IDENTIFICATION AND ESTIMATION OF DYNAMIC CAUSAL EFFECTS IN MACROECONOMICS USING EXTERNAL INSTRUMENTS*

James H. Stock and Mark W. Watson

External sources of as-if randomness — that is, external instruments — can be used to identify the dynamic causal effects of macroeconomic shocks. One method is a one-step instrumental variables regression (local projections – IV); a more efficient two-step method involves a vector autoregression. We show that, under a restrictive instrument validity condition, the one-step method is valid even if the vector autoregression is not invertible, so comparing the two estimates provides a test of invertibility. If, however, lagged endogenous variables are needed as control variables in the one-step method, then the conditions for validity of the two methods are the same.

The identification and estimation of dynamic causal effects is a defining challenge of macroeconometrics. In the macroeconomic tradition dating to Frisch (1933) and Slutsky (1937), dynamic causal effects are conceived as the effect, over time, of an intervention that propagates through the economy, as modelled by a system of simultaneous equations. Restrictions on that system can be used to identify its parameters.

In a classic result by the namesake of this lecture, Sargan (1964) (along with Rothenberg and Leenders, 1964) showed that full information maximum likelihood estimation, subject to identifying restrictions, is asymptotically equivalent to instrumental variables (IV) estimation by three stage least squares. The three stage least squares instruments are obtained from restrictions on the system, typically that some variables and/or their lags enter some equations but not others, and thus are ‘internal’ instruments – they are internal to the system. The massive modern literature since Sims (1980) on point-identified structural vector autoregressions (SVARs) descends from this tradition, and nearly all the papers in that literature can be interpreted as achieving identification through internal instruments. In these models, structural shocks are the interventions of interest, and the goal is to estimate the dynamic causal effect of these shocks on macroeconomic outcomes.

In contrast, modern microeconometric identification strategies rely heavily on ‘external’ sources of variation that provide quasi-experiments to identify causal effects. Such external variation might be found, for example, in institutional idiosyncrasies that introduce as-if randomness in the variable of interest (the treatment). The use of

*Corresponding author: James H. Stock, Department of Economics, Harvard University, Cambridge MA 02138, USA. Email: james_stock@harvard.edu.

This work was presented by Stock as the Sargan Lecture to the Royal Economic Society on 11 April 2017. We thank Paul Beaudry, Mark Gertler, Oscar Jordà, Daniel Lewis, Karel Mertens, Mikkel Plagborg-Møller, Glenn Rudebusch, José Luis Montiel Olea, Valerie Ramey, Morten Ravn, Giovanni Ricco, Neil Shephard, Leif Anders Thorsrud, Christian Wolf and an anonymous referee for helpful comments and/or discussions.
such external instruments in microeconometrics has proven highly productive and has yielded compelling estimates of causal effects.

The subject of this article is the use of external instruments to estimate dynamic causal effects in macroeconomics. By an external instrument, we mean a variable that is correlated with a shock of interest, but not with other shocks, so that the instrument captures some exogenous variation in the shock of interest. These instruments are typically not a macro variable of ultimate interest, and as such they are external to the system. In referring to these instruments as external, we also connect with the original term for instruments, external factors (Wright, 1928).

External instruments can be used to estimate dynamic causal effects directly without an intervening VAR step. This method uses an instrumental variables (IV) version of what is called in the forecasting literature a direct multistep forecasting regression; in the impulse response literature, this method is called a local projection. Alternatively, the instruments can be used in conjunction with a VAR to identify structural impulse response functions; this is the IV version of an iterated multistep forecast.

The use of external instruments has opened a new and rapidly growing research programme in macroeconometrics, in which credible identification is obtained using as-if random variation in the shock of interest that is distinct from – external to – the macroeconomic shocks hitting the economy. In many applications, the instrument is constructed as a partial measure of the shock of interest: the quantity of oil kept from market because of a political disruption, a change in fiscal policy not related to business cycle conditions, or the part of a monetary shock revealed during a monetary policy announcement window. Such constructed measures typically have measurement error, which in general leads to bias if the measure is treated as the true shock. However, that measurement error need not compromise the validity of the measure as an instrument. As in the microeconometric setting, finding such instruments is not easy. Still, in our view this research programme holds out the potential for more credible identification than is typically provided by SVARs identified using internal restrictions.

This article unifies and explicates a number of strands of recent work on external instruments in macroeconometrics. The idea that constructed shock series are best thought of as instruments is not new: Blanchard and Sims made this observation in the published general discussion of Romer and Romer (1989), but it seems not to have been followed up. To our knowledge, the earliest work to use constructed shocks as an instrument in a SVAR is Beaudry and Saito (1998), who use the Romer and Romer (1989) indicators to estimate impulse responses to monetary shocks. The method of external instruments for SVAR identification (SVAR-IV) was introduced by Stock (2008), and has been used by Stock and Watson (2012), Mertens and Ravn (2013), Gertler and Karadi (2015), Caldara and Kamps (2017) and a growing list of other researchers. Turning to single-equation methods, Hamilton (2003) developed a list of exogenous oil supply disruptions, which he used as an instrument for autoregressive-distributed lag estimation of the effect of oil supply shocks on GDP. The modern use of external instruments to estimate structural impulse response functions directly (that is, without estimating a VAR or iterating) dates to Jordà et al. (2015) and Ramey and Zubairy (2017), and is clearly

© 2018 Royal Economic Society.
exposited in Ramey (2016). The condition for instrument validity in the direct regression without control variables, given in Section 1 below, appears in unpublished lecture notes by Mertens (2015). Those notes and Fieldhouse et al. (2017) discuss the extension of these conditions to control variables. Jordà et al. (2015) and Ramey (2016) call these direct IV regressions ‘local projections-IV’ (LP-IV) in reference to Jordà’s (2005) method of local projections (LP) on which it builds. We adopt this terminology while noting that these IV regressions emerge from the much older tradition of simultaneous equations estimation in macroeconomics pioneered by Sargan and his contemporaries. Although these methods increasingly are being used in applications, we are not aware of a unified presentation of the econometric theory of and connections between the SVAR-IV and LP-IV methods.

In addition to expositing the use of external instruments in macroeconomics, this article makes five contributions to this literature.

First, we provide conditions for instrument validity for LP-IV, and show that under those conditions LP-IV can estimate dynamic causal effects without assuming invertibility, that is, without assuming that the structural shocks can be recovered from current and lagged values of the observed data. Because of the dynamic nature of the macroeconometric problem, exogeneity of the instrument entails a strong ‘lead–lag exogeneity’ requirement that the instrument be uncorrelated with past and future shocks, at least after including control variables. This condition provides concrete guidance for the construction of instruments and choice of control variables when undertaking LP-IV.

Second, we recapitulate how IV estimation can be undertaken in a SVAR (the SVAR-IV method). This method is more efficient asymptotically than LP-IV under strong-instrument asymptotics, and it does not require lead–lag exogeneity. But to be valid, this method requires invertibility. Invertibility is a very strong, albeit commonly made, assumption: under invertibility, a forecaster using a VAR would find no value in augmenting her system with data on the true macroeconomic shocks, were they magically to become available.

Third, having a more efficient estimator of the structural impulse response function (SVAR-IV) that requires invertibility for consistency, and a less efficient estimator (LP-IV) that does not, gives rise to a Hausman (1978)-type test for whether the SVAR is invertible. We provide this test statistic, obtain its large-sample null distribution, introduce the concept of local non-invertibility and derive the local asymptotic power of the test against this alternative. The focus of this test on the impulse response function – the estimand of interest – differs from existing tests for invertibility, which examine the no-omitted-variables implication by adding variables; see, for example, Forni and Gambetti (2014).

Fourth, lest one think that LP-IV is too good to be true, we provide a ‘no free lunch’ result. Suppose an instrument satisfies a contemporaneous exogeneity condition, but not the no lead–lag exogeneity condition because it is correlated with past shocks. A natural approach is to include additional regressors – lagged macro variables – that control for the lagged shocks. We show, however, that the condition for these control variables to produce valid inference in LP-IV is in general equivalent to assuming invertibility of the corresponding VAR, in which case SVAR-IV provides more efficient inference.

© 2018 Royal Economic Society.
Fifth, we discuss some econometric odds and ends, such as heteroscedasticity and autocorrelation-robust (HAR) standard errors, what to do if the external instruments are weak, estimation of cumulative dynamic effects, forecast error variance decompositions and the pros and cons of using generic controls including factors from dynamic factor models (factor-augmented LP-IV).

Following Ramey (2016), we illustrate these methods using Gertler and Karadi’s (2015) application, in which they estimate the dynamic causal effect of a monetary policy shock using SVAR-IV, with an instrument that captures the news revealed in regularly scheduled monetary policy announcements by the Federal Open Market Committee.

Before proceeding, we note two substantial simplifications made throughout this article. First, we focus exclusively on linear models and identification through second moments, so that conditional expectations are typically replaced by projections. Second, we assume homogenous treatment effects so that valid instruments all have the same estimand (i.e. the local average treatment effect equals the average treatment effect). Both these simplifications are non-trivial. The assumption of non-linearity, in particular, rules out a frequent justification for using LP methods (either OLS or LP-IV), which is that LP methods can estimate non-linear effects without needing to model them as a system. That said, there is a tension between the assumption that the control variables and specification are correct in the single-equation specification, and what this must imply for the full system, and this tension is unresolved in the literature and merits further investigation. We return to this point in the conclusions.

Finally, we use two notational devices: the subscript ‘2:n’ denotes the elements of a vector or matrix other than the first row or column, and {...} denotes a linear combination of the terms inside the braces.

1. Identifying Dynamic Causal Effects Using External Instruments and Local Projections

The LP-IV method emerges naturally from the modern microeconometrics use of instrumental variables. Making this connection requires some translation between two sets of jargon, however, so we start with a brief review of causal effects and instrumental variables regression in the microeconometric setting.

1.1. Causal Effects and Instrumental Variables Regression

Our starting point is that the expected difference in outcomes between the treatment and control groups in a randomised controlled experiment with a binary treatment is the average treatment effect.1 In brief, if a binary treatment X is randomly assigned, then all other determinants of Y are independent of X, which implies that the (average) treatment effect is $E(Y|X = 1) - E(Y|X = 0)$. In the linear model $Y = \gamma + X\beta + u$, where β is the treatment effect, random assignment implies that

1 This starting point is actually a result, or conclusion, of a vast literature on defining causal effects for statistical analysis. See Imbens (2014) for a review, including discussion of both the potential outcomes framework and graphical models.
\(E(Y|X=1, W=w) - E(Y|X=0, W=w) \). With the additional assumptions of linearity and homogeneous treatment effects, this treatment effect is estimated by ordinary least squares estimation of

\[
Y = \beta X + \gamma' W + u,
\]

where the intercept has been subsumed in \(\gamma' W \).

In observational data, the treatment level \(X \) is often endogenous. This is generally the case when the subject has some control over receiving the treatment in an experiment. But if there is some source of variation \(Z \) that is correlated with treatment, such as random assignment to the treatment or control group, conditional on observed covariates \(W \), then the causal effect can be estimated by instrumental variables. Let \(\perp \) denote the residual from the population projection onto \(W \), for example, \(X' = X - \text{Proj}(X|W) \). If the instrument satisfies the conditions:

(i) \(E(X' Z') \neq 0 \) (relevance),

(ii) \(E(u' Z') = 0 \) (exogeneity),

and if the instruments are strong, then instrumental variables estimation of (1) consistently estimates the causal effect \(\beta \).

1.2. Dynamic Causal Effects and the Structural Moving Average Model

In macroeconomics, we can imagine a counterpart of a randomised controlled experiment. For example, in the US, the Federal Open Market Committee (FOMC) could set the Federal Funds rate according to a rule, such as the Taylor rule, perturbed by a randomly chosen amount. Although we have only one subject (the US macroeconomy), by repeating this experiment through time, the FOMC could generate data on the effect of these random interventions.

More generally, let \(\varepsilon_{1,t} \) denote the mean-zero random treatment at date \(t \). Then the causal effect on the value of a variable \(Y_2 \) \(h \) periods hence, of a unit intervention in \(\varepsilon_1 \) is

\[
E_t(Y_{2,t+h}|\varepsilon_{1,t} = 1) - E_t(Y_{2,t+h}|\varepsilon_{1,t} = 0).
\]

We now assume linearity and stationarity, assumptions we maintain henceforth. With these assumptions, the \(h \)-lag treatment effect is the population coefficient in the regression:

\[
Y_{2,t+h} = \Theta_{h,21}\varepsilon_{1,t} + u_{t+h}, \tag{4}
\]

where throughout we omit constant terms for convenience. Because \(\varepsilon_{1,t} \) is randomly assigned, \(E(u_{t+h}|\varepsilon_{1,t}) = 0 \), so \(\Theta_{h,21} = E(Y_{2,t+h}|\varepsilon_{1,t} = 1) - E(Y_{2,t+h}|\varepsilon_{1,t} = 0) \). Thus, \(\Theta_{h,21} \) is the causal effect of treatment 1 on variable 2, \(h \) periods after the treatment. Were \(\varepsilon_{1,t} \) observed, this causal effect could be estimated by OLS estimation of (4).

