Supplementary Appendix to

Spatial Unit Roots
by Ulrich K. Miiller and Mark W. Watson

This appendix provides supplemental material. Section S.1 provides details on the tech-
nique used to generate Figures 2 and 4. Section S.2 contains proofs of all formal results in

Sections 4-5. Section

S.1 Generation of Figures 2-4

For the left panel of Figure 2 and Figure 4, we approximate the non-stationary processes by stationary
ones with a very small degree of mean reversion. In particular, with fo(w) = 1, let fi(w) = fi(w)/(+
|(,u|2)3/2 with ¢ = 0.1 for the three processes Y;, ¢ = 0, 1, 2 of Figures 2 and 4. These spectral densities

are isotropic, so the covariance functions satisfy E[Y;(r)Y;(s)] = oi(|r — s|) with

oi(z) = /0 " Jo(we) fi(w)dw

where Jy is the Bessel function function of the first kind with zero parameter (cf. equation (1.2.6) in
Ivanov and Leonenko (1989)). We approximate o;(-) numerically on the interval [0, 1], and then use
Stein’s (2002) technique to generate the figures via the fast Fourier transform on a grid of 700 x 700
points.

The eigenfunctions of Figure 3 are approximated via (22) using 1000 locations {s? }g{o drawn

at random within the contiguous U.S.

S.2 Proofs of Results from Sections 4 and 5
Proof of Theorem 5: Clearly,

oy YRl — V() — YO(5)AGo (r)dCin(s)
o [y Y.0(s)2dGi(s)

(S.1)

and proceeding as in the proof of Theorem 3 shows that it suffices to show the claim with Y,?(s)
replaced by Y*(s) = wJ.(s) in (S.1). Denote the resulting expression by 4*, we have

B (L[S € To)Y*(Su)rp(1Sn — Ru)(Y*(Ra) = Y*(S0))|Y"]
B[1[Sy € Z5]Y *(S,)2[V "]

L%
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a.s. B[1[S € LY (S)rp(|S = R)(Y*(R) = Y*(5)) Y]

E[1[S € T,]Y*(5)?Y*]
Jz, ] Je(s)mp \8—7“!)( e(r) = Je(8))dG(r)dG(s)
- Jz, Je(s)2dG(s)

where (S,,, R,) is a sequence of R?? random variables with distribution G, x G,, converging to (S, R)
with distribution G x G, and the convergence follows, since for almost all realizations of Y*, the
R2? +— R function (s,7) — 1[s € T,)Y*(s)kp(|s — 7|)(Y*(r) — Y*(s)) and the R? i R function

s+ 1[s € Iy]Y*(s)? is bounded with a discontinuity set of Lebesgue measure zero. [J

Proof of Theorem 6: We first show the result for L in place of J.. In the proof, C denotes a
sufficiently large constant, not necessarily the same in each instance it is used.

As a first step, we show that replacing L(s) by L(s) — 7 induces a o0,(1) difference, where the
convergences throughout the proof are with respect to b — 0. By Cauchy-Schwarz, the second

moment of the difference is bounded above by

(b‘d_lm /Ib /ﬁb(]s —r|)(L(r) — L(s))dG(r)dG(s)>2]
(b_d_1 /I b / pol(s — ) (L(r) — L(s))da<r>da<s>)2] .

Consider first d = 1. The support S° of G then consists of a countable number of disjoint intervals,

and it suffices to show that the integral over each of those intervals is 0,(1). Take one such interval
[[,u] C R. We have

u—b pu .
/Hb | olls = D(L0) = LsDAGIIGE) = [ hufr) )G

with hy(r) = ["(Al+b < s < u—blry(ls —7]) =L +b < r < u — bry(|s — 7]))dG(s). By
1nspect1on, for all small enough b, hy(r) = 0 for r € [l + 2b,u — 2b], sup,cp ) [ho(r)| < Cb,
S hy(r)dr = [ he(r)dr = 0, so that [T hy(r)g(r)dr = b [ hy(br)g(l + br)dr =O(b®) from
a first order Taylor expansion of g(-) around g(), and similarly, [ ., hy(r)dG(r) = O(b*). Thus

E [(/lu hb(r)L(r)dG(r)> 2]

/lu /l“ hy(r)hy(s) min(r, s)dG(r)dG(s)

14+2b [+2b
_ /l /l iy (r)ho(s) (min(r, 5) — 1)dG(r)dG(s)

) ' i — U r s 6
+/J2b/u o by (1) hp(s)(min(r, s) — u)dG(r)dG(s) + O(b°)



so the desired result follows.

For d > 1,
D} = B (b‘d‘l/ﬂ, / ”b<ls—rl><L<r>—L<8>>dG(’“)dG(S)>1
G ,WD(L(SW_L@))g(Hbmde(s))Q]
_ /I /I [ [ 5 2worlmothulcy(s.r. b wgls + br)g( + budr - du- dG(s)aG()
with

2Cy (s, tyu) = 2B[(L(s 4+ br) — L(s))(L(t + bu) — L(t))]
= |br+s—t|+but+s—t|—|br+bu+s—tl—|s—t|

Now split the integral over dG(s) and dG(t) into a piece RY = {s,t: s,t € Ip, |s —t| < 2b}C I, x I,
and R} = (T x Tp)\RY. For the integral over RY, note that for |s — t| < 2b, |(,(s, 7, t,u)| < Cb. At
the same time, the area of integration for Rg is of order b%. So with g and kg bounded, the integral
bdfl

over Rg is of order — 0, and makes a vanishing contribution to D%.

For any w,v € R? and z € R such that w + zv # 0, we have

Dy = ey

Ox |w + x|

a—2|w+xvl _ _((w+xv)’v)2 v'v

0z lw + zv|3 lw + zv|
a—3|w+:m)| _ 3((w+xv)’v)3 _3((w+xv)’v)v’v
oz3 lw + zv|° lw + 20>

For the integral over Ri where |s—t| > 2b, apply a second order Taylor expansion to (s, r,t,u)g(s+
br)g(t + bu) around b = 0. Since (y(s,7,t,u) = (s, 7, t,u)/Iblp=g = 0, we find

10 (s—=t)r(s—t)u r'u b
Cb(santa u)g(s + b?")g(t + bU) - ib g(S)g(t) < |S — t,g - ’S — t’ + ‘S — t‘Q\Ijb(Sﬂﬂat:u)

where  here and below W, denote wuniformly bounded functions, that is,



SUPY0,5,t€ Ty, |u <1, |r| <1 |Wy(s, 7 t,u)] < oco. By symmetry, for all |s —t| > 2b

(s=t)r(s—t)u r'u B
[ [ oty (B T dudr o
Furthermore,

/I/Imn< |2,2>dG( JaG(t) < C© |<Cmin<|b:|;b>ds

e, / mln( G b) dz = O log(b))  (S.2)

so D — 0.
Given this first result, it is without loss of generality to assume that S° does not contain the
origin. Let Qp =b~! Jz, J ro(Ir[)(L(s +br) — L(s))g(s + br)drdG(s). We will show that @, converges

in mean square. We have
E[Q] = %b_l/ /%0(|7”|)(|3 +br| = |s| = blr|)g(s + br)drdG(s).
Ty

