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Abstract

This paper proposes a model for, and investigates the consequences of, strong spa-

tial dependence in economic variables. Our approach and findings echo those of the

corresponding “unit root” time series literature: We suggest a model for spatial I(1)

processes, and establish a functional central limit theorem that justifies a large sam-

ple Gaussian process approximation for such processes. We further generalize the I(1)

model to a spatial “local-to-unity” model that exhibits weak mean reversion. We char-

acterize the large sample behavior of regression inference with spatial I(1) variables,

and establish that spurious regression is as much a problem with spatial I(1) data as it

is with time series I(1) data. We develop asymptotically valid spatial unit root tests,

stationarity tests, and inference methods for the local-to-unity parameter. Finally, we

use simulations to study strategies for valid inference in regressions with persistent (I(1)

or local-to-unity) spatial data, such as spatial analogues of first-differencing transforma-

tions.
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1 Introduction

Serial correlation complicates inference in time series regressions. When the serial correlation

in the regressors and regression errors is weak, that is I(0), inference can proceed as with

i.i.d. sampling after using HAC/HAR standard errors that incorporate adjustments for serial

correlation. However, when the serial correlation is strong, that is I(1), HAC/HAR inference

fails and OLS produces “spurious regressions” (Granger and Newbold (1974)) with estimators

and test statistics behaving in non-standard ways (Phillips (1986)). Panel (a) of Figure 1

illustrates this well-known phenomenon: the realization of two independent random walks

of length n = 250 are strongly correlated in sample, with a corresponding Newey and West

(1987) t-statistic that is highly significant.

Variables measured over points in space exhibit correlation patterns that in many ways are

analogous to serial correlation in time series, and this correlation also complicates inference in

spatial regressions. There is a reasonably well-developed literature on HAC/HAR corrections

that are required in spatial regressions with weakly dependent regressors and errors.1 How-

ever, much less is known about the implications of strong spatial correlation despite evidence

suggesting its presence in many empirical applications in economics (Kelly (2019, 2020)).

Panel (b) of Figure 1 illustrates the issue: the realization of two independent spatial “unit

root” processes with values for each of the n = 722 commuter zones in the 48 contiguous U.S.

states are strongly correlated in sample, and a t-statistic that is clustered by U.S. states is

highly significant.

This raises several questions. What is a natural spatial analogue of an I(1) time series pro-

cess, such as the process in Figure 1 (b)? Do such processes systematically induce spuriously

significant regression coefficients? How can one test for I(1) spatial persistence? Is there a

spatial analogue to the “first-differencing” transformation in time series that eliminates I(1)

persistence?

To address these issues, we introduce some basic concepts for the analysis of highly per-

sistent spatial data. In particular, we define a class of spatial I(1) processes, and derive a

corresponding functional central limit theorem (FCLT). With those in hand, the analysis of

spurious regressions with spatial I(1) processes becomes straightforward. In time series ap-

plications, researchers routinely investigate the persistence of their data using unit-root tests,

1Conley (1999) is a leading example of spatial HAC inference. See Müller and Watson (2022a, 2022b) for
a discussion of the post-Conley literature and new suggestions for inference in regression models with weak
spatial dependence.
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Figure 1: Strongly Dependent Data in Time and Space

stationarity tests, confidence intervals for large autoregressive roots, half-lives of shocks and

so forth. Corresponding tests and methods are not available for spatial data, and they are also

developed here. Spurious regression in time series can be avoided by using first-differences of

I(1) processes. Empirical researchers using spatial data often allow for regional fixed effects

and use clustered standard errors. Are these effective in avoiding spurious regression effects,

and are there better methods? This paper also takes up that question.

Throughout the paper we use spatial data and regressions from Chetty, Hendren, Kline,

and Saez (2014) to illustrate the issues and methods. These authors construct an index of

intergenerational mobility for commuting zones in the United States, and study its relationship

to other socioeconomic factors using bivariate regressions with standard errors clustered by

U.S. states. As an example, Figure 1 (c) plots their mobility index along with the teenage

labor force participation rate. The apparent similarity of these data with the simulated data
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of panel (b) highlights the empirical relevance of the issues and methods presented here.

Much of our analysis parallels the analysis of persistent time series, but there is a notable

difference worth highlighting at the outset. Time series analysis typically studies observations,

say yt, observed at equidistant points in time, t = 1, 2, 3, ... where t indexes months, quarters,

years, etc. Economic variables observed in space are typically not so neatly arranged. For

example, geographical data may be collected at potentially arbitrary locations sl within a

given region such as a U.S. state, and each state has its own unique shape. For the analysis

to be useful in a wide range of spatial applications, we posit a model that assigns values

to all locations that may potentially be observed. Thus, for the general problem with d

spatial dimensions, we begin with a stochastic process Y (s) over s ∈ Rd, where d = 2 in the

geography example. When d = 1, s could index time, so this is a time series model where

Y (s) is a continuous time process and where the sample data correspond to realizations

of yl = Y (sl) observed at potentially irregularly spaced points sl ∈ R. More abstractly,

as discussed in Conley (1999), “locations” might index an economic characteristic and the

“economic distance” between locations measures the dissimilarity of the characteristic. We

thus follow the geostatistical tradition of positing a continuous parameter model of spatial

variation, rather than, say, model dependence by spatial autoregressive (SAR) models of Cliff

and Ord (1974) and Anselin (1988).2

The roadmap of the paper is a follows. Section 2 provides our definition of a spatial I(1)

process. In time series models (d = 1 in our notation), the canonical I(1) process is a Wiener

process. Lévy-Brownian motion is a useful generalization of the Wiener process for d > 1, and

Section 2 begins by reviewing its properties. In standard time series models, more general

I(1) processes can be constructed by replacing the white noise increments of a random walk

with a weakly correlated stationary series. For example, stationary ARMA(p, q) noise yields

an ARIMA(p, 1, q) process. Section 2 similarly defines the spatial I(1) process by replacing

the white noise innovations in the moving average representation of Lévy-Brownian motion

with a weakly dependent stationary spatial process.

An important insight from time series analysis is that the large sample distributions of

functions of I(1) processes can be approximated by the distributions of corresponding func-

tions of Wiener processes. The functional central limit theorem (FCLT) is the key driver

of such approximations, and it provides the basis for large-sample inference using statistics

2Gelfand, Diggle, Guttorp, and Fuentes (2010) provide a useful overview. There is a small literature on
unit roots and spurious regression in SAR models that we discuss in Section 5.
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constructed from realizations of I(1) processes. Section 2 provides a FCLT that is applicable

to spatial I(1) processes. We also show how to appropriately generalize the I(1) model to

a spatial “local-to-unity” process and provide a corresponding FCLT result about its large

sample behavior.

Armed with the tools from Section 2, Section 3 studies regressions involving spatial I(1)

variables, specifically models where the regressors and dependent variable are independent

I(1) processes. The section shows that many of the key results from the spurious time series

regression (cf., Phillips (1986)) carry over to the spatial case. For example, OLS regression

coefficients and the regression R2 are not consistent, but have limiting distributions that

can be represented by functions of Lévy-Brownian motion. Regression F-statistics (including

HAC and clustered versions) diverge to infinity. The bottom line is that researchers should

be wary of spurious regressions using spatial data, just as they are using time series data.

Section 4 takes up the problem of conducting inference about the degree of spatial per-

sistence in a scalar variable. In particular, we construct spatial analogues of the time series

“low-frequency” unit root and stationary tests of Müller and Watson (2008). In addition,

we derive a confidence interval for the mean reversion parameter in the spatial local-to-unity

model, analogous to the time series work by Stock (1991). We also consider versions of

these tests that can be applied to residuals of a regression, yielding spatial analogues of the

residual-based cointegration tests of Engle and Granger (1987).

First-differencing an I(1) time series yields an I(0) process, so spurious time series regres-

sions can be avoided by taking first differences of I(1) variables. Section 5 uses simulations

to study several spatial differencing methods including nearest-neighbor differences, local de-

meaning, local fixed effects and a GLS transformation. When combined with spatial HAR

standard errors, several of these differencing methods mitigate or eliminate spurious regression

problems. We find the GLS transformation to be particularly effective. In contrast, inference

methods that rely on clustered standard errors perform poorly.

Section 6 offers some concluding remarks. The appendix contains all proofs.

2 Spatial I(1) Processes and Their Limits

This section is divided into five subsections. The first defines some notation for the spatial

environment. The second reviews Lévy-Brownian motion, a spatial generalization of the

Wiener process. The third provides the definition of a spatial I(1) process, and the fourth
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provides a corresponding functional central limit theorem. The final subsection presents a

spatial generalization of the time-series local-to-unity model which serves as a benchmark

mean-reverting, but highly persistent spatial process.

2.1 Set-up and Notation

Our analysis requires three ingredients: (1) the spatial sampling region under consideration,

denoted by S; (2) the observed locations, sl ∈ S; and (3) the stochastic process Y , that is

defined on S. Taken together, these ingredients describe the observations

yl = Y (sl) for l = 1, ..., n. (1)

We discuss the sampling region and observed locations in this subsection. The stochastic

process Y is discussed in the following two subsections.

We utilize a large-sample framework and assume that the locations sl, l = 1, . . . , n are

non-stochastic (or, equivalently, are independent of all other random elements). The locations

are allowed to depend on n in a double-array fashion, but we abstract from this dependence

in the notation. We assume the following regularity condition:3

Condition 1. (a) The locations sl are elements of Sn = λnS0 = {s : λ−1
n s ∈ S0} for some

fixed and compact set S0 ⊂ Rd and deterministic non-decreasing positive real sequence λn.

(b) The empirical cumulative distribution function Gn of {λ−1
n sl}nl=1 ⊂ S0 converges to G,

Gn(s)→ G(s) for all s ∈ S0, with G an absolutely continuous distribution with support S0.

A familiar example helps clarify the sampling framework: consider a regularly spaced

time series process observed at time periods l = 1, ..., n, so that sl = l. In this example,

the sampling region can be represented as Sn = [0, n], with a domain increasing at the rate

λn = n. Thus, λ−1
n sl = l/n and S0 = [0, 1]. The empirical distribution of the locations is

Gn(s) = n−1 bsnc → s for s ∈ [0, 1], so that G is the uniform distribution. Condition 1

extends this example to a general spatial setting with a general prototypical sampling region

S0 ⊂ Rd that grows at an arbitrary rate λn.

3This coincides with Lahiri’s (2003) large-sample framework, except that he replaces Condition 1 with an
assumption that the locations are i.i.d. draws from the distribution G.
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2.2 Lévy-Brownian Motion

Consider the usual time series I(1) process yt =
∑t

s=1 us, t = 1, . . . , n, where ut is mean

zero, covariance stationary and weakly dependent (that is, ut is I(0)). A standard time series

FCLT implies that n−1/2yb·nc ⇒ ωW (·), where W is a standard Wiener process on the unit

interval [0, 1]. For this reason, Wiener processes play a key role in the asymptotic analysis of

inference involving I(1) time series. Moreover, if n−1/2yt = ωW (t/n) holds exactly, then yt

is a Gaussian random walk. Thus, Wiener processes represent the canonical I(1) time series

model, and the FCLT shows that other I(1) processes behave similarly to this canonical model

in a well-defined sense.