© 2018 Royal Economic Society.
The path of causal effects mapped out by $\Theta_{h,21}$ for $h = 0, 1, 2, \ldots$ is the dynamic causal effect of treatment 1 on variable 2.\footnote{There is a literature that defines dynamic causal effects in terms of primitives and connects those to what can be identified in an experiment with data collected over time; see Lechner (2009), Angrist et al. (2018), Jordà et al. (2017) and especially Bojinov and Shephard (2017) for discussion and references. With the additional assumptions of linearity and stationarity, Bojinov and Shephard’s (2017) dynamic potential outcomes framework leads to (4).}

The macroeconometric jargon for this random treatment $\varepsilon_{1,t}$ is a ‘structural shock’: a primitive, unanticipated economic force, or driving impulse, that is unforecastable and uncorrelated with other shocks.\footnote{For an extensive discussion, see Ramey (2016).} The macroeconomist’s shock is the microeconomists’ random treatment, and impulse response functions are the causal effects of those treatments on variables of interest over time, that is, dynamic causal effects.

The Slutzky–Frisch paradigm represents the path of observed macroeconomic variables as arising from current and past shocks and measurement error. If we collect all such structural shocks and measurement error together in the $m \times 1$ vector ε_t, the $n \times 1$ vector of macroeconomic variables Y_t can be written in terms of current and past ε_t:

$$Y_t = \Theta(L)\varepsilon_t,$$

where L is the lag operator and $\Theta(L) = \Theta_0 + \Theta_1L + \Theta_2L^2 + \ldots$, where Θ_h is an $n \times m$ matrix of coefficients. The shock variance matrix $\Sigma_{\varepsilon\varepsilon} = E\varepsilon_t\varepsilon_t'$ is assumed to be positive definite to rule out trivial (non-varying) shocks. We assume that the shocks are mutually uncorrelated. Throughout, we treat Y_t as having been transformed so that it is second-order stationary, for example, real activity variables would appear in growth rates.

The assumption that the structural shocks are mutually uncorrelated accords both with their interpretation as randomly assigned treatments and with their being primitive economic forces; see Ramey (2016) for a discussion. We assume that any measurement error included in ε_t is uncorrelated with the structural shocks, although measurement error could be correlated across variables. Because $\varepsilon_{1,t}$ is uncorrelated with the other shocks and with any measurement error, the causal effect can be written as $E(Y_{2,t+h}|\varepsilon_{1,t} = 1, \varepsilon_{2:n,t}, \varepsilon_s, s \neq t) - E(Y_{2,t+h}|\varepsilon_{1,t} = 0, \varepsilon_{2:n,t}, \varepsilon_s, s \neq t)$. Although conditioning on the other shocks is redundant by randomisation, this alternative expression connects with the definition, seen in the older macro literature, of the causal effect as the partial derivative $\partial Y_{2,t+h}/\partial \varepsilon_{1,t}$ holding all other shocks constant.

Representation (5) is the structural moving average representation of Y_t. The coefficients of $\Theta(L)$ are the structural impulse response functions, which are the dynamic causal effects of the shocks. In general, the number of shocks plus measurement errors, m, can exceed the number of observed variables, n.

The recognition that, if $\varepsilon_{1,t}$ were observed, $\Theta_{h,21}$ could be estimated by OLS estimation of (4) – or by OLS estimation of the distributed lag regression of Y_t on $\varepsilon_{1,p}$, $\varepsilon_{1,t-1}$, $\varepsilon_{1,t-2}$, \ldots – underpins a productive and insightful research programme. In this programme, which dates to Romer and Romer (1989), researchers aim to measure directly a specific macroeconomic shock. Influential examples include Rudebusch

© 2018 Royal Economic Society.
who measured monetary shocks by Fed Funds surprises controlling for employment report announcements, and Kuttner (2001), Cochrane and Piazzesi (2002), Faust et al. (2003), Gürkaynak et al. (2005) and Bernanke and Kuttner (2005), all of whom used interest rate changes around Federal Reserve announcement dates to measure monetary policy shocks.

1.3. Direct Estimation of Structural IRFs Using External Instruments (LP-IV)

One difficulty with directly measured shocks is that they capture only part of the shock, or are measured with error. For example, Kuttner (2001)-type variables measure that part of a shock revealed in a monetary policy announcement but not the part revealed, for example, in speeches by FOMC members. This concern applies to other examples, including Romer and Romer’s (1989) binary indicators, Romer and Romer’s (2010) measure of exogenous changes in fiscal policy and Hamilton’s (2003) and Kilian’s (2008) lists of exogenous oil supply disruptions. In all of these cases, the constructed variable is correlated with the true (unobserved) shock and, if the author’s argument for exogeneity is correct, the constructed variable is uncorrelated with other shocks. That is, the constructed variable is not the shock, but is an instrument for the shock. This instrument is not obtained from restrictions internal to a VAR (or some other dynamic simultaneous equations model); rather, it is an external instrument.

This reasoning suggests using instrumental variables methods to estimate the dynamic causal effects of the shock. To do so, however, requires resolving a difficulty not normally encountered in microeconometrics, which is that the shock/treatment \(e_{1,t} \) is unobserved. As a result, the scale of \(e_{1,t} \) is indeterminate, that is, \((4) \) holds for all \(h \) if \(e_{1,t} \) is replaced by \(c \cdot e_{1,t} \) and \(\Theta_{h,21} \) is replaced by \(c^{-1} \Theta_{h,21} \). This scale ambiguity is resolved by adopting, without loss of generality, a normalisation for the scale of \(e_{1,t} \). Specifically, we assume that \(e_{1,t} \) is such that a unit increase in \(e_{1,t} \) increases \(Y_{1,t} \) by one unit:

\[
\Theta_{0,11} = 1 \text{(unit effect normalisation)}. \tag{6}
\]

For example, if \(e_{1,t} \) is the monetary policy shock and \(Y_{1,t} \) is the federal funds rate, (6) fixes the scale of \(e_{1,t} \) so that a 1 percentage point monetary policy shock increases the federal funds rate by 1 percentage point.

The unit effect normalisation has advantages over the more common unit standard deviation normalisation, which sets \(\text{var}(e_{1,t}) = 1 \). Most importantly, the unit effect normalisation allows for direct estimation of the dynamic causal effect in the native units relevant to policy analysis. While one can convert one normalisation to another, doing so entails rescaling by estimated values and care must be taken to conduct inference incorporating that normalisation (we elaborate on this below). As discussed in Stock and Watson (2016), the unit effect normalisation also allows for direct extension of SVAR methods to structural dynamic factor models.

The unit effect normalisation underpins the local projection approach because it allows the regression (4) to be rewritten in terms of an observable regressor, \(Y_{1,t} \). Specifically, use the unit effect normalisation to write \(Y_{1,t} = e_{1,t} + \{e_{2,n,t}, e_{2,1}, e_{2,2}, \ldots \} \) (recall the notational devices that \(e_{2,n,t} = (e_{2,1}, \ldots, e_{n,t})' \) and that \(\{ \ldots \} \) denotes a linear combination of the terms in braces). Rewriting this expression in terms of \(e_{1,t} \) and substituting it into (4) yields
\[Y_{i,t+h} = \Theta_{h,i} Y_{1,t} + u^{h}_{i,t+h}, \]

where \(u^{h}_{i,t+h} = \{ \hat{e}_{t+h}, \ldots, \hat{e}_{t+1}, \hat{e}_{t}, \hat{e}_{t-1}, \ldots \} \). Because \(Y_{1,t} \) is endogenous, it is correlated with \(u^{h}_{i,t+h} \), so OLS estimation of (7) is not valid. But with a suitable instrument, (7) can be estimated by IV.

Let \(Z_t \) be a vector of instrumental variables. These instruments can be used to estimate the dynamic causal effect using (7) if they satisfy:

Condition LP-IV

\[
\begin{align*}
(i) & \quad E(\hat{e}_{1,t}Z_t') = \mu' \neq 0 \text{ (relevance);} \\
(ii) & \quad E(\hat{e}_{2:n,t}Z_t') = 0 \text{ (contemporaneous exogeneity);} \\
(iii) & \quad E(\hat{e}_{t+j}Z_t') = 0 \text{ for } j \neq 0 \text{ (lead–lag exogeneity).}
\end{align*}
\]

Conditions LP-IV (i) and (ii) are conventional IV relevance and exogeneity conditions, and are the counterparts of the microeconometric conditions equations (2) and (3) in the absence of control variables.

Condition LP-IV (iii) arises because of the dynamics. The key idea of this condition is that \(Y_{2:t+h} \) generally depends on the entire history of the shocks, so if \(Z_t \) is to identify the effect of shock \(\hat{e}_{1,t} \) alone, it must be uncorrelated with all shocks at all leads and lags. The requirement that \(Z_t \) be uncorrelated with future \(\hat{e}'s \) is generally not restrictive: when \(Z_t \) contains only variables realised at date \(t \) or earlier, it follows from the definition of shocks as unanticipated structural disturbances. In contrast, the requirement that \(Z_t \) be uncorrelated with past \(\hat{e}'s \) is restrictive and strong.

We will refer to Condition LP-IV (iii) as requiring that \(Z_t \) be unpredictable given past \(\hat{e}'s \), although strictly the requirement is that it not be linearly predictable given past \(\hat{e}'s \).

Note that \(Z_t \) could be serially correlated yet satisfy this condition. For example, suppose \(Z_t = \delta e_{1,t} + \xi_t \) where \(\xi_t \) is a serially correlated error that is independent of \(\{ \hat{e}_t \} \); then \(Z_t \) satisfies Condition LP-IV.

The IV estimator of \(\Theta_{h,i} \) obtains by noting two implications of the assumptions. First, Condition LP-IV and (5) imply that \(E(Y_{1,t}Z_t') = \Theta_{h,i}\mu' \). Second, Condition LP-IV, the unit effect normalisation (6) and (5) imply that \(E(Y_{1,t}Z_t') = \mu' \). Thus, when \(Z_t \) is a scalar:

\[
\frac{E(Y_{1,t+h}Z_t)}{E(Y_{1,t}Z_t)} = \Theta_{h,i}. \tag{8}
\]

For a vector of instruments, \(E(Y_{1,t+h}Z_t')HE(Z_t Y_{1,t})/E(Y_{1,t}Z_t')HE(Z_t Y_{1,t}) = \Theta_{h,i} \) for any positive definite matrix \(H \). These are the moment expressions for IV estimation of (7) using the instrument \(Z_t \).

These moment expressions provide an intuitive interpretation of LP-IV. Suppose that \(Y_{1,t} \) is GDP growth, \(Y_{1,t} \) is the federal funds rate and \(Z_t \) is a monetary policy announcement instrument, constructed so that it satisfies Condition LP-IV. Then the causal effect of a monetary policy shock on GDP growth \(h \) periods hence is estimated by regressing \(\Delta \ln \text{GDP}_{t+h} \) on \(FF_t \) using the announcement surprise \(Z_t \) as an instrument. In this two-stage least squares interpretation, the unit effect normalisation is imposed automatically.

Another interpretation of the moment condition (8) relates to the distributed lag representation of \(Y_t \) in terms of \(Z_t \):

\[Y_t = \sum_{j=1}^{\infty} \lambda_j Z_{t-j}, \]

where \(\lambda_j \) is a vector of coefficients.
\[Y_t = \Pi(L)Z_t + v_t. \] (9)

This is Theil and Boot’s (1962) final form of the dynamic model for \((Y_t, Z_t)\). It is also the time series counterpart to what is (somewhat confusingly) called the reduced form for non-dynamic simultaneous equations systems. In the non-dynamic setting with a single instrument, a familiar result is that the Wald IV estimator is the ratio of the reduced-form coefficients. Similarly, in the dynamic context, when \(Z_t\) is serially uncorrelated and a scalar, \(\Theta_{h,1}\) is the ratio of the \(h\)th distributed lag coefficient in the \(Y_{t,t}\) equation, \(\Pi_{h,1}\) to the impact effect on the first variable, \(\Pi_{0,1}\); that is, \(\Theta_{h,1} = \Pi_{h,1}/\Pi_{0,1}\). In the monetary policy announcement example, \(\Pi(L)\) is the impulse response function of \(Y_t\) with respect to the announcement surprise. The older literature treated this as the causal effect of interest, but as explained in Gertler and Karadi (2015), the surprise is better thought of as an instrument for the shock. Akin to the Wald estimator in the static setting, the IV estimator of the dynamic causal effect is the impulse response function of the effect of the shock on \(\triangle \ln GDP\), divided by the impact effect of the announcement on the Federal Funds rate.

The lag exogeneity Condition LP-IV\((iii)\) is testable: \(Z_t\) should be unforecastable in a regression of \(Z_t\) on lags of \(Y_t\). If the lag exogeneity condition fails, then the LP-IV methods laid out in this subsection are not valid because \(Z_t\) will be correlated with the error \(u_{t+1}\) in (4). This problem can potentially be addressed by adding control variables to the LP-IV regression.

1.4. Extension of LP-IV to Control Variables

There are two reasons to consider adding control variables to the IV regression (7).

First, although an instrument might not satisfy Condition LP-IV, it might do so after including suitable control variables; that is, the instruments might satisfy the exogeneity conditions only after controlling for some observable factors. As discussed in Section 4, this is the case in the Gertler and Karadi (2015) application.