By a fist order Taylor expansion, for |s| > 2b,
s'r 9
(Is +br| —|s| = blr[)g(s + br) = by(s) T | ) + " Ws(s,7)

and E [Qy] — —3 [ |7|ro(|r])dr- [ g(s)?ds follows from [(s'r)ko(|r|)dr = 0.
Note that for (X1, X2, X3, X4) mean-zero multivariate normal with covariances o;; = E[X;Xj],
E[(XlXQ — 012)(X3X4 — 034)} = 014023 + 013024. We have
Co(s,t) = 2E[L(s)L(t)] = |s| +[t] - |s +1|
Co(s,mt) = 2B[(L(s+br) — L(s))L(t)] = |br + s — |s| + |s — t| — |br + 5 — ¢]
Cy(tiu,s) = 2B[(L(t + bu) — L(t))L(s)].
Thus,

4Var[Q,] = 4E [(Qb —E [Qb])2]

_ /Z /I / / b~ 2ro([r)ro () [C(s, £)Co(s, 7 E, w)g (s + br)g(t + bu)
+CL(s,m )Rt u, 8)g(s + br)g(t + bu)ldr - du - dG(s)dG(2)



Split the integral again into integrals over Rg and Ré. For the integral over RY, note that for
|s —t] < 2b, |C(s,)Cp(5, 7, t,u)| < Cb? and [C}(s,7,t)CE(t,u, s)| < Cb? uniformly. At the same time,
the area of integration for ’Rg is of order b%, so the integral over 7?,2 is of order b¢ — 0, and makes a
vanishing contribution to Var[Q)].

For the integral over R}, the term involving (}(s,t)(,(s,7, ¢, u) is negligible as shown above,
since supy ;e7, Cg(s,t) < oo0. For the remaining term, apply a second order Taylor expansion to
Ch(s,m, Ch (6, 5)g s + br)g(t + bu)

(o (s, 1)Ch(t,u, 8)g(s + br)g(t + bu)
s'r s—t)r "u —s)u 3
= st (- S0 (T - S0 ) + e

sl s =1 it s =1 s —t]?

since (3 (s,7,t) = (§(t,u, s) = 0. By symmetry, for all |s — t| > 2b,

[ty (5 - B0 Y ar =0

so using (S.2) we conclude Var[Q)y] — 0.
Finally, the result for .J. follows, since the measure of (J. — J.(0)) is absolutely continuous with

respect to the measure of L, and J.(0) has finite second moment. [J

Lemma 7 is a special case of the following more general result applied with p = 1 and ¢(s) = 1.
We will use the following notation: let k : S° x S — R be a continuous positive definite kernel
(not necessarily equal to the covariance kernel of Lévy-Brownian Motion), and let 3,, be the n x n
matrix with [, /th element equal to k(s?,s?) Let L’é be the Hilbert space of function S° — R
with inner product (fi, f2) = [ fi(s) dG(s). Define Ly : L2, — L2, as the linear operator

= [ f(r) rsdG()ande’n ff k(r,s)dGp(r).

Lemma S.1. Suppose the px 1 vector x; is such that x; = w(s?) forl=1,...,n for some continuous
function ¢ : 8% +— RP, and [ (s)Y(s) dGn(s ) =H,—H for some positive definite matriz H. Let
M and M, be the proyectzon opemtors M, (f)(s) )= [ (r Gn(r)H, 2(s) and M(f)(s) =

— [9(r) dG(r)H Y(s). Let kn, and k be the kemels correspondmg to the linear operators
M Lk My, and MLkM respectively, so that the (1,€) element of Mx X, 1Mx is given by ke, (s9,59).
Let k(s,r) = Y72, 03p;(s)(r) with [@;(s)@;(s)dG(s) = 1[i = j], 73 > Uiy1 > 0 be the spectral
decomposition of k. Define p;(-) = nilﬁ_l Yo 17"Zlk (-, 8Y), where (i, (1i1, ... rin)") is the ith
eigenvalue/eigenvector pair of MxX,Mx. If i1 > vy > ... > g > vgy1 and Condition 1 holds,

then for any q > 1, supsegso 1<i<q |Pi(5) — @i(s)| — 0 and maxi<i<q [P — 73| — 0.

Proof. The proof follows from the same arguments as the proof of Lemma 6 in Miiller and Wat-

son (2022a). The two differences are (i) the generalization of the demeaning by the more general
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projection of 1; and (ii) the replacement of the i.i.d. assumption for sl by G, = G.

Set ko(s,r) = ( r) + ¢(s)H 1y(r) and define the associated operators L(f)(s) =
[ f(r)ko(r,8)dG(r), Lu(f)(s) = [ f(r)ko(r,s)dGn(r), L = MLM, L, = ML,M and L, =
M, L,M,. Note that L = ML,M and Ln = M, Ly M,. Let H C E%; be the Reproducing
Kernel Hilbert Space of functions f : SY + R with kernel kg and inner product (-,-)3; satis-
fying (f,ko(-,7)) = f(r) and associated norm |[|f||x. By Theorem 2.16 in Saitoh and Sawano
(2016), H contains all functions of the form a'y for a € RP, so sup|q=y [la’¢||xx < co. Now pro-
ceed as in the proof of Lemma 6 of Miiller and Watson (2022a) to argue that sup,cgo |f(r)] <

\/Sllpseso ko(s, 3) : HfHHy and

M fllw = 1S = /w (rdG(r)H |l < ||l + sup ()] - sup [H™ 4 (r)| - sup [la'y[|x

reSo0 la|=1

so M : 'H — H is a bounded operator. By the same argument, so is M,.
From (f, ko(-,7))n = f(r), we further obtain

/ B(r) F(r)(dG(r) — dG(r)) = <f, / (Yo (-, r)(dGin(r) — dG<r>>>H (S.3)

and for each component ¢; of ¥, ¢ =1,...,p,
2
H [ kol G - ()
- / / 3()ko (5, 7)) (dGn(5) — dG(5))(dGin(r) — dG(r))
= B (Sa)ko(Sns Bn)ibs(Ra) — $4(Sn)ko (S, Ra)ts(R)
—1p;(S)ko(Sn, R);(Ry) + ¢;(S)ko(S, R);(R)]

H

— 0

where (S,,R,) is a sequence of R?? random variables with distribution G, x G, converging to
(S, R) with distribution G x G. The convergence then follows since the R?? R function (s,7)
¥;(8)ko(s, )1, (r) is continuous and bounded. Thus, by (S.3), (S.4) and Cauchy-Schwarz,

/ B() () (dGn(r) — dG(r))| — 0.

sup

Iflln=<1
From H;t —  H™' and | [¢(r)f(r)dGu(r)] < SuprgSO\f( )| : SuprESO |¢( )<
sup,.cso0 |¥(r)|\/supses ko(s,s) - || fll#, we conclude that with A,(f) = H,; ! [4(r) Gn(r) —



H=Y [4(r) f(r)dG(r), sup| s, <1 [An(f)] — 0. Thus

sup |[(Mp = M) flls = ||An(£) 0], < sup [Au()]- sup ||a'd||2 — 0.
[1fll#<1 1]l <1 la|=1

The only remaining piece of the proof is to show that ||L, — L||%¢ — 0 under the assumption
of G, = G, where for any Hilbert-Schmidt operator A : H — H, ||A]|%¢ = > j>1(Aej, Aej)y for
an orthonormal base e;. One choice for e; are the eigenfunctions scaled by the square root of the
eigenvalues of the spectral decomposition of ko, so that ko(r,s) = > 22, e;(r)e;(s); see the discussion
in the proof of Lemma 6 in Miiller and Watson (2022a). We find

ILn = Llls = Y </ej(3)k‘0(5a NdGn(s) — dG(S)),/eg‘(S)ko(& )(dGn(s) — dG(S))>

21 "