With this in mind, we begin by defining the generalization of the Wiener process to the

spatial case. In the next subsection we discuss more general spatial I(1) processes.

An attractive generalization of the Wiener process to the spatial case is Lévy-Brownian

motion L(s), s ∈ Rd (Lévy (1948)), which plays a corresponding important role in our analysis

of I(1) spatial variables. Lévy-Brownian motion is a zero-mean Gaussian process with domain

Rd and covariance function

E[L(s)L(r)] = 1
2
(|s|+ |r| − |s− r|) (2)

with |x| =
√
x′x for x ∈ Rd, so in particular, Var(L(s)) = |s| and Var(L(s)− L(r)) = |s− r|.

When d = 1 and s, r ≥ 0, the covariance function (2) simplifies to E[L(s)L(r)] = min(s, r),

the covariance function of a Wiener process. More generally, for any d, the process obtained

along a line in Rd, Wa,b(s) = L(a + bs)− L(a), a, b ∈ Rd, |b| = 1, s ∈ R is a Wiener process.

Thus, L is a natural embedding of the canonical time series model of strong persistence to

the spatial case. Notice that Lévy-Brownian motion is isotropic, that is, Var(L(s) − L(r))

depends on s, r only through |s− r|, so Lévy-Brownian motion is invariant to rotations of the

spatial axes, that is L(Os) ∼ L(s) for any d× d rotation matrix O.

The left panel of Figure 2 plots a realization of L on the sampling region Sn representing

the 48 contiguous U.S. States. The right panel shows a realization of another generalization

of the Wiener process to d > 1, the Brownian sheet
∫
Rd 1[0 ≤ r ≤ s]dW (r), s ≥ 0, where

the inequality 0 ≤ r ≤ s is to be understood element by element. The Brownian sheet is

not isotropic, as is apparent from the sample realization. We therefore find Lévy-Brownian

motion a more appealing generalization of the Wiener process for most applications, and thus

define yl = L(sl) as the canonical unit root process for d > 1.
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Figure 2: Sample Realizations of Stochastic Processes for d = 2

2.2.1 Two Representations of Lévy-Brownian Motion

We take advantage of two representations for Lévy-Brownian motion, the Karhunen–Loève

expansion and a spatial “moving average” representation. We discuss these in turn.

By Mercer’s Theorem, the covariance kernel (2) evaluated at s, r ∈ S0 can be represented

as

E[L(s)L(r)] =
∞∑
j=1

νjϕj(s)ϕj(r) (3)

where (νj, ϕj) are eigenvalue/eigenfunction pairs with νj ≥ νj+1 ≥ 0 and ϕj : S0 7→ R
satisfying

∫
ϕi(s)ϕj(s)dG(s) = 1[i = j]. This spectral decomposition of the covariance kernel

leads to a corresponding Karhunen–Loève expansion of L as the infinite sum

L(s) =
∞∑
j=1

ν
1/2
j ϕj(s)ξj, ξj ∼ iidN (0, 1) (4)

where the right-hand side converges uniformly on S0 with probability one (cf. Theorem 3.1.2

of Adler and Taylor (2007)). This result generalizes the corresponding observation in Phillips

(1998) about representations of the Wiener process in terms of stochastically weighted aver-

ages of deterministic series.

The spatial moving average representation represents Lévy-Brownian motion as a weighted

average of spatial white noise. Recall that a Wiener process can trivially be written as an

integral over white noise, W (s) =
∫ s

0
dW (r). This can be generalized for Lévy-Brownian
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motion for all d ≥ 1: from Lindstrøm (1993)

L(s) =

∫
h(r, s)dW (r) =

{ ∫ s
0
dW (r) for d = 1

κd
∫
Rd(|s− r|(1−d)/2 − |r|(1−d)/2)dW (r) for d > 1

(5)

where κd > 0 is a scalar chosen so that Var(L(s)) = 1 when |s| = 1.

2.3 Spatial I(1) Processes

The commuter-zone data plotted in panel (b) of Figure 1 are realizations of Lévy-Brownian

motion evaluated at the zone centers, while the data plotted in panel (c) are variables from

Chetty, Hendren, Kline, and Saez (2014). To the naked eye, the long-range spatial correla-

tion patterns in these figures are similar, suggesting that Lévy-Brownian motion may be a

reasonable model for low-frequency correlation in socioecconomic spatial data. That said, the

higher-frequency/short-range correlation patterns look different. In this section, we propose

a generalization of Lévy-Brownian motion that inherits its long-range properties but allows

for more flexible short-range correlation patterns. Following the notation used in time series,

we call these (spatial) I(1) processes.

In the standard time series case, I(1) processes are defined as partial sums of a weakly

dependent I(0) process, say ut, so that yt =
∑t

s=1 us. Because spatial locations typically do

not fall on a regular lattice, this definition does not naturally generalize. Instead, we utilize

the moving average representation (5), replace the white noise innovations dW (r) by a weakly

dependent random field B, and define a spatial I(1) process on Sn via

Y (s) =

∫
h(r, s)B(r)dr. (6)

Note that if B is isotropic, then so is Y .

The integral
∫
Rd |h(r, s)|dr does not exist for d > 1, so Y in (6) is not defined pathwise for

every realization of B. However,
∫
Rd h(r, s)2dr < ∞, so under appropriate weak dependence

conditions on B, the integral that defines Y can be shown to converge in a mean square sense.

We make the following assumption.

Condition 2. The mean-zero random field B with domain Rd is covariance stationary with

E[B(s)B(r)] = σB(s− r) and
∫
Rd σB(s)ds <∞, and B is such that for some m > 2d, Cm > 0
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Figure 3: Sample Realizations of Y with Different Underlying B

Notes: B1 and B2 are zero mean Gaussian processes with spectral densities f1(ω) ∝ 1/(|ω|2 + 1002)3/2 and

f2(ω) ∝ (|ω|2 + 502)3/2/(|ω|2 + 2002)3 for ω ∈ R2, respectively, where the width of the contiguous U.S. is

normalized to unity.

and any square integrable function f : Rd 7→ R,

E

[(∫
Rd

f(r)B(r)dr

)2m
]
≤ Cm

(∫
Rd

f(r)2dr

)m
.

Lemma 1.8.4 of Ivanov and Leonenko (1989) implies that Condition 2 holds for a wide range

of covariance stationary mixing random fields B.

Lemma 1. Under Condition 2, for all d ≥ 1, Y (·) exists on Sn ⊂ Rd for all n and has

continuous sample paths with probability one.

Figure 3 plots realizations from two spatial I(1) processes with B equal to two different

isotropic Gaussian processes. These realizations were generated using the same underlying

normal variables as the Lévy-Brownian motion plotted in Figure 2. Evidently, different B

processes can induce quite different local behavior of Y , but with the same long-range behavior

as Lévy-Brownian motion, a result formalized in the next subsection.

2.4 A Functional Central Limit Theorem

In the standard time series case, a functional central limit theorem (FCLT) yields n−1/2yb·nc =

n−1/2
∑b·nc

t=1 ut ⇒ ωW (·) for a covariance stationary and weakly dependent time series ut,
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where ω2 =
∑∞

k=−∞ E[utut−k] is the so-called long-run variance of ut. We now develop a

similar result for the spatial I(1) process Y (·) in (6).

The classic time series FCLT involves two rescalings: one that maps time into the unit

interval, and one that shrinks the scale of yt to compensate for its increasing variance. For

the spatial I(1) process in (6) we similarly define the process Y 0
n (·) on S0 via

Y 0
n (r) = λ−1/2

n Y (λnr), r ∈ S0. (7)

We make the following assumption about the process B.

Condition 3. For some positive sequence ζn → ∞, let Rn = [−ζn, ζn]d ⊂ Rd, and let

fn : Rd 7→ R be any sequence of functions such that lim supn→∞ supr∈Rn
λd/2n |fn(r)| <∞ and

Var[
∫
Rn
fn(r)B(r)dr]→ σ2

0. Then
∫
Rn
fn(r)B(r)dr ⇒ N (0, σ2

0).

The central limit theorems in Section 1.7 of Ivanov and Leonenko (1989) provide primitive

mixing and moment conditions on B that imply Condition 3.

With this background, we can state a FCLT for spatial data.

Theorem 2. Suppose Conditions 2 and 3 hold. If λn →∞, then Y 0
n (·)⇒ ωL(·) on S0, where

ω2 =
∫
Rd σB(r)dr.

Remark 2.1. Under Condition 1, the rate λn governs the degree of “infill” versus “outfill”

sampling. To see this, note that Sn = λnS0 implies that the volume of Sn is proportional to

λdn , so the average number of observations per unit of volume is proportional to n/λdn, and

λn � n1/d corresponds to pure outfill. The theorem holds for any mixture of infill and outfill

sampling as long as the overall sampling region diverges, λn →∞.

Remark 2.2. It is well known that suitably scaled partial sums over rectangles of random

variables defined on a lattice converge to a Brownian Sheet under suitable mixing and moment

conditions; see, for instance, Deo (1975). In contrast, we are not aware of previous results

that imply convergence to Lévy-Brownian motion.

2.5 Spatial Local-to-Unity Processes

A large time series literature, initiated by Cavanagh (1985), Chan and Wei (1987) and Phillips

(1987), concerns a generalization of the I(1) model to the weakly mean reverting local-to-

unity (LTU) model. LTU models exhibit strong persistence, but are stationary, and serve
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as a convenient bridge between I(0) and I(1) processes. In time series, the LTU model is

employed to derive confidence intervals for autoregressive roots near unity (Stock (1991)) and

the associated half-life of shocks (Rossi (2005)), for local-power analysis of unit root tests

(Elliott, Rothenberg, and Stock (1996)), to understand the implications of local-deviations

from exact unit root specifications (Elliott (1998)), and for long-horizon economic forecasting

(Müller and Watson (2016)), to mention just a handful of applications. Related spatial

applications are easy to imagine and we consider some of these below. Here we provide the

requisite spatial generalization of the LTU model.

In the time series LTU model yt satisfies n−1/2(yb·nc − y1) ⇒ ω(Jc(·) − Jc(0)), with

Jc a stationary Ornstein-Uhlenbeck (OU) process with covariance kernel E[Jc(s)Jc(r)] =

exp[−c|s− r|]/(2c), c > 0. Taking the limit of this covariance kernel shows that Jc(·)− Jc(0)

converges to a Wiener process as c→ 0 (see Elliott (1999)).

To generalize the LTU model for d > 1, define Jc on Rd as the stationary and isotropic

Gaussian process with covariance function E[Jc(s)Jc(r)] = exp[−c|s− r|]/(2c), c > 0. This is

recognized as a member of the Matérn class of covariance functions, with a spectral density

proportional to (|ω|2 + c2)−(d+1)/2, ω ∈ Rd. As in the d = 1 model, Jc(·)− Jc(0) converges to

L(·) as c→ 0 for any integer d. Also, along any line Jc(a+ bs), a, b ∈ Rd, |b| = 1, s ∈ R is a

standard OU process.

