and let 
 = W00�W0. For cv > 0, de�ne D(cv) =

diag(1;� cv2 Iq) and A = D(cv)
, and let (!0; !1; :::; !q) denote the eigenvalues of A ordered

from largest to smallest. Then with (Z0; Z1; :::; Zq) � N (0; Iq+1),
(i) !0 > 0, and !i � 0 for i = 1; :::; q;

(ii) P0� (� 2(WW0) > cv2) = P (
Pq

i=0 !iZ
2
i > 0) = 1

�

Z 1

0

x
q�1
2 (1 � x)1=2

Qq
i=1(x �

(!i=!0))
1=2dx.

Remark 3.1. Result (i) and the �rst equality in (ii) follow from standard calculations. The �-
nal equality in (ii) is shown in Bakirov and Székely (2005); this result makes it straightforward

to compute the null rejection frequency by evaluating the integral via numerical quadrature.

We now turn to an analytical result about size control for a set V of covariance matrices.
A test using the t-statistic � 2(WW0) with critical value cv and level � controls size under V if
sup�2V P0�(� 2(WW0) > cv2) � �. For a �nite or parametric set of V, sup�2V P0�(� 2(WW0) >

cv2) can be established numerically. We therefore focus on an analytical robustness result for

a non-parametric class V.
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Suppose for a given �0, cv is such that P0�0(�
2(WW0) > cv2) = �: Let �p(�), � 2 � be

a parametric class of covariance matrices. We seek conditions under which

P0�1(�
2(WW0) > cv2) � � for �1 =

Z
�

�p(�)d�(�) (8)

for a probability distribution �. Let �j(�) denote the jth largest eigenvalue of some matrix.
The following theorem provides su¢ cient conditions for (8) to hold.

Theorem 2. Let 
0 =W00�0W
0, 
(�) =W00�p(�)W0, and assume 
0 and 
(�); � 2 �

are full rank. Suppose A0 = D(cv)
0 is diagonalizable, and let P be its eigenvectors. Let

A(�) = P�1D(cv)
(�)P and �A(�) = 1
2
(A(�) + A(�)0). Suppose A0 and A(�); � 2 � are

scale normalized such that �1(A0) = �1(A(�)) = 1. Let

�1(�) = �q(��A(�))� �1(�A(�))�q(�A0)� (�1(�A(�))� 1)
�i(�) = �q+1�i(��A(�))� �1(�A(�))�q+1�i(�A0) for i = 2; : : : ; q:

If for some probability distribution � on �,
jX
i=1

Z
�i(�)d�(�) � 0 for all 1 � j � q, (9)

then (8) holds.

Remark 3.2. The theorem is based on the following logic: First, as shown in Lemma 1, the

eigenvalues of A0 and A(�) (or, equivalently, of D(cv)
(�)) govern the rejection probability

of � 2(WW0) under �0 and �p(�). Given the scale normalization �1(A0) = �1(A(�)) = 1, if

�j(A(�)) � �j(A0) for all j � 2, then, using the notation in Lemma 1, !i(A(�)) � !i(A0)

which yields P0�p(�)(� 2(WW0) > cv2) � P0�0(�
2(WW0) > cv2). Second, the integral represen-

tation in part (ii) of Lemma 1 can be used to show that the null rejection probability of the

t-statistic is Schur convex in these negative eigenvalues, so that the inequality holds whenever

the negative eigenvalues ofA(�) weakly majorize those ofA0. Majorization inequalities about

eigenvalues of sums of matrices and additional calculations then extend this further to the

result in Theorem 2.

Remark 3.3. If
Pj

i=1 �i(�) � 0 for all � 2 � and 1 � j � q, then the theorem implies that

P�1(� 2(WW0) > cv2) � � for �1 an arbitrary mixture of �p(�).

Remark 3.4. If for some �0 2 �, �0 = �p(�0), then �i(�0) = 0 for 1 � j � q, so the

inequalities of the theorem have no �minimal slack�and potentially apply also to parametric

models with a covariance matrix �p(�) that takes on values arbitrarily close to �0.
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3.2 SCPC Size Control Under Alternative Forms of Persistence

The problem of estimating the variance of �y is intimately linked to the properties of the

spectral density close to zero. In the time series case, the long-run variance (that is, the

variance of
p
n�y) converges to the spectral density at frequency zero, multiplied by 2�, as n!

1 for a large class of weakly dependent stationary processes. From this perspective, the aim of

correlation robust inference is to extract information about the variance of �y by extrapolating

the observed variability of weighted averages that contain information about the spectrum

close to the origin, such as low-frequency periodogram ordinates. Such an extrapolation

can only be successful under some a priori smoothness of the spectral density close to zero

(cf. Pötscher (2002)), so in this perspective, speci�cation of a worst case benchmark model

amounts to the speci�cation of a bound on the smoothness of the spectral density close to

zero. This motivates an application of Theorem 2 to a class of covariance matrices that is

de�ned in terms of a class of underlying spectral densities.

3.2.1 Spatial Case

If the covariance function �u in (1) is isotropic, then its spectrum f : Rd 7! [0;1) at frequency
! 2 Rd can be written as function of the scalar ! = jj!jj, that is f(!) = f(!) for some

f : R 7! [0;1). Since the null rejection probability of spatial t-statistics does not depend on
the scale of �u, it is without loss of generality to normalize f(0) = 1. The spectrum of the

benchmark covariance function exp(�cjjs� rjj) is

fbnchc (!) =
c3

(c2 + !2)3=2
: (10)

By construction, SCPC controls size in the benchmark model with c � c0, and f0 = fbnchc0

is the spectral density with the steepest decline at the origin in the benchmark model. A

spectral density f would naturally be considered less persistent than f0 if r(!) = f(!)=f0(!)

is (weakly) monotonically increasing in j!j, since this implies that f has relatively more mass
at higher frequencies.

Note that any symmetric function r : R 7! R with r(0) = 1 that is increasing in j!j
with lim!!1 r(!) = M � 1 can be written in the form r(!) = 1 + (M � 1)�(j!j) =
�(j!j) + M(1 � �(j!j)) for some CDF � on [0;1). Since �(j!j) =

R
1[� � j!j]d�(�)

and 1 � �(j!j) =
R
1[� > j!j]d�(�), any such r can therefore be written as the mixture

r(!) =
R
rstep� (!)d�(�) with rstep� (!) = 1[� � j!j] +M � 1[� > j!j]. Moreover, if we de�ne
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rstep0 (!) = 1, then by letting � have some mass on � = 0, we can further induce any value for

lim!!1
R
rstep� (!)d�(�) smaller or equal to M .

Rewriting these representations in terms of f(!) = r(!)f0(!) thus yields that any f such

that f(!)=f0(!) is (weakly) monotonically increasing in j!j and lim!!1 f(!)=f0(!) �M can

be written as a mixture f(!) =
R
f step� (!)d�(�), where f step0 = f0 and for � > 0

f step� (!) = 1[j!j � �]f0(!) + 1[j!j > �]M � f0(!): (11)

Here, f step� (!) is equal to the benchmark spectrum f0(!) for ! � � and jumps to M � f0(!)
for larger values of !. Let �step

� be the covariance matrices induced by f step� , � � 0:
Since SCPC controls size at �0 = �(c0), one can apply Theorem 2 to the SCPC t-statistic

with �� = 0:03 to the parametric class �step� in the U.S. states spatial designs. Numerical

experimentation shows that for g = guniform, we may choose M = 10 for all 240 locations s.

Thus, in those designs, SCPC controls size under all isotropic spectral densities f(!) = f(jj!jj)
such that f(!)=f0(!) is monotonically increasing in j!j with lim!!1 f(!)=f0(!) � 10.
It turns out that for some location draws generated under g = glight, some of the �j(�)

de�ned in Theorem 2 are negative. So instead, we let f0 in (11) be �atter than fbnchc0
, weakening

the claim about size control. In particular, we let f0 = fbnch~c0
, with ~c0 > c0, and determine

for what kind of values of ~c0 the claim holds again for M = 10. Across the 240 locations

generated under g = glight, the percentiles of the ratios ~c0=c0 are h1:00; 1:04; 1:18i, so SCPC
controls size for a large class of spectral densities that are nearly as steep as fbnchc0

close to the

origin.

3.2.2 Regularly-Spaced Time Series Case

Now consider the time series case with sl = l=n 2 S = [0; 1]. The benchmark model then

simply becomes an AR(1) process with coe¢ cient �n = e�c=n. Due to aliasing, the spectral

density, h, of a stationary regularly-spaced time series is usefully de�ned on the interval

[��; �], h : [��; �] 7! R. We again normalize h(0) = 1. The corresponding benchmark

spectral density is proportional to

hbnchc (�) / 1

(1 + �2n � 2�n cos(�))
, � 2 [��; �].

As in the spatial case, a spectral density h would naturally be considered less persistent than

h0 if h(�)=h0(�) is (weakly) monotonically increasing in j�j, motivating the consideration of
mixtures of hstep� (�) = 1[j�j � �]h0(!) + 1[j�j > �]M � h0(!):
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Numerical experimentation using the expressions in Theorem 2 now shows that the SCPC

t-statistic applied to the time series case controls size for these mixtures for M = 5 and

h0 = hbnch~c0
with ~c0 = 1:03c0 for n 2 f50; 100; 200; 500g:

Remark 3.5. Taking limits as n ! 1 yields a corresponding asymptotic robustness state-

ment: The function f0(!) = limn!1 h0(!=n) = ~c20=(!
2 + ~c20) is the �local-to-zero� spectral

density (cf. Müller and Watson (2016, 2017)) of a local-to-unity process with parameter

~c0. Consider any process with spectral density h = hn whose local-to-zero spectral density

f(!) = limn!1 hn(!=n) is such that f(!)=f0(!) is monotonically increasing in j!j with
lim!!1 f(!)=f0(!) � 5 and that satis�es the CLT in Müller and Watson (2016, 2017). Ap-
plication of Theorem 2 then implies that the SCPC t-test controls asymptotic size for all such

processes.

3.3 SCPC Size Control Under Heteroskedasticity and Mismea-

sured Locations

We now brie�y study size control of SCPC in the U.S. states spatial designs if either the

variance of ul is a function of the location, or the locations are mismeasured.