Second, even if Condition LP-IV is satisfied, including control variables could reduce the sampling variance of the IV estimator by reducing the variance of the error term. The reasoning is standard: because the variance of the LP-IV estimator depends on the scale of the errors, including control variables that explain the error term can reduce the variance of the estimator. Here, the relevant variance is the long-run variance of the instrument-times-error, so the aim of including additional control variables is to reduce this long-run variance. Under Condition LP-IV, \(Y_{t,t}, Y_{t+2}, \ldots\) and possibly future \(Z_{t+1}, \ldots, Z_{t+1}\) are candidate control variables.

Adding control variables \(W_t\) to (7) yields

\[Y_{t,t+h} = \Theta_{h,1} Y_{1,t} + \gamma_{h} W_t + u_{t,t+h}. \] (10)

where \(x_{t} = x_{t} - \text{Proj}(x_t|W_t)\) for some variable \(x_t\) and \(u_{t,t+h} = \{\varepsilon_{t+h}, \ldots, \varepsilon_{t+1}, \varepsilon_{t+h,1}, \varepsilon_{t-1}, \varepsilon_{t-2}, \ldots\}\).

© 2018 Royal Economic Society.
With control variables W, the conditions for instrument validity are:

CONDITION LP-IV

(i) $E\left(\varepsilon_t^\perp Z_t^\perp\right) = \theta' \neq 0$;

(ii) $E\left(\varepsilon_{2,n,t}^\perp Z_t^\perp\right) = 0$; and

(iii) $E\left(\varepsilon_{i,j}^\perp Z_t^\perp\right) = 0$ for $j \neq 0$.

By projecting on W_t, (10) can be written,

$$Y_{i,t}^\perp; t+u^\perp_{i,t} = \Theta_{h,i} Y_{1,t}^\perp + u^\perp_{i,t}.$$ For a scalar instrument, multiplying both sides of this expression by Z_t^\perp and using Condition LP-IV and the unit effect normalisation (6) yields

$$E(Y_{i,t+h}^\perp Z_t^\perp)/E(Z_t^\perp Z_t^\perp) = \Theta_{h,i}.$$ (11)

For a vector of instruments, $E(Y_{i,t+h}^\perp Z_t^\perp)HE(Z_t^\perp Y_{1,t}^\perp)/E(Y_{i,t}^\perp Z_t^\perp)HE(Z_t^\perp Y_{1,t}^\perp) = \Theta_{h,i}$ for any positive definite matrix H. Equation (11) is the moment condition for IV estimation of (10) using instrument Z_t.

Equation (11) holds for all h, including the impact effect $h = 0$, with the proviso that for $h = 0$, the effect for the first variable is normalised to $\Theta_{0,11} = 1$. Under the unit effect normalisation, for $h = 0$ and $i = 1$, (10) become the identity $Y_{1,t} = Y_{1,t}$ (or $cY_{1,t} = Y_{1,t}$).

The question of what control variables to include, if any, is a critical one that depends on the application.

Even if Condition LP-IV (iii) holds, including control variables could reduce the variance of the regression error, and thus improve estimator efficiency. This suggests using control variables aimed at capturing some of the dynamics of $Y_{1,t}$ and $Y_{i,t}$. Such control variables could include lagged values of Y_1 and Y_i, or additionally lagged values of other macro variables. Such control variables could also include generic controls, such as lagged factors from a dynamic factor model. Whether or not lagged Y’s are used as controls, under Condition LP-IV(iii), leads and lags of Z_t can be included as controls to improve efficiency.

A more difficult problem arises if Conditions LP-IV (i) and (ii) hold, but Condition LP-IV (iii) fails because Z_t is correlated with one or more lagged shocks. Then instrument validity hinges upon including in W variables that control for those lagged shocks, so that Condition LP-IV⊥(iii) holds. It is useful to think of two cases.

In the first case, suppose Z_t is correlated with past values of $\varepsilon_{1,n}$, but not with past values of other shocks. As we discuss below, this situation arises in the Gertler and Karadi (2015) application, where the construction of Z_t induces a first-order moving average structure. In this case, including lagged values of Z as controls would be appropriate. Another example is oil supply disruptions arising from political disturbances as in Hamilton (2003) and Kilian (2008), where the onset of the disruption might plausibly be unpredictable using lagged ε’s, but the disruption indicator could exhibit time series correlation because any given disruption could last more than one period. If so, it could be appropriate to include lagged values of Z as controls, or otherwise to modify the instrument so that it satisfies Condition LP-IV⊥(iii).
A second case arises when Z_t is correlated with past shocks including those other than $\varepsilon_{1,t}$. If so, instrument validity given the controls requires that the controls span the space of those shocks. If it were known which past shocks were correlated with Z_t, then application-specific reasoning could guide the choice of controls, akin to the first case. But without such information, the controls would need to span the space of all past shocks. This reasoning suggests using generic controls. One such set of generic controls would be a vector of macro variables, say Y_c. Another such set could be factors estimated from a dynamic factor model; using such factors would provide a factor-augmented IV estimate of the structural impulse response function. We show in subsection 2.2 that the requirement that Condition LP-IV iii be satisfied by generic controls, when Condition LP-IV iii does not hold, is quite strong.

1.5. LP-IV: Econometric Odds and Ends

1.5.1. Levels, differences and cumulated impulse responses

In many applications, $Y_{i,t}$ will be specified in first differences, but interest is in impulse responses for its levels. Impulse responses for levels are cumulated impulse responses for first differences. The cumulated impulse responses can be computed from the IV regression:

$$\sum_{k=0}^{h} Y_{i,t+k} = \Theta_{h,i1}^{cum} Y_{1,t} + \gamma_{h}^{cum'} W_t + h_{h,i1}^{\perp},$$

(12)

where $\Theta_{h,i1}^{cum} = \sum_{k=0}^{h} \Theta_{k,i1}$. For example, if $Y_{i,t} = \Delta \ln (\text{GDP}_p)$ then the left-hand side of (12) is $\ln (\text{GDP}_{i+h}) - \ln (\text{GDP}_i)$, that is, the log-point change in GDP from t to $t + h$.

If Z_t satisfies LP-IV i, it is a valid instrument for IV estimation of (12).

Another measure of a dynamic causal effect is the ratio of cumulative impulse responses. For example, a shock to government spending typically induces a flow over time of government outlays. As discussed by Ramey and Zubairy (2017, section 3.2.2), a useful measure of the effect on output of government spending is the cumulative GDP gain resulting from cumulative government spending over the same period. Fieldhouse et al. (2017) make a similar argument for considering ratios of cumulative multipliers in their study of the effect on residential investment of US housing agency purchases of mortgage-backed securities. As Ramey and Zubairy (2017) point out, this ratio of cumulative multipliers can be estimated in the LP-IV regression:

$$\sum_{k=0}^{h} Y_{i,t+k}^{h_{i1}} = \rho_{i1}^{h_{i1}} \sum_{k=0}^{h_{i1}} Y_{1,t+k}^{h_{i1}} W_t + u_{i1,1},$$

(13)

where $\rho_{i1}^{h_{i1}} = \sum_{k=0}^{h_{i1}} \Theta_{k,i1} / \sum_{k=0}^{h_{i1}} \Theta_{k,11}$ (in (13), we generalise Ramey and Zubairy, 2017 slightly to allow for different cumulative periods for Y_i and Y_1). When the instrument Z_t satisfies Condition LP-IV i, $E \sum_{k=0}^{h_{i1}} Y_{i,t+k}^{h_{i1}} = E \sum_{k=0}^{h_{i1}} \Theta_{k,i1} \alpha'$ and $E \sum_{k=0}^{h_{i1}} Y_{1,t+k}^{h_{i1}} = E \sum_{k=0}^{h_{i1}} \Theta_{k,11} \alpha'$. Thus, when there is a single instrument, the IV moment condition is $E \sum_{k=0}^{h_{i1}} Y_{i,t+k}^{h_{i1}} / E \sum_{k=0}^{h_{i1}} Y_{1,t+k}^{h_{i1}} = \sum_{k=0}^{h_{i1}} \Theta_{k,i1} / \sum_{k=0}^{h_{i1}} \Theta_{k,11} = \rho_{i1}^{h_{i1}}$. Thus, if Z_t satisfies LP-IV i, it is a valid instrument for IV estimation of (13).
1.5.2. HAC/HAR inference and long-horizon impulse responses

When the instruments are strong, the validity of inference can be justified under standard assumptions of stationarity, weak dependence and existence of moments (Hayashi, 2000). However, the multistep nature of the direct regressions in general requires an adjustment for serial correlation of the instrument \(\times \) error process: the error terms in (7), (10) and (12) include future and lagged values of \(\epsilon_t \) and in general terms like \(Z \epsilon_{t+j} \) and \(Z_{t+j} \epsilon_t \) will be correlated. Inference based on standard heteroscedasticity and autocorrelation robust (HAR) covariance matrix estimators are valid at short to medium horizons.

One special case in which HAR inference is not needed is when the \(W_s \) are lagged \(Y_s \), the VAR for \(Y \) is invertible and the \(Z_s \) are serially uncorrelated conditional on the \(W_s \). In this case, \(Z_t \epsilon_{t+h} \) is serially uncorrelated\(^4\) and standard heteroscedasticity-robust standard errors can be used. If in addition the errors are homoscedastic, homoscedasticity-only standard errors can be used.

1.5.3. Historical and forecast error variance decompositions

The historical decomposition decomposes the path of \(Y_t \) to the contributions of the individual shocks. The contribution of shock \(\epsilon_{1,t} \) to \(Y_{t+h} \) can be read off the structural moving average representation (5):

\[
\text{Historical contribution of } \epsilon_{1,t} \text{ to } Y_{t+h} = \Theta_{h,1} \epsilon_{1,t}. \tag{14}
\]

The forecast error variance decomposition (FEVD) decomposes the variance of the unforecasted change in a variable \(h \) periods hence to the variance contributions from the shocks that occurred between \(t \) and \(t+h \). Because the shocks are uncorrelated over time and with each other, this decomposition, expressed in \(R^2 \) form is as follows:

\[
FEVD_{h,1} = \frac{\sum_{k=0}^{h-1} \Theta_{h,1}^2 \sigma_{\epsilon_1}^2}{\text{var}(Y_{t+h} | \epsilon_t, \epsilon_{t-1}, \ldots)}. \tag{15}
\]

If \(\epsilon_{1,t} \) can be recovered, then the historical decomposition can be computed using the LP-IV estimates of \(\{\Theta_{h,1}\} \), \(h = 0, 1, 2, \ldots \). Similarly, if \(\sigma_{\epsilon_1}^2 \) and \(\text{var}(Y_{t+h} | \epsilon_t, \epsilon_{t-1}, \ldots) \) are identified, then the forecast error variance decomposition is identified and also can be computed using the LP-IV estimates of \(\Theta_{h,1} \), \(h = 0, 1, 2, \ldots \).

In general, even though Conditions LP-IV and LP-IV\(\perp\) serve to identify the impulse response function, they do not identify either \(\epsilon_{1,t} \) or \(\sigma_{\epsilon_1}^2 \) without additional assumptions. A sufficient condition for identifying \(\epsilon_{1,t} \) and the FEVD is that the VAR for \(Y \) is invertible; a somewhat weaker condition for identifying \(\epsilon_{1,t} \) (but not the FEVD) is that \(Y \) is partially invertible. Weaker yet is the ‘recoverability’ condition discussed in Chahrour and Jurado (2017) and Plagborg-Møller and Wolf (2017). Further discussion, including expressions for \(\epsilon_{1,t} \), \(\sigma_{\epsilon_1}^2 \), and the FEVD, are deferred until the next Section.

\(^4\) This result follows by direct calculation using the invertibility results in subsection 2.2.
1.5.4. Smoothness restrictions
The IV estimator of (7), (10) and (12) impose no restrictions across the values of the
dynamic causal effects for different horizons. In many applications, smoothness across
horizons is sensible. The VAR methods discussed in the next Section impose
smoothness by modelling the structural moving average (5) as the inverse of a low-
order VAR; however, as is discussed in that Section those methods require the
additional assumption that $\Theta(L)$ is invertible. A few recent papers develop methods for
smoothing IRFs estimated by local projections using OLS. Barnichon and Brownlees
(2016) and Plagborg-Møller (2016a) use smoothness priors to shrink the IRFs across
horizons. Miranda-Agrippino and Ricco (2017) smooth LP IRFs by shrinking them
towards SVAR IRVs. Although these papers develop these methods for OLS estimates
of LP and SVARs, the extension to IV estimates seems straightforward.

1.5.5. Weak instruments
If the instruments are weak, then in general the distribution of the IV estimator in (7),
(10) and (12) is not centred at $\Theta_{h,i}$, and inference based on conventional IV standard
errors is unreliable. However, a suite of heteroscedasticity and autocorrelation-robust
methods now exists to detect weak instruments and to conduct inference robust to
weak instruments in linear IV regression. For example, see Kleibergen (2005) for a
HAR version of Moreira’s (2003) conditional likelihood ratio statistics, and Montiel
Olea and Pflueger (2013) and Andrews (2018) for HAR alternatives to first-stage F
statistics for detecting weak identification.

As previously discussed, HAR inference is not needed in the special case that the Ws
are lagged Ys, the VAR for Y is invertible and the Zs are serially uncorrelated
conditional on the Ws. If in addition the errors are homoscedastic, then the suite of
tools for weak identification in homoscedastic cross-section data can be applied,
including the usual first-stage F statistic for assessing instrument strength.

