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ABSTRACT

This paper considers forecasting a single time series when there are there are many
predictors (N) and time series observations (T). When the data follow an approximate dynamic
factor model, the predictors can be summarized by a small number of indexes, akin to diffusion
indexes. Estimation is discussed for balanced and unbalanced panels. Feasible forecasts are
shown to be asymptotically efficient as N,T->c0 and N=0(T”) for any p>0. The estimated
dynamic factors are shown to be (uniformly) consistent, even in the presence of time variation
in the population parameters and/or data contamination. The method is used to construct 6, 12,
and 24 month ahead forecasts for 8 monthly U.S. macroeconomic time series using 215
predictors in simulated real time from 1970 through 1998. Over this sample period these new

forecasts outperform various state-of-the-art benchmark models.
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1. Introduction

Recent advances in information technology now make it possible to access in real time, at a
reasonable cost, literally thousands of economic time series for major developed economies.
This raises the prospect of a new frontier in macroeconomic forecasting, in which a very large
number of time series are used to forecast a few key economic quantities such as output or
inflation. Time series models currently used for macroeconomic forecasting, however,
incorporate only a handful of series: vector autoregressions, for example, typically contain
fewer than ten variables. Similarly, standard model selection methods based on information
criteria work poorly when the number of candidate predictors is very large. Although
thousands of time series are available in real time, some dimension reduction scheme is
necessary before such a large number of variables can be used for forecasting.

In this paper, we use dynamic factor models as a framework for dimension reduction in
macroeconomic forecasting. The premise is that, for forecasting purposes, a large number of
predictor variables can be replaced by a handful of estimated factors. As proposed by Sargent
and Sims (1977), a dynamic factor model expresses a N-dimensional time series X, as the sum
of a r-dimensional unobserved factor Ft and an idiosyncractic error vector. The data, Xt’ are
observed at dates t=1,...,T. The dynamic factor model generalizes the familiar static factor
model by introducing dynamics into the evolution of the factor and the idiosyncratic errors and
by allowing X, to depend on a distributed lag of F;. In an exact factor model, the idiosyncratic
errors are uncorrelated across series. However, this assumption is implausible for
macroeconomic applications, and so instead we consider dynamic factor models that are
approximate in the sense of Chamberlain and Rothschild (1983).

This paper makes theoretical, computational, and empirical contributions. As summarized
below, there is a large literature on factor models, but for various reasons (discussed in section
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2) the existing theoretical results are insufficient to support application of these methods to
macroeconomic forecasting. We therefore provide some theoretical econometric results
appropriate for this application. Section 2 studies forecasting an individual series, Yi+1> using
many predictor variables X, when (v, ¢, X,) follows a time-invariant approximate dynamic
factor model and the factors are estimated by the principal components of X, We show that,
given the number of factors, the resulting feasible forecast is asymptotically first-order efficient
in the sense that the out-of-sample prediction error variance of the feasible forecast equals the
prediction error variance of the infeasible conditional expectation EGT41 IFT). This result is
shown to hold for N=0(T?) for any p>0. The implication of this result is that principal
components applied to a dynamic factor model can be expected to yield asymptotically efficient
forecasts in a variety of applications, including N> >T, N=T, and N< <T, as long as N and T are
both large.

In section 3, the assumptions of section 2 are weakened in three main ways: the population
factor loadings are allowed to vary over time; the number of estimated factors (k) and true
factors (r) are allowed to differ; and the number of estimated factors is allowed increase to
infinity as the sample size increases. In addition, stronger results than those in section 2 are
presented, including results on uniform consistency of the estimated factors, rates of
consistency, and determination of the number of factors needed for forecasting via information
criteria. The weaker assumptions and stronger conclusions come at the cost of a stronger
condition on the rate of data accumulation, and the results of section 3 apply to the case N,T-co
when N> >T. The finite sample performance of these methods is examined in a Monte Carlo
study, reported in section 4.

The computational contribution of the paper is a modification of principal components
analysis using the EM algorithm for the analysis of dynamic factor models with unbalanced

panels and mixed sampling frequencies. While conceptually straightforward, this extension is of




practical importance in applications to macroeconomic data. For example, series may be
available over different sample periods, or the data set might include both monthly and
quarterly data. The particulars of the extension to unbalanced panel and other data
irregularities are presented in appendix A.

Whether all this is relevant for macroeconomic forecasting is, of course, an empirical
question. In section 5, we therefore look at forecasts of eight major monthly economic time
series for the United States (four real series and four price inflation series) at the 6, 12, and 24
month horizons, using a simulated out of sample forecast comparison. The full data set spans
1959:1-1998:12 and contains 215 time series. Factors are extracted and forecasts are made using
all 215 series and using a balanced panel subset of 149 series. Benchmark models are univariate
and vector autoregressions and a multivariate model based on several leading economic
indicators. Unemployment-based Phillips curve models are also used as forecast benchmarks for
the inflation series. Generally speaking, factor model forecasts based on a small number of
factors -- in most cases, one or two -- are found to perform very well, with relative
performance improving as the horizon increases. The improvement over the benchmark
forecasts can be dramatic, in several cases producing simulated out of sample mean square
forecast errors that are one-third less than those of the benchmark models.