The �rst experiment is a heteroskedastic model where ul =  (sl)~ul, with ~ul following the

benchmark model with c = c0. We let log increase or decrease linearly from log (s) =

0 to log (s) = log 3 moving from the most westward to the most eastward location, or

from north to south. The largest of the four rejection frequencies of SCPC has percentiles

h4:6%; 4:9%; 5:3%i and h5:1%; 6:4%; 8:7%i under guniform and glight, respectively. We conclude
that heteroskedasticity does not seem to be a major driver of size distortions.

The second experiment investigates location measurement error of a form studied in Con-

ley and Molinari (2007). Speci�cally for each location, s�l = sl + el where s�l is the mea-

sured location, sl is the true location and el is the measurement error. The error term is

el = (e1;l; e2;l) with e1;l the north-south and e2;l the east-west coordinate and ei;l i.i.d.U(��; �)
over i and l, and � = 0:0375H with H the length of the smallest square that encompasses

all locations, corresponding to medium �level 4�errors in Conley and Molinari�s (2007) clas-

si�cation. The null rejection frequencies of SCPC have percentiles h5:3%; 5:6%; 6:1%i and
h5:1%; 7:3%; 17:5%i under guniform and glight, respectively. Evidently, measurement error of
this sort has little e¤ect on the size of SCPC under uniformly distributed locations, but can

lead to substantial size distortions for some highly concentrated spatial distributions.
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4 E¢ ciency of SCPC

In this section we study the average length of SCPC intervals. We again focus exclusively on

a Gaussian �nite sample framework, so we adopt the notation of the last section. We consider

two comparisons. First, we compare SCPC to previously proposed spatial t-statistics. Second,

we assess absolute e¢ ciency by computing a lower bound on the average length of a length-

optimal con�dence interval.

For the latter comparison, we consider con�dence intervals CI(y) � R of the form

CI(y) = [�y � �(û);�y + �(û)] (12)

with a margin-of-error estimator � : Rn 7! [0;1) that is a scale equivariant function of the
residuals û, �(�û) = ��(û) for all � > 0, but is otherwise unrestricted. We want to compare

the SCPC interval with a version of CI(y) that, like SCPC, has good coverage P0�(� 2 CI(y))
over a range of potential spatial correlation patterns � 2 V. The metric for measuring

e¢ ciency is the expected length E�(c1)[
R
1[x 2 CI(y)]dx] in the SCPC benchmark model

y � N (l�;�(c1)) for a given c1 > c0, or expected length in the i.i.d. model, c1 ! 1. We
compare these expected lengths in the U.S. states spatial designs, using c1 = 2c0, c1 = 5c0, or

c1 !1 (i.e., the i.i.d. model).

As in Section 3, we take a spectral perspective to guide our choice of V: Intuitively, for a
method that seeks to minimize expected length under c1, it is hardest to control size if the

spectral density is proportional to f = f1 = fbnchc1
for high frequencies, but steeper for lower

frequencies, so that the variance of �y is larger than one would expect based on an extrapolation

using high frequency variation. As discussed in the last section, the choice of ��0 and hence

c0 of SCPC is usefully thought of as specifying the the worst-case steepest spectral density

f = f0 = fbnchc0
. This motivates a choice of a putative �least favorable�continuous spectral

density of the form

f kink� (!) = 1[j!j � �]f0(!) + 1[j!j > �]
f0(�)

f1(�)
f1(!)

so that f kink� coincides with f0 over low frequencies, has a kink at ! = �, after which it

coincides with a scaled version of f1. Let �kink� denote the implied covariance matrix, and set

V = Vkink = f�kink� : � � 0g.
This construction is not applicable to the i.i.d. case, since setting f1 equal to a constant

does not yield an integrable spectral density. Instead, de�ne f�(!) = 1[j!j � �](f0(!)�f0(�)),

14



and let fR(!) = f0(!) � f�(!), so that f0(!) = f�(!) + fR(!). In obvious notation, the

corresponding covariance matrices satisfy�(c0) = ��(�)+�R(�): Since fR(!) is a continuous

density that is �at for j!j � �, and that follows the same decline as f0(!) for j!j > �, it

also contributes to the overall persistence of �(c0). Thus, replacing �R(�) by �1(�R(�))In
reduces overall persistence, motivating the construction of �kink

� in the i.i.d. case as �kink� =

��(�) + �1(�R(�))In.

As one would expect given the results of Section 3, SCPC controls size in the U.S. states

spatial designs under Vkink, or at least nearly so: With �SCPC(�) = P0�kink�
(� 2SCPC > cv2SCPC)

for the nominal � = 0:05 level SCPC test, the distribution of sup��0 �SCPC(�) has 95th

percentile smaller than 5.2% under g = guniform for all considered values of c1, and smaller

than 7.3% under g = glight. To keep things on an equal footing, we allow CI the same degree

of undercoverage, that is we consider the problem

inf
�
E�(c1)[

Z
1[x 2 CI(y)]dx] s.t. P�kink�

(� =2 CI(y)) � max(�SCPC(�); �) for all � � 0: (13)

In words, we seek the con�dence interval with the shortest expected length in the �(c1) model

among all con�dence intervals of the form (12) that are as robust as the SCPC interval under

�kink
� , � � 0.
Since � is one-dimensional, one can apply the numerical techniques of Elliott, Müller, and

Watson (2015) and Müller and Wang (2019) to obtain an informative lower bound on the

objective inf� E�(c1)[
R
1[x 2 CI(y)]dx] that holds for any CI(y) of the form (12) that satis�es

the constraint in (13).

We compare these lower bounds on expected lengths with �ve con�dence intervals based on

spatial t-statistics: (i) the SCPC t-statistic as de�ned in Section 2; (ii) an alternative version

of the SCPC t-statistic that chooses q to minimize expected length in the �(c1) model with

c1 = 2c0 (alt-SCPC); (iii) a t-statistic based on a Bartlett-type kernel variance estimator with

bandwidth equal to 0:3 of the largest distance of all observations, �max = maxl;` jjsl � s`jj,
that is k(sl; s`) = max(1� 0:3jjsl� s`jj=�max; 0) (Bartlett Kernel); (iv) Sun and Kim�s (2012)

projection t-statistic with k1 = 1, k2 = 2 Fourier weights for a total of q = 2(k1+k2+k1k2) = 10

weighted averages (Fourier Projection); (v) Ibragimov and Müller�s (2010) cluster t-statistic

with q = 9 equal-sized clusters (Cluster).3 All �ve methods use a critical value so that size is

3The assignment of locations to clusters is performed sequentially, where at each step, we minimize (across

yet unassigned locations) the maximal distance over clusters (among those that have not yet been assigned n=q

locations). Cluster distances are computed from the northwest, northeast, southeast and southwest corners
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Figure 2: 5th, 50th and 95th Percentiles of Average Con�dence Interval Lengths in U.S. States

designs

controlled in the benchmark model with c � c0. (The following results are nearly unchanged

if in addition, one also imposes the coverage constraint in (13).)

Figure 2 reports the 5th, 50th and 95th percentiles of the distribution of expected lengths

under c1 ! 1 (the i.i.d. case), c1 = 2c0 and c1 = 5c0, in multiples of the length of the

oracle interval with � known. (In the guniform designs, the expected lengths are often not

very variable, so the 5th and 95th percentiles are sometimes hidden by the median marker in

Figure 2.) In the uniform spatial designs, and with c1 ! 1 in the light designs, the SCPC

interval comes reasonably close to being as short as the lower bound, and performs better

than the alternative con�dence intervals. The di¤erences between SCPC and alt-SCPC are

small throughout, motivating our choice of qSCPC to minimize length in the i.i.d. model. In

the light design with c1 = 2c0, SCPC performs somewhat worse than the other con�dence

intervals, and all intervals are much longer than the lower bound. The latter e¤ect is due to

�y being far from the e¢ cient estimator of � when c1 is small and the location distribution is

not uniform: the population R2 of a regression of �y on û has percentiles of h26%; 47%; 59%i
under g = glight and c1 = 2c0. Thus, there exist margin-of-error functions �(û) in (12) that

exploit �knowledge�of the realization of the randomness in �y, leading to small lower bounds

that are even smaller than the oracle interval length in some cases.

of the location circumscribing rectangle, and in the q = 9 case, also from the mid-points of the four sides of

this rectangle, and its center.
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Remark 4.1. These e¢ ciency results imply a limit on the possibility of using data-dependent
methods to learn about the value of the worst-case correlation c0: For example, consider an

approach that pre-tests whether there is any spatial correlation (that is, whether c0 can be

chosen arbitrarily large), and that conservatively reverts to a very wide interval if it detects

any correlation. If one could devise a pre-test that reliably indicates the presence or absence

of spatial correlation, then one could easily construct a function � that (i) controls size under

Vkink; and (ii) is nearly as e¢ cient as the oracle interval in the i.i.d. case. But given our lower
bound results, such a function cannot exist. The same argument applies to pre-tests that seek

to determine whether, say, c0 can safely be chosen �ve times as large as a given value, while

still trying to control size if it cannot.

More generally, any attempt to estimate� from the data and to use this value for inference

about � must either yield con�dence intervals that are not much shorter than SCPC, at least

in the uniform designs and the i.i.d. light designs; or fail to control size under Vkink. For
example, consider a plug-in estimator �̂2PI of �

2 = l0�l=n with � in the Matérn class, so

that the spectral density is proportional to (c2 + !2)�1�� , �; c > 0. Suppose we estimate the

Matérn scale parameter, c > 0 and � 2 f1=2; 3=2; 5=2g by maximizing the Gaussian likelihood
(this grid of values for � is computationally convenient, since it yields simple expression for

the covariance function). We �nd that in the U.S. states spatial designs with g = guniform, the

con�dence interval with endpoints �y � 1:96�̂PI=
p
n induces non-coverage probabilities with

percentiles h21%; 22%; 23%i in the Vkink class with c1 = 5c0.

5 Large-Sample Analysis of Spatial t-Statistics

This section extends the results for �nite-sample Gaussian models to large-sample non-

Gaussian settings. The discussion is facilitated using notation that emphasizes the sample

size, and we do by appending a subscript n to many of the variables de�ned previously. For

example, the t-statistic de�ned in (2) will be denoted �n, and so forth for other variables.

The large-sample distribution of �n depends on two characteristics of the model. The

�rst is the covariance function of the ul process, that is, the covariance between ul and u` at

locations sl; s` 2 S. The second is the distribution of locations s that are sampled. The �rst
sub-section provides a large-n framework for characterizing these two features of the model.