= // s)ej(r) | ko(s,m)(dGn(s) — dG(s))(dGy(r) — dG(r))
7>1

= //kg s,7) dG (r) —dG(r))(dGy(r) — dG(1))
= E[ko(Sn, Rn)? — ko(S, Rp)? — ko(Sn, R)? + ko(S,R)?] — 0

where the change of the order of integration and summation is justified by Fubini’s Theorem, and the

convergence follows, since the R?? — R function (s, r) — ko(s,r)? is bounded and continuous.  [J

Lemma S.2. Assume the conditions of Lemma S.1 hold. Suppose & = wn(s?), where the
continuous functions 1, : S° — RP are such that sup,cgo [¢,(s) — ¥(s)] — 0, for some
continuous function 1. Define the the projection operator M, : L% — L2 as M, (f)(s) =

— [, () f(r)dGy (r)H 4,0 (5), and let ky, be the kernel corresponding to the linear operator
M, Ly, oM, so that the (1,£) element of M; X, My is given by kn (s9,89). Let (0iy (Finy- - Tin))
be the ith eigenvalue/eigenvector pair of M ¢X,Mg, and define ;(-) = n =1y 1 S0 L Fikn (-, 89).

Then supyeso 1<i<q |Pi(s) = @i(s)] — 0 and maxi<i<q |Vs — vi| — 0.

Proof. From standard arguments, we obtain [ v,,(s)¢,(s)'dGn(s) — H and [ (s),(s) dGy(s) —
H. Thus, [[Mg — Mx|| — 0, and by a direct calculation, supy ,.cso \kn (7, ) — kn(r,s)| — 0, and
SUD; re50 \kn(r, s) — k(r, s)| — 0 and thus SUp; 150 |k (7, 5) — k(r,s)| — 0. Furthermore, proceeding
as in the proof of Lemma S.1 shows that ||X,,|| converges to 1, the largest eigenvalue of the integral
operator with kernel &, so ||X,|| = O(1). Thus also ||[Mz+%,My — MxX,Mx|| — 0, and from
Weyl’s inequality, maxi<i<q |7; — 3| — 0. Since also maxj<;<q | — 7| — 0 from Lemma S.1, we

can conclude that

sup |(7; 1 — o7 ‘1ka 5,80 < |57 = 571 - sup [@3(s)] - sup [n(r,8)| = 0
s€8Y s€80 s,r€S0



where the inequality uses 7;; = ®;(s?), and the convergence follows from the above results and

SUPges0 |@;(8)] = supgeso [p;(s)| < oo from Lemma S.1. Also,

n

sup [0y rig(ka(s, o) = kn(s, 7)) < sup |@i(s)] - sup |ka(r,s) = k(r, )| — 0.
s€80 -1 s€S0 r,s€S0

Finally, since maxi<j<q |7 —7i| — 0 and oy > g > ... > Dy > Dg41, we can apply Corollary 1 of Yu,
Wang and Samworth (2015) and conclude that n=>"" (7, —r;;)*> — 0 for i = 1,...,q. Applying
Cauchy-Schwarz then yields

n n

n
sup [n ! Z i1 —1i))kn(s,s)? <n”? Z(m —7i)% - sup n_IZ}’cn(s,s?)2 — 0

s€80 =1 =1 s€S0 =1

where the convergence follows from n=* 371", ky (s, s9)? < 2 Sup,. ses0 [k(r, s)[>+2sup; .50 |k (7, 5) —

k(r, ) = 0(1). O

Theorem S.3. Suppose y; = x5+, (z],w) = )\1/2(X0( 9, U(sY)) € RP x R with (X3(-), U(+))
satisfying (27), but X is not necessarily independent of U®. Let RX be the n x p matriz of q eigen-
vectors of M xX My corresponding to the largest eigenvalues. Suppose for almost every realization
of XO, the largest q + 1 eigenvalues of the kernel kxo : S x S — R corresponding to the linear
operator MxoLMyo with Mxo(f)(s) = f(s) — X°(s) (f X°(r)X°(r)'dG(r)) "~ fXO ) f(r)dG(r)
are distinct. If also Condition 1 holds, then

NIPRYY, / @0 (5)U°(5)dG(5) (S.5)

where @ xo(+) are the q eigenfunctions of kxo corresponding to the largest eigenvalues.

Furthermore, let U be independent of (X2,UY), and suppose U satisfies U(-) = U°(-) with
U0 ~ UO. Let cv,(X0) be the 1 — o quantile of the conditional distribution of qﬁ(Rf’fJn) given R:X
for some continuous function ¢ : R — R satisfying ¢(ax) = ¢(x) for all a # 0 and © € RY. Suppose
that (i) X° is independent of U, (ii) for almost all realizations of X° the conditional distribution
of ¢([ xo0(s)U°(s)dG(s)) is continuous. Then P(¢(RX'Y,) > v, (X)) — a.

Proof We will show that ($(RX'Y,),cvn(X0) = (o[ x(s)U%s )dG(s)),qffa(Xo)) with
q1 o(X?) the 1 — a quantile of ¢([ px(s)U(s)dG(s)) conditional on X°. The result then follows
from the CMT applied to 1[¢p(RX'Y,,) > cv,(X0)], and taking expectations.

Apply the almost sure representation theorem to argue that there exists a probability space
(Q0, 50, Po) and associated random processes X*,U* and X}, U}, n > 1 such that (X}, U}) ~
(X2, UR), (X*,U%) ~ (X°,U°) and supgego | X;i(s) — X*(s)| =3 0, supyego [Uri(s) — U*(s)] =5 0.

Using the same arguments as in the proof of Theorem 3, and a realization by realization application



of Lemma S.2, then yields
AZRX Ty 05 / 03 ()0 ()dG (5) ~ w / @+ (5)U°()dG (s) (S.6)

where (RX",Y?) are defined analogously to (R:X,Y,) on (Q0,T0, Po), and (RX",Y?) ~ (RX,Y,)
by construction, so (S.5) holds.

The further result now follows if we can show that also cv,, (X*) “3 q‘f_ o(X™), since almost sure
convergence implies convergence in distribution. To that end, note there exists a separate probability
space (21,81, P1) with associated sequences of random process U* and U;lk and such that U;; ~ Ug,
U* ~ U~ U° and SUPe g0 |U(s)— ~*( )| 3 0. Form the product space (Qg x Q1, Fo ®F1, Po x P1),
so that on this new space, (X*, {X*}°2 ) is independent of (U*,{U;}%,) by construction. Use the
same arguments as for (S.6) obtain that for Py-almost all wy € Qg and Pj-almost all wy € €, in

obvious notation,

NPRYTT; o [ o ()0 (G

jointly with (S.6). But almost sure convergence implies convergence in distribution, and U* ~ U,
so for Pp-almost all wg € g, the distribution of A, 1/ 2RnX*’ fJ;'; induced by P; converges to the
conditional distribution of [ ¢x-(s)U%(s)dG(s) given X*. Since ¢ is continuous and the condi-
tional distribution is assumed continuous, this implies that for all such wy, cv,(X9) 4% q1 o (X7F).
Thus ($(RY),cva(X0) ~ (SR Y7),cvu(X5)) “5 (8([ - ()U*(5)dG(s)), a_o (X*)) ~

(([ pxo(s)U(s )dG(s)),qf_a(X 0)), and the result follows, because almost sure convergence im-

plies convergence in distribution. O

In applications, the theorem justifies use of a critical value for the test statistic ¢(R.XY,,) that
is equal to the 1 — a quantile of ¢(R:X'U,,) conditional on R:X, for some (pseudo-) random variable
draws of u; = f)'n(s?) that induce the same limiting process as the actual regression errors v;. Since

¢ is assumed scale invariant, the scaling of #%; is immaterial in this construction.