This paper is related to several earlier bodies of work. One important motivation, reflected
in the title of this paper, is the use of diffusion indexes as developed by business cycle analysts
at the National Bureau of Economic Research (NBER). These indexes are averages of
contemporaneous values of a large number of time series, where the series and their weights are
selected by expert judgment. A classic use of a diffusion index is to measure whether a
recession reaches throughout the economy. Diffusion indexes have been used as leading and
coincident economic indicators. Because it is an average of many variables, a diffusion index
summarizes the information in a large number of economic time series. Our estimated factors
are similar in spirit, except that the weights are computed by principal components analysis.
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A number of studies have applied dynamic factor models to macroeconomic data. Geweke
(1977) and Sargent and Sims (1977) analyzed these models in the frequency domain for a small
number of variables. Engle and Watson (1981), Sargent (1989), and Stock and Watson (1991)
estimated small-N parametric dynamic factor models by maximum likelihood in the time
domain. Quah and Sargent (1993) extended the time domain MLE to more series (N=60).
Forni and Reichlin (1996, 1997, 1998) and Forni, Hallin, Lippi and Reichlin (1998) have
considered various methods for estimating factors in dynamic factor models with large N. In
the first applications of this large cross section approach to macroeconomic data, they apply
their methods to large regional and sectoral data sets, for example Forni and Reichlin (1998)
extract and analyze common factors from data on productivity and output for 450 U.S.
industries. Another closely related body of work uses static approximate factor structures to
study asset prices. Contributions include Chamberlain and Rothschild (1983), Connor and
Korajezyk (1986, 1988, 1993), Mei (1993), Schneewwiss and Mathes (1995), Bekker et. al.
(1996), Geweke and Zhou (1996), and Zhou (1997); also see the survey in Campbell, Lo and
McKinley (1996, chapter 6)). The papers most closely related to this one are Connor and
Korajezyk (1986, 1988, 1993), Forni and Reichlin (1996, 1997, 1998), and Forni, Hallin, Lippi

and Reichlin (1998), and these are discussed in more detail in section 2.

2. The Model and Estimation

2.1. The model
Let y, be the scalar time series variable to be forecast and let X, be a N-dimensional

multiple time series of candidate predictors. It is assumed that (X4,¥¢ 4 1) admit a dynamic

factor model representation with r common dynamic factors f,,




Qn X;= Xi(L)ft + €5

22)  ypyp =B+ &4y

where e, = (e}y,...,eNy)’ is the Nx1 idiosyncratic disturbance and X;(L) and B(L) are lag
polynomials in non-negative powers of L. Both f, and e, are assumed to follow mean zero
stationary stochastic processes (so X, and y, . | are deviations from their means). The errors in
the forecasting equation (2.2) are assumed to be a homoskedastic martingale difference sequence

2

with respect to Ft=(Xt,ft,et,Xt_1,ft_l,et_l,...), SO E(€t+1 |Ft)=0’ and E(et_H |Ft)=02; it is

also assumed that the fourth moment of € 1s finite. Although e, and €js are not required to be
uncorrelated for i#j, the idiosyncratic terms are assumed to have limited dependence across

series. Additional technical assumptions are given below.1

The assumption that E(et +1 |Ft)=0’ and thus E(yt +1 |Ft) =B(L)ft, is implied by the two
conditions: (i) E(y, 4 |Ft) depends on f; and its lags but not otherwise on X, and (ii) lags of y;
do not enter (2.2). The first is the key condition that produces the desired dimension reduction
when N is large. The second condition is not restrictive because Yt +1 can be interpreted as a
quasidifference, thereby implicitly incorporating its lags into (2.2).

It is assumed throughout that A;(L) and B(L) have finite orders of at most g, with
NL)=T jlzoxiij and B(L)=X §1=03ij. Then (2.1) and (2.2) can be rewritten in a

convenient "static" form,

_ g0
2.3) X, = AF] + e,

— a0
2.4 Yi+1 = BFy + ey

where FO = (- Ty o) i 1X1, where r=(q+1)r, the i-th row of A in (2.3) is (Ajg,--..Njg),

and ﬂ=(BO, . ,Bq)’. The superscript "0" on F(t) identifies the true values of the unobserved
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factors. We work with (2.3) and (2.4) throughout and focus on the problem of estimating the r
unknown factors {F?}. Because P(t) in general contains lags of the dynamic factors f,, 1t

may be dynamically singular in the sense that it has a singular spectral density matrix. This
could pose problems for the interpretation of the factors, but not for forecasting. Rather, as is
evident from (2.2) and (2.4), these lags are needed for forecasting so the dynamic redundancy is
irrelevant, at least in population. As discussed in the next section, one can further use model
selection methods to eliminate individual factors that do not enter the Yt +1 €quation.

The assumption that \;(L) and B(L) have finite orders q merits discussion. On the one
hand, if the factors affect many variables with arbitrarily long lags, then this assumption would
be inappropriate. On the other hand, if the effects of the factors largely occur within a few
periods then this assumption might be acceptable for empirical forecasting. Of course, because
the dynamics of f; and e, are largely unrestricted aside from stationarity and some technical
conditions, even with finite order lag polynomials the model allows for a rich dynamic
characterization of (Xi,y, ., {). Finally, the fact that parametric exact dynamic factors models,
which use this finite-order assumption, have met with apparent empirical success (Stock and
Watson [1991], Quah and Sargent [1993]) provides some reason to believe this assumption is
empirically appropriate. Whether this assumption is acceptable ultimately is an empirical issue.

The model (2.3) and (2.4) contains several important special cases. One is the static factor
model in which F? and {ejt} are mutually uncorrelated and i.i.d., and {e;} and {ejt} are
independent for i#j. If {ejt} are serially uncorrelated but are correlated across series, subject to
some limit on this correlation, then the model is an approximate static factor model, cf.
Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986, 1993). Like Forni,
Lippi, Hallin and Reichlin (1998), we permit {ejt} to be weakly correlated across series and

refer to (2.1) and (2.2) as an approximate dynamic factor model.




2.2. Estimation

The standard estimation method for parametric dynamic factor models is a two-step process:
time invariant parameters are first estimated using Gaussian MLE, then these estimated
parameters are used in standard signal extraction formulae (like the Kalman smoother) to
estimate the unobserved factors. However, when N is very large this is not promising from a
computational perspective. We therefore take a different approach and estimate the dynamic
factors nonparametrically.

When the panel of data is balanced, we estimate the factors by the method of principal

components. Consider the nonlinear least squares objective function,
2.5) VEN = D 2N 2T e NE)?

where Xit is the observation on variable i at time t, }‘i is the i-th row of A, and F =(F1,
F,,...,Fp)’. After concentrating out F, minimizing (2.5) is equivalent to maximizing
tr[A'(X'X)A], subjectto A'A/N = I, where X is the T XN data matrix with t-th row X}, and
tr(.) denotes the matrix trace. This is the classical principal components problem, which is
solved by setting A equal to (Nl/2 times) the eigenvectors of X'X corresponding to its r largest

eigenvalues. Then the principal components estimator of F is,
(2.6) F=XA/N.