With this framework in hand, the following subsections discuss the large sample normality of

the linear functionsW00
nun that determine the null distribution of �n, extensions for kernel-
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based t-statistics, the implications of these results for size control of SCPC-based inference,

and the key role that the density g of s plays in these results even under weak correlation.

5.1 Sampling and Large-n Framework

This subsection provides assumptions on sampling of the spatial locations, the spatial corre-

lation properties of u conditional on the locations, and the set of weight functions used to

determine the weighted averages of un that enter the t-statistic �n. We discuss these in turn.

Spatial locations: The spatial locations sl are chosen from S, a compact subset of Rd.
Sample locations are selected as i.i.d. draws from a distribution G with density g, which is

continuous and positive on S.
Correlation properties of unjsn: The average pairwise correlation of ul, conditional on the

sample locations sn, is ��n =
1

n(n�1)
Pn

l=1

P
` 6=l Cor (ul; u` jsn ). When ��n = 0, un jsn is white

noise. When ��n = Op(1) (and not op(1)), we will say the process exhibits strong correlation.

When ��n = Op(1=c
d
n) where cn is a sequence of constants with cn !1, we follow Lahiri (2003)

and say the process exhibits weak correlation. As shown in the next section, the large-sample

distribution of �n is di¤erent under weak and strong correlation.

Distribution of unjsn: The following asymptotic framework, adapted from Lahiri (2003),

is useful for modelling weak and strong correlation. Let B be a zero-mean stationary random

�eld on Rd with continuous covariance function E[B(s)B(r)] = �B (s� r), and B and sn are

independent. To avoid pathological cases, we assume
R
�B(s)ds > 0 and B is nonsingular in

the sense that inf jjf jj=1
R R

f(r)f(s)�B(s� r)dG(r)dG(s) > 0 with jjf jj2 =
R
f 2(s)dG(s). Let

cn denote a sequence of constants with either cn !1 or cn = c > 0. We consider a triangular-

array framework with ul = B(cnsl) for sl 2 S, so that �u(s) = �B(cns). A calculation shows

that ��n = Op(1=c
d
n), so the sequence cn characterizes weak and strong correlation as described

above.

The sequence cn determines the �in�ll� and �out�ll� nature of the asymptotics. To see

this, note that the volume of the relevant domain for the random �eld B is cdn vol(S), where
vol(S) is the volume of S: The average number of sample points per unit of volume is then
n=(cdn vol(S)): If cdn / n; the volume of the domain is increasing, while the number of points

per unit of volume is not; this is the usual out�ll asymptotic sampling scheme. On the other

hand, when cn = c, a constant, the volume of the domain is �xed, and the number of points

per unit of volume is proportional to n; this is the usual in�ll sampling. Finally, when cn !1
with cdn = o(n) the sampling scheme features both in�ll and out�ll asymptotics.
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Weight Functions: Finally, we specify a set of weighting functions. Speci�cally, for j =

1; : : : ; q, let wj : S 7! R denote a set of continuous functions that satisfy
R
wj(s)dG(s) = 0.

We introduce the following notation involving these functions: w(s) is a q � 1 vector-valued
continuous function with w(s) = (w1(s); :::; wq(s))0; w0(s) = (1;w(s)0)0;Wn is a n� q matrix
with lth row given by w(sl)0, andW0

n is a n � (q + 1) matrix with lth row given by w0(sl)
0

so thatW0
n = [ln;Wn].

Remark 5.1. In our framework, locations sl are sampled within S for a �xed and given
S. But nothing changes in our derivations if instead we treated the observations yl as being
indexed by cnsl 2 cnS, as in Lahiri (2003), or any other one-to-one transformation of sl. The
essential characteristic is the dependence pattern over the spatial domain of the observations

which is governed by cn and B.

5.2 Large-Sample Behavior of Weighted Averages

As is evident from equation (7), the t-statistic is a function of weighted averages of the

elements of un. This subsection discusses the large-sample distribution of such weighted

averages. These results involve weak convergence (i.e., convergence in distribution) where our

interest lies in these limits conditional on the locations sn. With this in mind, for Xn and

X p-dimensional random vectors, we use the notation Xnjsn )p X to denote E[h(Xn)jsn]
p!

E[h(X)] for any bounded continuous function h : Rp 7! R. This notion of weak convergence
in probability is weaker than almost sure weak convergence of conditional distributions, but

nevertheless ensures that the limiting distribution is not induced by the randomness in the

locations sn.

Lemma 3. (i) (strong correlation) Suppose cn = c > 0 and B is a Gaussian process. Then

n�1W00
nunjsn )p X � N (0;
sc)

with


sc =

Z Z
w0(r)w0(s)0�B(c(r � s))dG(r)dG(s):

(ii) (weak correlation) Let an = cdn=n. Suppose cn ! 1, an ! a 2 [0;1), and the
assumptions of Lahiri�s (2003) Theorem 3.2 hold. Then

a1=2n n�1=2W00
nunjsn )p X � N (0;
wc)
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with


wc = a�B(0)V1 +

�Z
�B(s)ds

�
V2

where

V1 =

Z
w0(s)w0(s)0g(s)ds and V2 =

Z
w0(s)w0(s)0g(s)2ds:

Remark 5.2. Note that the variance of
Pn

l=1w
0(sl)ul conditional on sn is

Var

"
nX
i=1

w0(sl)ul jsn

#
=
X
l

X
`

w0(sl)w
0(s`)

0�u(sl � s`)

=
X
l

X
`

w0(sl)w
0(s`)

0�B(cn (sl � s`)): (14)

The strong-correlation covariance matrix, 
sc, is recognized as the large-n analogue of this

expression after appropriate normalization and averaging over the locations. The weak-

correlation covariance matrix, 
wc; di¤ers from 
sc in two ways. First, because cn ! 1
in the weak-correlation case, and �B(r) vanishes for large jrj, the second term in 
wc is recog-

nized as the limit of 
sc as the double integral concentrates entirely on �the diagonal�where

r � s. Second, as out�ll becomes more important (that is, an = cdn=n gets larger), variances

become more important relative to covariances; this explains the �rst term in 
wc:

Remark 5.3. In the strong-correlation case, normality is assumed. That said, CLTs have
been established also for strongly correlated models when d = 1 (i.e., the time series case),

such as Taqqu (1975), Phillips (1987) or Chan and Wei (1987), and to a lesser extent also

for d > 1, as in Wang (2014) or Lahiri and Robinson (2016). For the weak correlation case,

large-sample normality follows from Theorem 3.2 in Lahiri (2003), which imposes mixing and

moment conditions on B.

Remark 5.4. The regularly-spaced time series analogue of part (i) of Lemma 3 is the con-
vergence n�1W00

nunjsn ) X =
R 1
0
w0(s)B(cs)ds. The result in part (ii) has no such analogue,

as the complications arise precisely under non-uniformly distributed locations.

Remark 5.5. The factor
R
�B(s)ds in front of V2 is the spatial analogue of the long-run

variance of the process B. In this integral, the distances are weighted as if s was uniform on

Rd. This is a consequence of the i.i.d. sampling assumption on sl: Under weak correlation,
only observations very close to each other are meaningfully correlated, and with g continuous,

the density of the locations sl is locally �at in a small enough neighborhood around any given
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point s 2 S. This asymptotic approximation hence requires that the observed sn is such that
the empirical distribution of sl � s` is approximately uniform conditional on jjsl � s`jj being
small. If B is assumed isotropic, a su¢ cient condition is that �l;` = jjsl�s`jj has an empirical
distribution that is reasonably well approximated by a density proportional to �d�1 close to

the origin.

Remark 5.6. The form ofV2 is recognized as the limit covariance matrix in a model where the

observations are independent, with variance proportional to g(sl). Thus,V2 is what one would

obtain for the limit covariance matrix under a speci�c form of non-stationarity. Intuitively,

a high density area does not only yield many observations, but under spatial correlation, the

variance contribution is further ampli�ed by the resulting high average correlation.

5.3 Large-Sample Distribution of Spatial t-Statistics

5.3.1 Projection Variance Estimators

Lemmas 1 and 3 lead to the following representation for the limiting distribution of

� 2n(WnW
0
n).

Theorem 4. With 
 2 f
sc;
wcg, !i de�ned in Lemma 1, and (Z0; Z1; :::; Zq)0 � N (0; Iq+1),
under the assumptions of Lemma 3, P (� 2n(WnW

0
n) > cv

2 jsn)
p! P

�
Z20 >

Pq
i=1(� !i

!0
)Z2i

�
under the null hypothesis.

Remark 5.7. In the general weak correlation case with arbitrary spatial density g, 
wc =

a�B(0)V1 +
�R

�B(s)ds
�
V2. Because � 2n is a scale-invariant function of un, it is without loss

of generality to normalize the scale of �B(�) so that a�B(0) +
R
�B(s)ds = 1. Under this

normalization


wc = �V1 + (1� �)V2 (15)

where � is scalar with 0 � � < 1. Thus, the limit distribution of � 2n is seen to depend on

�B only through the scalar �; the matrices V1 and V2 are functions of the weights w0 and

the spatial density g. The scalar � thus completely summarizes the large sample e¤ect of

alternative underlying random �elds B and weak correlation sequences cn !1.

Remark 5.8. When g is constant, so the spatial distribution is uniform, V1 / V2 and 
wc /R
w0(s)w0(s)0ds. In a leading case with orthogonal wj of length 1=

p
q,
R
wj(s)wi(s)dG(s) =

q�11[i = j], 
wc / diag(1; q�1Iq). Thus the asymptotic rejection probability becomes the
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corresponding quantile of the F1;q distribution, a result familiar from the limiting distribution

of projection based squared t-statistics in the regularly spaced time series case. Importantly,

while this result holds under constant g, it does not hold for other spatial distributions, so

that the typical HAR results about inconsistent variance estimators for regularly spaced time

series under weak dependence do not carry over to the spatial case.

For example, consider Sun and Kim (2012) inference in the U.S. states spatial design with

g = glight and n ! 1. Suppose we use k1 = 1 and k2 = 2 Fourier weights, so that the total
number of weighted averages is q = 2(k1 + k2 + k1k2) = 10, and Sun and Kim (2012) suggest

using the critical value from a student-t distribution with 10 degrees of freedom (corresponding

to computing the critical value under � ! 1, or equivalently, under i.i.d. sampling). Under

a weak-correlation sequence with � = 0, so that 
wc = V2, a direct calculation shows that

these nominal 5% level tests have asymptotic null rejection probabilities with percentiles

h6:2%; 10:3%; 30:0%i across the 48 U.S. states.
In contrast, for the Ibragimov and Müller (2010) cluster t-statistic with clusters de�ned

by a partition of S into q subregions, the special structure of the corresponding weighting
functions w implies that the lower right q � q block of 
wc is diagonal irrespective of g,

which guarantees asymptotic validity of the student-t q critical value by virtue of Bakirov and

Székely�s (2005) result about the small sample validity of the usual t-test with heteroskedastic

observations at conventional signi�cance levels (cf. Remark 5.6).