1.5.6. News shocks and the unit-effect normalisation
In some applications, interest focuses on a ‘news shock’, which is defined to be a
shock that is revealed at time t, but has a delayed effect on its natural indicator. For
example, Ramey (2011) argues that many fiscal shocks are news shocks because they
are revealed during the legislative process but have direct effects on government
spending and/or taxes only with a lag. Despite this lag, forward looking variables,
like consumption, investment, prices and interest rates may respond immediately to
the shock. This differential timing changes the scale normalisation for the shock
because $\Theta_{0,11}$ may equal zero; that is, the news shock $\epsilon_{1,t}$ affects its indicator $Y_{1,t}$ only
with a lag. Thus, the contemporaneous unit-effect normalisation ($\Theta_{0,11} = 1$) is
inappropriate.

Instead, for a news shock, a k-period ahead unit-effect normalisation, $\Theta_{k,11} = 1$ for
pre-specified k, should be used. For example, if government spending reacts to news
about spending with a 12-month lag, then the 12-month-ahead unit-effect normalisation
$\Theta_{12,11} = 1$ would be appropriate: this normalises the spending shock so that a 1 pp
increase in the shock at time t corresponds to a 1 pp increase in observed
government spending 12 months hence. With this k-period ahead normalisation,
$Y_{1,t+k} = \epsilon_{1,t} + \{\epsilon_{t+k}, \ldots, \epsilon_{t+1}, \epsilon_{t+2:n}, \epsilon_{t+1}, \epsilon_{t+2}, \ldots\}$. Accordingly, $Y_{1,t+k}$ replaces $Y_{1,t}$ in the IV

© 2018 Royal Economic Society.
regressions (7), (10) and (12). In practice, implementing this strategy requires a choice of the news lead-time k, and this choice would be informed by application-specific knowledge.

2. Identifying Dynamic Causal Effects Using External Instruments and VARs

Since Sims (1980), the standard approach in macroeconomics to estimation of the structural moving average representation (5) has been to estimate a structural vector autoregression (SVAR), then to invert the SVAR to estimate $\Theta(L)$. This approach has several virtues. Macroeconomists are in general interested in responses to multiple shocks, and the SVAR approach provides estimates of the full system of responses. It emerges from the long tradition, dating from the Cowles Commission, of simultaneous equation modelling of time series variables. It imposes parametric restrictions on the high-dimensional moving average representation that, if correct, can improve estimation efficiency. And, importantly, it replaces the computationally difficult problem of estimating a multivariate moving average with the straightforward task of single-equation estimation by OLS.

These many advantages come with two requirements. The first is that the researcher has some scheme to identify the relation between the VAR innovations and the structural shocks, assuming that the two span the same space; this is generally known as the SVAR identification problem. The second is that, in fact, this spanning condition holds, a condition that is generally referred to as invertibility. Here, we begin by discussing how IV methods can be used to solve the thorny SVAR identification problem. We then turn to a discussion of invertibility, which we interpret as an omitted variable problem.

2.1. SVAR-IV

A vector autoregression expresses Y_t as its projection on its past values, plus an innovation v_t that is linearly unpredictable from its past:

$$A(L) Y_t = v_t,$$ (16)

where $A(L) = I - A_1 L - A_2 L^2 - \ldots$. We assume that the VAR innovations have a non-singular covariance matrix (otherwise a linear combination of Y could be perfectly predicted). Because the construction of $v_t = Y_t - \text{Proj}(Y_t|Y_{t-1}, Y_{t-2}, \ldots)$ is the first step in the proof of the Wold decomposition, the innovations are also called the Wold errors.

In a structural VAR, the innovations are assumed to be linear combinations of the shocks and, moreover, the spaces spanned by the innovations and the structural shocks are assumed to coincide:

$$v_t = \Theta_0 \epsilon_t \text{ where } \Theta_0 \text{ is non-singular.}$$ (17)

A necessary condition for (17) to hold is that the number of variables in the VAR equal the number of shocks ($n = m$).

Because Y_t is second-order stationary, $A(L)$ is invertible. Thus, (16) and (17) yield a moving average representation in terms of the structural shocks:
where $C(L) = A(L)^{-1}$ is square summable.

If (17) holds, then the SVAR impulse response function reveals the population dynamic causal effects; that is, $C(L)\Theta_0 = \Theta(L)$. Condition (17) is an implication of the assumption that the structural moving average is invertible. This ‘invertibility’ assumption, which underpins SVAR analysis, is non-trivial and we discuss it in more detail in the next subsection.

Under the assumption of invertibility, the SVAR identification problem is to identify Θ_0. Here, we summarise SVAR identification using external instruments.

Suppose there is an instrument Z_t that satisfies the first two conditions of Condition LP-IV, which we relabel as Condition SVAR-IV:

Condition SVAR-IV

(i) $E\varepsilon_1'Z_t' = \alpha' \neq 0$ (relevance); and

(ii) $E\varepsilon_{2:n,t}'Z_t' = 0$ (exogeneity w.r.t. other current shocks).

Condition SVAR-IV and (17) imply that

$$E_mZ_t = E(H_0e_tZ_t) = H_0E(\Theta_0\varepsilon_t) = H_0(\Theta_0\alpha'\Theta_{0,11}\alpha').$$

With the help of the unit effect normalisation (6), it follows from (19) that, in the case of scalar Z_t:

$$\frac{E(v_{i,t}Z_t)}{E(v_{1,t}Z_t)} = \Theta_{0,i1},$$

with the extension to multiple instruments as follows (8). Thus, $\Theta_{0,i1}$ is the population estimand of the IV regression:

$$v_{i,t} = \Theta_{0,i1}v_{1,t} + \{\varepsilon_{2:n,t}\}$$

using the instrument Z_t.

Because the innovations v_t are not observed, the IV regression (21) is not feasible. One possibility is replacing the population innovations in (21) with their sample counterparts \hat{v}_t, which are the VAR residuals. However, while doing so would provide a consistent estimator with strong instruments, the resulting standard errors would need to be adjusted because of potential correlation between Z_t and lagged values of Y_t since $\hat{v}_{1,t}$ is a generated regressor.

Instead, $\Theta_{0,i1}$ can be estimated by an approach that directly yields the correct large-sample, strong-instrument standard errors. Because $v_{i,t} = Y_{i,t} - \text{Proj}(Y_{i,t}|Y_{i,t-1}, Y_{i,t-2}, \ldots)$, (21) can be rewritten as

$$Y_{i,t} = \Theta_{0,i1}Y_{1,t} + \gamma_{i}(L)Y_{t-1} + \{\varepsilon_{2:n,t}\},$$

Note that from (5) and (16), $v_t = A(L)\Theta(L)\varepsilon_t$. With the addition of condition (17), we have $\Theta_{0,i1} = A(L)\Theta(L)\varepsilon_t$, so that $\Theta_0 = A(L)\Theta(L)$ and $\Theta(L) = A(L)^{-1}\Theta_0 = C(L)\Theta_0$.
where $\gamma_i(L)$ are the coefficients of $\text{Proj}\left(Y_{i,t} - \Theta_{0,i} Y_{i,t-1}, Y_{i,t-2}, \ldots \right)$. The coefficients $\Theta_{0,i}$ and $\gamma_i(L)$ can be estimated by two-stage least squares equation-by-equation using the instrument Z_t. By classic results of Zellner and Theil (1962) and Zellner (1962), this equation-by-equation estimation by two-stage least squares entails no efficiency loss – is in fact equivalent to – system estimation by three stage least squares.

To summarise, SVAR-IV proceeds in three steps:

(i) Estimate (22) using instruments Z_t for the variables in Y_t, using p lagged values of Y_t as controls. This, along with the unit effect normalisation $\Theta_{0,11} = 1$, yields the IV estimator of the first column of Θ_0, $\hat{\Theta}_{0,1}^{\text{SVAR-IV}}$.
(ii) Estimate a VAR(p) and invert the VAR to obtain $\hat{C}(L) = \hat{A}(L)^{-1}$.
(iii) Estimate the dynamic causal effects of shock 1 on the vector of variables as

$$\hat{\Theta}_{h,1}^{\text{SVAR-IV}} = \hat{C}_h \hat{\Theta}_{0,1}^{\text{SVAR-IV}}.$$

(23)

It is useful to compare the SVAR-IV and LP-IV estimators. For $h = 0$, the SVAR-IV and LP-IV estimators of $\Theta_{0,1}$ are the same when the control variables W_t are Y_{t-1}, Y_{t-2}, \ldots, Y_{t-p}. For $h > 0$, however, the SVAR-IV and LP-IV estimators differ. In the SVAR-IV estimator, the impulse response functions are generated from the VAR dynamics. In contrast, the LP-IV estimator does not use the VAR parametric restriction: the dynamic causal effect is estimated by h distinct IV regressions, with no parametric restrictions tying together the estimates across horizons.

2.1.1. Inference

Let Γ denote the unknown parameters in $A(L)$ and $\Theta_{0,1}$ (the first column of Θ_0). Under standard regression and strong instrument assumptions (e.g. Hayashi, 2000),

$$\sqrt{T}(\hat{\Gamma} - \Gamma) \xrightarrow{p} N(0, \Sigma_\Gamma).$$

And, because estimator $\hat{\Theta}_{h,1}^{\text{SVAR-IV}}$ from Step (iii) is a smooth function of $\hat{\Gamma}$, $\sqrt{T}(\hat{\Theta}_{h,1}^{\text{SVAR-IV}} - \Theta_{h,1}) \xrightarrow{d} N(0, \Sigma_{\Theta})$ where Σ_{Θ} can be calculated using the δ-method. Alternatively, and often more conveniently, confidence intervals can be computed using a parametric bootstrap. Doing so requires specifying an auxiliary process for Z_t. We provide some details in Appendix A in the context of our empirical illustration.

When instruments are weak, the asymptotic distribution of $\hat{\Theta}_{h,1}^{\text{SVAR-IV}}$ is not normal; Montiel Olea et al. (2017) discuss weak-instrument robust inference for SVARs identified by external instruments.

We stress that the normalisation of ultimate interest – typically the unit effect normalisation – needs to be incorporated into the computation of standard errors. In general, it is incorrect to use a different normalisation (such as the unit standard deviation normalisation), compute confidence bands, then rescale the bands and point estimates to obtain the unit effect normalisation. In practice, this means the unit effect normalisation must be ‘inside’ the bootstrap, not ‘outside’.

2.1.2. Different data spans for Z and Y (‘unbalanced panels’)

The SVAR-IV estimator of the impulse response function in (23) has two parts, C_h and $\hat{\Theta}_{0,1}^{\text{SVAR-IV}}$. In general these can be estimated over different sample periods. For example, in Gertler and Karadi (2015), the data on the macro variables Y_t are available...
for a longer period than are data on the instruments, and they estimate the VAR coefficients \(A(L) \) over the longer sample and \(\Theta_{SVAR-IV}^{\text{SVAR-IV}} \) over the shorter sample when \(Z_t \) is available. Using the longer sample for the VAR improves efficiency at all horizons.

In contrast, there is less opportunity to improve efficiency by using the longer sample for \(Y \) using LP-IV. If \(Z \) satisfies Condition LP-IV, then the estimation must all be done on the shorter sample because the moments in (8) are only available over the period of overlap of the \(Y \) and \(Z \) samples. If control variables are included, the longer sample can be used to estimate \(Y_t^\perp \) and \(Y_{t+h}^\perp \), but the moments in (11) must still be estimated over the period of overlap of the \(Y \) and \(Z \) samples.

A related limitation of LP-IV is that the number of observations available for estimation decreases with the horizon \(h \). This is true regardless of whether the data samples for \(Z \) and \(Y \) are the same, but becomes more of an issue (compared to SVAR-IV) if the sample for \(Z \) is already short.

2.1.3. News shocks and the unit-effect normalisation

A structural moving average may be invertible even when it includes news shocks as long as \(Y_t \) contains forward-looking variables. But, as discussed in the previous Section, news variables require a change in the unit-effect normalisation from contemporaneous \(\Theta_{0,11} = 1 \) to \(k \) periods ahead \(\Theta_{k,11} = 1 \). To implement this normalisation in the SVAR, note that the effect of \(\varepsilon_{1,t} \) on \(Y_{t+k} \) is given by \(\eta_{1,t} = \Theta_0 \varepsilon_{1,t} + C_0 \Theta_0 \varepsilon_{1,t} = C_0 \varepsilon_{1,t} \). The \(k \)-period ahead unit-effect normalisation is \(\Theta_{k,11} = 1 \), so \(\eta_{1,t} = \varepsilon_{1,t} + \{ \varepsilon_{2:n,t} \} \). Thus, letting \(X_t = \hat{C}_k Y_h \), the normalisation is implemented by replacing \(Y_{1,t} \) with \(X_{1,t} \) in (22) and carrying out the three steps given above. Because \(X_{1,t} \) is a generated regressor, standard errors differ from the model using \(Y_{1,t} \) and are most easily calculated using simulation (parametric bootstrap) methods like those outlined in Appendix A.