Computation of £ entails computing the eigenvectors of an N XN matrix, and when N>T a
computationally simpler approach is available. By concentrating out A, minimizing (2.5) is
equivalent to maximizing tr[F’'(XX')F], subject to F'F/T = I, which yields the estimator F that

is (Tl/2 times) the matrix of the first r eigenvectors of the T X T matrix XX'. The column spaces




of F and F are equivalent, so for forecasting purposes they can be used interchangeably,
depending on computational convenience.

From equations (2.3) and (2.4) X may include any variables known at date t, that are
related to the factors that help predict Yt+1- Thus any variable dated t or earlier is a potential
candidate element of X If we let Z, denote the set of variables that become available at date
t, then Xt can be constructed as Xt=Zt or alternatively as a "stacked" version of Zt’ Xt=(Z’,

t-1> =+ » Lt~ The choice between these two versions of X, depends whether lags of
Z, contain useful information about Y¢+1 that is not contained in Z,. We investigate this
empirically in section 5.

Computation is more difficult when there are data irregularities. For example, an
unbalanced panel arises when there are missing observations and/or series that are available over
shorter time spans. Another example is a data set consisting of both monthly and quarterly
data. In these cases standard principal components analysis does not apply. Although (2.5),
suitably modified for these data irregularities, continues to be a valid objective function, its
direct minimization appears to be computationally infeasible when T or N is large. However,
the EM algorithm can be used to estimate the factors by solving the minizimation problem

iteratively. Details are given in appendix A.

2.3. Efficient forecasting using in (2.3) and (2.4)

Several studies consider the large sample properties of estimated factor models with large N.
Connor and Korajczyk (1986, 1988, 1993) argue that factors estimated by principal components
are consistent (at a given date) as N->oo with T fixed in a static factor model. Schneeweiss and
Mathes (1995) prove consistency of the principal component estimator £ in an approximate
static factor model when EXtX{, A, and Eete{ are known, but of course these are unknown

in empirical applications. Forni and Reichlin (1996, 1998) propose an estimator of the factors




in a dynamic factor model based on contemporaneous sample averages under the assumption
that the researcher has a-priori information about the space spanned by the factor loading
matrix, and prove its consistency when T is fixed and N-~oo. Although Forni and Reichlin
(1998) argue that this a-priori information is available for their application to the estimation of
sectoral factors using industry-level data, this a-priori knowledge (in their case, grouping
industries into sectors and averaging within sectors) is in general lacking in the forecasting
applications considered here. Recently, Lippi, Hallin, Forni and Reichlin (1998) considered an
approximate dynamic factor model and proved the consistency, as T,N->co, of factors estimated
by dynamic principal components, but they do not provide joint rates for T and N and their
estimator appears to require N< <T. None of these papers provide explicit sequences linking N
and T, so in particular it is unclear whether these results hold in the main cases of interest here,
N=0O(T) and N> >T. Neither do they provide results about forecasting using estimated factors.
We therefore provide a result that establishes the first order asymptotic efficiency of
feasible out of sample forecasts based on the estimated factors. To simplify the proofs, the
results are presented for a balanced panel.
This result requires additional notation and conditions. Let Mij denote the (i,j) element of
a matrix M, adopt the matrix norm |M]| = {tr(M’M)}l/z, and let mineval(M) and maxeval(M)
denote the minimum and maximum eigenvalue of M. Throughout, ¢ and d denote generic

finite positive constants. The first condition concerns the factor loading matrix.

Condition FL (factor loadings)
|)\i ml <A<, i=1,...,N, m=1,...,r; mineval(A’A/N)=d>0; tr(A’A/N)<c< co; and there is a

positive definite r Xr matrix D such that | A’A/N-D | -0.




The condition that tr(A'A/N) <c ensures that the expected contribution of the factors to the
variance of X is finite, while the minimum eigenvalue condition ensures a nontrivial
contribution of each factor to the variance of X;.

Under the next condition, the idiosyncratic errors e; can have limited temporal and cross-

sectional dependence:

Condition M1
{e} satisfies,
(i) Bey; = 0, Ble,'e;1.,/N) = y(u), and Z‘if:_oolv(u)I <,

(ii) Ee;.e where th_moN~1 Xio1 ZN_1|7-.J.| <o,

it%t = Ty

(iii) sup; tEc:‘11t< o and 11mN_>oosupS N IZ i=1 Z i=1 |cov(e;ee;s JseJt)I < o,

The true factors F(t) are assumed to have covariance matrix EF, and the next condition

assures that FO’FO/T B EF.

Condition M2
1 O___ 0 O’ — . .. .
@) EFt =(), EF,[Ft = EF, where EF is positive definite.

.. 0 0 0
(i) supf,m,tz (1)10 =-00 ICOV(F Fmt’Fi’t+uFmt+u)| <.

Note that no restriction is made on the dependence between F, and the errors et.

We now turn to the main result of this section. Let B = (Z T 1 ﬁ ?t) (Z t= lﬁtyt + 1)
so that yT +1|T = B’ ﬁT is the feasible forecast of YT+ 1 based on OLS regression using the
estimated factors. Let YT+1 IT = E(yT +1 |Ft = B'F%, the optimal (under quadratic loss)
infeasible forecast of y ; using 8 and the r true factors FO. The following theorem shows that

the feasible forecast is asymptotically optimal as (N, T)->oc0.
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Theorem 1. Let (Xt’yt n 1) obey (2.3) and (2.4), and suppose that conditions FL, M1 and M2

hold. Let k=r and N=O(T”) for any p>0. Then, as (N,T)>o, 1, ; T~ YT4+1|T >0 and

A 2
EGT+1- Y141 D a2

All proofs are given in appendix B.

It is perhaps not surprising that a forecast efficiency result can be shown, given the results

surveyed above that suggest large-N consistency of principal components in a static factor

model. The contribution of theorem 1 is to show this holds for essentially any joint sequences

(N,T)—oo. Thus theorem 1 obtains for sequences such that N> >T, N=0O(T), or N< <T.