Remark 5.9. For SCPC and other estimators, the weights w(s) are estimated using the

sample locations sn. Lemma 12 in the appendix provides conditions under which the result

in Theorem 4 continues to hold for estimated weights ŵ(s).

5.3.2 Kernel Variance Estimators

This subsection discusses how these results can be generalized so they apply to kernel-based

variance estimators, �̂2n(MnKnMn) and associated t-statistics � 2n(MnKnMn), where the n�n
matrix Kn has (l; `) element equal to k(sl; s`) for a positive semide�nite continuous kernel

k : S � S 7! R. Since in our framework, sl 2 S for a �xed sampling region S, and k does
not depend on n, these kernel estimators are spatial analogues of �xed-b time series long-run

variance estimators considered by Kiefer and Vogelsang (2005), as also investigated by Bester,

Conley, Hansen, and Vogelsang (2016).
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Let K̂n =MnKnMn, and note that the (l; `) element of K̂n is k̂n(sl; s`) with

k̂n(r; s) = k(r; s)� n�1
nX
l=1

k(sl; s)� n�1
nX
`=1

k(r; s`) + n�2
nX
l=1

nX
`=1

k(sl; s`): (16)

To begin, consider a simpler problem using a kernel that replaces the sample means in (16)

with populations means

�k(r; s) = k(r; s)�
Z
k(u; s)dG(u)�

Z
k(r; u)dG(u) +

Z Z
k(u; t)dG(u)dG(t): (17)

By Mercer�s Theorem, �k(r; s) has the representation

�k(s; r) =
1X
i=1

�i'i(s)'i(r) (18)

where (�i; 'i) are the eigenvalues and eigenfunctions of �k, with eigenvalues ordered from

largest to smallest, normalized so that
R
'i(s)'j(s)dG(s) = 1[i = j]. By de�nition of an eigen-

function, for �i > 0, 'i(�) = ��1i
R
�k(�; s)'i(s)dG(s), so 'i is continuous, and

R
'i(s)dG(s) = 0.

Consider the problem with a truncated version of �k,

�kq(s; r) =

qX
i=1

�i'i(s)'i(r):

We can directly apply Theorem 4 using wj(s) = �
1=2
j 'j(s). Speci�cally, let �Kn;q be an

n � n matrix with (l; `) element equal to �kq(sl; s`). Then u0n �Kn;qun = u
0
nWnW

0
nun so that

� 2n(�Kn;q) = � 2n(WnW
0
n), and P

�
� 2n(�Kn;q) > cv

2 jsn
� p! P

�
Z20 >

Pq
i=1(� !i

!0
)Z2i

�
by Theorem

4.

To extend this result to the original problem, it is useful to reformulate it in terms of

eigenvalues of linear operators. Speci�cally, denote by L2G the Hilbert space of functions
S 7! R with inner product hf1; f2i =

R
f1(s)f2(s)dG(s). Normalize 
wc = �V1 + (1� �)V2,

as in (15). A tedious but straightforward calculation (see (29) in the appendix) shows that

the eigenvalues !i of A = D(cv)
 with 
 = f
sc;
wcg are also the eigenvalues of �nite rank
self-adjoint linear operators L2G 7! L2G, namely RscTqRsc and RwcTqRwc in the strong and
weak correlation case, respectively, where

R2sc(f)(s) =

Z
�B(c(s� r))f(r)dG(r)

R2wc(f)(s) = (�+ (1� �)g(s))f(s)
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Tq(f)(s) =

Z �
1� cv2 �kq(s; r)

�
f(r)dG(r):

This suggests that the limiting rejection probability for the original non-truncated �k might

be characterized by the (potentially in�nite) number of eigenvalues of the operators RTR :

L2G 7! L2G with R 2 fRwc; Rscg, where

T (f)(s) =

Z �
1� cv2 �k(s; r)

�
f(r)dG(r):

The following theorem shows this to be the case, and it also includes the generalization to

sample demeaned kernels (16) instead of (17).

Theorem 5. Let !0 denote the largest eigenvalue, and !i; i � 1 the remaining eigenvalues of
RTR for R 2 fRwc; Rscg. Then under the assumptions of Lemma 3, !0 > 0 and !i � 0 for
i � 1, and P(� 2n(K̂n) > cv

2 jsn)
p! P(Z20 >

P1
i=1(�!i=!0)Z2i ):

Remark 5.10. Under weak correlation the limit distribution of kernel-based spatial t-
statistics depends on the spatial density g, since the eigenvalues of RwcTRwc are a function of

g. This is analogous to the results for projection estimators discussed above. Thus, in both

cases, using a critical value that is appropriate for i.i.d. data does not, in general, lead to

valid inference under weak correlation.

Remark 5.11. The framework of Theorem 5 also sheds light on the asymptotic bias of

kernel-based and orthogonal projection estimators under weak correlation. The estimand

�2 is the limiting variance of a1=2n n�1=2
Pn

l=1 ul, which under the normalization (15) is equal

to the (single) eigenvalue of the operator RwcT�2Rwc with T�2(f)(s) =
R
f(r)dG(r), that isR

(�+(1� �)g(s))dG(s): The expectation of an�̂2n(K̂n) converges to the trace of the operator

RwcT�kRwc with T�k(f)(s) =
R
�k(s; r)f(r)dG(r), that is

R
(�+ (1� �)g(s))�k(s; s)dG(s). Thus,

the estimator is asymptotically unbiased for all g if and only if �k(s; s) = 1. For standard

choices of k, k(s; s) = 1, so the only source of asymptotic bias is the demeaning (and if the

estimator �̂2n uses the null value yn � �0ln instead of the residuals ûn, the asymptotic bias is

zero under the null hypothesis). Moreover, if k(r; s) concentrates around the �diagonal�where

r � s, corresponding to a �xed-b kernel estimator with small b, the demeaning e¤ect is small,

as is the asymptotic variability of an�̂
2
n(K̂n). Thus, �xed-b kernel estimators with standard

kernel choices and small b yield nearly valid and e¢ cient inference under weak correlation.

In contrast, orthogonal projection estimators where �k(r; s) = q�1
Pq

i=1 �i(r)�i(s) do not

share this approximate unbiasedness property, even for q large, since
R
�i(s)

2dG(s) = 1 does

not, in general, imply that �k(s; s) = q�1
Pq

i=1 �i(s)
2 � 1.
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The proof of Theorem 5 involves showing that in large samples, the di¤erence between

the eigenfunctions of the sample demeaned kernel (16) and the population demeaned kernel

(17) becomes small. The following lemma extends and adapts previous results by Rosasco,

Belkin, and Vito (2010) to the case of sample demeaned kernels.

Lemma 6. Let (v̂i; �̂i) with v̂i = (v̂i;1; : : : ; v̂i;n)0 be the eigenvector-eigenvalue pairs of n�1K̂n

with �̂1 � �̂2 � : : : � �̂n and n�1v̂0iv̂i = 1. For all i with �̂i > 0; de�ne the S 7! R functions

'̂i(�) = n�1�̂
�1
i

nX
l=1

v̂i;lk̂n(�; sl): (19)

Let �(j), j = 1; : : : be the unique positive values of �i in descending order, and suppose �(j)
has multiplicity mj � 1. Then for any p such that �(p) > 0,
(a) there exist rotation matrices Ô(j) of dimension mj �mj, j = 1; : : : ; p such that with

q =
Pp

j=1mj, ' = ('1; : : : ; 'q)
0 and '̂ = ('̂1; : : : ; '̂q)

0,

sup
s2S

jj'(s)� diag(Ô(1); : : : ; Ô(p))'̂(s)jj = Op(n
�1=2);

(b)
Pq

i=1(�̂i � �i)
2 = Op(n

�1).

Part (a) shows convergence of the eigenspace corresponding to unique eigenvalues, and

part (b) shows convergence of the eigenvalues.

5.3.3 SCPC t-Statistic

Beyond its use in the proof of Theorem 5, Lemma 6 can be used to establish the large sample

distribution of the SCPC t-statistic for nonrandom q and critical value cv. Note that in this

application of Lemma 6, we are interested in the eigenfunctions of the demeaned covariance

kernel k0(r; s) = exp(�c0jjr� sjj) of the benchmark model, rather than the eigenfunctions of
a kernel that de�nes a kernel-based variance estimator.

Recall from Section 2 that ri is the eigenvector ofMn�n(c0)Mn corresponding to the ith

largest eigenvalue, normalized to satisfy n�1r0iri = 1. Let '
0
i be the eigenfunction of the kernel

�k0(r; s) corresponding to the ith largest eigenvalue �0i , where �k
0 is the demeaned version of

k0 in analogy to (17). Combining Lemma 6 with a result (Lemma 13 of the appendix) that

suitably accounts for estimated weights yields the following corollary.

Corollary 7. Suppose �0q > �0q+1 and the assumptions of Lemma 3 hold. Then the convergence

in Theorem 4 holds for � 2SCPC(q) = � 2n(q
�1Pq

i=1 rir
0
i) with w(s) = ('

0
1(s); : : : ; '

0
q(s))

0=
p
q.
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5.4 Asymptotic Size Control under Weak Correlation

As discussed above (see equation (15)), under weak correlation, the asymptotic rejection

probability of �n for �nite q can be studied via
wc(�) = �V1+(1��)V2, where the covariance

function of B and the sequence cn a¤ects the large-sample distribution of �n only through

the scalar � 2 [0; 1). Thus, if cv is such that sup0��<1 P (
Pq

i=0 !i(�; cv)Z
2
i > 0) = �, where

f!i(�; cv)gqi=0 are the eigenvalues of A(�; cv) = D(cv)
wc(�), then setting cvn � cv for all n
yields inference that is asymptotically robust under all forms of weak correlation covered by

Theorem 3 (ii). In the case of a kernel-based variance estimator, the same holds as long as cv

satis�es sup0��<1 P (
P1

i=0 !i(�; cv)Z
2
i > 0) = � where f!i(�; cv)g1i=0 are the eigenvalues of the

linear operator L(f)(s) =
R p

�+ (1� �)g(s)
�
1� cv2�k(s; r)

�p
�+ (1� �)g(r)f(r)dG(r).