From equation of (3.2.8) of Matérn (1986), Jc has the moving average representation

Jc(s) =

∫
Rd

hc(r, s)dW (r) (8)

with hc(r, s) = κc,d|s− r|(1−d)/4K(1−d)/4(c|s− r|) for a suitable choice of constant κc,d, where

Kν is the modified Bessel function of the second kind, d ≥ 1.4 We proceed as in the spatial

I(1) model (6) and replace the white noise term by the weakly dependent random field B,

Yc(s) =

∫
Rd

hc(r, s)B(r)dr,

and define the spatial local-to-unity process on Sn as the sequence of processes Yc/λn . In

this definition, the parameter c/λn is a drifting sequence, generalizing the corresponding

local-to-unity time series device in which the largest autoregressive root is parameterized as

4For d = 1, the usual one-sided (causal) representation for a stationary OU process is Jc(s) =∫ s

−∞ e−c(s−r)dW (r). Equation (8) is an alternative two-sided (non-causal) representation when d = 1.
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ρn = 1− c/n. The rate of this drift is such that the overall degree of mean reversion of

Y 0
n,c(r) = λ−1/2

n Yc/λn(λnr), r ∈ S0 (9)

over the fixed set S0 converges as n→∞.

The appendix shows that under Condition 2, Yc/λn exists on Sn for all n. Furthermore,

under the conditions of Theorem 2, Y 0
n,c in (9) satisfies Y 0

n,c(·)⇒ ωJc(·).

3 Spurious Regressions with Spatial I(1) Variables

As a first application of the results in Section 2, consider the regression model

yl = α + x′lβ + ul (10)

for l = 1, ..., n, where (yl, xl) = (Y (sl), X(sl)) ∈ Rp+1 follow p + 1 independent spatial I(1)

processes. The FCLT in Theorem 2 allows for a straightforward spatial extension of the classic

spurious time-series regression results in Phillips (1986).

Let ỹl = yl − n−1
∑n

`=1 y` denote the demeaned value of yl and similarly for xl. Let

sỹỹ = n−1
∑n

l=1 ỹ
2
l , Sx̃x̃ = n−1

∑n
l=1 x̃lx̃

′
l and Sx̃ỹ = n−1

∑n
l=1 x̃lỹl. The OLS estimator is β̂ =

S−1
x̃x̃ Sx̃ỹ, the regression R2 = S ′x̃ỹS

−1
x̃x̃ Sx̃ỹ/sỹỹ, and the classical (non-spatial-correlation robust,

homoskedastic) F-statistic for testing H0 : Hβ = 0, where H is a non-stochastic matrix with

rank(H) = m ≤ p, is FHom = n
m
β̂
′
H ′(H ′S−1

x̃x̃H)−1Hβ̂/s2
u with s2

u = n
n−p−1

(sỹỹ − S ′x̃ỹS−1
x̃x̃ Sx̃ỹ).

Suppose (yl, xl) = (Y (sl), X(sl)) follow spatial I(1) processes with[
Y 0
n (·)
X0
n(·)

]
=

[
λ−1/2
n Y (λn·)
λ−1/2
n X(λn·)

]
⇒

[
Y 0(·)
X0(·)

]
(11)

on S0, where [Y 0(·), X0(·)′] are p+ 1 independent and arbitrarily scaled Lévy-Brownian mo-

tions. Let Ỹ (·) = Y 0(·) −
∫
Y 0(r)dG(r) denote the demeaned version of Y 0 using spatial-

weighted average demeaning, and define X̃ analogously.

Theorem 3. Under Condition 1 and (11)

(i) λ−1
n sỹỹ ⇒ Ξỹỹ =

∫
Ỹ 2(r)dG(r), λ−1

n Sx̃x̃ ⇒ Ξx̃x̃ =
∫
X̃(r)X̃(r)′dG(r) and λ−1

n Sx̃ỹ ⇒
Ξx̃ỹ =

∫
X̃(r)Ỹ (r)dG(r),

(ii) β̂ ⇒ Ξ−1
x̃x̃Ξx̃ỹ,
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(iii) R2 ⇒ Ξ′x̃ỹΞ
−1
x̃x̃Ξx̃ỹ/Ξỹỹ,

(iv) n−1FHom ⇒ m−1Ξ′x̃ỹΞ
−1
x̃x̃H

′(HΞ−1
x̃x̃H

′)−1HΞ−1
x̃x̃Ξx̃ỹ/(Ξỹỹ − Ξ′x̃ỹΞ

−1
x̃x̃Ξx̃ỹ).

An implication of part (iv) of Theorem 3 is that the classical F-test statistic diverges to

infinity so that P(FHom > cv)→ 1 for any cv ≥ 0. We now show that this extends to statistics

computed with heteroskedasticity and HAC-corrected standard errors (cf. Phillips (1998) for

a corresponding time series result).

Consider the class of correlation-robust-HAC F-statistics

FHAC =
n

m
β̂
′
H ′(HS−1

x̃x̃ Ω̂nS
−1
x̃x̃H

′)−1Hβ̂ (12)

where Ω̂n is a kernel-based estimator of Var
(
n−1/2

∑n
l=1 x̃lul

)
of the form

Ω̂n = n−1

n∑
l,`=1

κ (bn(sl − s`)) ele′` (13)

with el = x̃l(ỹl− x̃′lβ̂), bn a bandwidth (that may depend both on {sl} and the data {(yl, xl)})
with λ−1

n b−1
n = op(1) and κ : Rd 7→ R a kernel weighting function satisfying

sup
r
|κ(r)| = κ̄ <∞, lim

λ→∞
sup
|a|=1

|κ(λa)| = 0. (14)

The assumption of λ−1
n b−1

n = op(1) ensures that in large samples, Ω̂n in (13) puts negligible

weight on pairs of locations with λ−1
n |sl − s`| > ε, for all positive ε. Since λ−1

n sl ∈ S0 with

S0 compact, this is necessary for a kernel estimator to be consistent under weak spatial

dependence. These conditions are satisfied, for instance, for the spatial correlation robust

estimator suggested in Conley (1999). As long as all locations are distinct, heteroskedasticity

robust standard errors correspond to κ(r) = 1[r = 0], which also satisfies (14).

Alternatively, researchers sometimes employ clustered standard errors over larger regions

to account for spatial dependence. The corresponding F clust statistic has the same form

as FHAC in (12) with Ω̂n replaced by Ω̂clust
n = n−1

∑nC

j=1

(∑
l∈Cj

el

)(∑
l∈Cj

el

)′
where the

partitions Cj of {1, 2, . . . , n} indicate membership in cluster j = 1, . . . , nC . With |Cj| the

number of observations in cluster j, we assume max1≤j≤nC
|Cj|/n → 0 as n → ∞. As

discussed in Hansen and Lee (2019), page 270, this is necessary for the consistency of cluster

robust inference under weak dependence.
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Theorem 4. Under Condition 1, (11) and (14), P(FHAC > cv)→ 1 and P(F clust > cv)→ 1

for any cv ≥ 0.

Remark 3.1. In contrast to spatial HAC inference, fixed-b type spatial HAR inference (Sun

and Kim (2012), Bester, Conley, Hansen, and Vogelsang (2016)) does not lead to diverging

F-statistics, and the spatial correlation robust inference derived in Müller and Watson (2022)

explicitly accommodates some degree of “strong” persistence of the type exhibited by the

spatial local-to-unity model for large enough c.

Remark 3.2. Theorems 3 and 4 also hold for local-to-unity processes, that is, if [Y 0(·), X0(·)]
in (11) are p+1 independent processes of the type (8), with arbitrary and potentially different

mean-reversion parameters c.

Remark 3.3. It follows from the Karhunen–Loève representation of L in (4) and the

FCLT result in Theorem 2 that the coefficients of a regressions of λ−1/2
n yl on the eigen-

functions [ϕ1(λ−1
n sl), . . . , ϕp(λ

−1
n sl)] converge to independent N (0, ω2νj) random variables.

This generalizes the “understanding spurious regressions” result in Theorem 3.1 (a) of

Phillips (1998) to the spatial case. More generally, the coefficients of a regression of

λ−1/2
n yl on smooth deterministic functions of λ−1

n sl, say ψ(λ−1
n sl) ∈ Rp, converge to(∫

ψ(r)ψ(r)′dG(r)
)−1

ω
∫
ψ(r)L(r)dG(r) and are asymptotically significant as measured by

a corresponding FHom, FHAC or F clust statistic. Kelly (2019) observes such a phenomenon

empirically in a number of applications with spatial data.

4 Inference for Spatial Persistence

The autoregressive representation for a discrete-time I(1) time series process has a unit root

in its autoregressive polynomial, making it straightforward to test for I(1) persistence using

Dickey-Fuller or related unit root tests. Spatial I(1) processes do not have an analogous

autoregressive representation, so these tests do not directly generalize to spatial processes.

Similarly, popular “stationarity” tests (e.g., Nyblom (1989), Kwiatkowski, Phillips, Schmidt,

and Shin (1992), and Elliott and Müller (2006)) do not directly generalize. An alternative,

non-regression based approach to learn about time series persistence is developed in Müller

and Watson (2008). That approach is based on the properties of q suitably chosen weighted

averages, and generalizes fairly directly to the spatial setting studied here.5

5Other approaches to testing for the presence of spatial correlation, such as Moran’s (1950) I statistic
or Geary’s (1954) c, require the specification of a spatial weight matrix and test the null hypothesis of zero
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The intuition underlying this approach is straightforward: The Karhunen–Loève expansion

(4) implies that eigenfunction weighted averages of a Lévy-Brownian motion recover indepen-

dent normal variates with a variance that is proportional to the eigenvalues. Focussing on the

q eigenfunctions corresponding to the largest eigenvalues yields a set of independent normal

random variables with sharply decaying variance. In contrast, when the data are i.i.d. Gaus-

sian random variables, these weighted averages are i.i.d. normal random variables because of

the orthogonality of the eigenfunctions. This difference in behavior may be used to empirically

distinguish between these two canonical cases.

The FCLT result in Theorem 2 suggests that little is lost by developing the various tests

for the canonical models from Section 2 with yl = L(sl) or yl = Jc(sl), respectively, and for

clarity we take this approach in the Sections 4.1-4.5. Section 4.6 discusses the asymptotic

validity of the tests under the more general assumptions for I(1) and LTU processes given in

Section 2, as well as for more general I(0) processes by invoking the CLT of Lahiri (2003).

4.1 Dimension Reduction by Weighted Averages

The suggested tests depend on the data only through q weighted averages. This section

establishes corresponding notation and briefly reviews standard results for hypothesis tests

under Gaussianity.

Let Y = (y1, . . . , yn)′ and let ΣL be the n × n covariance matrix of Y induced by Lévy-

Brownian motion yl = L(sl). We are interested in tests that are invariant to translation shifts

Y → Y+a1, where 1 is a vector of ones. Such tests can be constructed from weighted averages

of Y that sum to zero. Let M = In − 1(1′1)−11′, and MY denote the demeaned values of y.

With Var(Y) = ΣL we have Var(MY) = MΣLM. Let R be the n× q matrix of eigenvectors

of MΣLM corresponding to the q largest eigenvalues, where R satisfies n−1R′R= Iq. The

columns of R extract the q linear combinations of MY with the largest variance, that is

Z = R′MY = R′Y are the q largest principal components of MY under MY ∼ (0,MΣLM).

As in Müller and Watson (2008), we treat Z as the effective observation, that is, we seek to

conduct inference about the persistence properties of Y with a test that is a function of Z

only.