To keep the proofs and exposition simple, theorem 1 was stated for one-step ahead forecasts

when there are no unkown coefficients on lagged dependent variables. However, the empirical

work in section 5 considers h-step ahead forecasts and uses lagged dependent variables. The

proof of theorem 1 can however be modified to cover these cases.

2

3. Time-Varying Factor Loadings and Further Results

In this section some of the conditions on the probability model (2.3) and (2.4) are relaxed,

and it is no longer assumed that the true number of factors is known. Under these weaker

conditions, the theoretical results of the previous section are extended to show the uniform (in

t) consistency of the empirical factors and to provide sufficient conditions for information

criteria to estimate consistently the number of factors needed to forecast Yi+1-

The assumptions of section 2 are relaxed in two ways. First, there is considerable evidence

that many economic time series relationships exhibit structural instability. In this section, the
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factor loadings are therefore allowed to vary over time, specifically, they are modeled as

evolving according to a random walk. Accordingly, (2.3) and (2.4) hold, except that A is

replaced by At’ where,
3.1 A = At-l + hg't,

where h is a diagonal N XN scaling matrix and $¢ 1s a NXr stochastic disturbances. If h is too
large then the factor loadings bear little resemblence to the loadings in the previous period, and
analysis of this model does not seem promising. Therefore h is modeled as a sequence of

random matrices h that satisfy,

Condition TV (time varying factor loadings)
hT = diag(th,...,hNT), where hiT is i.i.d., hT is independent of (et, € {t}, and TKjT =
O(1), j=1,....4, where k. = (|| )1

This condition captures two sources of temporal instability: moderate parameter drift because
of structural change for many series, and large jumps because of redefinitions or coding errors
for a few. Consider the following example. Suppose a fraction 7 of the series experience
moderate parameter drift of the form hiT=Op(1/T) (so that )‘iT'>‘iO = Op(T'l/z), the same order
as conventional sampling uncertainty if F, were observed)3, and the remaining series are subject
to large parameter drift, for which )‘iT'kiO = Op(l) and thus hiT=Op(T'1/2). Then condition TV
is satisfied if 7 =0(1/T2).

Second, in practice the true number of factors is unknown and the number of estimated

factors might be large. It therefore is of interest to examine the behavior of the empirical

factors when the number of estimated factors, k, differs from the number of true factors, r.
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To address the notion that a large number of factors might be estimated, the number of factors
is taken to be a sequence, indexed by T, so that k=kT, where it is assumed that kT >1 and kT =
O(InT) (including of course the case that kT is fixed).

These changes require additional moment conditions. Let $i¢ denote the i'th row of {;.

Condition M3

The random variables {e,, {;, F,} satisfy:

@ @ By = 0, By = Ty, and LT —_osup; 51 [Ty 1@ < o0
(i) limy, oo sup N 2 BN B S 1Ty @) < o0,

(iii) sup; ¢ E¢F. < oo and

. 1+N N
Hmp, gosupy )N X521 X j =lsupt,u1,u2,u3ICov(g_it,t’g‘it+u1,m’fjt+u2,f§jt+u3,m)I <.
®) @ Egjej 1y = ¥;5) and sup; ¥ o = -oSUP | ¥ @] <o,
. 1N N
(i) supmN X i=1 ) j =1supt,u,v|C()V(eitsvit+u,m’ejt§‘jt+v,m)I <.
© @) EFY=0, EF)F)" = £, where Iy is positive definite.

) <.

. oo 00 0 0
(ii) Squ’m,tZ u=-00 ICOV(FIZtFmt’Fth+uFmt+u

(iif) max; o, 7 IE?1/a0m)? B 0,

Conditions M3(a) and (b) limit the dependence across series and over time of these
disturbances. The various disturbances are not assumed to be mutually independent, for
example e; and {; can be dependent, even across series, subject to condition M3(b). Relative to
condition M2, condition M3(c) contains the additional assumption that maxy o <l F(t) | =
op((lnT)z). This condition is satisfied by a variety of distributions of {Fit}' For example, if F;
is i.i.d., then if (maxy o t<T | Fitl -a1)/by has a limiting distribution, it will be of the Fréchet,
Weibull or Gumbel form; the sequences (a, by), if they exist, depend on the distribution of

{Fit} (Reiss [1989, p.152]). Three examples of distributions of {Fit} for which M(c)(iii) is
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satisfied are the normal, for which ar = (21nT)1/2 +o0(1) and bT = (2lnT)'1/2, and the exponential

and logistic, for which ap = InT and bp = 1.

3.2. Results
We now turn to the consistency of the esimated factors. This is shown for a rescaled

version of the principal components estimator:

A

(3.3) £ = pEEm.

The next result states that ﬁt is uniformly consistent for a linear combination of the true

factors F”(I)" at the rate 6NT'

Theorem 2. Let Xt and At obey (2.3) and (3.1), let AO satisfy condition FL, and suppose
that conditions TV, M1, and M3 hold. Let kT = O(InT). If (N,T)->o and N=O(Tp ) for some
p>2, then Sypsup; I Ft-HF(t) | B o, where ONT = TP for b=min[%p-1,1], where H is a

nonrandom kT X1 matrix with row rank of min(kT,r).

The rate condition indicates that this result applies for N> > T. Intuitively this arises because
time varying factor loadings introduce additional noise in the time dimension, which is
compensated for by additional cross sectional averaging.

To interpret theorem 2 it is useful to consider separately the three cases of k<r, k=r, and
k>r. Whenk<r, FOH’ are the eigenvectors corresponding to the k largest eigenvalues of FODFO’
and in this sense ﬁt estimates the most important factors. When k=r, R is a full rank square
matrix so asymptotically ﬁt is a nonsingular transformation of F(t) When k>, the row rank

of R and thus H is only r, so ﬁt contains k-r redundant estimates of the factors. Intuitively,
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this arises because the final k-r columns of A are Op(l) random variables that estimate factor
loadings that are zero in population, and cross sectional averages of X;, weighted by these
random variables, obey a weak law of large numbers. Equivalently, by the algebra of principal
components, the final k-r columns of ﬁt have a variance equal to the corresponding ordered
eigenvalues of XX'/NT, which are asymptotically zero.