The value cv depends on the spatial density g, which can be seen directly by inspecting

the form of 
wc and the operator L. In principle, one could use these expressions to estimate

cv directly. But this would involve estimates of the spatial density g, which leads to di¢ cult

bandwidth and other choices. We now discuss a simpler approach.

Consider a benchmark model B0 that satis�es the assumptions of Lemma 3 (ii), such as

the Gaussian exponential model introduced in Section 2. Let �0B denote the covariance kernel

of B0, and suppose cn;0, is chosen so that an;0 = cdn;0=n! a0 = 0: For instance, cn;0 = c0 > 0

satis�es this condition, as does cn;0 = n1=d= log(n). Note that for this model � = 0. Suppose

cvn = cvn(sn) satis�es

sup
c�cn;0

P0�(c)(� 2n � cv2n jsn) � � (20)

where P0�(c) is computed under the benchmark model, that is under unjsn � N (0;�(c)) with
�(c) the covariance matrix of (B0(cs1); :::; B

0(csn))
0.

Theorem 8. Let cv2n satisfy (20). Under arbitrary weak correlation in the sense of Lemma
3 (ii), for the SCPC t-statistic and t-statistics covered by Theorems 4 and 5, max(cv2 �
cv2n; 0)

p! 0. Consequently, for any � > 0, lim supn P(P(� 2n > cv2n jsn) > � + �) ! 0, so that

lim supn P(� 2n � cv2n) � �.

The intuition for Theorem 8 is as follows. The critical value cvn in (20) is valid in the

benchmark model for all c � cn;0 and n. Thus, it is also valid along arbitrary sequences

cn � cn;0. Since the cn;0 model has � = 0, there exists sequences cn � cn;0 that induce any

� 2 [0; 1) in the benchmark model; di¤erent sequences cn in the benchmark model therefore
trace out all possible limit distributions under generic weak correlation, so that size control in

the benchmark model for all c � cn;0 translates into size control under generic weak correlation.
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For SCPC, the benchmark covariance kernel for B0 is exponential �0B(r; s) = exp(�cjjr�
sjj) and (from equation (5)) the critical value is chosen to satisfy (20) with equality. Thus,

with a �xed value of c0 (or a �xed value of ��0), the SCPC t-test � SCPC(q) controls size in large

samples under generic weak correlation.4

6 Extensions to Regression and GMM

The extension of these results to regression and GMM problems follows from standard argu-

ments. For example, consider the linear regression problem

wl = xl� + z
0
l� + "l for l = 1; :::; n (21)

where � is the (scalar) parameter of interest, zl are additional controls in the regression, and

(wl; xl; zl) are associated with location sl. Let ~xl = xl � SxzS�1zz zl denote the residual from
regressing xl on zl, where we use the notation Sab = n�1

Pn
l=1 alb

0
l for any vectors al and bl.

Suppose S~x~x
p! �2~x~x > 0 and n

�1=2Pn
l=1 ~xl"ljs)p N (0; �2~x"): Then

p
n(�̂ � �)js)p N (0; �2)

where �2 = �2~x"=�
4
~x~x. Spatial correlation a¤ects inference in this model through �

2
~x" which

incorporates potential correlation between ~xl"l and ~x`"` at spatial locations sl and s`.

Thus, suppose that ~xl"l satis�es the assumptions previously made for ul. Then a straight-

forward calculation shows that setting

yl = �̂ +
~xl"̂l

n�1
Pn

l=1 ~x
2
l

in the analysis of the previous sections leads to analogous results with � replacing � as

the parameter of interest. The extension to GMM inference, potentially with clustering, is

analogous; see, for instance, Section 4.4 of Müller (2020).

4Technically, the SCPC choice of q in (6) is also a function of the locations of sn, so qSCPC is random.

However, the argument that establishes Theorem 8 can be extended under this complication as long as

qSCPC � qmax almost surely for some �nite and �xed qmax. See Theorem 14 in the appendix for a formal

statement.

27



A Appendix

Proof of Lemma 1: with X =W00u = (X0;X
0
1:q)

0 and Z = (Z0; Z1; :::; Zq)0 we have

P
�
� 2(WW0) > cv2

�
= P

�
X2
0

X0
1:qX1:q

> cv2
�
= P

�
X2
0 � cv2X0

1:qX1:q > 0
�

= P (X0D(cv)X > 0) = P(Z0
1=2D(cv)
1=2Z > 0)

= P

 
qX
i=0

!iZ
2
i > 0

!

where the last equality follows by similarity of the matrices 
1=2D(cv)
1=2 and D(cv)
. The

claim about the sign of the eigenvalues follows from Lemma 10 below. �

The proof of Theorem 2 relies on some preliminary results.

Lemma 9. For any two q� q positive semi-de�nite matrices B1 and B2 and vectors v1;v2 2
Rq, and all p 2 [0; 1],

&(p) = (pv1 + (1� p)v2)
0(Iq + pB1 + (1� p)B2)

�1(pv1 + (1� p)v2)

� pv01(Iq +B1)
�1v1 � (1� p)v02(Iq +B2)

�1v2 � 0.

Proof. We �rst show that &(p) is convex. Write G(p) = Iq + pB1 + (1 � p)B2. The �rst

derivative of the nonlinear part of 1
2
&(p) is given by

(v1�v2)0G(p)�1(pv1+(1�p)v2)� 1
2
(pv1+(1�p)v2)0G(p)�1(B1�B2)G(p)�1(pv1+(1�p)v2)

so that the second derivative of 1
2
&(p) equals

(v1 � v2)0G(p)�1(v1 � v2)� 2(v1 � v2)0G(p)�1(B1 �B2)G(p)�1(pv1 + (1� p)v2)

+ (pv1 + (1� p)v2)
0G(p)�1(B1 �B2)G(p)�1(B1 �B2)G(p)�1(pv1 + (1� p)v2):

With �(p) = G(p)�1=2(v1 � v2) and r(p) = �G(p)�1=2(B1 � B2)G(p)�1(pv1 + (1 � p)v2),

the second derivative may be rewritten as 
�(p)

r(p)

!0 
Iq Iq

Iq Iq

! 
�(p)

r(p)

!
� 0

and convexity follows. Thus maxp2[0;1] &(p) � max(&(1); &(0)) = 0.
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Lemma 10. Let A1 =
R
P�1D(cv)
(�)PdF (�). The q + 1 eigenvalues of A1 are real, and

only one is positive, and the same holds for A(�), � 2 �. Furthermore, �1(A1) � 1.

Proof. By similarity, the eigenvalues of A1 are equal to those of PA1P
�1, which in turn is

similar to the symmetric matrix 
l0�1l l0�1

~W

~W0�1l ~W0�1 ~W

!1=2 
1 0

0 �Iq

! 
l0�1l l0�1

~W

~W0�1l ~W0�1
~W

!1=2
with ~W = (l;W= cv), and the �rst claim follows for A1. The claim for A(�) follows from the

same argument.

For the last claim, let �h : R 7! R

�h(t) = 1� tl0�1l+ t2l0�1 ~W(Iq + t ~W0�1
~W)�1 ~W0�1l:

Note that �h(t) is weakly decreasing in t > 0, since with ~H = �t ~W(Iq + t ~W0�1
~W)�1 ~W0�1l

�h0(t) = �
 
l

~H

!0 
�1 �1

�1 �1

! 
l

~H

!
< 0:

The characteristic polynomial of A1 is given by

det

 
s� l0�1l l0�1

~W

� ~W0�1l sIq + ~W0�1 ~W

!
= (s� l0�1l+ l0�1 ~W(sIq + ~W0�1

~W)�1 ~W0�1l) det(sIq + ~W0�1 ~W)

= s�h(s�1) det(sIq + ~W0�1 ~W)

so that �1(A1) satis�es �h(1=�1(A1)) = 0. Similarly, 1=�1(A(�)) = 1 is a root of

h�(t) = 1� tl0�(�)l+ t2l0�(�) ~W(Iq + t ~W0�(�) ~W)�1 ~W0�(�)l:

By Lemma 9, for any t > 0,

l0�1
~W(Iq + t ~W0�1 ~W)�1 ~W0�1l

=

�Z
~W0�(�)ldF (�)

�0�
Iq + t

Z
~W0�(�) ~WdF (�)

��1�Z
~W0�(�)ldF (�)

�
�

Z
l0�(�) ~W(Iq + t ~W0�(�) ~W)�1 ~W0�(�)ldF (�):

Thus, �h(t) �
R
h�(t)dF (�), and from h�(1) = 0 for all �, �h(1) � 0. Since h is decreasing, its

root 1=�1(A1) must thus be smaller than unity, and the conclusion follows.
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Proof of Theorem 2: Proceeding as in the proof of Lemma 1, P�1(� 2(WW0) > cv2) =

P (Z20 �
Pq

i=1 ��iZ
2
i ) with ��i = �i (�A1) =�1(A1). By Lemma 10, ��i � 0 for i = 1; : : : ; q. For

future reference, note that P�0(� 2(WW0) > cv2) = � yields P (Z20 �
Pq

i=1 �iZ
2
i ) � � for

�i = �i (�A0).