2.1.4. Historical and forecast error variance decompositions

As discussed in subsection 1.4, if the shock is identified, then the historical decomposition can be computed using (14). The forecast error variance decomposition, given in (15), further requires identification of \(\sigma_{\varepsilon_{1,t}}^2 \) and the object in the denominator of that expression. The IRFs (\(\Theta \)’s) appearing in (14) and (15) can be estimated using either LP-IV or SVAR-IV. By using the same estimator for the IRFs and the historical decompositions, the set of results will be internally consistent.

The shock \(\varepsilon_{1,t} \), \(\sigma_{\varepsilon_{1,t}}^2 \) and the denominator of (15) are all identified from \(\Theta_{0,1} \) if the VAR is invertible. Specifically, if (17) holds, then \(\varepsilon_{1,t} = \lambda' \nu_p \), where \(\lambda = \Theta_{0,1}' \Sigma_{\varepsilon_{1,t}}^{-1} / (\Theta_{0,1}' \Sigma_{v_t}^{-1} \Theta_{0,1})^{0.6} \). It follows from this expression that \(\sigma_{\varepsilon_{1,t}} = \lambda' \Sigma_{\varepsilon_{1,t}} \lambda = (\Theta_{0,1}' \Sigma_{\varepsilon_{1,t}} \Theta_{0,1})^{0.6} \). Also, under invertibility the denominator of (15) is \(\text{var}(Y_{t+h}^\perp \varepsilon_{1,t}, \varepsilon_{1,t-1}, \ldots) = \text{var}(Y_{t+h}^\perp Y_{t-1}, \ldots) = \text{var}(Y_{t+h}^\perp Y_{t-1}, \ldots) \), so the denominator is also identified. Thus, if \(\Theta_{0,1} \) is identified and if the VAR is invertible, the historical decomposition and FEVD are also identified.

To show this result, first write \(\Theta_{0,1}' \Sigma_{\varepsilon_{1,t}}^{-1} \varepsilon_{1,t} = \Theta_{0,1}' (\Theta_{0,1} \Sigma_{\varepsilon_{1,t}} \Theta_{0,1})^{-1} \varepsilon_{1,t} = \Theta_{0,1}' (\Theta_{0,1}' \Sigma_{\varepsilon_{1,t}}^{-1} \Theta_{0,1}) \varepsilon_{1,t} = \lambda' \Sigma_{\varepsilon_{1,t}}^{-1} \varepsilon_{1,t} = \sigma_{\varepsilon_{1,t}}^2 \), where the first line uses (17) to write \(\Sigma_{\varepsilon_{1,t}} = \Theta_{0,1} \Sigma_{\varepsilon_{1,t}} \Theta_{0,1} \); the second line uses invertibility of \(\Theta_{0,1} \); the third line uses the fact that \(B^{-1} B_1 = e_1 \) (the first unit vector) where \(B_1 \) is the first column of the invertible matrix \(B \) and uses (17) plus invertibility to write \(e_1 = \Theta_{0,1}' \varepsilon_{1,t} \); and the final line uses the assumption that \(\varepsilon_{1,t} \) is uncorrelated with \(\varepsilon_{2:n,t} \). Similar algebra shows that \(\Theta_{0,1}' \Sigma_{v_t} \Theta_{0,1} = 1 / \sigma_{\varepsilon_{1,t}}^2 \), and the result follows.
Recall that if LP-IV is implemented using the control variables $W_t = Y_{t-1}, Y_{t-2}, \ldots$, then $\Theta_{0,1}^{\text{LP-IV}} = \Theta_{0,1}^{\text{SVAR-IV}}$. If so, the values of λ and $\sigma^2_{\epsilon_t}$ computed using LP-IV and SVAR-IV are the same, as is the expression in the denominator of (15). Even if LP-IV is implemented using a reduced set of controls or, if Condition LP-IV holds, no controls, the full VAR must be used to obtain the innovations needed to compute λ and $\sigma^2_{\epsilon_t}$.

2.2. Invertibility, Omitted Variable Bias and the Relation between Assumptions SVAR-IV and LP-IV

The structural moving average $\Theta(L)$ in (5) is said to be invertible if ϵ_t can be linearly determined from current and lagged values of Y_t,

$$\epsilon_t = \text{Proj}(\epsilon_t|Y_t, Y_{t-1}, \ldots) \quad \text{(invertibility).}$$

(24)

In the linear models of this article, condition (24) is equivalent to saying that $\Theta(L)^{-1}$ exists. The reason we state the invertibility condition as (24) is that it is closer to the standard definition, $\epsilon_t = E(\epsilon_t|Y_t, Y_{t-1}, \ldots)$, which applies to non-linear models as well.

In this subsection, we make four points. First, we show that (24), plus the assumption that the innovation covariance matrix is non-singular, implies (17). Second, we reframe (24) to show how very strong this condition is: under invertibility, a forecaster using a VAR who magically stumbled upon the history of true shocks would have no interest in adding those shocks to her forecasting equations. Third, this reframing provides a natural reinterpretation of invertibility as a problem of omitted variables; thus, LP-IV can be seen as a solution to omitted variables bias, akin to a standard motivation for IV regression in microeconometrics. Fourth, we show that there is, at a formal level, a close connection between the choice of control variables in LP-IV and invertibility. Specifically, we show that, for a generic instrument Z_t, using lagged Y_t as control variables to ensure that Condition LP-IV holds is equivalent to assuming that Condition SVAR-IV and invertibility (24) both hold.

2.2.1. Demonstration that invertibility (24) implies (17)

This result is well known but we show it here for completeness. Recall that by definition, $v_t = Y_t - \text{Proj}(Y_t|Y_{t-1}, Y_{t-2}, \ldots) = \Theta(L)\epsilon_t - \text{Proj}(\Theta(L)\epsilon_t|Y_{t-1}, Y_{t-2}, \ldots) = \Theta_0\epsilon_t + \sum_{i=1}^{\infty} \Theta_i[\epsilon_{t-i} - \text{Proj}(\epsilon_{t-i}|Y_{t-1}, Y_{t-2}, \ldots)]$, where the second equality uses (5), and the third equality uses the fact that $\text{Proj}(\epsilon_t|Y_{t-1}, Y_{t-2}, \ldots) = 0$ and collects terms. Equation (24) implies that $\text{Proj}(\epsilon_{t-i}|Y_{t-1}, Y_{t-2}, \ldots) = \epsilon_{t-i}$, so the term in brackets in the final summation is zero for all i, thus we have that $v_t = \Theta_0\epsilon_t$ as in (17).

To see why (24) implies that Θ_t is invertible, note that $\epsilon_t = \text{Proj}(\epsilon_t|Y_t, Y_{t-1}, \ldots) = \text{Proj}(\epsilon_t|v_t, v_{t-1}, \ldots) = \text{Proj}(\epsilon_t|\Theta_0\epsilon_t, \Theta_0\epsilon_{t-1}, \ldots) = \text{Proj}(\epsilon_t|\Theta_0\epsilon_t) = \text{Proj}(\epsilon_t|v_t)$, where the first equality is (24), the second follows because current and past innovations span the space of current and past Y's, the third and fifth follow from $v_t = \Theta_0\epsilon_t$, and the fourth follows from the serial independence of ϵ_t. Because $\epsilon_t = \text{Proj}(\epsilon_t|v_t)$, the
equation \(v_t = \Theta_0 e_t \) must yield a unique solution for \(\varepsilon_t \), so that \(\Theta_0 \) has rank \(m \). Moreover, because \(\text{var}(v_t) \) is assumed to have full rank, \(n \leq m \). Taken together these imply that \(n = m \) and \(\Theta_0 \) has rank \(n \). Therefore, if (24) holds, then (17) holds.

2.2.2. Invertibility as omitted variables

One interpretation provided in the literature on invertibility is that invertibility implies that there are no omitted variables in the VAR (e.g. Fernández-Villaverde et al., 2007): because invertibility implies that the spans of \(\varepsilon_t \) and \(v_t \) are the same, there is no forecasting gain from adding past shocks to the VAR. That is, the invertibility condition (24) implies that:

\[
\text{Proj}(Y_t | Y_{t-1}, Y_{t-2}, \ldots, \varepsilon_{t-1}, \varepsilon_{t-2}, \ldots) = \text{Proj}(Y_t | Y_{t-1}, Y_{t-2}, \ldots).
\]

(25)

Condition (25) both shows how strong the assumption of invertibility is, and provides an interpretation of invertibility as a problem of omitted variables. If invertibility holds, then knowledge of the past true shocks would not improve the VAR forecast. If instead those forecasts were improved by adding the shocks to the regression – infeasible, of course, but a thought experiment – then the VAR has omitted some variables, and that omission is an indication of the failure of the invertibility assumption.9

In general, one solution to omitted variable problems is to include the omitted variables in the regression. In the case at hand, that is challenging, because the omitted variables are the unobserved structural shocks. Pursuing this line of reasoning suggests using a large number of variables in the VAR, a high-dimensional dynamic factor model or a factor-augmented vector autoregression (FAVAR). This is a potentially useful avenue to dealing with the invertibility problem; see, for example, Forni et al. (2009) and the survey in Stock and Watson (2016).10

It is important to note that expanding the number of variables will not necessarily result in (24) being satisfied, so that moving to large systems does not assure invertibility.

2.2.3. Relation between assumptions SVAR-IV, LP-IV\perp and invertibility

A major appeal of LP-IV is that the direct regression approach does not explicitly assume invertibility. If, however, the instrument depends on lagged shocks and lagged \(Ys \) are used as control variables, then in general the instrument is valid with these controls (i.e. Condition LP-IV\perp holds) if and only if Condition SVAR-IV holds and that the SVAR is invertible. Intuitively, if the instrument depends on lagged shocks, the

\[\text{Proj}(Y_t | Y_{t-1}, Y_{t-2}, \ldots, \varepsilon_{t-1}, \varepsilon_{t-2}, \ldots) = \text{Proj}(Y_t | Y_{t-1}, Y_{t-2}, \ldots) \]

(25)
control variables must span the space of those shocks but the requirement that the \mathbf{Y}’s span the space of the shocks is simply the invertibility condition. This result is stated in the following theorem.

Theorem 1. Let \mathbf{Z} denote the set of scalar stochastic processes (instruments) such that for all $\mathbf{Z} \in \mathbf{Z}$, \mathbf{Z} satisfies LP-IV Conditions (i), (ii) and (iii for $j > 0$), but not (iii for $j < 0$). Let $\mathbf{W}_1 = \{Y_{t-1}, Y_{t-2}, \ldots\}$. Then LP-IV$^\perp$ is satisfied for all $\mathbf{Z} \in \mathbf{Z}$ if and only if (a) \mathbf{Z} satisfies Condition SVAR-IV and (b) the invertibility condition (24) holds.

Proof. We first show that condition SVAR-IV plus invertibility (24) implies Condition LP-IV$^\perp$. First note that for $j \geq 0$, $\text{Proj}(\varepsilon_{t+j}|Y_{t-1}, Y_{t-2}, \ldots) = 0$ so $e_{t+j}^i = e_{t+j} - \text{Proj}(e_{t+j}|Y_{t-1}, Y_{t-2}, \ldots) = e_{t+j}$. Thus, for $j \geq 0$, $E(e_{t+j}^i Z_t^i) = E\{e_{t+j}[Z_t - \text{Proj}(Z_t|Y_{t-1}, \ldots)]\} = E(e_{t+j} Z_t)$. Setting $j = 0$, it follows that SVAR-IV (i) and (ii) are equivalent to LP-IV$^\perp$ (i) and (ii). In addition, Condition LP-IV (iii for $j > 0$) (which holds by definition of \mathbf{Z}) is equivalent to Condition LP-IV$^\perp$ (iii for $j > 0$). For $j < 0$, (24) directly implies that $e_{t+j} = \text{Proj}(e_{t+j}|Y_{t-1}, Y_{t-2}, \ldots)$, so $e_{t+j}^i = 0$ and thus $E(e_{t+j}^i Z_t^i) = 0$ trivially; thus (24) implies LP-IV$^\perp$ (iii for $j < 0$). Thus condition SVAR-IV plus (24) implies Condition LP-IV$^\perp$ for all $\mathbf{Z} \in \mathbf{Z}$.

We now show that, if Condition LP-IV$^\perp$ holds for all $\mathbf{Z} \in \mathbf{Z}$, then Conditions SVAR-IV and (24) hold. First, as noted above, LP-IV$^\perp$ (i) and (ii) are equivalent to SVAR-IV (i) and (ii). It remains to show that, if LP-IV$^\perp$ (iii) holds for all $\mathbf{Z} \in \mathbf{Z}$, then (24) holds. Consider $\mathbf{Z} \in \mathbf{Z}$, and let $\mathbf{Z}_t = \mathbf{Z}_t + e_{i-1}$; by construction, $\mathbf{Z} \in \mathbf{Z}$. Because LP-IV$^\perp$ holds by assumption for all $\mathbf{Z} \in \mathbf{Z}$, it holds in particular for \mathbf{Z} and \mathbf{Z}_t, so LP-IV$^\perp$ (iii, $j < 0$) implies that $E(e_{t-1}^i Z_t^i) = E(e_{t-1}^i \mathbf{Z}_t^i) = 0$. But $E(e_{t-1}^i \mathbf{Z}_t^i) = E(e_{t-1}^i \mathbf{Z}_t^i) + E(e_{t-1}^i)^2$, so it must be that $E(e_{t-1}^i)^2 = 0$; but $E(e_{t-1}^i)^2 = 0$ implies that (24) holds.