The final theorem concerns determination of the number of factors useful for forecasting

Yt+1- Consider the information criterion,
3.4 IC, = ln(?)%(k)) + g(T)k

where 3%(k) = SSR(k)/T, where SSR(k) is the sum of squared residuals from estimation of
(2.4) using the k empirical factors £, and g(T) is a penalty function. Following convention,
suppose that r.k < k..., where K hax 18 finite and known. The information criterion estimate

of r, ?, solves minl <k SkmaxICk‘ Let 5NT be as defined in theorem 2.

Theorem 3. Suppose that the conditions of theorem 2 hold except 1 <k < Kax <.
(2) If k=T then 52(k) B o2.
(b) Let T be the estimate of r produced by an information criterion with g(T)-0

and 6NTg(T)—>oo , Where kmax is known and kmax =r. Then Pr(f =r)->1 and 3%@ B 0% .

Theorem 3(a) states that the efficient forecast of theorem 1 can be achieved even if "too
many" factors are estimated and even if there are time varying factor loadings. Still, one
worries about estimating more coefficients than needed, so it might be desirable to use an
information criterion to reduce the number of factors. Theorem 3(b) therefore provides
sufficient conditions under which doing so consistently estimates of the number of factors and
produces an efficient forecast.
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The conditions on g(T) in theorem 3(b) differ from the standard conditions that justify
information criteria, which require Tg(T)->o and g(T)->0 for consistent order estimation; BIC

satisfies Tg(T)->o but not dNT&(T)>00. A penalty function which does satisfy this condition is,

(3.5) g(T) = wlnT/6NT

where 5NT is given in theorem 2, that is, 5NT = min(Nl/z/T1 +€,T1—6), where € is a small
positive constant and w is a positive constant. If for example N=T3, then o = T € 5o that
g(T)=w1nT/T1/2'E, an asymptotically larger penalty than BIC. Thus BIC (and AIC) will produce
larger estimates of r than (3.5). It should be emphasized that theorem 3(a) nevertheless implies
that AIC, BIC, and (3.5), as well as fixed k>r, all produce asymptotically first order efficient
forecasts. The relative performance of different information criteria, and suitable choices of w

in practice, are investigated in the Monte Carlo study of the next section.

4. Monte Carlo Analysis

The Monte Carlo experiment reported in this section has two objectives. The first is to
examine numerically the predictions of theorems 1 and 2. The second is to quantify the finite

sample implications of estimating the number of factors by an information criterion, as studied

asymptotically in theorem 3.
The experimental design is a parametric dynamic factor model that allows for time varying
factor loadings, an autoregressive factor, and idiosyncratic terms that are serially correlated and

correlated across series. All the results here are for a balanced panel. The design is,

-16 -




(4.1) Xip = LMo + it

4.2) f,=of  +u

a2
(4.3) (1-al)ey = (1+D7)vjp+bv g (+bvi g ¢
(4.4) Nijt = Ajje-1 + (@Dt

where i=1,...,.Nand t=1,...,T, f, and >‘13t arerx1, {elt, it fijt} are i.i.d. N(0,1), u, is i.i.d.
N(0,I), and {u} is independent of {ei Vip ijt}‘ In »static form (2.3) the true number of
factors is r=(q+1)r. The time variation here is a special case of the heterogeneous time
variation allowed in section 3.

The initial factor loading matrix Ag is chosen as follows. Let R2 =
var(Z § - oMjofe)/[var(E § _gMjofe.) + varepl. Then g = M,

1_]0’ where XIJO is

i.i.d. N(0,1) and independent of {e: v¢$, and A¥ is randomly chosen so that R2 has

1t’ Vit 1_]t’
a uniform distribution on [0. 1,0.8]. The initial values of the factor are drawn from their
stationary distribution. Finally the {Xit} are transformed to have sample mean zero and sample

variance one (this transformation is used in the empirical work presented in the next section).

The scalar variable to be forecast is generated as,

(4.5) Yir1 = Li=ofey + €t
where ¢ is a T X1 vector of 1's and €11 is i.i.d. N(0,1).

The factors were estimated by principal components as discussed in section 2.2 for the
balanced panel using X (not stacked). The coefficients 8 in the forecasting regression (2.4)
were estimated by the OLS coefficients 3 in the regression of y, . 1 on ﬁt’ t=1,...,T-1. The
out-of-sample forecast is §'T +1|T = 3'FT. For comparison purposes, the infeasible out-of-
sample forecast §% +1|T = 3O'F(t) was also computed, where 30 is the OLS estimator from
regressing Yi4+1 0N F?, t=1,...,T-1.
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The free parameters varied in the Monte Carlo experiment are N, T, 1, k, «, a, b, and c.
The results are summarized by two statistics. The first is a trace R2 of the multivariate

regression of £ on 1%
(4.6) RE po = BIPRof | 2R £112 = Bt Profy/Bur D),

where £ denotes the expectation estimated by averaging the relevant statistic over the Monte
Carlo repetitions and PF0=F0(FO’FO)_1F0’. According to theorem 2, if k = r then R%_,Fo B
1. Values of this statistic considerably less than one indicates a case in which theorem 2
provides a poor approximation to the finite sample performance of F.

The second statistic measures how close the forecast based on the estimated factors is to the

infeasible forecast based on the true factors:

2 a1 P A0 2880 2
.7 S5, = 1-BOT 1|1 3741 D 7ECT41)D

Because E(§l~?« +1|T YT+1 |T)2 - 0, according to theorem 1, S%&o 2 1 for k=r and by
theorem 3 if k = (q+1)r and either k is fixed or it is chosen using an information criterion that
satisfies the conditions in the theorem. The results are reported for several information criteria:
the AIC, the BIC, and the information criterion with the penalty function (3.5) for various
choices of the scaling parameter w.