In the following, we write a � b for two vectors a;b 2 Rk to indicate that b majorizes a,
that is, with the elements of ai and bi sorted in descending order,

Pj
i=1 ai �

Pj
i=1 bi for all

j = 1; : : : ; k, and
Pk

i=1 ai =
Pk

i=1 bi. Let �A1 =
1
2
(A1 +A

0
1). From Theorems 9.F.1 and 9.G.1

in Marshall, Olkin, and Arnold (2011)

(�1(�A1); : : : ; �q+1(�A1)) � (�1(��A1); : : : ; �q+1(��A1)) (22)

�
�Z

�1(��A(�))dF (�); : : : ;Z
�q(��A(�))dF (�);

Z
�q+1(��A(�))dF (�)

�
:

Since
R
�q+1(��A(�))dF (�) = �

R
�1(�A(�))dF (�) and �q+1(�A1) = ��1(A1), we have

��1(A1) +

qX
j=1

�j(�A1) = �
Z
�1(�A(�))dF (�) +

qX
j=1

Z
�j(��A(�))dF (�):

The majorization result (22) further implies

�1(A1) � �1(�A1) �
Z
�1(�A(�))dF (�) (23)

so that also

(�1(�A1); : : : ; �q(�A1)) �
�Z

�1(��A(�))dF (�); : : : ;Z
�q�1(��A(�))dF (�);

Z
�q(��A(�))dF (�)�

�Z
�1(�A(�))dF (�))� �1(A1)

��
:

with the elements still sorted in descending order. Thus, with ~�i =
R
�i(��A(�))dF (�)=�1(A1)

for i = 1; : : : ; q � 1 and

~�q =

R
�q(��A(�))dF (�)� (

R
�1(�A(�))dF (�))� �1(A1))

�1(A1)

we have (��1; : : : ; ��q) � (~�1; : : : ; ~�q). From the integral representation of Lemma 1 (ii),

the application of the Schur-Ostrowski criterion (Theorem 3.A.4 in Marshall, Olkin, and
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Arnold (2011)) shows that P (Z20 �
Pq

i=1 aiZ
2
i ) is Schur convex in (a1; : : : ; aq), so that

P (Z20 �
Pq

i=1 ��iZ
2
i ) � P (Z20 �

Pq
i=1 ~�iZ

2
i ).

Now applying (23), ~��i =
R
�i(��A(�))dF (�)=

R
�1(�A(�))dF (�) � ~�i for i = 1; : : : ; q � 1,

and since from Lemma 10, �1(A1) � 1, also

~��q =

R
�q(��A(�))dF (�)� (

R
�1(�A(�))dF (�)� 1)R

�1(�A(�))dF (�)
� ~�q

provided Z
�q(��A(�))dF (�)�

�Z
�1(�A(�))dF (�)� 1

�
� 0: (24)

Since P(Z20 �
Pq

i=1 ~�iZ
2
i ) is a decreasing function in ~�i, P (Z20 �

Pq
i=1 ~�iZ

2
i ) �

P (Z20 �
Pq

i=1 ~�
�
iZ

2
i ) : By Theorem 3.A.8 of Marshall, Olkin, and Arnold (2011), the Schur-

convexity of P (Z20 �
Pq

i=1 aiZ
2
i ) in (a1; : : : ; aq) and P (Z20 �

Pq
i=1 �iZ

2
i ) � �, it now su¢ ces

to show that
Pj

i=1 ~�
�
q+1�i �

Pj
i=1 �q+1�i for all 1 � j � q, and since �q � 0, this also ensures

that (24) holds. This latter condition may be rewritten as
Pj

i=1

R
�i(�)d�(�) � 0, and the

result follows. �

Proof of Lemma 3: (i) Since B is Gaussian, n�1W00
nunjsn � N (0;
n) with 
n =

n�2
P

l;`w
0(sl)w

0(s`)
0�B(c (sl � s`)). It thus su¢ ces to show that 
n

p! 
sc.

We have 
n = �B(0)n
�2P

lw
0(sl)w

0(sl)
0 + n�2

P
l 6=`w

0(sl)w
0(s`)

0�B(c (sl � s`)), and

jjn�2
P

lw
0(sl)w

0(sl)
0jj � n�1 sups2S jjw0(s)jj2 ! 0: Furthermore,

E

"
1

n(n� 1)
X
l 6=`

w0(sl)w
0(s`)

0�B(c (sl � s`))

#
= E[w0(s1)w

0(s2)
0�B(c (s1 � s2))] = 
sc

and with w0i (s) the ith element of w
0(s),

E

24 1

n(n� 1)
X
l 6=`

w0i (sl)w
0
j (s`)

0�B(c (sl � s`))

!235
=
(n� 2)(n� 3)
n(n� 1) E[w0i (s1)w0j (s2)0�B(c (s1 � s2))]E[w0i (s3)w0j (s4)0�B(c (s3 � s4))]

+
4(n� 2)
n(n� 1)E[w

0
i (s1)w

0
j (s2)

0�B(c (s1 � s2))w
0
i (s1)w

0
j (s3)

0�B(c (s1 � s3))]

+
2

n(n� 1)E[w
0
i (s1)w

0
j (s2)

0�B(c (s1 � s2))w
0
i (s1)w

0
j (s2)

0�B(c (s1 � s2))]

so that Var[ 1
n(n�1)

P
l 6=`w

0
i (sl)w

0
j (s`)

0�B(c (sl � s`))] = O(n�1), and therefore 
n
p! 
sc.
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(ii) By the Cramér-Wold device, it su¢ ces to obtain the desired convergence for �xed linear

combinations. Thus, for � 2 Rq+1, de�ne w� : S 7! R via w�(s) = �0w0(s), a continuous

function on a compact set S. We apply Lahiri�s (2003) Theorem 3.2, in the notation �n , cn,

Xi , sl, !n(�
�1
n x) , w�(s) and s21n ,

R
w�(s)

2g(s)ds. For any h 2 RdR
w�(s+ c�1n h)w�(s)g(s)

2dsR
w�(s)2g(s)ds

!
R
w�(s)

2g(s)2dsR
w�(s)2g(s)ds

, Q1

since the density g is also continuous, so Lahiri�s Condition (S.1) holds. If an ! a > 0,

then n=cdn ! a�1 , C1, and the result follows from Lahiri�s equation (3.4). If an ! 0, then

n=cdn !1 and a1=2n n�1=2 = (cdn=n
2)1=2, so the result follows from Lahiri�s equation (3.5). �

Proof of Theorem 4: In the notation of Lemma 3, with X = (X0;X
0
1:q)

0 and Z =

(Z0; : : : ; Zq)
0 we have P (� 2n(WnW

0
n) > cv

2 jsn)
p! P

�
X2
0=(X

0
1:qX1:q) > cv

2
�
from Lemma 3

and the continuous mapping theorem, so the result follows as in the proof of Lemma 1. �

The proof of Theorem 5 requires a number of technical preliminaries.

Lemma 11. If Xnjsn )p X and Yn
p! 0, then (Xn +Yn)jsn )p X.

Proof. Let BL be the space of Lipschitz continuous functions Rp 7! R bounded by one with
unit Lipschitz constant. By Berti, Pratelli, and Rigo (2006), page 93, Xnjsn )p X is equiva-

lent to suph2BL jE[h(Xn)�h(X)jsn]j
p! 0, so it su¢ ces to show that suph2BL jE[h(Xn+Yn)�

h(X)jsn]j
p! 0. Let Y�

n = Yn1[jjYnjj � 1], so that

sup
h2BL

jE[h(Xn +Yn)� h(X)jsn]j � sup
h2BL

jE[h(Xn +Y
�
n)� h(X)jsn]j+ 2P(jjY�

njj > 1jsn):

Note that with �n(h) = h(Xn +Y
�
n)� h(Xn), j�n(h)j � jjY�

njj a.s. for all h 2 BL, so that

sup
h2BL

jE[h(Xn +Y
�
n)� h(X)jsn]j = sup

h2BL
jE[�n(h) + h(Xn)� h(X)jsn]j

� sup
h2BL

(jE[�n(h)jsn]j+ jE[h(Xn)� h(X)jsn]j)

� E[jjY�
njjjsn] + sup

h2BL
jE[h(Xn)� h(X)jsn]j:

We are left to show that Yn
p! 0 implies P(jjY�

njj > 1jsn)
p! 0 and E[jjY�

njjjsn]
p! 0:

Consider the latter claim. Suppose otherwise. Then for some " > 0, and some subsequence

n0 of n, limn0!1 P(E[jjY�
n0jjjsn0 ] > ") > ", so that lim infn0!1 E[jjY�

n0jj] > "2. But since Y�
n is

bounded, Yn
p! 0 implies limn!1 E[jjY�

njj] = 0, a contradiction. A similar argument yields
E[jjY�

njjjsn]
p! 0, concluding the proof.
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Lemma 12. Suppose the mapping ŵ0 : S 7! Rq+1 is a function of sn (but not of B), and

sup
s2S

jjŵ0(s)�w0(s)jj p! 0: (25)

Then Lemma 3 and Theorem 4 continue to hold with Ŵ0
n in place of W

0
n, where the ith row

of Ŵ0
n is equal to (1; ŵ(si)

0).

Proof. We show that Lemma 3 (i) and (ii) continue to hold with w0 replaced by ŵ0. We have

E

24 nX
l=1

(ŵ0i (sl)� w0i (sl))u(sl)

!2
jsn

35 � sup
s2S

jŵ0i (s)� w0i (s)j2
X
l;`

j�B(cn (sl � s`))j

almost surely. Proceeding as in the proof of Lemma 3 (i) now shows that

E[n�2
P

l;` j�B(c (sl � s`))j] =
R R

j�B(c(r � s))jg(r)g(s)drds, so n�2
P

l;` j�B(c (sl � s`))j =
Op(1). Similarly, under the assumptions of part (ii) of Lemma 3, proceeding as in

the proof of Lemma 5.2 of Lahiri (2003) yields E[ann�1
P

l;` j�B(cn (sl � s`))j] ! a�2u +R
Rd j�B(s)jds

R
g(s)2ds. The result thus follows from (25) and Lemma 11.

Lemma 13. In the notation of Lemma 6, suppose Ŵ = L̂�̂, where the ith column of the n�q
matrix �̂ is v̂i = ('̂i(s1); : : : ; '̂i(sn))

0 and L̂ = diag(�̂1; : : : ; �̂q). Under the assumptions of

Lemma 3, cdnn
�2(u0ŴŴ

0
u� u0WW0u)jsn

p! 0, whereW = L�, L = diag(�1lm1 ; : : : ; �plmp)

and the ith column of � is equal to ('i(s1); : : : ; 'i(sn))
0.

Proof. With Ô =diag(Ô(1); : : : ; Ô(p)),

cdnn
�2u0�̂L̂

2
�̂0u = cdnn

�2u0�̂ÔÔ
0
L̂2Ô0Ô�̂

0
u = cdnn

�2u0�Ô
0
L̂2Ô0�0u+ op(1)

= cdnn
�2u0�Ô

0
L2Ô0�0u+ op(1) = cdnn

�2u0�L2�0u+ op(1)

where the �rst equality follows from Ô0Ô = Iq, the second from Lemma 6 (a) and (b) and

the reasoning in the proof of Lemma 12, the third from Lemma 6 (b) and jjcd=2n n�1Ô0�0ujj �
jjÔjj � jjcd=2n n�1�0ujj = Op(1) using Lemma 3, and the fourth from Ô0L2Ô0 = L2 a.s. The

result now follows from Lemma 11.