Different models for persistence in Y imply different values for Var(Z) = Ω, and this means

that we can discriminate between the models by testing hypotheses concerning the value of

spatial correlation.
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Ω. Thus, consider the generic problem of testing H0 : Ω = Ω0 versus Ha : Ω = Ωa when

Z ∼ N (0,Ω). A standard calculation shows that the most powerful level α scale invariant

test rejects for large values of
Z′Ω−1

0 Z

Z′Ω−1
a Z

(15)

with a critical value that equals the 1 − α quantile of (15) under the null distribution Z ∼
N (0,Ω0).

Inference of this type depends on q, the number of weighted averages included in Z.

The choice of q faces a classic efficiency vs. robustness trade-off: large q increases power,

but at the expense of exploiting implications of the specific models of persistence over many

weighted averages. In practice, a moderate value of q, say a number around 10-20, as in Müller

and Watson (2008), yields a reasonable compromise: it is large enough to yield informative

inference and yet does not overly stretch the asymptotic approximations of the FCLT in

Theorem 2. We set q = 15 in our numerical analysis.

4.2 Tests of the I(1) Null Hypothesis

With this background in place, consider the problem of testing the I(1) null hypothesis against

the local-to-unity alternative, where the canonical models are yl = L(sl) and yl = Jc(sl). This

yields Y ∼ N (0,ΣL) and Y ∼ N (0,Σ(c)), respectively, with the l, ` element of Σ(c) equal

to exp[−c|sl − s`|]/(2c). Optimal tests in this problem are of the form (15) with Ω0 = ΩL =

R′ΣLR and Ωa = Ω(ca) = R′Σ(ca)R for some ca > 0. This yields the test statistic

LFUR =
Z′Ω−1

L Z

Z′Ω−1(ca)Z
. (16)

To determine a value of ca that ensures good power for a wide range of values of c, we follow

King (1987) and choose ca such that a 5% level test has 50% power.6 (We label the statistic

“LFUR” because it is the spatial generalization of the low-frequency unit root test proposed

in Müller and Watson (2008).)

6The well-known DF-GLS test of Elliott, Rothenberg, and Stock (1996) also requires a choice of ca, which
is chosen in the same fashion.
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4.3 Tests of the I(0) Null Hypothesis

Now consider a corresponding spatial stationarity test based on Z. Here we seek a test of

the null hypothesis that yl exhibits weak spatial correlation, and this requires a definition of

“weak” correlation. One useful gauge for the strength of correlation is whether HAR inference

about the mean remains valid. The inference derived in Müller and Watson (2022) remains

valid by construction in the Σ(c) model for (all large enough) values of c that induce an

average pairwise correlation

ρ̄(c) =
1

n(n− 1)

∑
l 6=`

exp[−c|sl − s`|], (17)

of no more than ρ = 0.03. Denote the corresponding cut-off value of c by c0.03, that is,

ρ̄(c0.03) = 0.03. The canonical version of the testing problem then becomes H0 : Ω = Ω(c),

c ≥ c0.03 against Ha : Ω = Ω(c) + g2
aΩL, ga > 0, where the form of the alternative, a sum of

a stationary and I(1) process, is standard in time series stationarity tests (for example, see

Nyblom (1989) and Kwiatkowski, Phillips, Schmidt, and Shin (1992)). The larger the scale

ga of the Lévy-Brownian motion under the alternative, the easier it is to discriminate the two

hypotheses, so ga can again be chosen using the 50% power rule. The stationarity testing

problem is complicated by the presence of the additional nuisance parameter c that indexes

the covariance matrix Ω(c) in both the null and alternative. Here numerical experimentation

revealed that in many configurations of locations, picking c = c0.001 under both H0 and Ha

works well in the sense of generating a test statistic (15) that has a 95% quantile that is fairly

constant as a function of c ≥ c0.03. Thus, the stationary test rejects if

LFST =
Z′Ω(c0.001)−1Z

Z′[Ω(c0.001) + g2
aΩL]−1Z

(18)

exceeds the critical value cvLFST, where the critical value is chosen to insure the correct size of

the test for all values of c ≥ c0.03. More precisely, cvLFST solves supc≥c0.03 P(LFST ≥ cvLFST) =

α, where α is the level of the test and the probability is computed under Z ∼ N (0,Ω(c)).

(We label the statistic “LFST” because it is the spatial generalization of the low-frequency

stationarity test proposed in Müller and Watson (2008).)

Remark 4.1. Suppose the p× 1 vector xl is spatially cointegrated of order one with cointe-

grating vector β0, that is, β′0xl ∼ I(0), but β′xl ∼ I(1) for all β that are not proportional to
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β0. An asymptotic level 1 − α confidence set for β0 can then be formed by collecting those

values of b for which the level-α LFST test does not reject the I(0) null hypothesis when

applied to the series b′xl. This is the spatial analogue of Wright’s (2000) idea for inference

about the cointegrating vector in time series; also see Müller and Watson (2013).

4.4 Confidence Sets for the Local-To-Unity Parameter and Half-

Life of Persistence

A closely related problem is the construction of a confidence set for c, the parameter in the

spatial local-to-unity model. As usual, a 100(1 − α)% confidence set is given by the values

of c0 for which a family of α-level tests of H0 : c = c0 does not reject. What is more, if

this family of tests is optimal against the alternative that c is drawn from some probability

distribution Π, the classic result in Pratt (1961) implies that the resulting confidence interval

has the smallest Π-weighted expected length.

An easily interpretable transformation of the parameter c is given by the half-life, that is

the distance ∆ at which the correlation exp[−c∆] is equal to 1/2, which is h(c) = ln 2/c. With

Π such that the implied weighting of h is uniform on [0,∆max] with ∆max = maxl,` |sl − s0
` |,

the average length minimizing scale-invariant confidence interval collects the values of h0 for

which the test based on∫ ∆max

0
det(Ω(ln 2/h))−1/2(Z′Ω(ln 2/h)−1Z)−q/2dh

(Z′Ω(ln 2/h0)−1Z)−q/2
(19)

does not exceed the 1− α quantile of (19) under Z ∼ N (0,Ω(ln 2/h0)).

4.5 Residual Based Tests

Consider inference about the persistence properties of the disturbance ul in a linear regression

yl = x′lβ + ul (where xl may include a constant). The above results are then not directly

applicable, since with β unknown, ul is unobserved.

There is an easy solution to this problem if u = (u1, . . . , un)′ is independent of X =

(x1, . . . , xn)′. Namely, one can simply base inference on weighted averages of Y with weights

that they are orthogonal to X. Let RX be the n× q matrix of the eigenvectors of MXΣLMX

corresponding to the largest q eigenvalues, where MX = In−X(X′X)−1X′ and n−1R′XRX =

Iq. Then by construction, R′XX = 0, so that ZX = R′XY = R′Xu. With u independent of
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X, one can simply condition on the realization of X, and apply the above tests with ZX in

place of Z.

Remark 4.2. A noteworthy application is the test of the null hypothesis of no cointegration

among the p + 1 variables (xl, yl), that is, for the spatial analogue of Engle and Granger’s

(1987) residual based test of cointegration (see Phillips and Ouliaris (1990) for its asymp-

totic distribution).7 To implement such a level α test of the null hypothesis of no spatial

cointegration in practice, one computes the LFUR statistic (16) using ZX in place of Z,

Ω0 = R′XΣLRX and Ω1 = R′XΣ(ca)RX , and compares it to 1 − α quantile of the statistic

under Y ∼ N (0,ΣL).

4.6 Large-Sample Analysis

In Sections 4.1-4.5, the data were assumed to follow the canonical I(1) or LTU processes with

yl = L(sl) or yl = Jc(sl). The large-sample validity of these procedures under the general

I(1) and LTU processes defined in Section 2 follow from the FCLT result in Theorem 2.

Furthermore, the validity of the LFST test under a more general I(0) null hypothesis can

be established by invoking the spatial CLT in Lahiri (2003). Details are provided in the

Appendix. Here we highlight three features of that analysis.

Remark 4.3. The asymptotic analysis in Section 2 included the long-run standard deviation

ω and the spatial scale factor λn, but they have been ignored in this section. This is due to

two features of the proposed tests. First, the tests are scale invariant, so they are unaffected

by any scaling of the data. Second, our choice for ca, c0.001 and ga in the tests LFUR and

LFST induce invariance to the scale of the locations {sl}, and thus λn.

Remark 4.4. A complication in directly applying the FCLT, CLT and continuous mapping

theorem to show the large-sample normality of Z = R′Y is that the eigenvector weights R

depend on the n sample locations sl. Lemma S.1 in the supplementary appendix studies the

large-sample behavior of these eigenvectors and shows that they converge to the eigenfunctions

of the covariance kernel of demeaned Lévy-Brownian motion in a well defined sense, building

on closely related results of Rosasco, Belkin, and Vito (2010) and Müller and Watson (2022).
7In the canonical model the assumption is that under the null hypothesis, (x′l, yl) = (X(sl)

′, Y (sl)) =
ΦLX,Y (sl) where LX,Y is a vector of p + 1 independent Lévy-Brownian Motions, and Φ is an arbitrary full
rank (p+ 1)× (p+ 1) matrix. In this model, the assumption that ul follows a Lévy-Brownian Motion and is
independent of xl follows directly by defining β as Σ−1

XXΣXY where ΣXX and ΣXY are the appropriate blocks
of Σ = ΦΦ′.
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Remark 4.5. The asymptotic validity of the residual based tests only requires a form of

asymptotic independence of u and X, and this independence always holds under the null

hypothesis of no cointegration for the Engle and Granger (1987)-type test.

4.7 Spatial Correlation in the Chetty et al. (2014) Data

Chetty, Hendren, Kline, and Saez (2014) use administrative records on the incomes of more

than 40 million children and parents to study intergenerational income mobility in the United

States. They construct an index of mobility for each of the commuter zones in the United

States and investigate the relationship between mobility and other factors by regressing their

mobility index on variables such as racial segregation, school quality and so forth. They find

large and statistically significant correlations between their absolute mobility index and many

socioeconomic indicators. One might suspect that the variables used in their regressions are

strongly spatially correlated, and in light of the spurious regression results of Section 3, this

questions the validity of their inference results. This issue is taken up in Table 1.8

The first three columns in the table apply the tests outlined in this section to gauge

the spatial correlation in the socioeconomic variables for the contiguous 48 states, which

contain 722 of the 741 commuting zones used by Chetty et al. The results indicate that these

variables exhibit substantial spatial correlation: the I(1) null is rejected for only a handful of

the variables, the I(0) null is rejected for most, and the confidence intervals for the implied

value of the half-life, h, while wide, suggest a high degree of spatial persistence. The remaining

columns of the table investigate the robustness of the regression results reported in Chetty et

al. to this spatial correlation. We discuss these columns after introducing additional analysis

in the next section.