The results are summarized in table 1. Panel A presents results for the static factor model
with i.i.d. errors and factors. In panel B, this model is extended to idiosyncratic errors that are
serially correlated across series. Panel C considers the dynamic factor model with serially
correlated factors and lags of the factors entering X, and time varying factor loadings are

introduced in panel D.
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First consider the results for R%,Fo. In all cases, R%’Fo exceeds .8, even for T=25
and N=50. As T and N increase, this R2 increases, for example, for T=100, N=250, r=k=5,
R%’Fo= .97. Consistent with theorem 2, estimating k >r typically introduces little spurious
noise, for example, when T=100, N=250, and r=35, increasing k from 5 to 10 decreases R%,Fo
by .02. If the idiosyncratic errors are moderately serially correlated (a=.5), R%’Fo drops
only slightly, although it drops further when a=.9 (although this drop is largely eliminated when
T is increased). The R%’Fo is also high when the true model is dynamic but the factors are
extracted from a static procedure with k>r(q+1), although some deterioration is noticeable
when the factors are highly serially correlated. The greatest deterioration of the estimates of
the factors occurs when time variation in the factor weights is introduced. With large time
variation (c=10), R%’Fo is between .83 and .87 for the various cases considered. In general,
the results improve when T increases, with N, r, and k fixed, and when N increases, with T, r,
and k fixed; for fixed T and N, results deteriorate as r increase and k=r, although they
deteriorate only slightly as k increases for fixed r.

The forecasting results are consistent with the prediction of theorem 1 that, holding constant
N/T and the other design parameters, S2 sotends to 1 as T and N increase. When T=100

y,y
and N=250, S2 0 is generally large across the different design parameters, typically

¥,y
exceeding .95 in the static models. The quality of the forecasts drops in the dynamic models
and when there is time variation in the factor loadings. The results for forecasts based on
model selection criteria are generally consistent with theorem 3. Generally speaking, for T and
N large, forecasts based on the BIC, AIC, or (3.5) with w=.001 perform similarly, and only
slightly worse than those with k=r. However, the forecasts based on (3.5) with larger values of

w such as w=.01 perform poorly, and even larger values w perform worse (these results are not

shown to save space). These results suggest that the criterion (3.5) is overly conservative.
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S. Application to Forecasting U.S. Industrial Production and Inflation

This section reports the results of a simulated real-time forecasting experiment in which
forecasts based on the factor model approach are compared to forecasts from a variety of
benchmark models. Forecasts were computed for eight major monthly macroeconomic variables
for the United States. Four of these are the measures of real economic activity used to
construct the Index of Coincident Economic Indicators maintained by The Conference Board
(formerly by the U.S. Department of Commerce): total industrial production (ip); real
personal income less transfers (gmyxpq); real manufacturing and trade sales (msmtq); and the
number of employees on nonagricultural payrolls (Ipnag) (additional details are given in
appendix C, which lists series by the mnemonics given here in parenthesis). The remaining
four series are price indexes: the consumer price index (punew); the personal consumption
expenditure implicit price deflator (gmdc); the CPI less food and energy (puxx); and the
producer price index for finished goods (pwfsa). One-month ahead forecasts of these variables
being of limited practical interest, this experiment compares forecasts at the 6, 12, and 24

month horizons. The complete data set spans 1959:1 - 1998:12.

5.1 Forecasting models

For each series, several forecasting models are compared: "diffusion index" forecasts based
on estimated factors; a benchmark univariate autoregression; and benchmark multivariate
models. For both the real and price series, one of the benchmark multivariate models is a
trivariate vector autoregression, and a second is based on leading economic indicators. As a
further comparison, inflation forecasts are also computed using an unemployment-based Phillips
curve.

The formal development in sections 2 and 3 considered 1-step ahead prediction. Here the
focus is on multistep ahead prediction, and most of the forecasting regressions are projections of
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a h-step ahead variable y}tl +1 onto t-dated predictors, sometimes including lagged transformed
values z, of the variable of interest. Specifically, the real variables are modeled as being I(1) in
logarithms. Because all four real variables are treated identically, consider industrial
production, for which

h =
Gl Yiyp= (1200/b)In(IP; +1/1Pp and z, = 1200In(IP,/IP; ;).

The price indexes are modeled as being I(2) in logarithms.5 Accordingly, for the CPI (and

similarly for the other price series),

(52) y?yp, = (1200/)In(CPI, | /CPL)-1200In(CPL/CPI, ) and 7, = 1200AIn(CPL/CPI, ,).

Diffusion Index forecasts. The most general diffusion index/factor model forecasting

equation that we consider is,
(5.3) h =g+ x®_gf . 4 YP o 4
’ Yt+h 0 1 =1""tj+1 j=17%-j+1 t+h

where {ﬁit} are the estimated factors. This modifies (2.4) in four ways. First, the dependent
variable is the h-step growth. Second, lags of z, have been added explicitly, while (as discussed
in section 2) in (2.4) they were left implicit and Yt +1 Was interpreted as a quasidifference.
Third, an intercept has been explicitly added. Fourth, m-1 lags of the factors have been
introduced as predictors. The first three of these modifications are consistent with the
foregoing theoretical development (see for example the final paragraph in section 2). The
fourth modification, while not indicated by the population model, is made because, if k is

small, the lagged dynamic factors that F, contains in population might not be in the estimate of
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F,, so adding lags of F, might improve forecasting performance. Given the lag orders and the
estimated factors, the coefficients of (5.3) were estimated by OLS.

Results for three variants of (5.3) are reported. The first, denoted in the tables by "DI-
AR,Lag", includes lags of the factors and lags of z,, with k and lag orders m and p estimated by
BIC, with 1<k<4, 1<m<3, and 0<p<6. Thus the smallest candidate model that BIC can choose
here includes only contemporaneous f*’t and excludes z;. The second, denoted "DI-AR",
includes contemporaneous ﬁt’ that is, m=0, and k and p are chosen by BIC with 1 <k <12 and
0<p=<6. The third, denoted "DI", includes only contemporaneous ﬁt’ so p=0, m=0, and k is
chosen by BIC, 1<k<12.