Proof of Theorem 5: For the �rst claim, by Theorem 4.4.6 of Harkrishan (2017),

!0 = supjjf jj=1hf;RTRfi, so it su¢ ces to show that for some f 2 L2G, hf;RTRfi > 0. In

the weak correlation case, this holds for f(s) = (�+ (1� �)g(s))�1=2, since hf;RwcTRwcfi =
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h1; T1i =
R R
(1� �k(r; s))dG(r)dG(s) = 1. In the strong correlation case, the same conclusion

holds by setting f such that Rscf = 1. Such an f exists, because the kernel of R2sc is equal to

f0g by assumption about �B, so the range of Rsc is L2Gnf0g by Theorem 3.5.8 of Harkrishan

(2017).

Under the null hypothesis, P(� 2n(Kn) > cv2 jsn) = P(�̂n > 0jsn), where �̂n =

cdnn
�2P

l;` ulu`(1 � cv2 k̂n(sl; s`)). By construction of �̂i and '̂i(�) in Lemma 6, for all 1 �
l; ` � n, k̂n(sl; s`) =

Pn
i=1 �̂i'̂i(sl)'̂i(s`): For a given q satisfying the assumption of Lemma 6,

and all n > q, let k̂n;q(r; s) =
Pq

i=1 �̂i'̂i(r)'̂i(s) and �̂
q

n = cdnn
�2P

l;` ulu`(1� cv2 k̂n;q(sl; s`)):
We now show the last claim, that is P(�̂n > 0jsn)

p! P(
P1

i=0 !iZ
2
i > 0), which is implied by

the following three claims

(i) for any " > 0 lim
q!1

lim sup
n!1

P(j�̂n � �̂
q

nj > ") = 0 (26)

(ii) for any �xed q, P(�̂
q

n > 0jsn)
p! P

 
qX
i=0

!q;iZ
2
i > 0

!
(27)

(iii) lim
q!1

P

 
qX
i=0

!q;iZ
2
i > 0

!
= P

 1X
i=0

!iZ
2
i > 0

!
(28)

for some double array of real numbers !q;i by invoking Lemma 11.

For claim (i), note that for all n > q, �̂n � �̂
q

n a.s., and

E[�̂
q

n � �̂njsn] = cdnn
�2
X
l;`

�B(cn(sl � s`))

 
nX

i=q+1

�̂i'̂i(sl)'̂i(s`)

!
� �̂q+1c

d
nn

�2
X
l;`

�B(cn(sl � s`))

where the inequality follows from tr(AB) � �1(A) trB for positive semide�nite matricesA;B

and �1(A) the largest eigenvalue of A. By the same reasoning as employed in Theorem 12,

cdnn
�2P

l;` �B(cn(sl� s`)) = Op(1). Furthermore, by Lemma 6 (b), j�̂q+1��q+1j = Oq(n
�1=2),

and limq!1 �q = 0. Thus (26) follows.

For claim (ii), let '0(s) = 1 and �0 = 1. By Lemma 6 (a), Lemma 13 and Theorem

1, claim (27) holds, where !q;i are the eigenvalues of D(cv)
 for 
 2 f
sc;
wcg; and the
(i + 1); (j + 1) element of 
 is equal to

p
�i�j

R R
'i(s)�B(c(r � s))'j(r)dG(s)dG(r) andp

�i�j
R
'i(s)'j(s)(�+ (1� �)g(s))ds under strong and weak correlation, respectively.

For claim (iii), we �rst show that these !q;i are also the eigenvalues of the �nite rank self-

adjoint linear operators RTqR, R 2 fRsc; Rwcg. To this end, let '�i (s) =
p
�iR'i(s). With
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d0 = 1 and di = � cv2, we have

RTqR(f)(s) =

Z  qX
i=0

di'
�
i (s)'

�
i (r)

!
f(r)dG(r)

and the (i + 1); (j + 1) element of 
 stated above is equal to
p
�i�jh'i; R2'ji =p

�i�jhR'i; R'ji =
R
'�i (s)'

�
j(s)dG(s). Let v = (v0; : : : ; vq)

0 be an eigenvector of D(cv)


corresponding to eigenvalue !, D(cv)
v = !v. Then D(cv)
v = !v implies

Z 0BBBB@
'�0(r)'

�
0(r) � � � '�q(r)'

�
0(r)

� cv2 '�0(r)'�1(r) � � � � cv2 '�q(r)'�1(r)
...

. . .
...

� cv2 '�0(r)'�q(r) � � � � cv2 '�q(r)'�q(r)

1CCCCA dG(r)v = !v:

Premultiplying both sides of this equation by ('�0(s); : : : ; '
�
q(s)) yields

qX
j=0

qX
i=0

vj'
�
i (s)

Z
di'

�
j(r)'

�
i (r)dG(r) = !

qX
j=0

vj'
�
j(s)Z  qX

i=0

di'
�
i (s)'

�
i (r)

! 
qX
j=0

vj'
�
j(r)

!
dG(r) = !

qX
j=0

vj'
�
j(s) (29)

so
Pq

j=0 vj'
�
j(r) is an eigenvector of RTqR with eigenvalue !, and since the kernel of RTqR

contains all functions that are orthogonal to f'�i g
q
i=0, these are the only nonzero eigenvalues.

Now let !�q;i be the eigenvalues of the self-adjoint linear operator R(T � Tq)R. By Kato

(1987) (also see the development on page 911 of Rosasco, Belkin, and Vito (2010)), there is

an enumeration of the eigenvalues !q;i such that

1X
i=0

(!q;i � !i)
2 �

1X
i=0

(!�q;i)
2 = jjR(T � Tq)RjjHS (30)

where jjR(T �Tq)RjjHS is the Hilbert-Schmidt norm on the operator R(T �Tq)R : L2G 7! L2G
induced by the norm

p
hf; fi. Now jjR(T�Tq)RjjHS � jjRjj2�jjT�TqjjHS (cf. (34) below), and

since T � Tq is an integral operator, jjT � TqjjHS =
R R �P1

i=q+1 �i'i(s)'j(s)
�2
dG(s)dG(r).

By Mercer�s Theorem, this converges to zero as q !1, so that

lim
q!1

1X
i=0

(!q;i � !i)
2 = 0. (31)
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Thus using the same order of eigenvalues as in (30), we also have Var[
Pq

i=0 !q;iZ
2
i �P1

i=0 !iZ
2
i ] � 2

P1
i=0(!q;i � !i)

2, with the right-hand side converging to zero as q ! 1
by (31). But mean-square convergence implies convergence in distribution, and (28) follows.

For the second claim of the theorem, by Lemma 3, !q;i � 0 for i � 1, which in conjunction
with (31) implies !i � 0 for i � 1. �

Proof of Lemma 6: We initially show a weaker claim than part (a), namely that there

exists a sequence of q � q rotation matrices Ôn = Ôn(sn) with elements Ôn;ij such that

max
i�q

sup
s2S

�����'i(s)�
qX
j=1

Ôn;ij'̂i(s)

����� = Op(n
�1=2): (32)

The proof follows closely the development in Rosasco, Belkin, and Vito (2010), de-

noted RBV in the following. Let k0(r; s) = �k(r; s) + 1: Conditional on sn, de�ne the lin-

ear operators L2G 7! L2G M(f)(s) = f(s) �
R
f(r)dG(r), Mn(f)(s) = f(s) �

R
f(r)dGn(r),

L(f)(s) =
R
k0(r; s)f(r)dG(r) and Ln(f)(s) =

R
k0(r; s)f(r)dGn(r) and the derived opera-

tors �L = MLM , �Ln = MLnM and L̂n = MnLnMn, so that �L(f)(s) =
R
f(r)�k(r; s)dG(r),

�Ln(f)(s) =
R
�k(r; s)f(r)dGn(r) and L̂n(f)(s) =

R
k̂n(r; s)f(r)dGn(r), where Gn is the empir-

ical distribution of fslgnl=1.
Let H � L2G be the Reproducing Kernel Hilbert Space (RKHS) of functions f : S 7! R

with kernel k0 and inner product h�; �iH satisfying hf; k0(�; r)iH = f(r) and associated norm

jjf jjH. Let K = sups2S k0(s; s): De�ne �H as the RKHS of functions f : S 7! R with kernel �k,
and H1 as the RKHS of functions f : S 7! R with kernel equal to 1, which only consists of
the constant function. Since k0 = �k+1, H contains all functions that can be written as linear

combinations of �H and H1 (see, for instance, Theorem 2.16 in Saitoh and Sawano (2016)).

Thus H contains the constant function, and jj1jjH < 1. Furthermore, since for any f 2 H,
jf(r)j = hf(�); k0(�; r)iH � jjf jjH � jjk0(�; r)jjH �

p
Kjjf jjH, we have

sup
r2S

jf(r)j �
p
K � jjf jjH: (33)

As in RBV, view the operators above as operators on H 7! H. The operator norm jjAjj of
the operator A : H 7! H is de�ned as supjjf jjH=1 jjAf jjH, and A is called bounded if jjAjj <1.
A bounded operator A is Hilbert-Schmidt if

P1
j=1 jjAejjj < 1 for some (any) orthonormal

basis ej. The space of Hilbert-Schmidt operators is a Hilbert space endowed with the norm

jjAjjHS =
qP1

j=1hAej; AejiH, and for any Hilbert-Schmidt operator A and bounded operator
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B,

jjABjjHS � jjAjjHSjjBjj, jjBAjjHS � jjBjj � jjAjjHS. (34)

By Theorem 7 of RBV, L and Ln are Hilbert-Schmidt.

Furthermore, for any f 2 H,

jjMf jjH = jjf �
Z
f(r)dG(r)jjH � jjf jjH + jj1jjH

Z
f(r)dG(r) � jjf jjH + jj1jjH sup

r2S
jf(r)j

so that (33) implies that jjM jj is a bounded operator. By the same argument, so is Mn

(almost surely). Thus, from (34), also �L, �Ln and L̂n are Hilbert-Schmidt for almost all sn.