Proof of Theorem 8:
By Lemmas 3 and 12 in Miiller and Watson (2022a), we have

A2 =17, = N <O,aaB(0) / P(5)P(s)dG (s) + w? / ?(s)3(s) g(s)dG (s )) (S.7)

where @ = (&1, ...,8,), w? = [ra 0B(s)ds and g is the density of the distribution G. Since the LFST,

statistic is scale invariant, its limiting distribution under (S.7) only depends on the properties of B

LFST

through the ratio x = ao(0)/w? € [0,00). We need to show that liminf, . cvEFST is at least as

LFST

large as the 1 — a quantile, say cvy">", of the (continuous) asymptotic distribution of LFST,, for

this value of .



Note that for B = J., op(0)/w? = Kyc'T¢ for some K4 > 0. For a > 0, let ¢, be such
Kaclt? = x/a, and let ¢, = 1 otherwise. For all n sufficiently large so that A,c. > co.03, CV%FST is
such that the LFST,, test controls size under B = J.~. But since B = J,, satisfies the assumptions
of Lahiri (2003), this model induces the same limit (S.7), so its 1 — a quantile converges to CV&FST,
and the result follows. [J

S.3 Detailed Monte Carlo Results

The following tables summarize the distributions of the null rejection probability and average length
of confidence intervals for each method and DGP across the 96 spatial designs described in Section
6.

Entries show the median across spatial locations and the values in parentheses are 5™ and 95

percentiles.
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Null Rejection Probability: k = 1

Method: OLS (C-SCPC)

DGP

Levy-BM 0.227 (0.202,0.267)
1(1) c=0.01 0.243 (0.217,0.276)
1(1) c=0.03 0.271 (0.243,0.312)
1(1) Matern 0.249 (0.227,0.284)
7 c=0.03 0.035 (0.032,0.040)
Jc=0.50 0.145 (0.131,0.168)
Br. Sheet 0.254 (0.218,0.302)

Null Rejection Probability: k=5

DGP

Levy-BM 0.196 (0.183,0.213)
1(1) ¢=0.01 0.198 (0.185,0.211)
1(1) c=0.03 0.225 (0.210,0.243)
1(1) Matern 0.202 (0.189,0.218)
7 c=0.03 0.038 (0.033,0.042)
Tc=0.50 0.145 (0.132,0.156)
Br. Sheet 0.233 (0.205,0.259)

Average Length: k=1

DGP
Levy-BM 1.133 (1.071,1.204)
1(1) c=0.01 1.338 (1.262,1.437)
1(1) c=0.03 1.419 (1.346,1.495)
1(1) Matern 1.385 (1.325,1.453)
J c=0.03 0.497 (0.488,0.507)
Jc=0.50 1.030 (0.995,1.095)
Br. Sheet 1.071 (1.003,1.146)

Average Length: k =5

DGP
Levy-BM 0.854 (0.828,0.884)
1(1) c=0.01 1.101 (1.060,1.141)
1(1) c=0.03 1.181 (1.130,1.244)
1(1) Matern 1.168 (1.101,1.219)
J c=0.03 0.484 (0.478,0.489)
Jc=0.50 0.833 (0.807,0.869)
Br. Sheet 0.801 (0.750,0.858)
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Method: Isotropic difference (C-SCPC)

Null Rejection Probability: k = 1

DGP b =0.030 b =0.060 b =0.090 b=0.120 b=0.150
Levy-BM 0.020 (0.016,0.024) | 0.022(0.017,0.027) | 0.028 (0.023,0.035) | 0.034(0.027,0.044) | 0.040 (0.033,0.055)
I(1) ¢=0.01 0.056 (0.046,0.065) | 0.045(0.041,0.051) | 0.045(0.039,0.056) | 0.049 (0.042,0.065) | 0.056 (0.045,0.074)
I(1) ¢=0.03 0.097 (0.080,0.112) | 0.079 (0.069,0.089) | 0.071 (0.062,0.083) | 0.072 (0.060,0.093) | 0.076 (0.063,0.105)
I(1) Matern 0.079 (0.067,0.089) | 0.065 (0.057,0.073) | 0.059 (0.054,0.065) | 0.060 (0.053,0.073) | 0.065 (0.056,0.086)
J¢=0.03 0.019 (0.015,0.024) | 0.021 (0.017,0.026) | 0.026 (0.021,0.031) | 0.029 (0.024,0.035) | 0.033 (0.027,0.038)
Jc=10.50 0.020 (0.016,0.024) | 0.022 (0.018,0.028) | 0.027 (0.022,0.034) | 0.033 (0.026,0.045) | 0.038 (0.031,0.055)
Br. Sheet 0.042 (0.033,0.066) | 0.067 (0.050,0.117) | 0.092 (0.071,0.153) | 0.109 (0.086,0.175) | 0.120 (0.096,0.185)
Null Rejection Probability: k=5
DGP b =0.030 b =0.060 b =0.090 b=0.120 b=0.150
Levy-BM 0.023 (0.019,0.028) | 0.024 (0.020,0.030) | 0.029 (0.025,0.038) | 0.035(0.029,0.049) | 0.042 (0.032,0.058)
I(1) ¢=0.01 0.059 (0.050,0.069) | 0.047 (0.042,0.052) | 0.045(0.039,0.053) | 0.048 (0.042,0.064) | 0.053 (0.045,0.076)
I(1) ¢=0.03 0.096 (0.082,0.105) [ 0.077 (0.069,0.088) | 0.068 (0.062,0.075) | 0.067 (0.060,0.081) | 0.071 (0.062,0.092)
I(1) Matern 0.080 (0.069,0.089) | 0.064 (0.057,0.072) | 0.058 (0.051,0.065) | 0.058 (0.050,0.071) | 0.063 (0.053,0.081)
J¢=0.03 0.022 (0.017,0.025) | 0.023 (0.019,0.028) | 0.026 (0.022,0.032) | 0.030(0.025,0.037) | 0.032 (0.028,0.040)
Jc=0.50 0.022 (0.019,0.026) | 0.024 (0.019,0.028) | 0.028 (0.023,0.036) | 0.033 (0.028,0.045) | 0.039 (0.032,0.056)
Br. Sheet 0.047 (0.037,0.079) | 0.072 (0.055,0.131) | 0.090 (0.072,0.162) | 0.108 (0.086,0.175) | 0.120 (0.097,0.182)
Average Length: k=1
DGP b =0.030 b =0.060 b =0.090 b=0.120 b=0.150
Levy-BM 0.465 (0.410,0.533) | 0.415(0.384,0.454) | 0.428 (0.400,0.483) | 0.473(0.433,0.563) | 0.531(0.475,0.625)
I(1) ¢=0.01 0.705 (0.640,0.783) | 0.636 (0.588,0.686) | 0.644 (0.599,0.720) | 0.701 (0.634,0.809) | 0.762 (0.690,0.893)
I(1) ¢=0.03 0.824 (0.772,0.932) | 0.736 (0.683,0.822) | 0.729 (0.680,0.791) | 0.770 (0.712,0.858) | 0.838 (0.770,0.947)
I(1) Matern 0.843 (0.779,0.928) | 0.746 (0.699,0.837) | 0.733 (0.689,0.803) | 0.764 (0.723,0.868) | 0.819 (0.766,0.958)
J¢=0.03 0.465 (0.405,0.517) | 0.403 (0.377,0.435) | 0.404 (0.374,0.436) | 0.418 (0.389,0.463) | 0.436 (0.405,0.483)
Jc=10.50 0.462 (0.417,0.541) | 0.411(0.382,0.441) | 0.426(0.399,0.472) | 0.467 (0.431,0.552) | 0.518 (0.473,0.620)
Br. Sheet 0.536 (0.478,0.595) | 0.498 (0.468,0.543) | 0.517(0.486,0.569) | 0.542 (0.510,0.610) | 0.575 (0.543,0.661)
Average Length: k =5
DGP b =0.030 b =0.060 b =0.090 b=0.120 b=0.150
Levy-BM 0.449 (0.405,0.502) | 0.402 (0.376,0.435) | 0.425(0.394,0.472) | 0.468 (0.427,0.534) | 0.514 (0.471,0.600)
I(1) ¢=0.01 0.661 (0.607,0.711) | 0.606 (0.570,0.656) | 0.633 (0.591,0.706) | 0.691 (0.641,0.797) | 0.756 (0.703,0.868)
I(1) ¢=0.03 0.779 (0.716,0.817) [ 0.705 (0.658,0.745) | 0.717 (0.676,0.785) | 0.774 (0.723,0.885) | 0.844 (0.775,0.965)
I(1) Matern 0.786 (0.738,0.859) | 0.721 (0.684,0.772) | 0.728 (0.690,0.785) | 0.777 (0.728,0.868) | 0.839 (0.778,0.942)
J¢=0.03 0.456 (0.408,0.506) | 0.393(0.372,0.425) | 0.397 (0.374,0.429) | 0.415(0.387,0.450) | 0.433(0.403,0.471)
Jc=10.50 0.449 (0.408,0.495) | 0.403 (0.377,0.430) | 0.422(0.391,0.476) | 0.464 (0.430,0.542) | 0.512(0.471,0.605)
Br. Sheet 0.506 (0.464,0.562) | 0.480 (0.452,0.517) | 0.498 (0.464,0.535) | 0.527(0.489,0.576) | 0.557 (0.519,0.624)
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Null Rejection Probability: k