We interpret this theorem as a ‘no free lunch’ result. Although LP-IV can estimate the impulse response function without assuming invertibility, to do so requires an instrument that either satisfies LP-IV (iii) or that can be made to do so by adding control variables that are specific to the application. Simply including past \mathbf{Y}’s out of concern that \mathbf{Z}_t is correlated with past shocks is in general valid if and only if the VAR with those past \mathbf{Y}’s is invertible but if so, it is more efficient to use SVAR-IV.\footnote{It is well known that in VARs, distributions of estimators of impulse response functions are generally not well approximated by their asymptotic distributions in sample sizes typically found in practice. A more relevant comparison would be of the efficiency of the estimators in a simulation calibrated to empirical data. Kim and Kilian (2011) did such an exercise comparing LP and SVAR estimators, with identification by a Cholesky decomposition (what we would call ‘internal’ instruments). Their results are consistent with improvements in efficiency, and tighter confidence intervals, for SVARs than LP.}

2.3. Observable Shocks, VAR Misspecification and Partial Invertibility

The external instrument approach to impulse response estimation treats shock measures, such as the Romer and Romer (1989) narrative shocks or a monetary announcement surprise as in Kuttner (2001), as instrumental variables. Originally, however, that literature treated those measures as the shocks directly. Given our focus on invertibility, we therefore briefly digress to consider issues of VAR specification.
when the shock of interest is observed. We will refer to the situation in which \(\varepsilon_{1,t} \) is observed, or at least is recoverable from the VAR innovations \(v_p \) as partial invertibility: we will say that the VAR is partially invertible if there is some \(\lambda \) such that \(\varepsilon_{1,t} = \lambda' v_p \). The leading case is the observed shock case in which \(\lambda = (1 0 \ldots 0)' \), with the observed shock ordered first in the VAR. Here, we first consider partial identification in the case that \(\lambda \) is identified without assuming full invertibility (the ‘observed shock’ case), so that the shock can be used directly as a regressor. We then contrast this with the case of identification by external instruments.

First, consider the case that \(\varepsilon_{1,t} \) is observed, and let \(Y_{1,t} = \varepsilon_{1,t} \) and as usual let \(Y_{2:n,t} \) denote the remaining \(Y \)’s. Write the structural moving average representation for \(Y_{2:n,t} \) as \(Y_{2:n,t} = \Theta_1(L)\varepsilon_{1,t} + \omega_t \) where \(\omega_t \) is the distributed lag all the shocks other than \(\varepsilon_{1,t} \). Because \(\omega_t \) is stationary, it has a population VAR representation, \(\omega_t = A_{22}(L)\omega_{t-1} + \zeta_t \). Premultiplying \(Y_{2:n,t} = \Theta_1(L)\varepsilon_{1,t} + \omega_t \) by \(I - LA_{22}(L) \) and rearranging yields, \(Y_{2:n,t} = [I - LA_{22}(L)]\Theta_1(L)\varepsilon_{1,t} + A_{22}(L)\tilde{Y}_{2:n,t-1} + \zeta_t = A_{21}(L)\varepsilon_{1,t-1} + A_{22}(L)Y_{2:n,t-1} + \Theta_{0,1}\varepsilon_{1,t} + \zeta_t \) where \(A_{21}(L) = L^{-1}\{[I - LA_{22}(L)]\Theta_1(L) - \Theta_{0,1}\} \) (note that the leading term of \([I - LA_{22}(L)]\Theta_1(L) \) is \(\Theta_{0,1} \)). The expressions for \(Y_{1,t} \) and \(Y_{2:n,t} \) combine to yield the VAR:

\[
Y_t = \begin{pmatrix} Y_{1,t} \\ Y_{2:n,t} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ A_{21}(L) & A_{22}(L) \end{pmatrix} \begin{pmatrix} Y_{1,t-1} \\ Y_{2:n,t-1} \end{pmatrix} + \begin{pmatrix} v_{1,t} \\ v_{2:n,t} \end{pmatrix},
\]

where \(\begin{pmatrix} v_{1,t} \\ v_{2:n,t} \end{pmatrix} = \begin{pmatrix} 1 \\ \Theta_{0,1} \\ I \end{pmatrix} \begin{pmatrix} \varepsilon_{1,t} \\ \zeta_t \end{pmatrix} \).

Assuming correct lag specification, the VAR coefficient estimator is consistent for the population lag matrix in (26). The lack of feedback in the population VAR coefficient matrix to the first variable, combined with the lower triangular error structure in (26), imply that the IRFs produced by a Cholesky factorisation of the VAR innovations, with the observed shock ordered first, produce an IRF that simply iterates on the second block of equations. That is, the IRF is computed from the difference equation \(Y_{2:n,t} = [I - LA_{22}(L)]\Theta_1(L)\varepsilon_{1,t} + A_{22}(L)Y_{2,t-1} \), which yields the IRF \(\Theta_1(L) \).

The conclusion that the VAR ‘\(\varepsilon_{1,t} \) first’ IRF is consistent for \(\Theta_1(L) \) was reached without ever assuming that \(\zeta_t \) spans the space of the remaining shocks: the VAR can have omitted variables in the sense that the shocks are not fully observable. The reason for this result is that \(\varepsilon_{1,t} \) is strictly exogenous. Because of this strict exogeneity, \(\Theta_1(L) \) can be consistently estimated by a distributed lag regression of \(Y_{2:n,t} \) on \(\varepsilon_{1,n} \) an autoregressive distributed lag regression, by GLS, or using a VAR with arbitrary choice of VAR variables, including a choice of VAR variables that differs from one variable of interest to the next.

These observations all extend to the case of partial invertibility, in which there is an identified \(\lambda \) such that \(\varepsilon_{1,t} = \lambda' v_p \). Let \(\tilde{\lambda} \) be a \(n \times (n - 1) \) matrix such that \(\tilde{\lambda}'\lambda = 0 \) and \(\tilde{\lambda}'\tilde{\lambda} = I \). Then the algebra of the preceding paragraph goes through using the transformed variables \(\tilde{Y}_t = (\tilde{Y}_{1,t}, \tilde{Y}_{2:n,t}) = (\lambda' Y_t, \tilde{\lambda}' Y_t) \).

Returning to IV methods, an implication of these observations is that if the IV methods identify \(\tilde{\lambda} \) such that \(\varepsilon_{1,t} = \tilde{\lambda}' v_p \) then the additional assumption of invertibility of the SVAR can be dispensed with for the validity of SVAR-IV. This said, as discussed in

© 2018 Royal Economic Society.
subsection 2.2, identification of $\Theta_{0,1}$ is insufficient to identify λ, and the expression for λ given there (that $\lambda = \Theta_{0,1}/\Sigma_{\omega}^{-1}/(\Sigma_{\omega}^{-1}\Theta_{0,1})$) was derived under the invertibility assumption (17). While the partial invertibility assumption that $\epsilon_{t,1} = \lambda_v t$ is weaker than invertibility assumption (17), it remains to be seen whether there are empirical applications in which this weaker condition would hold but invertibility does not.\footnote{Evidently, without partial invertibility or recoverability, the historical and forecast error variance decompositions in (14) and (15) are not point-identified. \cite{Plagborg-Moller2017} derive set identification results for these decompositions using external instruments in the absence of invertibility or recoverability.}

3. A Test of Invertibility

Suppose one has an instrument that satisfies Condition LP-IV. Under invertibility, SVAR-IV and LP-IV are both consistent, but SVAR-IV is more efficient, at least under homoscedasticity. If, however, invertibility fails, LP-IV is consistent but SVAR-IV is not. This observation suggests that comparing the SVAR-IV and LP-IV estimators provides a Hausman (1978)-type test of the null hypothesis of invertibility. Throughout, we maintain the assumption that Y_t has the linear structural moving average (5). We additionally assume the VAR lag length p is finite and known.

Before introducing the test, we make precise the null and alternative hypothesis. We also provide a nesting of local departures from the null, which we refer to as local non-invertibility.

3.1. Null and Local Alternative

Under invertibility (24), the structural moving average can be written $Y_t = C(L)\Theta_0\epsilon_t$ as in (18), where $C(L) = A(L)^{-1}$; that is, that $\Theta(L) = C(L)\Theta_0$. The null and alternative hypotheses thus are

$$H_0 : C_h\Theta_{0,1} = \Theta_{h,1}, \text{ all } h \text{ v. } H_1 : C_h\Theta_{0,1} \neq \Theta_{h,1}, \text{ some } h. \quad (27)$$

In addition to establishing the null distribution of the test, we wish to examine its distribution under an alternative to check that the test has power against non-invertibility. \cite{Beaudry2015} and \cite{Plagborg-Moller2016} provide numerical evidence that in many cases the non-invertible (non-fundamental) representation of a time series may be very close to its invertible representation. With this motivation, we focus on non-invertible IRFs that represent small departures from an invertible null.

Specifically, we consider the drifting sequence of alternatives:

$$C_{h,T}\Theta_{0,1} = \Theta_{h,1} + T^{-1/2}d_h + o(T^{-1/2}), \quad (28)$$

where under the null $d_h = 0$, while under the alternative d_h is a non-zero $n \times 1$ vector for at least some $h > 0$. In Appendix A.1, we construct a sequence of models that are non-invertible because of a small amount (specifically, $O_p(T^{-1/4})$) of measurement

\@footnotetext[12]{Evidently, without partial invertibility or recoverability, the historical and forecast error variance decompositions in (14) and (15) are not point-identified. \cite{Plagborg-Moller2017} derive set identification results for these decompositions using external instruments in the absence of invertibility or recoverability.}
3.2. Test of Invertibility

We now turn to the test statistic. Let $\hat{\theta}^{SVAR-IV}$ denote an $m \times 1$ vector of SVAR-IV estimators (23), computed using a VAR(p), for different variables and/or horizons and let $\hat{\theta}^{LP-IV}$ denote the corresponding LP-IV estimators. Compute the LP-IV estimator using as control variables the p lags of Y that appear in the VAR; because Z_t satisfies Condition LP-IV, including these lags as controls is not necessary for consistency but makes the two statistics comparable for use in the same test statistic.

It is shown in Appendix A that, with strong instruments and under standard moment/memory assumptions, under the null and local alternative:

$$\sqrt{T}(\hat{\theta}^{LP-IV} - \hat{\theta}^{SVAR-IV}) \xrightarrow{d} N(d, V),$$

where d consists of the elements of $\{d_h\}$ corresponding to the variable-horizon combinations that comprise $\hat{\theta}^{LP-IV}$ and $\hat{\theta}^{SVAR-IV}$.

The Hausman-type test statistic is

$$\xi = T(\hat{\theta}^{LP-IV} - \hat{\theta}^{SVAR-IV})' \hat{V}^{-1}(\hat{\theta}^{LP-IV} - \hat{\theta}^{SVAR-IV}),$$

where \hat{V} is a consistent estimator of V. Under the null of invertibility, $\xi \xrightarrow{d} \chi^2_m$.

We make four remarks about this test:

(i) We suggest computation of the variance matrix \hat{V} using the parametric bootstrap, and we discuss some specifics in Appendix A.2.

(ii) The LP-IV and SVAR-IV estimators for the impact effect ($h = 0$) are identical when lagged Ys are used as controls. Thus, this test compares the LP-IV and SVAR-IV estimates of the impulse responses for $h \geq 1$. This test therefore assesses the validity of the parametric restrictions imposed by inverting the SVAR, compared to direct estimation of the impulse response function by LP-IV. Here, we have maintained the assumption that the structural moving average is linear and the VAR lag length is finite and known. Under these maintained assumptions, any divergence between the SVAR impulse responses and the direct estimates, in population, is attributable to non-invertibility.

(iii) Under the local alternative (28), the test statistic has a non-central chi-squared distribution with m degrees of freedom and non-centrality parameter $\mu^2 = d'V^{-1}d$. The expressions in Appendix A show that, for a given local alternative d, the non-centrality parameter converges to zero as $\alpha \to 0$, and increases to a finite limit as $|\alpha|$ increases. Thus, the power of the test is increasing as the strength of the instrument increases, according to this local strong-instrument approximation.

(iv) Existing tests for invertibility (Forni and Gambetti, 2014) test the implication of invertibility that Z_t does not Granger-cause Y_t. The test here differs because it focuses not on forecasting contribution, but on the object of interest in the...
analysis, the impulse response function. In both approaches – directly testing Granger non-causality and the Hausman-type test approach here, the testable implications all stem from moments involving Z: second moments of Y alone cannot distinguish invertible from non-invertible processes.

Gertler and Karadi (2015) use the SVAR-IV method to estimate the effect of a monetary policy shock on real output, prices and various credit variables, and Ramey (2016) applies LP-IV to their data to illustrate the differences between the two methods. Here, we extend Ramey’s comparison and formally test invertibility. We use this application to discuss several implementation details.

Gertler and Karadi’s (2015) benchmark analysis uses US monthly data to estimate the effect of Federal Reserve policy shocks on four variables: the index of industrial production and the consumer price index (both in logarithms, denoted here as IP and P), the interest rate on one-year US Treasury bonds (R_t) and a financial stress indicator, the Gilchrist and Zakrajšek (2012) excess bond premium (EBP). We first-difference IP and P, so the vector of variables is $Y_t = (R_t, 100DIP, 100DP, EBP)$, where R and EBP are measured in percentage points at the annual rate and DIP and DP are multiplied by 100 so these variables are measured in percentage point growth rates.