5 Regressions with Transformed Spatial Variables

To avoid spurious regression effects using I(1) time series data, researchers routinely estimate

regressions using first differences of the original variables and rely on HAC/HAR inference

methods to account for any remaining I(0) autocorrelation. The best approach for regressions

involving spatial I(1) variables is not so obvious. There are a several ways to spatially differ-

ence the data and confidence intervals can be constructed using various spatial HAC/HAR

8The variables are chosen from Figure VIII in Chetty, Hendren, Kline, and Saez (2014). The data are
taken from their comprehensive replication materials.
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or clustered standard errors. In this section we use simulations to study the properties of

regressions estimated using a variety of spatial differencing methods and confidence intervals

constructed using spatial HAR and cluster standard errors. We stress that the analysis in

this sections relies on simulations rather than the kind of formal analysis that was the basis

of earlier sections. In that sense, this section’s conclusions are tentative; that said, we think

they provide both direction and motivation for future analytic work.

The simulations used here focus on the Chetty et al. regressions shown in Table 1, and

therefore involve univariate regressions yl = xlβ + ul, with locations fixed at the (centers of

the) of the n = 720 commuting zones plotted in Figure 1.9 In all experiments, the sample

data (in levels) are standardized to have a zero sample mean and unit standard deviation

so that intercepts are excluded from the regression and β is measured in standard deviation

units. The experiments differ in the spatial persistence of the data, the method for spatial

differencing the data and the standard errors used to construct test statistics and confidence

intervals.

5.1 Data Transformations and Spatial Standard Errors

The experiments involve regressions estimated by OLS after transforming {yl, xl} using the

same spatial difference transformation. Denote the transformed data by {y∗l , x∗l }. We consider

five methods, described here for y∗l .

Levels : y∗l = yl. The resulting estimator is the OLS levels regression studied in Section 3.

Nearest Neighbor (NN) Differences : y∗l = yl− y`(l), where s`(l) is the location closest to sl.

Isotropic Differences : y∗l is the deviation of yl from the average value of y in a circular

(isotropic) neighborhood of sl with radius equal to b. Specifically, let ml =
∑

j 6=l 1[(|sl−sj| <
b] denote the number of locations within a distance b of sl and yl(b) = m−1

l

∑
j 6=l 1[|sl− sj| <

b]yj denote the average value of y at these locations. If ml > 0, then y∗l = yl−yl(b) and y∗l = 0

otherwise (equivalently, the observation is dropped from the regression). In the experiments,

we scale the locations so that maxl,` |sl − s`| = 1 and use two values, b = 0.04 and b = 0.08.

When b = 0.04, ml = 0 for 1% of the locations, and no locations are dropped when b = 0.08.

Clustered Fixed Effects : Here the data are partitioned into m clusters and cluster-fixed

effects are included in the regression. Equivalently, the regressions are estimated by OLS using

9To avoid arguably artificial effects in our spatial AR data generating process, the experiments exclude 2
of the 722 commuting zones because they correspond to islands (Nantucket, MA and Friday Harbor, WA)
that are non-adjacent to other commuting zones.
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Figure 4: LBM-GLS Transformed Data

data that is demeaned within each cluster. Our experiments use three choices of clusters.

First, because the locations are commuting zones, we follow a common practice in applied

work and cluster by U.S. state. Alternatively, we use a more agnostic approach that partitions

the sampling region into clusters by applying the k-means algorithm to the locations {sl},
and this is implemented for m = 60 and m = 240 clusters.

LBM-GLS: In the time series regression, first differences correspond to a GLS trans-

formation under the canonical random walk model for I(1) persistence. This motivates a

GLS transformation based on Lévy-Brownian motion, the canonical spatial I(1) model. Re-

call that the data used in the regression are demeaned, so that under the canonical model

Y ∼ N (0,MΣLM), where M = In− 1(1′1)−11′ and ΣL is the covariance matrix induced by

Lévy-Brownian motion. The corresponding GLS transform sets

Y∗ = (MΣLM)−1/2Y (20)

where (MΣLM)−1/2 is the Moore-Penrose generalized inverse of (MΣLM)1/2.10 In the canon-

ical model, this GLS transformation converts Y into a set of demeaned i.i.d. random variables

Y∗. This is no longer true in the more general I(1) model, but given the FCLT in Theorem

2, it is plausible that the LBM-GLS transformation induces enough stationarity for spatial

HAR inference to be reliable. As an example, Figure 4 illustrates the GLS transformations

for the levels data plotted in panel (c) of Figure 1 and shows that the LBM-GLS transformed

data exhibit far less spatial persistence.

These estimators of β are used in conjunction with two types of standard errors. The first

10We choose the symmetric square root (MΣLM)
1/2

to ensure that Y∗ shares the same spatial coordinate
basis as Y. This is useful when constructing spatial correlation standard errors for the transformed data.
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are spatial HAR standard errors and critical values suggested by Müller and Watson (2023).

Their so-called C-SCPC method is calibrated to control size under spatial dependence with an

average pairwise correlation of no more than 0.03 (and, by “conditioning” on the regressor, it is

by construction more conservative than the method developed in Müller and Watson (2022)).

For the fixed effects estimator, we employ the cluster version of the C-SCPC method, and

also report results using traditional clustered standard errors.

5.2 Data Generating Processes

The experiments differ in their distribution of (Y,X), where Y and X are independent and

identically distributed and are generated by one of nine models.

The first four models (DGP1-DGP4) use yl = Y (sl), where Y are I(1) processes: DGP1

is Lévy-Brownian motion and DGP2-DGP4 use Y ∼ I(1) as in (6) with different models for

B. DGP2 uses B = Jc and c = c0.01, so the average pairwise correlation (17) of {B(sl)}nl=1

is ρ̄ = 0.01, and DGP3 is the same with c = c0.03. For DGP4, B is a Gaussian process

with Matérn covariance function equal to E[B(s)B(r)] = (1 + c∆ + (c∆)2/3) exp(−c∆) for

∆ = |s− r| and c such that the average pairwise correlation of {B(sl)}nl=1 is ρ̄ = 0.03.

The next two models (DGP5 and DGP6) use yl = Jc(sl) with c = c0.03 in DGP5 and

c = c0.50 in DGP6. These models exhibit less than I(1) persistence, much less so in DGP5,

and are included to examine the potential effects of “over-differencing”.

The final three models (DGP7-DGP9) generate highly persistent data, but are outside the

class of I(1) models introduced in Section 2. DGP7 is the Brownian sheet with yl =
∫
R2 1[0 ≤

r ≤ sl]dW (r). DGP8 and DGP9 generate data from the spatial autoregression (SAR) model

Y = ρWY +U, where U ∼ N (0, I) and W is the adjacency matrix for the commuting zones

with row sums normalized to unity. DGP8 uses ρ = 0.99 and DGP9 uses ρ = 0.999.

Remark 5.1. The models generate data with different degrees of spatial persistence. One

way to gauge their relative persistence is by comparing their rejection frequencies for the

spatial unit root (I(1)) and stationarity (I(0)) tests introduced in Section 4. These are shown

in panel (a) of Table 2. By design, the rejection frequency for Lévy-Brownian motion for the

I(1) test is 5% and similarly for the Jc0.03 process for the I(0) test. Using this gauge, the

other I(1) process are more persistent than Lévy-Brownian motion (with smaller I(1) and

larger I(0) rejection frequencies) as is the SAR model with ρ = 0.999.

Remark 5.2. There is a small literature on unit roots and spurious regression in SAR mod-
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els, initiated by Fingleton (1999) and summarized in Rossi and Lieberman (2023). With the

row sums of W normalized to unity, the unit root SAR model is not well defined (hence our

use of ρ = 0.99 and 0.999 in DGP8 and DGP9). Lee and Yu (2009, 2013) study asymptotic

properties of the row normalized SAR model with a SAR coefficient that converges to unity.

For particular forms of the matrix W, they find that this model does not induce spurious

regression effects of the type encountered in time series: OLS coefficients remain asymptoti-

cally normal, the regression R2 converges in probability to zero, and t-statistics do not diverge.

These results are markedly different from our findings based on a continuous parameter model

Y (·) of a spatial I(1) process. More in line with our findings, Fingleton (1999) generates data

from a version of the SAR model that is well-defined with a unit SAR coefficient and presents

Monte Carlo results suggesting spurious regression phenomena. Our DGP8-DGP9 designs

are similar to his. Using a related model, Rossi and Lieberman (2023) derive non-standard

large-sample distributions for the estimated SAR coefficient for particular specifications of

the SAR weight matrix, and suggest that model-specific non-standard results will hold more

generally.

5.3 Simulation Results

Panels (b) and (c) of Table 2 summarize the null rejection frequency of nominal 5% level

tests for each method and each DGP. Panel (b) also shows the expected length of confidence

intervals. There are three clear takeaways from the table. First, spatial differencing used

in conjunction with C-SCPC inference significantly reduces the size distortions from strong

spatial persistence, particularly using a relatively large isotropic bandwidth (b = 0.08) or a

small number of clusters (m = 60). Second, inference using traditional clustered standard

errors results in much larger size distortions than C-SCPC inference. Third, LBM-GLS (with

C-SCPC inference) controls size as well or better than the other methods and produces con-

fidence intervals with the smallest average length. These results, along with the observation

that LBM-GLS does not require the choice of a bandwidth or cluster size, suggests that it

dominates the other methods considered here.

5.4 Regressions in Chetty et al. (2014)

We now return to Table 1. As noted in Section 4.7 the first three columns of the table suggest

substantial spatial correlation in many of the variables. The final columns summarize results
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from the regression of the Absolute Mobility Index (the first variable in the table) onto each

of the other variables. These regressions were reported in Figure VII of Chetty et al. (2014).11

The first set of results are for regressions using the levels of the variables, and the second set

uses the LBM-GLS transformed variables.

We highlight three results. First, the residuals from the levels regressions are highly spa-

tially correlated: the I(1) null is not rejected at the 10% level for any of the regressions.

Second, the LBM-GLS estimates of β and the regression R2 tend to be smaller in magni-

tude than in the levels regression. Third, while the OLS and LBM-GLS results differ, the

substantive conclusions made in Chetty et al. (2014) about the correlation of the various

socioeconomic factors with intergenerational income mobility largely continue to hold after

accounting for the strong spatial correlation in the variables.

6 Concluding Remarks

Applied researchers are well aware of the pitfalls of conducting inference with persistent time

series data. Variables are routinely tested for the presence of a unit root, and often differenced

to avoid spurious regression effects.

This paper demonstrates that inference with highly persistent spatial data is equally

fraught: HAC corrections for spatial dependence and standard clustering fail in the presence

of strong correlations, leading to spurious significance between independent spatial variables.

We have provided tools to detect such strong spatial persistence, akin to time series unit root

and stationarity tests.

We have also suggested ways of restoring valid regression inference by suitably transform-

ing the spatial variables, combined with spatial HAR corrections to accommodate any residual

weak correlations. The theory here is much less complete, however. It would be especially

desirable for future research to obtain a good theoretical understanding of the most promis-

ing of these transformations, namely the GLS approach using the canonical spatial unit root

model as a baseline.

11The results in Table 1 differ slightly from the results in Chetty et al. because Table 1 only uses data from
the 48 contiguous U.S. states.
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A Proofs

Proof of Lemma 1: By the corollary on page 48 of Adler (2010), the result holds if for some

m > 2d, E
[
(Y (s)− Y (r))2m

]
≤ C|s− r|m for some C. Let m > 2d and apply Condition 2 to obtain

E[(Y (s)− Y (r))2m] ≤ Cm
(∫

Rd

(h(u, s)− h(u, r))2du

)m
= Cm|s− r|m

where the equality follows from the representation (5) of L.