The data used to construct the factors are 215 monthly monthly time series for the U.S.
from 1959:1-1998:12. The series were selected judgmentally to represent 14 main categories of
macroeconomic time series: real output and income; employment and hours; real retail,
manufacturing and trade sales; consumption; housing starts and sales; real inventories and
inventory-sales ratios; orders and unfilled orders; stock prices; exchange rates; interest
rates; money and credit quantity aggregates; price indexes; average hourly earnings; and
miscellaneous. The list of series is given in Appendix C, and is similar to lists that we have
used elsewhere (Stock and Watson [1996, 1998b]). These series were taken from a somewhat
longer list, from which we eliminated series with gross problems such as redefinitions.

However no further pruning of this list was performed. The series were taken from the May
1999 release of the DRI/McGraw Hill Basic Economics database (formerly Citibase). In general
these series represent the fully revised historical series available as of May 1999.

The theory of sections 2 and 3 assumes that X, is I(0), so these series were subjected to
three preliminary steps: possible transformation by taking logarithms, possible first
differencing, and screening for outliers. The decision to take logarithms or to first difference

the series was made judgmentally. In general, logarithms were taken for all nonnegative series
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that were not already in rates or percentage units and most series were first differenced. A
code summarizing these transformations is given for each series in Appendix C. After these
transformations, all series were further standardized to have sample mean zero and unit sample
variance. Finally, the transformed data were screened automatically for outliers (generally
taken to be coding errors or exceptional events such as sectoral strikes), and observations
exceeding ten times the interquartile range from the median were replaced by missing values.

Using this dataset, three sets of empirical factors were considered. The first was computed
as discussed in section 2.2 from the subset of 149 variables that are available for the full sample
period, thus constituting a balanced panel. The second set of factors was computed using all
215 series; because these constitute an unbalanced panel, the empirical factors were computed
as discussed in Appendix A. The third set of factors were computed by stacking the 149
variables in the balanced panel with their first lags, so the augmented data vector has dimension
298. Empirical factors were then estimated by the principal components of the "stacked data"
as discussed in section 2.2.

Autoregressive forecast. The autoregressive forecast is a univariate forecast based on (5.3)
where the terms involving £ are excluded. The lag order p is selected recursively by BIC with
0<p=<6, where p=0 indicates that z, and its lags are excluded.

Vector autoregressive forecast. The first multivariate benchmark model is a VAR with four
lags each of three variables. The variables in the VAR are a measure of the monthly growth in
real activity, the change in monthly inflation, and the change in the 90 day U.S. Treasury bill
rate. When used to forecast the real series, the relevant real activity variable was used and the
inflation measure was CPI inflation. For forecasting inflation, the relevant price series was
used and the real activity measure was industrial production. Multistep forecasts were
computed by iterating the VAR forward. This contrasts to the AR forecasts, which were

computed by h-step ahead projection rather than iteration.
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Multivariate leading indicator forecasts. The leading indicator models are of the form,
h m ' h
G4 Yepn=0%+ L =18Wjer + E§)=1ijt-j+1 T Uiin

where W, is a vector of leading indicators that have been featured in the literature and/or in
real-time forecasting applications.

For the real variables, W, consists of eleven leading indicators that we have used for real-
time monthly forecasting in experimental leading and recession indicators; see Stock and
Watson (1989)6. Five of these leading indicators are also used in the factor estimation step in
the diffusion index forecasts. These are: average weekly hours of production workers in
manufacturing (Iphrm); the capacity utilization rate in manufacturing (ipxmca); housing starts
(building permits) (hsbr); the index of help-wanted advertising in newspapers (Ihel); and the
interest rate on 10-year U.S. Treasury bonds (fygt10). The remaining six leading indicators
are: the interest rate spread between 3-month U.S. Treasury bills and 3-month commercial
paper; the spread between 10-year and 1-year U.S. Treasury bonds; the number of people
working part-time in nonagricultural industries because of slack work; real manufacturers’
unfilled orders in durable goods industries; a trade-weighted index of nominal exchange rates
between the U.S. and the U.K., West Germany, France, Italy, and Japan; and the National
Assiation of Purchasing Managers’ index of vendor performance (the percent of companies
reporting slower deliveries).

For the inflation forecasts, eight leading indicators are used. These variables were chosen
because of their good individual performance in previous inflation forecasting exercises. In
particular these variables performed well in at least one of the historical episodes considered in
Staiger, Stock and Watson (1997) (also see Stock and Watson [1998b]). Seven of these variables

are also used in the factor estimation step in the diffusion index forecasts: the total
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unemployment rate (lhur); real manufacturing and trade sales (msmtq); housing starts (hsbr);
new orders in durable goods industries (mdoq); the nominal M1 money supply (fm1); the
federal funds overnight interest rate (fyff); and the interest rate spread between 1-year U.S.
Treasury bonds and the federal funds rate (sfygtl). The remaining variable is the trade-
weighted exchange rate listed in the previous paragraph.

In all cases, the leading indicators were transformed so that Wt is I(0). This entailed taking
logarithms of variables not already in rates, and differencing all variables except the interest
rate spreads, housing starts, the index of vendor performance, and the help wanted index.

For each variable to be forecast, p and m in (5.4) were determined by recursive BIC with
l<m=4 and 0<p=<86, so 28 possible models were compared in each time period.

Phillips curve forecasts. The unemployment-based Phillips curve is a key tool in applied
macroeconomic forecasting and is considered by many to have been a reliable method for
forecasting inflation over this period, cf. Gordon (1982) and, more recently, the Congressional
Budget Office (1996), Fuhrer (1995), Gordon (1997), Staiger, Stock and Watson (1997), and
Tootel (1994). The Phillips curve inflation forecasts considered here have the form (5.4), where
W, consists of: the unemployment rate (LHUR) and m-1 of its lags; the relative price of food
and energy (current and one lagged value only); and Gordon'’s (1982) variable that controls for
the imposition and removal of the Nixon wage and price controls.’ The lag lengths m and p

was chosen by recursive BIC, where 1<m=<6 and 0<p<6.