Method: Cluster fixed-effects (clustered standard error)

=1

DGP m=30 m= 60 m=120 m = 240

Levy-BM 0.168 (0.155,0.178) 0.139 (0.130,0.148) 0.105 (0.098,0.111) 0.076 (0.072,0.082)
I(1) ¢=0.01 0.263 (0.239,0.277) 0.281 (0.263,0.296) 0.285(0.261,0.310) 0.238 (0.217,0.257)
I(1) c=0.03 0.350 (0.331,0.367) 0.390 (0.363,0.412) 0.412 (0.391,0.435) 0.369 (0.336,0.391)
I(1) Matern 0.305 (0.284,0.322) 0.339 (0.318,0.360) 0.364 (0.337,0.390) 0.326 (0.296,0.347)
J¢=0.03 0.092 (0.086,0.097) 0.080 (0.076,0.085) 0.070 (0.066,0.075) 0.066 (0.061,0.070)
Jc=0.50 0.140 (0.132,0.149) 0.117 (0.109,0.124) 0.093 (0.087,0.100) 0.075 (0.070,0.081)
Br. Sheet 0.282 (0.243,0.339) 0.258 (0.219,0.310) 0.213 (0.185,0.262) 0.133(0.116,0.162)

Null Rejection Probability: k=5

DGP m=30 m= 60 m=120 m = 240

Levy-BM 0.175 (0.164,0.185) 0.142 (0.130,0.151) 0.109 (0.101,0.116) 0.083 (0.078,0.088)
I(1) ¢=0.01 0.271 (0.255,0.287) 0.283 (0.265,0.297) 0.284 (0.268,0.298) 0.243 (0.230,0.265)
I(1) c=0.03 0.348 (0.326,0.366) 0.378 (0.356,0.399) 0.398 (0.374,0.414) 0.356 (0.338,0.375)
I(1) Matern 0.311 (0.288,0.328) 0.338 (0.315,0.355) 0.363 (0.339,0.378) 0.327(0.306,0.342)
J¢=0.03 0.097 (0.092,0.104) 0.084 (0.079,0.090) 0.074 (0.071,0.079) 0.072 (0.068,0.076)
Jc=0.50 0.149 (0.142,0.160) 0.123 (0.115,0.133) 0.098 (0.092,0.105) 0.079 (0.074,0.084)
Br. Sheet 0.295 (0.256,0.340) 0.266 (0.231,0.312) 0.221 (0.188,0.285) 0.141 (0.124,0.178)

Average Length: k=1

DGP m =30 m = 60 m=120 m = 240

Levy-BM 0.353 (0.342,0.364) 0.307 (0.299,0.317) 0.294 (0.288,0.301) 0.355 (0.347,0.364)
I(1) ¢=0.01 0.474 (0.458,0.495) 0.412 (0.396,0.431) 0.382 (0.365,0.408) 0.442 (0.420,0.474)
I(1) c=0.03 0.501 (0.480,0.520) 0.424 (0.406,0.448) 0.389 (0.363,0.410) 0.441 (0.415,0.469)
I(1) Matern 0.497 (0.481,0.515) 0.430 (0.407,0.453) 0.392 (0.369,0.414) 0.450 (0.422,0.478)
J¢c=0.03 0.275 (0.271,0.280) 0.264 (0.260,0.269) 0.272 (0.267,0.276) 0.342 (0.337,0.348)
Jc=0.50 0.343 (0.335,0.352) 0.302 (0.295,0.312) 0.291 (0.287,0.297) 0.354 (0.347,0.361)
Br. Sheet 0.376 (0.358,0.402) 0.329 (0.312,0.351) 0.314 (0.303,0.328) 0.380 (0.361,0.398)

Average Length: k=5

DGP m =30 m = 60 m=120 m = 240

Levy-BM 0.334 (0.327,0.344) 0.297 (0.289,0.307) 0.288 (0.283,0.295) 0.349 (0.343,0.356)
I(1) ¢=0.01 0.448 (0.438,0.463) 0.395 (0.386,0.411) 0.371 (0.358,0.383) 0.424 (0.407,0.444)
I(1) c=0.03 0.476 (0.463,0.492) 0.411 (0.399,0.426) 0.382 (0.369,0.395) 0.431 (0.412,0.450)
I(1) Matern 0.475 (0.463,0.491) 0.414 (0.400,0.429) 0.384 (0.366,0.398) 0.433 (0.413,0.454)
J¢=0.03 0.269 (0.264,0.274) 0.260 (0.255,0.265) 0.269 (0.264,0.273) 0.338 (0.333,0.344)
Jc=0.50 0.327 (0.320,0.336) 0.293 (0.287,0.300) 0.286 (0.282,0.292) 0.347 (0.342,0.352)
Br. Sheet 0.347 (0.337,0.362) 0.313 (0.303,0.326) 0.305 (0.294,0.316) 0.370 (0.355,0.381)
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Null Rejection Probability: k

Method: Cluster fixed-effects (C-SCPC)