For the corresponding result about spatial local-to-unity processes, we similarly have with Yc(s) =∫
Rd hc(r, s)B(r)dr

E[(Yc(s)− Yc(r))2m] ≤ Cm
(∫

Rd

(hc(u, s)− hc(u, r))2du

)m
= CmE[(Jc(s)− Jc(r))2]m (21)

where the last equality follows from the representation (8) of Jc, and E[(Jc(s) − Jc(r))2] = (1 −
exp(−c|s− r|))/c ≤ |s− r|. �

Proof of Theorem 2: Consider first the claim for the convergence for the LTU process (9).

From∫
Rd

hc(r, 0)2dr = (2c)−1 = λd
∫
Rd

hc(λr, 0)2dr = λ(1+d)/2
κ2
c,d

κ2
λc,d

∫
Rd

hλc(r, 0)2dr = λ(1+d)/2
κ2
c,d

κ2
λc,d

(2cλ)−1

for all λ > 0 it follows that κλc,d = λ(d−1)/4κc,d. Thus, the LTU process can be written as

Y 0
n (s) = λ−d/2n

∫
Rd

hc(λ
−1
n r, s)B(r)dr, s ∈ S0. (22)

We show convergence of finite dimensional distributions and tightness of the process Y 0
n . The

latter follows by Theorem 23.7 of Kallenberg (2021) from (21) and

E[Y 0
c (0)2] ≤ C2λ

−d
n

∫
Rd

hc(λ
−1
n r, s)2dr =C2

∫
Rd

hc(r, s)
2dr = C2/(2c)

where the inequality invokes Condition 2. For the former, consider the p × 1 vector

(Y 0
n (t1), . . . , Y 0

n (tp)) for arbitrary t1, . . . , tp ∈ S0. By the Cramér-Wold device, it suffices to

establish the convergence Xn =
∑p

j=1 vjY
0
n (tj) ⇒

∑p
j=1 vjωJc(tj) for (v1, . . . , vp) ∈ Rp. Let

fv(r) =
∑p

j=1 vjhc(r, tj), so that from (8),
∑p

j=1 vjJc(tj) ∼ N (0,
∫
Rd fv(r)

2dr) and from (22),

Xn = λ
−d/2
n

∫
Rd fv(λ

−1
n r)B(r)dr.

For ε > 0, define f εv (r) = fv(r)1[|r| < 1/ε]
∏p
j=1 1[|tj − r| > ε] and let Xε

n =
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λ
−d/2
n

∫
Rd f

ε
v (λ−1

n r)B(r)dr. From Condition 2 we find

E[(Xε
n −Xn)2] = λ−dn E

[(∫
Rd

(fv(λ
−1
n r)− f εv (λ−1

n r))B(r)dr

)2
]

≤ C2λ
−d
n

∫
Rd

(fv(λ
−1
n r)− f εv (λ−1

n r))2dr

= C2

∫
Rd

(fv(r)− f εv (r))2dr.

Since
∫
Rd(fv(r) − f εv (r))2dr ≤ 2

∫
Rd fv(r)

2dr < ∞, and f εv (r) ≤ fv(r) for all r, it follows from the

dominated convergence theorem that this quantity can be made arbitrarily small by picking ε small

enough. Furthermore

E[(Xε
n)2] = λ−dn

∫
Rd

∫
Rd

f εv (λ−1
n r)f εv (λ−1

n s)σB(s− r)drds

=

∫
Rd

σB(s)

∫
Rd

f εv (r)f εv (r + λ−1
n s)drds→

∫
Rd

σB(s)ds

∫
Rd

f εv (r)2dr

by dominated convergence, since by Cauchy-Schwarz, |
∫
Rd f

ε
v (r)f εv (r+λ−1

n s)dr| ≤
∫
Rd f

ε
v (r)2dr <∞

and
∫
Rd |σB(s)|ds <∞.

Finally, note that f εv is bounded and f εv (λ−1
n r) = 0 for |r| > λn/ε. Thus, using Condition 3,

Xε
n ⇒ N

(
0,
∫
Rd σB(s)ds

∫
Rd f

ε
v (r)2dr

)
. The result for the LTU process (9) now follows since mean

square convergence implies convergence in distribution, and ε > 0 was arbitrary.

For the convergence in Theorem 2, note that from (7), Y 0
n (s) = λ

−d/2
n

∫
Rd h(λ−1

n r, s)B(r)dr, and

Y 0
n (0) = 0, so the result follows from the same steps. �

Proof of Theorem 3: The results follow straightforwardly from the CMT if we can show

that λ
−1/2
n n−1

∑n
l=1 yl ⇒

∫
Y 0(s)dG(s), λ

−1/2
n n−1

∑n
l=1 xl ⇒

∫
X0(s)dG(s), λ−1

n n−1
∑n

l=1 xlyl ⇒∫
X0(s)Y 0(s)dG(s) and λ−1

n n−1
∑n

l=1 xlx
′
l ⇒

∫
X0(s)X0(s)′dG(s).

Consider the convergence λ−1
n n−1

∑n
l=1 xlyl ⇒

∫
X0(s)Y 0(s)dG(s). By the Skorohod almost

sure representation theorem (see, for instance, Theorem 11.7.2 of Dudley (2002)), there exist random

elements (Y ∗n (·), X∗n(·)) such that sups∈S0 |(Y ∗n (s) − Y ∗(s), X∗n(s) − X∗(s))| a.s.→ 0, (Y ∗(·), X∗(·)) ∼
(Y 0(·), X0(·)) and (Y 0

n (·), X0
n(·)) ∼ (Y ∗n (·), X∗n(·)) for n = 1, 2, . . . . Thus it suffices to show the claim

for
∫
X∗n(s)Y ∗n (s)dGn(s) = n−1

∑n
l=1X

∗
n(sl)Y

∗
n (sl) ∼ n−1

∑n
l=1X

0
n(sl)Y

0
n (sl) = λ−1

n n−1
∑n

l=1 xlyl.

We have∣∣∣∣∫ (X∗n(s)Y ∗n (s)−X∗(s)Y ∗(s))dGn(s)

∣∣∣∣ ≤ sup
s∈S0
|(Y ∗n (s)− Y ∗(s), X∗n(s)−X∗(s))| a.s.→ 0

so it suffices to show the claim for
∫
X∗(s)Y ∗(s)dGn(s). Now almost all realizations of the
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Rp 7→ R function s 7→ X∗(s)Y ∗(s) on S0 are continuous and bounded. For any such realization,∫
X∗(s)Y ∗(s)dGn(s) →

∫
X∗(s)Y ∗(s)dG(s) by the definition of convergence in distribution. Thus∫

X∗(s)Y ∗(s)dGn(s)
a.s.→

∫
X∗(s)Y ∗(s)dG(s). But almost sure convergence implies convergence in

distribution, so the desired result follows. The argument for the other terms is analogous. �

The following Lemma is used in the proof of Theorem 4.

Lemma 5. Let Bδ(r) = {s : |s− r| ≤ δ} ⊂ Rd be a ball of radius δ with center r. Under Condition

1, for any δ > 0, lim supn→∞ supr∈S0 Gn(Bδ(r)) ≤ supr∈S0 G(Bδ(r)), where Gn(A) and G(A) are

the measures that are assigned to the Borel set A ⊂ Rd by the distributions Gn and G, respectively.

Proof. Suppose otherwise. Then there exists ε > 0 and a sequence rn such that

lim sup
n→∞

sup
r∈S0

Gn(Bδ(r)) = lim
n→∞

Gn(Bδ(rn)) ≥ sup
r∈S0

G(Bδ(r)) + ε.

Since G is a continuous distribution, there exists δ′ > δ such that supr∈S0 G(Bδ′(r)) ≤
supr∈S0 G(Bδ(r)) + ε/2. Since S0 is compact, rn → r0 along some subsequence. Along that subse-

quence, for all n large enough so that |rn − r0| < δ′ − δ, we have

Gn(Bδ(rn)) ≤ Gn(Bδ′(r0))→ G(Bδ′(r0)) ≤ sup
r∈S0

G(Bδ(r)) + ε/2

yielding the desired contradiction.

Proof of Theorem 4: From Theorem 3 and the CMT, Hβ̂ ⇒ HΞ−1
x̃x̃Ξx̃ỹ with the r.h.s.

non-zero with probability one. Thus Hβ̂ = Op(1) (and not Hβ̂ = op(1)). The result hence fol-

lows if we can show that ||S−1
x̃x̃ Ω̂nS

−1
x̃x̃ || = op(n) (since this implies that the smallest eigenvalue of

n(HS−1
x̃x̃ Ω̂nS

−1
x̃x̃H

′)−1 diverges).

Since λ−1
n Sx̃x̃ ⇒ Ξx̃x̃ and Ξx̃x̃ is full rank with probability one, it suffices to show that

n−1λ−2
n ||Ω̂n||

p→ 0.

Let Ỹ 0
n (·) = Y 0

n (·) −
∫
Y 0
n (s)dGn(s), X̃0

n(·) = X̃0
n(·) −

∫
X0
n(s)dGn(s) and e0

n(·) = (Ỹ 0
n (·) −

β̂X̃0
n(·))X̃0

n(·), so that el = λne
0
n(λ−1

n sl). By (11), Theorem 3 and the CMT, e0
n(·)⇒ e0(·) = (Ỹ (·)−

X̃(·)′Ξ−1
x̃x̃Ξx̃ỹ)X̃(·), so that supl |e0

n(sl)| ⇒ sups∈S0 |e0(s)|, and therefore λ−1
n supl≤n |el| = Op(1).

Consider first the HAC estimator. We have

λ−2
n n−2

∥∥∥∥∥∥
n∑

l,`=1

κ(bn(sl − s`))ele′`

∥∥∥∥∥∥ ≤ λ−2
n (sup

l≤n
|el|)2 · n−2

n∑
l,`=1

|κ(bn(sl − s`))|
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and with b0n = λnbn and s0
l = λ−1

n sl,
∑n

l,`=1 |κ(bn(sl − s`))| =
∑n

l,`=1 |κ(b0n(s0
l − s0

` ))| and

n∑
l,`=1

|κ(b0n(s0
l − s0

` ))| ≤ κ̄
n∑

l,`=1

1[|s0
l − s0

` | ≤ (b0n)−1/2] +
n∑

l,`=1

1[|s0
l − s0

` | > (b0n)−1/2]|κ(b0n(s0
l − s0

` ))|.

Now

n−2
n∑

l,`=1

1[|s0
l − s0

` | > (b0n)−1/2]|κ(b0n(s0
l − s0

` ))| ≤ sup
|a|≥
√
b0n

|κ(a)| p→ 0

by (14) and 1/b0n = op(1). Furthermore, since G is continuous, for every ε > 0, there exists a δ > 0

such that supr∈S0 G(Bδ(r)) ≤ ε in the notation of Lemma 5. Note that

n−2
n∑

l,`=1

1[|s0
l − s0

` | ≤ (b0n)−1/2] ≤ sup
r∈S0

Gn(B(b0n)−1/2(r)) ≤ sup
r∈S0

Gn(Bδ(r)) + P((b0n)−1/2 > δ).