Gertler and Karadi (GK) identify the monetary policy shock using changes in Federal Funds futures rates (FFF) around FOMC announcement dates. In doing so, they draw on insights from Kuttner (2001) and others who argued that this measure is plausibly uncorrelated with other shocks because they are changes across a short announcement window. However, the original literature treated such a measure as the shock and GK use it as an instrument, that is, $Z_t = FFF_t$.

Column (1) of Table 1 shows results for the LP-IV regression (7), the equation without controls, using the GK data that span 1990m1–2012m6. Standard errors in Table 1 for LP-IV impulse responses are Newey–West with $h + 1$ lags. We highlight three results. First, the table shows that the estimated contemporaneous ($h = 0$) effect of monetary policy shocks on interest rates (R) is $\Theta_{0,1} = 1.0$; this is the unit-effect normalisation. Second, the first-stage F-statistic – that is the (standard) F-statistic from the regression of R_t onto FFF_t – is small, only 1.7, raising weak instrument concerns. Third, the estimated standard errors for the estimated causal effects are large, particularly for large values of h.

These final two results are related. To see why, rewrite (5) to highlight the various components of $Y_{i,t+h}$:

$$Y_{i,t+h} = \Theta_{h,i} \varepsilon_{i,t+h} + \{\varepsilon_{i+h,1}, \ldots, \varepsilon_{i+1}\} + \{\varepsilon_{2,n,t}\} + \{\varepsilon_{t-1}, \ldots\},$$

where, again, the notation $\{\cdot\}$ denotes a linear function of the variables included in the braces. The first-stage F-statistic is from the regression of $Y_{1,t} (= R_t)$ onto $Z_t (= FFF_t)$. From (31), the error term in the first-stage regression is comprised of $\{\varepsilon_{2,n,t}\}$ and

© 2018 Royal Economic Society.
Because interest rates are very persistent, only a small fraction of the variance is attributable to contemporaneous shocks, \(\epsilon_t \); a fraction of this contemporaneous effect is associated with the monetary policy shock \(\epsilon_{1,t} \), and only a fraction of \(\epsilon_{1,t} \) can be explained by the instrument \(Z_t \). Taken together, these effects yield a first-stage regression with \(R^2 = 0.006 \) and a correspondingly small \(F \)-statistic. Similar logic explains the large standard errors for the estimated causal effects because these are associated with IV regressions with error terms comprised of \(\{ \epsilon_{t-1}, \ldots \} \).

Table 1

<table>
<thead>
<tr>
<th>lag (h)</th>
<th>LP-IV (1)</th>
<th>LP-IV (2)</th>
<th>LP-IV (3)</th>
<th>SVAR (4)</th>
<th>SVAR – LP (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>(R)</td>
<td>1.00 (0.00)</td>
<td>1.00 (0.00)</td>
<td>1.00 (0.00)</td>
<td>1.00 (0.00)</td>
<td>0.00 (0.00)</td>
</tr>
<tr>
<td>(IP)</td>
<td>6 0.12 (1.34)</td>
<td>1.12 (0.52)</td>
<td>0.67 (0.57)</td>
<td>0.89 (0.31)</td>
<td>-0.23 (1.19)</td>
</tr>
<tr>
<td>(P)</td>
<td>12 -1.05 (2.51)</td>
<td>0.78 (1.02)</td>
<td>-0.12 (1.07)</td>
<td>0.78 (0.46)</td>
<td>0.90 (1.79)</td>
</tr>
<tr>
<td>(EBP)</td>
<td>24 -2.09 (5.66)</td>
<td>-0.80 (1.53)</td>
<td>-1.57 (1.48)</td>
<td>0.40 (0.49)</td>
<td>1.19 (2.57)</td>
</tr>
<tr>
<td></td>
<td>0 -0.59 (0.71)</td>
<td>0.21 (0.40)</td>
<td>0.03 (0.55)</td>
<td>0.16 (0.59)</td>
<td>-0.06 (0.35)</td>
</tr>
<tr>
<td></td>
<td>6 -2.15 (3.42)</td>
<td>-3.80 (3.14)</td>
<td>-4.05 (3.65)</td>
<td>-0.81 (1.19)</td>
<td>3.00 (2.32)</td>
</tr>
<tr>
<td></td>
<td>12 -3.60 (6.23)</td>
<td>-6.70 (4.70)</td>
<td>-6.86 (5.49)</td>
<td>-1.87 (1.54)</td>
<td>4.83 (4.00)</td>
</tr>
<tr>
<td></td>
<td>24 -2.99 (10.21)</td>
<td>-9.51 (7.70)</td>
<td>-8.13 (7.62)</td>
<td>-2.16 (1.65)</td>
<td>7.35 (6.40)</td>
</tr>
<tr>
<td></td>
<td>0 0.02 (0.07)</td>
<td>-0.08 (0.25)</td>
<td>-0.04 (0.25)</td>
<td>0.02 (0.23)</td>
<td>0.10 (0.13)</td>
</tr>
<tr>
<td></td>
<td>6 0.16 (0.42)</td>
<td>-0.39 (0.52)</td>
<td>-0.79 (0.83)</td>
<td>0.31 (0.41)</td>
<td>0.71 (0.98)</td>
</tr>
<tr>
<td></td>
<td>12 -0.26 (0.88)</td>
<td>-1.35 (1.03)</td>
<td>-1.37 (1.23)</td>
<td>0.45 (0.54)</td>
<td>1.80 (1.53)</td>
</tr>
<tr>
<td></td>
<td>24 -0.88 (3.08)</td>
<td>-2.26 (1.31)</td>
<td>-2.58 (1.69)</td>
<td>0.50 (0.65)</td>
<td>2.76 (2.60)</td>
</tr>
<tr>
<td>(EBP)</td>
<td>0 0.51 (0.61)</td>
<td>0.67 (0.40)</td>
<td>0.82 (0.49)</td>
<td>0.77 (0.29)</td>
<td>0.99 (0.24)</td>
</tr>
<tr>
<td></td>
<td>6 0.22 (0.30)</td>
<td>1.33 (0.81)</td>
<td>1.66 (1.04)</td>
<td>0.48 (0.20)</td>
<td>-0.85 (0.51)</td>
</tr>
<tr>
<td></td>
<td>12 0.56 (0.91)</td>
<td>0.84 (0.65)</td>
<td>0.91 (0.80)</td>
<td>0.18 (0.13)</td>
<td>-0.66 (0.55)</td>
</tr>
<tr>
<td></td>
<td>24 -0.44 (1.29)</td>
<td>0.94 (0.66)</td>
<td>0.85 (0.76)</td>
<td>0.06 (0.07)</td>
<td>-0.88 (0.62)</td>
</tr>
<tr>
<td>Controls</td>
<td>None</td>
<td>4 lags of ((z,y))</td>
<td>4 lags of ((z,y,f))</td>
<td>12 lags of (y)</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>4 lags of (z)</td>
<td>na</td>
<td>na</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-stage (F^{Hom})</td>
<td>1.7</td>
<td>23.7</td>
<td>18.6</td>
<td>20.5</td>
<td>na</td>
</tr>
<tr>
<td>First-stage (F^{HAC})</td>
<td>1.1</td>
<td>15.5</td>
<td>12.7</td>
<td>19.2</td>
<td>na</td>
</tr>
</tbody>
</table>

Notes. The instrument, \(Z_t \), is available from 1990m1 to 2012m6; the other variables are available from 1979m1 to 2012m6. The LP-IV estimates in (1)–(3) use data from 1990m1 to 2012m6. The VAR for (4) is computed over 1980m7–2012m6 and the IV-regression computed over 1990m5–2012m6. The numbers in parentheses are standard errors computed by Newey–West HAC with \(h + 1 \) lags for the local projections, and using a parametric Gaussian bootstrap for the SVAR and the SVAR – LP differences shown in (5). In the final two rows, \(F^{Hom} \) is the standard (conditional homoscedasticity, no serial correlation) first-stage \(F \)-statistic, while \(F^{HAC} \) is the Newey–West version using 12 lags in (1) and heteroscedasticity-robust (no lags) in (2), (3) and (4).
Thus, FFF_t will be correlated with both $\varepsilon_{1,t}$ and $\varepsilon_{1,t-1}$, violating Assumption LP-IV (iii). Because Z_t has a MA(1) structure, using lags of Z_t as controls eliminates the correlation with $\varepsilon_{1,t-1}$, so that Condition LP-IV$^\perp$ (iii) is satisfied. Despite the MA(1) structure, it is plausible that this instrument is uncorrelated with other shocks. Thus, to satisfy Condition LP-IV$^\perp$ (iii), it would suffice to include lags of Z's as a controls; including lagged Ys and additional lags of Z serves to improve precision (increase the first-stage F).

If there are more than four shocks that affect Y_t, or if some elements of Y_t are measured with error (as IP and P surely are), then the innovations to the four variables making up Y_t will not span the space of the shocks. This is not a problem for the validity of LP-IV with lagged Zs; however, it does suggest that including additional variables that are correlated with the shocks could further reduce the regression standard error, and thus result in smaller standard errors. One plausible set of such variables are principal components (factors) computed from a large set of macro variables. With this motivation, column (3) adds lags of four factors computed from the FRED-MD data set (McCracken and Ng, 2016). In this illustration, these additional controls yield results that are largely consistent with the results using lags of Z and Y.

Both specification (2) and (3) in Table 1 improve on the model without controls, (1), by eliminating some of the variability associated with lagged ε and in particular by making Z satisfy LP-IV$^\perp$ (iii), whereas (1) does not satisfy LP-IV (iii). However, neither eliminates the variability associated with future ε’s, the \(\{ \varepsilon_{t+h}, \ldots, \varepsilon_{t+1}\} \) component of the error term shown in (31). The variability of this component increases with the horizon h, and this is evident in the large standard errors in estimates associated with long-horizons. When the structural moving average model is invertible, it is in effect possible to control for both lagged and future values of ε in the IV regression using VAR methods.

Column (4) of Table 1 shows results from a SVAR with 12 lags, with monetary policy identified by the FFF instrument. Because the data on the Ys are available for a longer span than the data on the instrument, we follow Gertler and Karadi (2015) and estimate the VAR over the sample 1980m7–2012m6, while $\Theta_{0,1}$ is estimated over the sample 1990m1–2012m6 (see the discussion of data spans towards the end of subsection 2.1). Standard errors for the SVAR-IV estimate are computed by the parametric bootstrap described in Appendix A. Because the VAR uses 12 lags of Y instead of the four lags used as controls in the local projections, the first stage F-statistics differ slightly in columns (2) and (4). As expected, the standard errors for the estimated dynamic causal effects are smaller for the SVAR than for the local projections, particularly for large values of h, for two reasons. First, the local projections are estimated using regressions with error terms that include leads and lags of ε (see (31)), and these terms are absent from the IV regression used in the SVAR, because

13 The construction of Z_t is described in footnote 6 in GK. The MA(1) structure invalidates the LP-IV regression reported in column (1), but it does not affect its validity in the SVAR-IV regression used by GK. An additional issue is that the weights used in GK’s construction of Z_t are time varying because of floating FOMC meeting dates. In principle, this could yield a time-varying MA(1) structure but we approximate the MA coefficients as constant.

© 2018 Royal Economic Society.
only the impact effect, Θ_0, is estimated by IV. Second, the VAR parameterisation imposes smoothness and damping on the moving average coefficients in C_h, which further reduces the standard errors. Still, in this empirical application, the standard errors in the SVAR remain large.

The final column of Table 1 shows the difference in estimates of dynamic causal effects from the LP-IV estimator in column (2) and the SVAR-IV estimator in column (4). These differences form the basis for the invertibility test developed in the last Section, and the standard errors shown in final column are computed from the parametric bootstrap, which imposes invertibility. Some of the differences between the SVAR and LP estimates are large, but so are their estimated errors, and none of the differences are statistically significant. Relative to the sampling uncertainty, the differences in the LP and SVAR estimates shown in Table 1 are not large enough to conclude that the SVAR suffers from misspecification associated with a lack of invertibility.

Table 2 shows results for two additional tests for invertibility. The first row shows results for the test ξ in (30) for the differences of the LP-IV and SVAR-IV estimates jointly across the lags shown in Table 1. The second row shows p-values for the F-statistic testing the null hypothesis that the coefficients on four lags of Z are jointly equal to zero in each of the VAR equations.

Table 2

Tests for VAR Invertibility (p-values)

<table>
<thead>
<tr>
<th></th>
<th>1 year rate</th>
<th>ln(IP)</th>
<th>ln(CPI)</th>
<th>GZ</th>
<th>EBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR-LP difference (lags 0, 6, 12, 24)</td>
<td>0.95</td>
<td>0.55</td>
<td>0.75</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>VAR Z-GC test</td>
<td>0.16</td>
<td>0.09</td>
<td>0.38</td>
<td>0.97</td>
<td></td>
</tr>
</tbody>
</table>

Notes. The first row is the bootstrap p-value for the test ξ in (30) of the null hypothesis that IV-LP and IV-SVAR causal effects are same for $h = 0, 6, 12$ and 24. The second row shows p-values for the F-statistic testing the null hypothesis that the coefficients on four lags of Z are jointly equal to zero in each of the VAR equations.