=1

DGP m=30 m = 60 m=120 m =240

Levy-BM 0.053 (0.045,0.062) 0.056 (0.044,0.073) 0.056 (0.046,0.065) 0.047 (0.040,0.061)
I(1) ¢=0.01 0.084 (0.076,0.094) 0.097 (0.080,0.129) 0.112 (0.091,0.132) 0.102 (0.081,0.133)
I(1) c=0.03 0.122 (0.112,0.134) 0.132 (0.116,0.175) 0.157 (0.134,0.183) 0.150 (0.126,0.173)
I(1) Matern 0.098 (0.089,0.112) 0.114 (0.097,0.149) 0.134 (0.118,0.166) 0.127(0.107,0.150)
J¢=0.03 0.030 (0.026,0.035) 0.034 (0.029,0.044) 0.041 (0.034,0.049) 0.042 (0.035,0.049)
Jc=0.50 0.043 (0.039,0.051) 0.048 (0.039,0.064) 0.050 (0.041,0.062) 0.046 (0.040,0.059)
Br. Sheet 0.104 (0.082,0.145) 0.106 (0.080,0.150) 0.105 (0.081,0.150) 0.076 (0.058,0.103)

Null Rejection Probability: k=5

DGP m=30 m =60 m=120 m =240

Levy-BM 0.053 (0.048,0.061) 0.056 (0.046,0.073) 0.060 (0.048,0.076) 0.051 (0.041,0.063)
I(1) ¢=0.01 0.080 (0.073,0.090) 0.098 (0.078,0.139) 0.122 (0.104,0.147) 0.116 (0.097,0.136)
I(1) ¢=0.03 0.107 (0.096,0.118) 0.129 (0.107,0.178) 0.177 (0.153,0.202) 0.165 (0.146,0.188)
I(1) Matern 0.090 (0.081,0.103) 0.102 (0.088,0.157) 0.149 (0.129,0.179) 0.144 (0.130,0.163)
J¢=0.03 0.030 (0.026,0.035) 0.036 (0.030,0.047) 0.043 (0.034,0.054) 0.046 (0.040,0.058)
Jc=10.50 0.044 (0.038,0.051) 0.050 (0.039,0.067) 0.055 (0.047,0.067) 0.050 (0.042,0.059)
Br. Sheet 0.106 (0.090,0.145) 0.115 (0.085,0.163) 0.109 (0.086,0.152) 0.083 (0.064,0.114)

Average Length: k=1

DGP m=30 m =60 m=120 m =240

Levy-BM 0.550 (0.530,0.572) 0.447 (0.420,0.468) 0.393 (0.373,0.411) 0.453 (0.431,0.471)
I(1) ¢=0.01 0.809 (0.774,0.841) 0.697 (0.648,0.744) 0.627 (0.588,0.664) 0.683 (0.632,0.723)
I(1) ¢=0.03 0.907 (0.876,0.942) 0.813 (0.745,0.854) 0.737 (0.683,0.775) 0.773 (0.721,0.820)
I(1) Matern 0.878 (0.848,0.916) 0.773 (0.712,0.822) 0.708 (0.647,0.747) 0.763 (0.716,0.806)
J¢=0.03 0.405 (0.392,0.418) 0.370 (0.348,0.382) 0.352 (0.337,0.365) 0.433 (0.409,0.458)
Jc=10.50 0.527 (0.510,0.546) 0.433 (0.411,0.451) 0.386 (0.368,0.401) 0.449 (0.424,0.466)
Br. Sheet 0.620 (0.576,0.675) 0.514 (0.476,0.559) 0.455 (0.419,0.485) 0.502 (0.454,0.532)

Average Length: k =5

DGP m=30 m =60 m=120 m =240

Levy-BM 0.530 (0.513,0.548) 0.433 (0.410,0.455) 0.379 (0.363,0.397) 0.444 (0.424,0.467)
I(1) ¢=0.01 0.795 (0.765,0.820) 0.680 (0.595,0.722) 0.586 (0.552,0.615) 0.626 (0.596,0.672)
I(1) ¢=0.03 0.901 (0.872,0.922) 0.778 (0.687,0.824) 0.659 (0.622,0.692) 0.702 (0.651,0.741)
I(1) Matern 0.878 (0.842,0.906) 0.780 (0.661,0.814) 0.655 (0.618,0.685) 0.699 (0.665,0.731)
J¢=0.03 0.401 (0.390,0.412) 0.363 (0.344,0.378) 0.346 (0.330,0.362) 0.427 (0.404,0.444)
Jc=10.50 0.513 (0.500,0.527) 0.420 (0.394,0.445) 0.375 (0.356,0.390) 0.439 (0.421,0.459)
Br. Sheet 0.583 (0.556,0.619) 0.493 (0.454,0.532) 0.435 (0.408,0.461) 0.483 (0.450,0.516)
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Null Rejection Probability: k = 1

Method: LBM-GLS

DGP

Levy-BM 0.053 (0.049,0.057)
1(1) c=0.01 0.256 (0.244,0.267)
1(1) c=0.03 0.392 (0.374,0.412)
1(1) Matern 0.379 (0.359,0.396)
7 c=0.03 0.058 (0.055,0.062)
Jc=0.50 0.053 (0.050,0.056)
Br. Sheet 0.234 (0.204,0.298)

Null Rejection Probability: k=5

DGP

Levy-BM 0.054 (0.051,0.058)
1(1) c=0.01 0.257 (0.243,0.268)
1(1) c=0.03 0.392 (0.377,0.408)
1(1) Matern 0.380 (0.363,0.400)
7 c=0.03 0.060 (0.056,0.063)
Jc=0.50 0.054 (0.051,0.057)
Br. Sheet 0.234 (0.206,0.300)

Average Length: k=1

DGP
Levy-BM 0.195 (0.195,0.195)
1(1) c=0.01 0.212 (0.209,0.215)
1(1) c=0.03 0.224 (0.219,0.231)
1(1) Matern 0.222 (0.215,0.229)
J c=0.03 0.196 (0.195,0.196)
Jc=0.50 0.195 (0.195,0.196)
Br. Sheet 0.208 (0.199,0.213)

Average Length: k =5

DGP
Levy-BM 0.195 (0.195,0.195)
1(1) c=0.01 0.212 (0.208,0.214)
1(1) c=0.03 0.224 (0.218,0.229)
1(1) Matern 0.223 (0.218,0.228)
J c=0.03 0.196 (0.195,0.196)
Jc=0.50 0.195 (0.195,0.195)
Br. Sheet 0.208 (0.199,0.212)
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Method: LBM-GLS (C-SCPC)

Null Rejection Probability: k = 1

DGP
Levy-BM 0.030 (0.027,0.035)
I(1) c=0.01 0.049 (0.043,0.055)
I(1) ¢=0.03 0.069 (0.060,0.076)
I(1) Matern 0.059 (0.051,0.066)
J¢c=0.03 0.029 (0.025,0.033)
Jc=0.50 0.030 (0.027,0.035)
Br. Sheet 0.088 (0.072,0.125)
Null Rejection Probability: k=5
DGP
Levy-BM 0.031 (0.027,0.035)
I(1) c=0.01 0.050 (0.043,0.056)
I(1) ¢=0.03 0.069 (0.061,0.078)
I(1) Matern 0.059 (0.052,0.067)
J¢c=0.03 0.029 (0.025,0.033)
Jc=0.50 0.030 (0.027,0.034)
Br. Sheet 0.085 (0.072,0.132)
Average Length: k=1
DGP
Levy-BM 0.254 (0.251,0.257)
I(1) ¢=0.01 0.419 (0.408,0.430)
I(1) ¢=0.03 0.541 (0.524,0.559)
I(1) Matern 0.545 (0.523,0.562)
J¢c=0.03 0.264 (0.260,0.266)
Jc=0.50 0.255 (0.252,0.258)
Br. Sheet 0.333 (0.319,0.349)
Average Length: k =5
DGP
Levy-BM 0.256 (0.253,0.258)
I(1) ¢=0.01 0.419 (0.408,0.430)
I(1) ¢=0.03 0.536 (0.517,0.553)
I(1) Matern 0.547 (0.528,0.565)
J¢c=0.03 0.266 (0.262,0.268)
Jc=0.50 0.257 (0.253,0.259)
Br. Sheet 0.335 (0.320,0.347)
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Null Rejection Probability: k = 1