Since by assumption, 1/b0n = op(1), we have P((b0n)−1/2 > δ)→ 0, and by Lemma 5,

lim supn→∞ supr∈S0 Gn(Bδ(r)) ≤ ε. But ε > 0 was arbitrary, and the result follows.

For the cluster estimator, we similarly have λ−2
n n−2

∥∥∥∥∑nC
j=1

(∑n
l∈Cj

el

)(∑n
l∈Cj

el

)′∥∥∥∥ ≤

λ−2
n (supl≤n |el|)2 · n−2

∑nC
j=1 |Cj |2 and max1≤j≤nC |Cj |/n→ 0 implies n−2

∑nC
j=1 |Cj |2 → 0, as shown

in equation (4) of Hansen and Lee (2019). �
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Supplementary Appendix to

Spatial Unit Roots

by Ulrich K. Müller and Mark W. Watson

This appendix provides supplemental material. Section S.1 develops the formal results

for the asymptotic validity of the tests developed in Sections 4.2-4.5 sketched in Section 4.6.

Section S.2 provides details on the technique used to generate Figures 2 and 3.

S.1 Asymptotic Validity of Tests of Degree of Persis-

tence of Section 4

We first establish a result about the convergence of eigenvectors. The following lemma is similar

to Lemma 6 of Müller and Watson (2022) (also see Rosasco (2010)). The two differences are the

replacement of the i.i.d. assumption for s0
l by Gn ⇒ G, and that it allows for a larger class of

projections. The latter generalization is necessary for the analysis of residual-based tests discussed

in greater detail below.

We will use the following notation: let k : S0 × S0 7→ R be a continuous positive definite kernel

(not necessarily equal to the covariance kernel of Lévy-Brownian Motion), and let Σn be the n× n
matrix with l, `th element equal to k(s0

l , s
0
` ). Let L2

G be the Hilbert space of function S0 7→ R
with inner product 〈f1, f2〉 =

∫
f1(s)f2(s)dG(s). Define Lk : L2

G 7→ L2
G as the linear operator

Lk(f)(s) =
∫
f(r)k(r, s)dG(r), and Lk,n =

∫
f(r)k(r, s)dGn(r).

Lemma S.1. Suppose the p×1 vector xl is such that xl = ψ(s0
l ) for l = 1, . . . , n for some continuous

function ψ : S0 7→ Rp, and
∫
ψ(s)ψ(s)′dGn(s) = Hn → H for some positive definite matrix H. Let

M and Mn be the projection operators

Mn(f)(s) = f(s)−
∫
ψ(r)′f(r)dGn(r)H−1

n ψ(s)

M(f)(s) = f(s)−
∫
ψ(r)′f(r)dG(r)H−1ψ(s).

Let k̂n, and k̄ be the kernels corresponding to the linear operators MnLk,nMn and MLkM , respec-

tively, so that the (l, `) element of MXΣnMX is given by k̂n(s0
l , s

0
` ). Let

k̄(s, r) =
∞∑
i=1

ν̄iϕ̄i(s)ϕ̄i(r)

1



with
∫
ϕ̄i(s)ϕ̄j(s)dG(s) = 1[i = j], ν̄i ≥ ν̄i+1 ≥ 0 be the spectral decomposition of k̄. Define

ϕ̂i(·) = n−1ν̂−1
i

n∑
l=1

ri,lk̂n(·, s0
l ),

where (ν̂i, (ri,1, . . . , ri,n)′) is the ith eigenvalue/eigenvector pair of MXΣnMX . If ν̄1 > ν̄2 > . . . >

ν̄q > ν̄q+1 and Condition 1 holds, then for any q ≥ 1, sups∈S0,1≤i≤q |ϕ̂i(s) − ϕ̄i(s)| → 0 and

max1≤i≤q |ν̂i − ν̄i| → 0.

Proof. Set k0(s, r) = k̄(s, r) + ψ(s)′H−1ψ(r) and define the associated operators L(f)(s) =∫
f(r)k0(r, s)dG(r), Ln(f)(s) =

∫
f(r)k0(r, s)dGn(r), L̄ = MLM , L̄n = MLnM and L̂n =

MnLnMn. Note that L̄ = MLkM and L̂n = MnLk,nMn. Let H ⊂ L2
G be the Reproducing

Kernel Hilbert Space of functions f : S0 7→ R with kernel k0 and inner product 〈·, ·〉H satis-

fying 〈f, k0(·, r)〉H = f(r) and associated norm ||f ||H. By Theorem 2.16 in Saitoh and Sawano

(2016), H contains all functions of the form a′ψ for a ∈ Rp, so sup|a|=1 ||a′ψ||H < ∞. Now pro-

ceed as in the proof of Lemma 6 of Müller and Watson (2022) to argue that supr∈S0 |f(r)| ≤√
sups∈S0 k0(s, s) · ||f ||H, and

||Mf ||H = ||f −
∫
ψ(r)′f(r)dG(r)H−1ψ||H ≤ ||f ||H + sup

r∈S0
|f(r)| · sup

r∈S0
|H−1ψ(r)| · sup

|a|=1
||a′ψ||H

so M : H 7→ H is a bounded operator. By the same argument, so is Mn.

From 〈f, k0(·, r)〉H = f(r), we further obtain∫
ψ(r)f(r)(dGn(r)− dG(r)) =

〈
f,

∫
ψ(r)k0(·, r)(dGn(r)− dG(r))

〉
H

(S.1)

and for each component ψi of ψ, i = 1, . . . , p,∥∥∥∥∫ ψi(r)k0(·, r)(dGn(r)− dG(r))

∥∥∥∥2

H
(S.2)

=

∫ ∫
ψi(s)k0(s, r)ψi(r)(dGn(s)− dG(s))(dGn(r)− dG(r))

= E[ψi(Sn)k0(Sn, Rn)ψi(Rn)− ψi(Sn)k0(S,Rn)ψi(R)

−ψi(S)k0(Sn, R)ψi(Rn) + ψi(S)k0(S,R)ψi(R)]→ 0

where (Sn, Rn) is a sequence of R2d random variables with distribution Gn × Gn converging to

(S,R) with distribution G ×G. The convergence then follows since the R2d 7→ R function (s, r) 7→

2



ψi(s)k0(s, r)ψi(r) is continuous and bounded. Thus, by (S.1), (S.2) and Cauchy-Schwarz,

sup
||f ||H≤1

∣∣∣∣∫ ψ(r)f(r)(dGn(r)− dG(r))

∣∣∣∣→ 0.

From H−1
n → H−1 and |

∫
ψ(r)f(r)dGn(r)| ≤ supr∈S0 |f(r)| · supr∈S0 |ψ(r)| ≤

supr∈S0 |ψ(r)|
√

sups∈S k0(s, s) · ||f ||H, we conclude that with ∆n(f) = H−1
n

∫
ψ(r)f(r)dGn(r) −

H−1
∫
ψ(r)f(r)dG(r), sup||f ||H≤1 |∆n(f)| → 0. Thus

sup
||f ||H≤1

||(Mn −M)f ||H =
∥∥∆n(f)′ψ

∥∥
H ≤ sup

||f ||H≤1
|∆n(f)| · sup

|a|=1
||a′ψ||H → 0.

The only remaining piece of the proof is to show that ||Ln − L||2HS → 0 under the assumption

of Gn ⇒ G, where for any Hilbert-Schmidt operator A : H 7→ H, ||A||2HS =
∑

j≥1〈Aej , Aej〉H for

an orthonormal base ej . One choice for ej are the eigenfunctions scaled by the square root of the

eigenvalues of the spectral decomposition of k0, so that k0(r, s) =
∑∞

j=1 ej(r)ej(s); see the discussion

in the proof of Lemma 6 in Müller and Watson (2022). We find

||Ln − L||2HS =
∑
j≥1

〈∫
ej(s)k0(s, ·)(dGn(s)− dG(s)),

∫
ej(s)k0(s, ·)(dGn(s)− dG(s))

〉
H

=

∫ ∫ ∑
j≥1

ej(s)ej(r)

 k0(s, r)(dGn(s)− dG(s))(dGn(r)− dG(r))

=

∫ ∫
k0(s, r)2(dGn(r)− dG(r))(dGn(r)− dG(r))

= E[k0(Sn, Rn)2 − k0(S,Rn)2 − k0(Sn, R)2 + k0(S,R)2]→ 0

where the change of the order of integration and summation is justified by Fubini’s Theorem, and

the convergence follows, since the R2d 7→ R function (s, r) 7→ k0(s, r)2 is bounded and continuous.

Specializing Lemma S.1 to p = 1 and ψ = 1, note that the l, ith element of the matrix of eigenvec-

tors R is given by ϕ̂i(sl). Thus Lemma S.1 shows that the weights in the weighted average Z = R′Y

converge to continuous functions, so the FCLT of Theorem 2 and the continuous mapping theorem

(CMT) yield λ
−1/2
n n−1Zn ⇒ N (0, ω2 diag(ν̄1, . . . , ν̄q)). Since the LFUR statistic is scale invariant,

the scale parameters λ
−1/2
n n−1 and ω2 vanish, and the critical value computed from the canonical

model converges to the asymptotically correct critical value for generic spatial I(1) processes.

By the same arguments, the LFST test is large sample valid under the general local-to-unity

model (9) with c ≥ c0.03. A more subtle question asks whether it also remains valid under generic

weak dependence, defined as yl = B(sl) = B(λns
0
l ), with λn →∞ and B a weakly dependent random
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field as in Section 2. The CLT in Lahiri (2003) shows that under such generic weak dependence

(and under the assumption that s0
l ∼ G is i.i.d.), a suitably scaled version of Z becomes Gaussian,

but not necessarily with covariance matrix proportional to Iq. In the spatial case, the effect of

weak dependence on the covariance of smoothly weighted averages is generically more subtle than a

multiplication by the scalar long-run standard deviation. Still, the LFST test remains valid, since for

every n, its critical value is chosen to be valid for all c ≥ c0.03, so it is also valid under all sequences

of cn → ∞, including those that induce the different possible limits identified by Lahiri’s (2003)

CLT. This result is summarized in the following theorem.

Theorem S.2. If yl = B(λns
0
l ) and λn →∞ with λdn/n→ a ∈ [0,∞), then under the assumptions

of Lahiri’s CLT in his Theorem 3.2, lim supn→∞ P(LFST ≥ cvLFST
n ) ≤ α.

Proof. By Lemmas 3 and 12 in Müller and Watson (2022), we have

λd/2n n−1Zn ⇒ N
(

0, aσB(0)

∫
ϕ̄(s)ϕ̄(s)′dG(s) + ω2

∫
ϕ̄(s)ϕ̄(s)′g(s)dG(s)

)
(S.3)

where ϕ̄ = (ϕ̄1, . . . , ϕ̄q), ω
2 =

∫
Rd σB(s)ds and g is the density of the distribution G. Since the

LFST statistic is scale invariant, its limiting distribution under (S.3) only depends on the properties

of B through the ratio χ = aσB(0)/ω2 ∈ [0,∞). We need to show that lim infn→∞ cvLFST
n is at least

as large as the 1 − α quantile, say cvLFST
χ , of the (continuous) limit distribution of LFST for this

value of χ.