Conditioning on sn throughout, we have the almost sure inequalities jjL̂n � �LjjHS �
jjL̂n � �LnjjHS + jj�Ln � �LjjHS and, using (34),

jjL̂n � �LnjjHS � jj(Mn �M)LnMnjjHS + jjMLn(Mn �M)jjHS
� jjMn �M jj � jjMnjj � jjLnjjHS + jjMn �M jj � jjM jj � jjLnjjHS

as well as

jj(Mn �M)f jjH =





Z f(r)dGn(r)�
Z
f(r)dG(r)






H

= jj1jjH
����Z f(r)dGn(r)�

Z
f(r)dG(r)

���� :
Now consider the sequence of real independent random variables f(sl); which have mean

E[f(sl)] =
R
f(r)dG(r), and, by (33), are almost surely bounded. Since

R
f(r)(dGn(r) �

dG(r)) = n�1
Pn

l=1 f(sl) � E[f(s1)], so that by Hoe¤ding�s inequality, with probability of at
least 1 � 2e��,

��R f(r)(dGn(r)� dG(r))
�� � p

2�n�1=2 supr2S jf(r)j for all � � 0. This holds

for all f 2 H, so we conclude that jjMn �M jj = Op(n
�1=2).

Furthermore, applying the same reasoning as in the proof of Theorem 7 of RBV, jj�Ln �
�LjjHS = Op(n

�1=2). Thus, jjL̂n � �LjjHS = Op(n
�1=2).

The conclusion now follows from similar arguments as employed in Proposition 10 and

12 of RBV. In particular, note that 'i 2 H for all i. Furthermore,
R
'i(s)dG(s) =

��1i
R
'i(r)�k(r; s)dG(r)dG(s) = 0. Thus, with ei =

p
�i'i 2 H, Mei = ei,

and hei; eiiH = hei(�); ��1i
R
�k(r; �)ei(r)dG(r)iH = ��1i hei; �LeiiH = ��1i hei; LeiiH =

��1i
R
hei(�); k0(r; �)iHei(r)dG(r) = ��1i

R
e2i (r)dG(r) = 1, so that ei are normalized eigen-

vectors of �L : H 7! H. Since H � L2G, these are the only eigenfunctions of �L : H 7! H with

positive eigenvalue, so that the spectrum of �L is equal to f�ig1i=1 (cf. Proposition 8 of RBV).
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Also, '̂i 2 H, and since v̂i is the eigenvector of n�1K̂n with eigenvalue �̂i, n�1K̂nv̂i = �̂iv̂i,

we obtain for �̂i > 0 that

L̂n('̂i)(�) =

Z
k̂n(r; �)'̂i(r)dGn(r) = n�1

nX
j=1

k̂n(�; sj)'̂i(sj)

= n�2�̂
�1
i

nX
j=1

k̂n(�; sj)
nX
l=1

v̂i;lk̂n(sj; sl) = n�1
nX
j=1

k̂n(�; sj)v̂i;j = �̂i'̂i(�)

and Z
'̂i(r)

2dGn(r) = n�3�̂
�2
i

nX
j=1

nX
`=1

nX
t=1

v̂i;j k̂n(sj; s`)k̂n(s`; st)v̂i;t = 1:

Furthermore, from
Pn

l=1 v̂i;l = 0, also
R
'̂i(s)dGn(s) = 0, so that Mnêi = êi. Thus,

with êi =
p
�̂i'̂i 2 H; hêi; êiiH = hêi(�); �̂

�1
i

R
k̂n(r; �)êi(r)dGn(r)iH = �̂

�1
i hêi; L̂nêiiH =

�̂
�1
i hêi; LnêiiH = �̂

�1
i

R
hêi(�); k0(r; �)iHêi(r)dGn(r) = �̂

�1
i

R
êi(r)

2dGn(r) = 1: Therefore êi
are normalized eigenfunctions of L̂n : H 7! H, and since all f 2 H that are orthogonal to

êi, i = 1; : : : ; n are in the kernel of L̂n, these are the only eigenfunctions of �L : H 7! H with

positive eigenvalue, so the spectrum of L̂n : H 7! H is equal to f�̂igni=1 (cf. Proposition 9 of
RBV).

Part (b) of the lemma now follows from jjL̂n � �Ljj2HS = Op(n
�1) and the development on

page 911 of RBV.

To establish (32), note that with the projection operators P q : H 7! H and P̂ q : H 7! H
de�ned via P q(f)(�) =

Pq
i=1hf; eiiHei(�) and P̂ q(f)(�) =

Pq
i=1hf; êiiHêi(�), by Proposition 6

of RBV, jjP̂ q�P qjjHS � 2(�q��q+1)�1jjL̂n� �LjjHS+op(n�1=2) = Op(n
�1=2). De�ne the q� q

matrix ~On with i; jth element ~On;ij = hêi; ejiH. Then the j; tth element of ~O0
n
~On is given byPq

i=1
~On;ij ~On;it =

Pq
i=1hêi; ejiHhêi; etiH = hej; P̂ q(et)iH, and 1[j = t] = hej; P q(et)iH, so that

by the Cauchy-Schwarz inequality�����
qX
i=1

~On;ij ~On;it � 1[j = t]

����� =
���hej; (P̂ q � P q)etiH

���
� jjP̂ q � P qjjHS = Op(n

�1=2):

Thus jj~O0
n
~On�Iqjj = Op(n

�1=2), and with Ôn = (~O
0
n
~On)

�1=2 ~On, also jjÔn� ~Onjj = Op(n
�1=2).

Furthermore, with r̂2i = �i=�̂i
p! 1 using part (b) of the lemma,

p
�ijj

qX
j=1

Ôn;ij'̂j � 'ijjH = jjr̂i
qX
j=1

Ôn;ij êj � eijjH
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� jj
qX
j=1

~On;ij êj � eijjH + jj
qX
j=1

(r̂iÔn;ij � ~On;ij)êjjjH

� jj(P̂ q � P q)eijjH +
qX
j=1

jr̂iÔn;ij � ~On;ijj

� jjP̂ q � P qjjHS +
qX
j=1

jr̂iÔn;ij � ~On;ijj = Op(n
�1=2)

so (32) follows from (33).

The claim in part (a) of the lemma now follows by induction from (32): For p = 1, this

follows directly. Suppose the result holds for p � 1, and let ÔB = diag(Ô(1); : : : ; Ô(p�1)), so

that

sup
s2S

jjÔB'̂B(s)�'B(s)jj = Op(n
�1=2); (35)

with 'B and '̂B the vector of the �rst
Pp�1

j=1mj eigenfunctions. Now let

ÔI =

 
Ô11 Ô12

Ô21 Ô22

!

be the (
Pp

j=1mj) � (
Pp

j=1mj) matrix Ôn of (32) applied with q =
Pp

j=1mj, with

Ô11 of the same dimensions as ÔB. Let 'I�B and '̂I�B be the mp � 1 vectors of

eigenfunctions with indices
Pp�1

j=1mj + 1; : : : ;
Pp

j=1mj, so that by the conclusion of (32),

sups2S jjÔ11'̂B(s)+Ô12'̂I�B(s)�'B(s)jj = Op(n
�1=2) and sups2S jjÔ21'̂B(s)+Ô22'̂I�B(s)�

'I�B(s)jj = Op(n
�1=2). In conjunction with (35), the former yields sups2S jj(Ô11�ÔB)'̂B(s)+

Ô12'̂I�B(s)jj = Op(n
�1=2), which implies in light of (32) and the linear independence of eigen-

vectors that both jjÔ11�ÔBjj = Op(n
�1=2) and jjÔ12jj = Op(n

�1=2). Since ÔI and ÔB are ro-

tation matrices, Ô0
BÔB = Ô

0
11Ô11+Ô

0
21Ô21 = I, so that jjÔ11�ÔBjj = Op(n

�1=2) further im-

plies jjÔ21jj = Op(n
�1=2). We conclude that also sups2S jjÔ22'̂I�B(s)�'I�B(s)jj = Op(n

�1=2),

so that the result for p holds with Ô(p) = Ô22, which concludes the proof. �

Proof of Theorem 8: Suppose max(cv2 � cv2n; 0)
p! 0 does not hold. Then

there exists � > 0 such that lim supn!1 P(cv2 � cv2n > �) > �. De�ne {(�; cv2) =
P (
P1

i=0 !i(�; cv)Z
2
i > 0), so that sup0��<1 {(�; cv2) = � by de�nition of cv. By continuity

of {, there exists 0 � �0 < 1 and cv2 � �=2 � cv20 � cv2 such that {(�0; cv20) = �. If �0 = 0,

set cn;1 = cn;0. Otherwise, let cn;1 ! 1 be such that the corresponding an;1 = cdn;1=n ! a1

satis�es a1�0B(0)=(a1�
0
B(0) +

R
�0B(s)ds) = �0. Now let cv2n;1 solve P0�(cn;1)(�

2
n � cv2n;1 jsn) = �
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a.s., so that clearly, cv2n;1 � cv2n a.s. for all large enough n. Thus, with An the event that sn
takes on a value such that cv2 � cv2n0;1 > �, we also have lim supn!1 P(An) > �, and there

exists a subsequence n0 !1 of n such that P(An0) > � for all n0.

For all such n0,

� = P0�(cn0;1)(�
2
n0 � cv2n0;1 jAn0) � P0�(cn0;1)(�

2
n0 � cv2 � �jAn0) a.s. (36)

and by Theorem 5, P0�(cn0;1)(�
2
n0 � cv2 � �jAn0) ! {(�0; cv2 � �) > �. This contradicts (36),

and the result follows. �

Theorem 14. Let q̂n be an arbitrary function of sn taking values in Q = f1; 2; : : : ; qmaxg for
some sample size independent �nite and nonrandom qmax. Then for a t-statistic �n(q) that

satis�es the conditions of Theorem 8 for all q 2 Q with critical value cvn(q) as in (20), for

any � > 0, lim supn!1 P(P(� 2n(q̂n) > cvn(q̂n)2jsn) > � + �) = 0.

Proof. Suppose otherwise. Then there exists � > 0 and a subsequence n0 !1 such that with

Bn = fsn : P(� 2n(q̂) > cvn(q̂)2jsn) > � + �g � S, limn0!1 P(sn0 2 Bn0) > �. Let An;i = fsn :
q̂n = ig, so that limn0!1

Pqmax
i=1 P(sn0 2 Bn0 \An0;i) > �. There hence exists some 1 � q � qmax

and a further subsequence n00 of n0 such that limn00 P(sn00 2 Bn00 \ An00;q) > �=qmax. But along

this subsequence, q is �xed, so Theorem 8 applies and yields limn00!1 P(sn00 2 Bn00\An00;q)! 0,

yielding the desired contradiction.
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