Method: Low-pass eigenvector

DGP q=10 q=20 q=50

Levy-BM 0.050 (0.046,0.054) 0.050 (0.047,0.054) 0.050 (0.046,0.053)
I(1) ¢=0.01 0.051 (0.047,0.054) 0.052 (0.049,0.056) 0.064 (0.060,0.068)
I(1) c=0.03 0.053 (0.050,0.057) 0.063 (0.058,0.067) 0.105 (0.099,0.110)
I(1) Matern 0.051 (0.047,0.055) 0.055 (0.052,0.059) 0.082 (0.077,0.087)
J¢c=0.03 0.100 (0.093,0.107) 0.094 (0.088,0.099) 0.078 (0.074,0.083)
Jc=0.50 0.056 (0.052,0.060) 0.054 (0.050,0.059) 0.052 (0.048,0.055)
Br. Sheet 0.128 (0.095,0.171) 0.160 (0.120,0.209) 0.210 (0.170,0.272)

Null Rejection Probability: k=5

DGP q=10 q=20 q=50

Levy-BM 0.050 (0.046,0.054) 0.050 (0.046,0.054) 0.050 (0.048,0.054)
I(1) ¢=0.01 0.050 (0.047,0.054) 0.051 (0.048,0.056) 0.062 (0.059,0.066)
I(1) ¢=0.03 0.052 (0.048,0.055) 0.060 (0.057,0.063) 0.101 (0.096,0.107)
I(1) Matern 0.050 (0.046,0.053) 0.054 (0.050,0.058) 0.080 (0.074,0.085)
J¢c=0.03 0.095 (0.089,0.100) 0.095 (0.088,0.099) 0.079 (0.075,0.083)
Jc=0.50 0.054 (0.050,0.057) 0.054 (0.050,0.057) 0.052 (0.048,0.055)
Br. Sheet 0.104 (0.080,0.135) 0.147 (0.119,0.180) 0.201 (0.168,0.243)

Average Length: k=1

DGP q=10 q=20 q=50

Levy-BM 1.507 (1.499,1.515) 0.960 (0.957,0.963) 0.574 (0.573,0.575)
I(1) ¢=0.01 1.508 (1.500,1.515) 0.960 (0.956,0.964) 0.574 (0.573,0.575)
I(1) ¢=0.03 1.507 (1.500,1.516) 0.960 (0.957,0.964) 0.574 (0.573,0.576)
I(1) Matern 1.508 (1.499,1.518) 0.961 (0.956,0.964) 0.574 (0.572,0.576)
J¢=0.03 1.509 (1.496,1.517) 0.960 (0.956,0.964) 0.574 (0.573,0.576)
Jc=0.50 1.508 (1.499,1.513) 0.960 (0.957,0.963) 0.574 (0.573,0.575)
Br. Sheet 1.507 (1.498,1.518) 0.959 (0.956,0.967) 0.574 (0.572,0.576)

Average Length: k =5

DGP q=10 q=20 q=50

Levy-BM 2.299(2.279,2.317) 1.101 (1.095,1.106) 0.601 (0.599,0.602)
I(1) ¢=0.01 2.297 (2.280,2.313) 1.100 (1.096,1.105) 0.600 (0.599,0.602)
I(1) ¢=0.03 2.297 (2.276,2.317) 1.100 (1.095,1.105) 0.600 (0.599,0.602)
I(1) Matern 2.298 (2.283,2.316) 1.101 (1.095,1.105) 0.600 (0.599,0.602)
J¢=0.03 2.297 (2.274,2.318) 1.100 (1.095,1.104) 0.600 (0.599,0.602)
Jc=0.50 2.300 (2.282,2.320) 1.101 (1.096,1.106) 0.600 (0.599,0.602)
Br. Sheet 2.300 (2.283,2.322) 1.101 (1.095,1.106) 0.600 (0.598,0.602)
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Null Rejection P

robability: k =1

Method: High-pass eigenvector (C-SCPC)

DGP

q=>5

q=10

q=20

q=50

q=100

Levy-BM

0.129 (0.117,0.139)

0.095 (0.087,0.103)

0.070 (0.063,0.078)

0.050 (0.045,0.056)

0.042 (0.037,0.046)

1(1) c=0.01

0.174 (0.160,0.184)

0.141 (0.132,0.152)

0.118 (0.106,0.128)

0.090 (0.081,0.099)

0.069 (0.061,0.078)

1(1) c=0.03

0.215 (0.205,0.234)

0.183 (0.168,0.197)

0.150 (0.137,0.167)

0.111(0.096,0.128)

0.081 (0.071,0.097)

I(1) Matern

0.193 (0.180,0.206)

0.165 (0.152,0.180)

0.146 (0.131,0.159)

0.118 (0.106,0.136)

0.097 (0.077,0.121)

J¢c=0.03

0.050 (0.045,0.054)

0.051 (0.046,0.056)

0.050 (0.045,0.055)

0.045 (0.040,0.049)

0.040 (0.035,0.044)

Jc=0.50

0.120 (0.112,0.133)

0.093 (0.086,0.099)

0.070 (0.064,0.076)

0.050 (0.045,0.055)

0.041 (0.037,0.047)

Br. Sheet

0.213 (0.186,0.270)

0.192 (0.163,0.246)

0.167 (0.141,0.221)

0.132(0.113,0.174)

0.099 (0.084,0.136)

Null Rejection P

robability: k=35

DGP

q=>5

q=10

q=20

q=50

q=100

Levy-BM

0.125 (0.116,0.134)

0.093 (0.087,0.101)

0.070 (0.065,0.078)

0.051 (0.045,0.057)

0.041 (0.037,0.046)

1(1) c=0.01

0.161 (0.151,0.170)

0.135(0.125,0.147)

0.114 (0.106,0.126)

0.089 (0.078,0.102)

0.068 (0.061,0.078)

1(1) c=0.03

0.200 (0.187,0.212)

0.173 (0.161,0.184)

0.144 (0.133,0.158)

0.108 (0.094,0.126)

0.082 (0.070,0.097)

I(1) Matern

0.179 (0.167,0.188)

0.157 (0.147,0.168)

0.139 (0.129,0.153)

0.118 (0.104,0.134)

0.095 (0.080,0.113)

J¢c=0.03

0.051 (0.046,0.054)

0.051 (0.048,0.056)

0.051 (0.046,0.054)

0.045 (0.042,0.051)

0.040 (0.036,0.044)

Jc=0.50

0.117 (0.108,0.128)

0.090 (0.085,0.096)

0.069 (0.063,0.074)

0.050 (0.045,0.057)

0.041 (0.037,0.045)

Br. Sheet

0.203 (0.182,0.249)

0.183(0.161,0.232)

0.160 (0.140,0.214)

0.129 (0.108,0.174)

0.100 (0.083,0.138)