5. Conclusions

It is well known that, with Gaussian errors, every invertible model has multiple observationally equivalent non-invertible representations, so if one is to distinguish among them, some external information must be brought to bear. One approach is to assume that the shocks are independent and non-Gaussian, and to exploit higher order moment restrictions to identify the causal structure (Lanne and Saikkonen, 2013; Gospodinov and Ng, 2015; Gouriéroux et al., 2017). A second approach is to use a priori informative priors (Plagborg-Møller, 2016b). Here, we have shown that there is a third approach, which is to use an external instrument. Through an external instrument, additional information can be brought to bear to identify dynamic causal effects. Under a lead–lag exogeneity condition, the external instrument identifies the structural impulse response function without assuming invertibility.

© 2018 Royal Economic Society.
A number of methodological issues concerning the use of external instruments merit further research. For example, this discussion assumes homogenous treatment effects. Although this assumption seems plausible in a macroeconomic setting (there is only one ‘subject’, although effects may be state-dependent), more work is warranted. Also, the usual weak-instrument toolkit does not cover all the methods used here, for example, one open question is how to robustify our test of invertibility to potentially weak instruments.

Additionally, an informal argument sometimes made in favour of the local projections method is that it is robust to VAR misspecification concerning lag length, non-linearities and state dependence. In this article, we have put these arguments to one side by assuming a linear, constant-coefficient structural moving average representation. To us, the robustness of LP-IV to non-linearities is not obvious, particularly when the instrument depends in part on lagged shocks: if so, the control variables would need to span the space of those shocks, and it seems that there would be a non-linear counterpart to our no free lunch theorem (Theorem 1). In any event, it would be of interest to see these arguments made precise.

In our view, the most exciting work to be done in this area is empirical. We look forward to the development of new external instruments that provide plausibly exogenous variation to provide more credible identification of dynamic causal effects.

Appendix A. Asymptotics and Bootstrap Implementation

A.1. Asymptotic Distribution of the Hausman Test Statistic for Invertibility

This Appendix derives the asymptotic distribution (29) under the null of invertibility and under a sequence of local alternatives. For simplicity, we consider the case that the test is based on all impulse responses for a single horizon h and that the instrument is a scalar; extensions to multiple horizons and a vector of instruments is straightforward. Accordingly, we show that $T^{1/2}\left(\Theta_0^{SVAR-IV} - \Theta_0^{LP-IV}\right) \xrightarrow{d} N(d_0, V_h)$. This result implies that the test statistic ξ given in (30) has an asymptotic chi-squared distribution with n degrees of freedom under the null, and a non-central chi-squared distribution with non-centrality parameter $\mu^2 = d_0'V_h^{-1}d_h$ under the local alternative.

We begin with the analysis under the null of invertibility. The SVAR is

$$A(L)Y_t = \Theta(L)e_t,$$

(A.1)

where $A(L)$ is a polynomial of order p. The Wold moving average polynomial is $C(L) = A(L)^{-1} = I + C_1L + \ldots$. Under the null hypothesis of invertibility (17), with the maintained hypothesis that Y_t has the linear structural MA representation (5), the structural IRF satisfies H_0 in (27), that is, $\Theta_{h,1} = C_0\Theta_{0,1}$ for all h.

For future reference, we note that the SVAR can be written in state-space form as

$$Y_t = SX_t,$$
$$X_t = AX_{t-1} + Ge_t,$$

(A.2)

where $X_t = (Y_t', Y_{t+1}', \ldots, Y_{t+p-1}')'$, A is the VAR companion matrix, the upper block of G is Θ_0 and all other elements of G are zero and $S = (1_n \ 0 \ \cdots \ 0)$ is a selection matrix.

© 2018 Royal Economic Society.
The local projection equation, written for the vector Y_t, is

$$Y_{t+h} = \Theta_{h,1} Y_{t,T} + \Gamma h W_t + u_{t+h}$$ \hspace{1cm} (A.3)

where the control variables are $W_t = X_{t-1}$ and, from (A.2), $\Gamma h = SA_k$. Consistent with Assumption LP-IV, we represent Z_t as

$$Z_t = \beta e_{1,t} + B' W_t + \epsilon_t,$$ \hspace{1cm} (A.4)

where ϵ_t is uncorrelated with e_t for all t and s. All variables are assumed to be second-order stationary with sample moments that satisfy

$$T^{-1/2} \sum \text{vec}(a_t b_t' - E(a_t b_t')) \xrightarrow{d} N(0, \Sigma_{ab}),$$ \hspace{1cm} (A.5)

for any variables (a_t, b_t).

The LP-IV estimator is

$$\hat{\Theta}_{h,1}^{\text{LP-IV}} = (Z'M_W Y_{1,0})^{-1} (Y_t' M_W Z),$$ \hspace{1cm} (A.6)

where Z denotes the $T \times 1$ vector of instruments, $Y_{1,0}$ denotes the $T \times 1$ vector $(Y_{1,1} \ldots Y_{1,T})'$, Y_h denotes the $T \times n$ matrix with tth row $Y_{t,h}$ and $M_W = I - W(W'W)^{-1} W$, where W is a $T \times (np)$ matrix with tth row W_t'. The SVAR-IV estimator is as follows:

$$\hat{\Theta}_{h,1}^{\text{SVAR-IV}} = \hat{\Theta}_{h,1}^{\text{LP-IV}},$$ \hspace{1cm} (A.7)

where $\hat{\Theta}(L) = \hat{\Lambda}(L)^{-1}$ where $\hat{\Lambda}(L)$ is the OLS estimator of $\Lambda(L)$.

Under H_0 in (27) and the assumption that Z_t is a strong instrument, a straightforward calculation then yields

$$T^{1/2}(\hat{\Theta}_{h,1}^{\text{SVAR-IV}} - \hat{\Theta}_{h,1}^{\text{LP-IV}}) = T^{1/2}(\hat{\Theta}_{h,1} - \Theta_h) \Theta_{h,1}^{\text{LP-IV}}$$

$$+ T^{-1/2} \sum Z_t' u_t^{1/2} - T^{-1/2} \sum Z_t' a_{t+h}^{1/2} + o_P(1)$$ \hspace{1cm} (A.8)

where the result uses $Z'M_W Y_{1,0} = Z'W_1Y_{1,0} = Z'W_1Y_{1,0} + o_P(1)$ and similarly for $Y_{1,0}' M_W Z$, $T^{-1/2} Z'W_1 Y_{1,0} \rightarrow P \alpha = E(Z_t' e_{1,t})$, and the delta-method.

We now consider a sequence of stochastic processes that are local to the invertible model and the resulting estimators. Specifically, maintain the definitions of all of the variables and parameters given above (so that Y_t is generated by the invertible model, etc.), but now consider the sequence of stochastic processes $Y_{t,T}$:

$$Y_{t,T} = SX_t + T^{-1/4} \eta_t,$$ \hspace{1cm} (A.9)

where η_t is white noise and uncorrelated with e_t for all t and s. Notice that $Y_{t,T} = Y_t + T^{-1/4} \eta_t$ is that χ_t cannot be perfectly recovered from current and lagged values of $Y_{t,T}$ and $e_t \neq \text{Proj}(e_t|Y_{t,T} Y_{s,T}, \ldots)$, so the model is not invertible.

The implied pth order VAR for $Y_{t,T}$ is local to the VAR for Y_p that is

$$A_T(L) = A(L) + T^{-1/2} a(L) + o(T^{-1/2}),$$ \hspace{1cm} (A.10)

where $A_T(L)$ denotes the projection of $Y_{t,T}$ onto $(Y_{t-1,T} \ldots Y_{t-p,T})$. Similarly, the implied moving coefficients, $A_T(L)^{-1} = 1 + C_{1,T} L + \ldots$ satisfy $C_{h,T} = C_h + T^{-1/2} c_h + o(T^{-1/2})$. Because $C_h = \Theta_h$ (the invertible null), we have that $C_h = \Theta_h = \Theta_h + T^{-1/2} c_h + o(T^{-1/2}) = \Theta_h + o(T^{-1/2})$.

© 2018 Royal Economic Society.
Let $\hat{Y}_t(L)$ denote the OLS estimator of $A_T(L)$ using $Y_{t,T}$. A calculation shows that $T^{1/2}(\hat{A}_T(L) - \hat{A}(L)) = a(L) + o_p(1)$ and:

$$T^{1/2}(\hat{C}_{h,T} - \hat{C}_h) = c_h + o_p(1).$$ \hfill (A.11)

Although the VAR and MA models for Y_t and $Y_{t,T}$ differ by a $T^{-1/2}$ component, the LP-IV estimators using $Y_{t,T}$ and Y_t are equivalent to order $T^{-1/2}$. To see this, write the LP equation as:

$$Y_{t+h,T} = \Theta_{h,1}Y_{t,T} + \Gamma_{h,T}W_{t,T} + u_{t+h,T}^h,$$ \hfill (A.12)

where $W_{t,T} = (Y_{t-1,T} \ldots Y_{t-p,T})$. From (A.2) and (A.12), $\Gamma_{h,T}W_{t,T} = S\Lambda^{h+1} \times \text{Proj}(X_{t-|W_{t,T}})$ and $u_{t+h,T}^h = u_{t+h}^h + T^{-1/4}g_{t+h}^h$, where $g_{t+h}^h = S\Lambda^{h+1} \times [X_{t-1} - \text{Proj}(X_{t-|W_{t,T}})] = O_p(T^{-1/4})$.

Similarly, let the instruments satisfy:

$$Z_{t,T} = \beta e_{t,1} + B'W_{t,T} + \epsilon_t,$$ \hfill (A.13)

where now e_t is assumed to be uncorrelated with ϵ_t and η_t for all t and τ. Using instruments that satisfy (A.13) ensures that Condition LP-IV holds under both the null and local alternative. Let $\hat{\Theta}_{h,L}^{\text{LP-IV}}(\{Y_{t,T}, Z_{t,T}\})$ denote the LP-IV estimates using $\{Y_{t,T}, Z_{t,T}\}$. Using (A.12) and (A.13), it follows that:

$$T^{1/2}[\hat{\Theta}_{h,1}^{\text{LP-IV}}(\{Y_{t,T}, Z_{t,T}\}) - \hat{\Theta}_{h,1}^{\text{LP-IV}}(\{Y_{t,T}, Z_{t,T}\})] = o_p(1).$$ \hfill (A.14)

Finally, the SVAR estimator constructed from $\{Y_{t,T}, Z_{t,T}\}$ is:

$$\hat{\Theta}_h^{\text{SAR-IV}}(\{Y_{t,T}, Z_{t,T}\}) = \hat{C}_{h,T} \hat{\Theta}_0^{\text{LP-IV}}(\{Y_{t,T}, Z_{t,T}\}).$$ \hfill (A.15)

Equations (A.8), (A.11), (A.14) and (A.15) imply:

$$T^{1/2}[\hat{\Theta}_h^{\text{SAR-IV}}(\{Y_{t,T}, Z_{t,T}\}) - \hat{\Theta}_h^{\text{LP-IV}}(\{Y_{t,T}, Z_{t,T}\})]$$

$$= T^{1/2}[\hat{\Theta}_h^{\text{SAR-IV}}(\{Y_{t,T}, Z_{t,T}\}) - \hat{\Theta}_h^{\text{LP-IV}}(\{Y_{t,T}, Z_{t,T}\})] + c_h \Theta_{0,1} + o_p(1) \hfill (A.16)

\hfill \xrightarrow{d} N(d_h, V_h),$$

where $d_h = c_h \Theta_{0,1}$.

A.2. Parametric Bootstrap Estimation of V_h

The standard errors of the estimators in Tables 1 and 2 were computed using the sample variances computed from 1,000 draws from a parametric bootstrap. For each draw, we generated samples of size T for $(\tilde{Y}_t, \tilde{Z}_t)$ from the stationary VAR:

$$\begin{bmatrix}
\hat{A}(L) & 0 \\
0 & \hat{\rho}(L)
\end{bmatrix}
\begin{bmatrix}
\tilde{Y}_t \\
\tilde{Z}_t
\end{bmatrix}
=
\begin{bmatrix}
\tilde{v}_t \\
\tilde{\epsilon}_t
\end{bmatrix}, \text{ where } \begin{bmatrix}
\tilde{v}_t \\
\tilde{\epsilon}_t
\end{bmatrix} \sim \text{i.i.d. } N\left(\begin{bmatrix}
0 \\
0
\end{bmatrix}, \begin{bmatrix}
S_{v\tilde{v}} & S_{v\tilde{\epsilon}} \\
S_{\tilde{v}\tilde{v}} & S_{\tilde{\epsilon}\tilde{\epsilon}}
\end{bmatrix}\right).$$ \hfill (A.17)

where $\hat{A}(L)$ is estimated from a VAR(12), $\hat{\rho}(L)$ is estimated from an AR(4) and $S_{v\tilde{v}}$, $S_{v\tilde{\epsilon}}$ and $S_{\tilde{\epsilon}\tilde{\epsilon}}$ are sample covariances for the VAR/AR residuals. These samples are used to compute the SVAR-IV and LP-IV estimates of $\Theta_{h,1}$.
Additional Supporting Information may be found in the online version of this article:

Data S1.

References

© 2018 Royal Economic Society.