Note that for B = Jc, σB(0)/ω2 = Kdc
1+d for some Kd > 0. For a > 0, let c∗ be such

Kdc
1+d
∗ = χ/a, and let c∗ = 1 otherwise. For all n sufficiently large so that λnc∗ ≥ c0.03, cvLFST is

such that the LFST test controls size under B = Jc∗ . But since B = Jc∗ satisfies the assumptions

of Lahiri (2003), this model induces the same limit (S.3), so its 1− a quantile converges to cvLFST
χ ,

and the result follows.

We now turn to the validity of residual based tests. We first need a further generalization of the

convergence of eigenvectors that accommodates projections off converging sequences of functions.

Lemma S.3. Assume the conditions of Lemma S.1 hold. Suppose x̃l = ψn(s0
l ), where the continuous

functions ψn : S0 7→ Rp are such that sups∈S0 |ψn(s)− ψ(s)| → 0, for some continuous function ψ.

Define the the projection operator M̃n : L2
G 7→ L2

G as

M̃n(f)(s) = f(s)−
∫
ψn(r)′f(r)dGn(r)H−1

n ψn(s),

and let k̃n be the kernel corresponding to the linear operator M̃nLk,nM̃n, so that the (l, `) element

of MX̃ΣnMX̃ is given by k̃n(s0
l , s

0
` ). Let (ν̃i, (r̃i,1, . . . , r̃i,n)′) be the ith eigenvalue/eigenvector pair

4



of MX̃ΣnMX̃ , and define ϕ̃i(·) = n−1ν̃−1
i

∑n
l=1 r̃i,lk̃n(·, s0

l ). Then sups∈S0,1≤i≤q |ϕ̃i(s)− ϕ̄i(s)| → 0

and max1≤i≤q |ν̃i − ν̄i| → 0.

Proof. From standard arguments, we obtain
∫
ψn(s)ψn(s)′dGn(s)→ H and

∫
ψ(s)ψn(s)′dGn(s)→

H. Thus, ||MX̃ −MX || → 0, and by a direct calculation, sups,r∈S0 |k̃n(r, s) − k̂n(r, s)| → 0, and

sups,r∈S0 |k̂n(r, s)− k̄(r, s)| → 0 and thus sups,r∈S0 |k̃n(r, s)− k̄(r, s)| → 0. Furthermore, proceeding

as in the proof of Lemma S.1 shows that ||Σn|| converges to ν̄1, the largest eigenvalue of the integral

operator with kernel k̄, so ||Σn|| = O(1). Thus also ||MX̃ΣnMX̃ −MXΣnMX || → 0, and from

Weyl’s inequality, max1≤i≤q |ν̃i − ν̂i| → 0. Since also max1≤i≤q |ν̂i − ν̄i| → 0 from Lemma S.1, we

can conclude that

sup
s∈S0
|(ν̃−1

i − ν̂
−1
i )n−1

n∑
l=1

ri,lk̂n(s, s0
l )| ≤ |ν̃−1

i − ν̂
−1
i | · sup

s∈S0
|ϕ̂i(s)| · sup

s,r∈S0
|k̂n(r, s)| → 0

where the inequality uses ri,l = ϕ̂i(s
0
l ), and the convergence follows from the above results and

sups∈S0 |ϕ̂i(s)| → sups∈S0 |ϕi(s)| <∞ from Lemma S.1. Also,

sup
s∈S0
|n−1

n∑
l=1

ri,l(k̃n(s, s0
l )− k̂n(s, s0

l ))| ≤ sup
s∈S0
|ϕ̂i(s)| · sup

r,s∈S0
|k̃n(r, s)− k̂(r, s)| → 0.

Finally, since max1≤i≤q |ν̃i− ν̄i| → 0 and ν̄1 > ν̄2 > . . . > ν̄q > ν̄q+1, we can apply Corollary 1 of Yu,

Wang and Samworth (2015) and conclude that n−1
∑n

l=1(r̃i,l − ri,l)2 → 0 for i = 1, . . . , q. Applying

Cauchy-Schwarz then yields

sup
s∈S0
|n−1

n∑
l=1

(r̃i,l − ri,l)k̃n(s, s0
l )|2 ≤ n−1

n∑
l=1

(r̃i,l − ri,l)2 · sup
s∈S0

n−1
n∑
l=1

k̃n(s, s0
l )

2 → 0

where the convergence follows from n−1
∑n

l=1 k̃n(s, s0
l )

2 ≤ 2 supr,s∈S0 |k̄(r, s)|2+2 sups,r∈S0 |k̃n(r, s)−
k̄(r, s)|2 = O(1).

Theorem S.4. Suppose yl = x′lβ + ul, (x′l, ul) = λ
1/2
n (X0

n(s0
l )
′, U0

n(s0
l )) ∈ Rp ×R with (X0

n(·), U0
n(·))

satisfying [
U0
n(·)

X0
n(·)

]
=

[
λ
−1/2
n U(λn·)
λ
−1/2
n X(λn·)

]
⇒

[
U0(·)
X0(·)

]
(S.4)

on S0. Let RX be the n × p matrix of q eigenvectors of MXΣnMX corresponding to the largest

eigenvalues. Suppose for almost every realization of X0, the largest q + 1 eigenvalues of the kernel

kX0 : S0 × S0 7→ R corresponding to the linear operator MX0LkMX0 with MX0(f)(s) = f(s) −
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X0(s)
(∫
X0(r)X0(r)′dG(r)

)−1 ∫
X0(r)′f(r)dG(r) are distinct. If also Condition 1 holds, then

λ−1/2
n R′XY ⇒ ω

∫
ϕX0(s)U0(s)dG(s) (S.5)

where ϕX0(·) are the q eigenfunctions of kX0 corresponding to the largest eigenvalues.

Furthermore, let Ũ0
n be independent of (X0

n, U
0
n), and suppose Ũ0

n satisfies Ũ0
n(·) ⇒ Ũ0(·) with

Ũ0 ∼ U0. Let cvn(X0
n) be the 1 − α quantile of the conditional distribution of φ(RX′Ũ) given RX

for some continuous function φ : Rq 7→ R satisfying φ(ax) = φ(x) for all a 6= 0 and x ∈ Rq, and

Ũ = (Ũ0
n(s0

1), . . . , Ũ0
n(s0

n))′. Suppose that (i) X0 is independent of U0, (ii) for almost all realizations

of X0 the conditional distribution of φ(
∫
ϕX0(s)U0(s)dG(s)) is continuous. Then P(φ(RX′Y) >

cvn(X0
n))→ α.

Proof. For conciseness, we note the dependence of RX and Y on n. We will show that

(φ(R′X,nYn), cvn(X0
n)) ⇒ (φ(

∫
ϕX(s)U0(s)dG(s)), qφ1−α(X0)) with qφ1−α(X0) the 1 − α quantile

of φ(
∫
ϕX(s)U0(s)dG(s)) conditional on X0. The result then follows from the CMT applied to

1[φ(R′X,nYn) > cvn(X0
n)], and taking expectations.

Apply the almost sure representation theorem to argue that there exists a probability space

(Ω0,F0, P0) and associated random processes X∗, U∗ and X∗n, U
∗
n, n ≥ 1 such that (X∗n, U

∗
n) ∼

(X0
n, U

0
n), (X∗, U∗) ∼ (X0, U0) and sups∈S0 |X∗n(s) − X∗(s)| a.s.→ 0, sups∈S0 |U∗n(s) − U∗(s)| a.s.→ 0.

Using the same arguments as in the proof of Theorem 3, and a realization by realization application

of Lemma S.3, then yields

λ−1/2
n R∗′X,nY

∗
n → ω

∫
ϕX∗(s)U

∗(s)dG(s) ∼ ω
∫

ϕX∗(s)U
0(s)dG(s) (S.6)

where (R∗X,n,Y
∗
n) are defined analogously to (RX,n,Yn) on (Ω0,F0, P0), and (R∗X,n,Y

∗
n) ∼

(RX,n,Yn) for all n ≥ 0 by construction, so (S.5) holds.

The further result now follows if we can show that also cvn(X∗n)
a.s.→ qφ1−α(X∗), since almost sure

convergence implies convergence in distribution. To that end, note there exists a separate probability

space (Ω1,F1, P1) with associated sequences of random process Ũ∗ and Ũ∗n and such that Ũ∗n ∼ Ũ0
n,

Ũ∗ ∼ Ũ0 ∼ U0 and sups∈S0 |Ũ∗n(s)−Ũ∗(s)| a.s.→ 0. Form the product space (Ω0×Ω1,F0⊗F1, P0×P1),

so that on this new space, (X∗, {X∗n}∞n=1) is independent of (Ũ∗, {Ũ∗n}∞n=1) by construction. Use the

same arguments as for (S.6) obtain that for P0-almost all ω0 ∈ Ω0 and P1-almost all ω1 ∈ Ω1, in

obvious notation,

λ−1/2
n R

∗′
X,nŨ

∗
n →

∫
ϕX∗(s)Ũ

∗(s)dG(s)

jointly with (S.6). But almost sure convergence implies convergence in distribution, and Ũ∗ ∼ U0,

so for P0-almost all ω0 ∈ Ω0, the distribution of λ
−1/2
n R

∗′
X,nŨ

∗
n induced by P1 converges to the

conditional distribution of
∫
ϕX∗(s)U

0(s)dG(s) given X∗. Since φ is continuous and the condi-

6



tional distribution is assumed continuous, this implies that for all such ω0, cvn(X0
n)

a.s.→ qφ1−α(X∗).

Thus (φ(R′X,nYn), cvn(X0
n)) ∼ (φ(R

∗′
X,nY

∗
n), cvn(X∗n))

a.s.→ (φ(
∫
ϕX∗(s)U

∗(s)dG(s)), qφ1−α(X∗)) ∼
(φ(
∫
ϕX0(s)U0(s)dG(s)), qφ1−α(X0)), and the result follows, because almost sure convergence im-

plies convergence in distribution.

The theorem justifies the conditional use of a critical value for the test statistic φ(R′XY) that

is equal to the 1 − α quantile of φ(R′XŨ) conditional on RX , for some (pseudo-) random variable

draws of ũl = Ũ(s0
l ) that induce the same limiting process as the actual regression errors ul. Since φ

is assumed scale invariant, the scaling of ũl is immaterial in this construction. This formally justifies

the critical value construction for the Engle and Granger (1987)-type test of coinegration of Remark

4.2.

S.2 Generation of Figures 2-3

For the left panel of Figure 2 and Figure 3, we approximate the non-stationary processes by stationary

ones with a very small degree of mean reversion. In particular, with f0(ω) = 1, let f̃i(ω) = fi(ω)/(c2+

|ω|2)3/2 with c = 0.1 for the three processes Yi, i = 0, 1, 2 of Figures 2 and 3. These spectral densities

are isotropic, so the covariance functions satisfy E[Yi(r)Yi(s)] = σi(|r − s|) with

σi(x) =

∫ ∞
0

J0(ωx)fi(ω)dω

where J0 is the Bessel function function of the first kind with zero parameter (cf. equation (1.2.6) in

Ivanov and Leonenko (1989)). We approximate σi(·) numerically on the interval [0, 1], and then use

Stein’s (2002) technique to generate the figures via the fast Fourier transform on a grid of 700× 700

points.
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