Average Length: k=1

DGP q=5 q=10 q=20 q=50 q=100

Levy-BM 0.565 (0.552,0.578) 0.467 (0.459,0.476) 0.391 (0.382,0.399) 0.328 (0.322,0.335) 0.320 (0.314,0.325)
I(1) c=0.01 0.744 (0.720,0.770) 0.647 (0.625,0.671) 0.558 (0.541,0.576) 0.464 (0.450,0.479) 0.428 (0.414,0.441)
I(1) ¢=0.03 0.789 (0.755,0.825) 0.690 (0.656,0.715) 0.587 (0.567,0.617) 0.489 (0.468,0.510) 0.449 (0.427,0.466)
I(1) Matern 0.788 (0.759,0.820) 0.690 (0.666,0.720) 0.607 (0.581,0.628) 0.521 (0.492,0.542) 0.501 (0.466,0.522)
J¢c=0.03 0.419 (0.412,0.425) 0.388 (0.381,0.394) 0.353 (0.349,0.359) 0.318 (0.314,0.324) 0.317 (0.313,0.322)
Jc=0.50 0.558 (0.542,0.575) 0.465 (0.455,0.475) 0.389 (0.383,0.399) 0.329 (0.322,0.334) 0.320 (0.314,0.325)
Br. Sheet 0.592 (0.571,0.614) 0.523 (0.498,0.551) 0.472 (0.449,0.498) 0.423 (0.401,0.447) 0.409 (0.394,0.427)

Average Length: k =5

DGP q=5 q=10 q=20 q=50 q=100

Levy-BM 0.535 (0.524,0.549) 0.456 (0.447,0.467) 0.386 (0.380,0.394) 0.329 (0.322,0.334) 0.322 (0.317,0.327)
I(1) ¢=0.01 0.735 (0.711,0.755) 0.647 (0.623,0.665) 0.557 (0.542,0.576) 0.465 (0.448,0.480) 0.428 (0.413,0.443)
I(1) ¢=0.03 0.792 (0.764,0.820) 0.693 (0.667,0.719) 0.594 (0.573,0.618) 0.491 (0.471,0.511) 0.448 (0.430,0.467)
I(1) Matern 0.786 (0.765,0.812) 0.697 (0.677,0.725) 0.613 (0.594,0.634) 0.526 (0.498,0.548) 0.501 (0.477,0.525)
J¢c=0.03 0.412 (0.406,0.418) 0.383 (0.378,0.389) 0.352 (0.346,0.357) 0.318 (0.314,0.324) 0.319 (0.314,0.325)
Jc=0.50 0.533 (0.520,0.545) 0.455 (0.446,0.462) 0.387 (0.380,0.393) 0.329 (0.323,0.335) 0.322 (0.316,0.327)
Br. Sheet 0.551 (0.529,0.575) 0.498 (0.476,0.514) 0.454 (0.436,0.471) 0.413 (0.398,0.430) 0.404 (0.390,0.417)
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Null Rejection Probability: k = 1

Method: Ibragimov-Miiller

DGP m=10 m =20 m =50

Levy-BM 0.105 (0.090,0.117) 0.105 (0.096,0.114) 0.080 (0.072,0.087)
I(1) ¢=0.01 0.125 (0.110,0.137) 0.144 (0.131,0.157) 0.154 (0.137,0.168)
I(1) ¢=0.03 0.152(0.130,0.166) 0.193 (0.174,0.207) 0.235(0.211,0.254)
I(1) Matern 0.134 (0.115,0.147) 0.163 (0.149,0.175) 0.193 (0.179,0.206)
J ¢=0.03 0.062 (0.058,0.067) 0.062 (0.056,0.067) 0.053 (0.047,0.058)
Jc=0.50 0.088 (0.081,0.095) 0.087 (0.082,0.094) 0.070 (0.063,0.077)
Br. Sheet 0.182 (0.132,0.223) 0.198 (0.156,0.234) 0.158 (0.131,0.193)

Null Rejection Probability: k=5

DGP m=10 m =20 m =50

Levy-BM 0.084 (0.077,0.091) 0.076 (0.068,0.082) 0.048 (0.043,0.052)
1(1) ¢=0.01 0.091 (0.082,0.098) 0.091 (0.081,0.098) 0.062 (0.057,0.069)
I(1) c=0.03 0.104 (0.092,0.114) 0.114 (0.102,0.121) 0.080 (0.072,0.087)
I(1) Matern 0.092 (0.082,0.101) 0.098 (0.088,0.105) 0.072 (0.064,0.079)
J ¢=0.03 0.060 (0.055,0.064) 0.055 (0.049,0.060) 0.043 (0.039,0.047)
Jc=0.50 0.075 (0.070,0.081) 0.068 (0.060,0.072) 0.045 (0.042,0.051)
Br. Sheet 0.142 (0.115,0.169) 0.135 (0.106,0.159) 0.070 (0.063,0.085)

Average Length: k=1

DGP m=10 m =20 m =50

Levy-BM 0.587 (0.575,0.599) 0.442 (0.432,0.470) 0.418 (0.379,0.479)
I(1) ¢=0.01 0.871 (0.851,0.899) 0.696 (0.680,0.722) 0.627 (0.583,0.707)
I(1) ¢=0.03 1.004 (0.976,1.046) 0.798 (0.780,0.824) 0.701 (0.656,0.789)
I(1) Matern 0.964 (0.942,0.988) 0.782 (0.762,0.807) 0.709 (0.664,0.768)
J¢c=0.03 0.365 (0.357,0.376) 0.330 (0.320,0.345) 0.375 (0.329,0.438)
Jc=0.50 0.550 (0.537,0.564) 0.428 (0.417,0.442) 0.407 (0.376,0.455)
Br. Sheet 0.609 (0.590,0.643) 0.468 (0.454,0.488) 0.435 (0.397,0.473)

Average Length: k =5

DGP m=10 m =20 m =50

Levy-BM 0.480 (0.472,0.491) 0.411 (0.393,0.481) 0.461 (0.385,0.539)
I(1) ¢=0.01 0.755 (0.740,0.770) 0.647 (0.614,0.727) 0.652 (0.552,0.767)
I(1) ¢=0.03 0.867 (0.851,0.886) 0.730 (0.708,0.805) 0.668 (0.577,0.821)
I(1) Matern 0.883 (0.863,0.910) 0.783 (0.761,0.873) 0.780 (0.617,0.935)
J¢c=0.03 0.359 (0.349,0.372) 0.357 (0.338,0.448) 0.454 (0.359,0.527)
Jc=0.50 0.467 (0.457,0.477) 0.404 (0.383,0.466) 0.478 (0.396,0.571)
Br. Sheet 0.503 (0.495,0.522) 0.435(0.413,0.531) 0.487 (0.390,0.571)
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R? values in OLS regression

k=1
DGP
Levy-BM 0.137 (0.125,0.162)
1(1) c=0.01 0.179 (0.166,0.204)
1(1) c=0.03 0.208 (0.197,0.238)
1(1) Matern 0.192 (0.179,0.215)
7 c=0.03 0.010 (0.010,0.011)
Jc=0.50 0.085 (0.079,0.099)
Br. Sheet 0.139 (0.117,0.161)
k=5
DGP
Levy-BM 0.434 (0.419,0.471)
1(1) c=0.01 0.561 (0.548,0.592)
1(1) c=0.03 0.638 (0.626,0.664)
1(1) Matern 0.595 (0.584,0.625)
7 c=0.03 0.049 (0.047,0.050)
Jc=0.50 0.314 (0.298,0.354)
Br. Sheet 0.443 (0.404,0.471)
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