5.2. Simulated real-time experimental design

Estimation and forecasting was conducted to simulate real-time forecasting. This entailed
fully recursive parameter estimation, factor estimation, model selection, etc. The first simulated
out of sample forecast was made in 1970:1. To construct this forecast, the data were

standardized, the parameters and factors were estimated, and the models were selected, using
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data available from 1959:1 through 1970:1 (the first date for the regressions was 1960:1, with
earlier observations used for initial conditions as needed). Thus regressions (5.3) and (5.4) were
run for t=1960:1,...,1970:1-h, then the values of the regressors at t=1970:1 were used to forecast
y111970: 1+h- All parameters, factors, etc. were then reestimated, information criteria were
recomputed, and models were selected using data from 1959:1 through 1970:2, and forecasts

from these models were then computed for y111970:2 +1- The final simulated out of sample

forecast was made in 1998:12-h for y111998: 12-

5.3 Forecasting results

The results for the real variables are reported in detail in table 2 for 12-month ahead
forecasts, and summaries for 6- and 24-month ahead forecasts are reported in table 3. Two sets
of statistics are reported. The first is the mean squared error (MSE) of the candidate
forecasting model, computed relative to the MSE of the univariate autoregressive forecast (so
the AR forecast has a relative MSE of 1.00). For example, the simulated out of sample MSE of
the leading indicator (LI) forecast of industrial production is 86% that of the AR forecast at the
12 month horizon. Autocorrelation consistent standard errors for these relative MSEs,
calculated following West (1996), are reported in parentheses. The second set of statistics are

the coefficient on the candidate forecast from the forecast combining regression,

_ 2h Aah,AR
G-5) Yt+h = Wian|e T Q-OY {ppe + 4yp
where §lt1 +ht is the candidate h-step ahead forecast and §ht"}_11{1 It is the benchmark h-
step ahead AR forecast. HAC standard errors for o are reported in parentheses. For example,

o is estimated to be .57 when the candidate forecast is the leading indicator forecast at the 12

month horizon, with a standard error of .13, so the hypothesis that the weight on the leading
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indicator forecast is zero («=0) is rejected at the 5% level, but so is the hypothesis that the
leading indicator forecast receives unit weight.

We now turn to the results for the real variables. First consider the diffusion index
forecasts with factors estimated using the full data set (the unbalanced panel). These forecasts
with BIC factor selection generally improve substantially over the benchmark univariate and
multivariate forecasts. The DI-AR,Lag model, which allows recursive BIC selection across own
lags and lags of the factors, outperforms all three benchmark models in 10 of the 12
variable/horizon combinations, the exceptions being 6- and 12-month ahead forecasts of
employment. In most cases the performance of the simpler DI forecasts, which exclude lags of
ﬁt and z,, is comparable to or even better than that of the DI-AR,Lag forecasts. This is
rather surprising, because it implies that essentially all the predictable dynamics of these series
are accounted for by the estimated factors. In some cases, the improvement over the
benchmark forecasts are quite substantial, for example, for industrial production at the 12
month horizon the DI-AR,Lag forecast has a forecast error variance 57% that of the AR model
and two-thirds that of the leading indicator model. The relative improvements are more modest
at the 6 month horizon. At the 24 month horizon, the multivariate benchmark forecasts break
down and perform worse than the univariate forecast, however the DI-AR,Lag, DI-AR, and DI
forecasts continue to outperform the AR benchmark very substantially.

The performance of comparable models is usually better when the empirical factors from the
full data set are used, relative to those from the balanced panel subset. Performance is not
improved by using empirical factors from augmenting the balanced panel with its first lag; for
these real series, doing so does comparably, or somewhat worse, than using the empirical factors
from the unstacked balanced panel.

Inspection of the final panels of tables 2 and 3 reveals a striking finding: simply using DI

or DI-AR forecasts with two factors captures most of the forecasting improvement. In most
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cases, incorporating BIC factor and lag order selection provides little or no improvement over
just using two factors, with no lags of the factors and no lagged dependent variables.

The results for the price series are given in tables 4 and 5. There are three notable
differences in these results, relative to those for the real variables. First, the DI-AR,Lag
forecasts outperform all the benchmark forecasts less often, in only 6 of the 12 variable/horizon
combinations. Second, including lagged inflation dramatically improves the forecasts, and
without this the DI forecasts are actually worse than the autoregressive forecasts. Third, other
factor forecasts generally outperform the DI-AR,Lag forecasts. Notably, the full data set DI-
AR forecast with k=1 (and no lagged factors) outperforms all the benchmarks in 11 of 12 cases,
and typically improves upon the DI-AR lag. Thus most of the forecasting gains seem to come
from using a single factor.

As with the real variables, forecasts based on the stacked data perform less well than those
based on the unstacked data. While the full data set forecasts are typically better than the
balanced panel subset forecasts for the 6 and 12 month horizons, at the 24 month horizon the
balanced panel forecasts (not shown in the tables) outperform the full data set forecasts.

Additional analysis of factor-based forecasts of CPI and consumption deflator inflation, and
additional comparisons of these forecasts to other Phillips-curve forecasts and to forecasts based
on other leading indicators, are contained in Stock and Watson (1998b). Three findings from
that study are worth noting here. First, the DI-AR and DI-AR,Lag forecasts are found to
perform well relative to a large number of additional multivariate benchmarks. Second, the
forecasts reported here can be further improved upon using a single-factor forecast, where the
factor is computed from a set of variables that all measure real economic activity. Forecasts
based on this real economic activity factor have MSEs approximately 10% less than the best
forecasts reported in table 4. Finally, similar rankings of methods are obtained using I(1)
forecasting models, rather than the I(2) models used here, that is, when first rather than second
differences of log prices are used for the forecasting equation and factor estimation.

-28 -




In interpreting these results, it should be stressed that the multivariate leading indicator
models are sophisticated forecasting tools that provide a stiff benchmark against which to judge
the diffusion index forecasts. In our judgment, the performance of the leading indicator
models reported here overstates their true potential out of sample performance, because the lists
of leading indicators used to construct the forecasts were chosen by model selection methods
based on their forecasting performance over the past two decades, as discussed in section 5.2.
In this light, we consider the performance of the various diffusion index models to be

encouraging.

5.4. Empirical factors

Because the factors are identified only up to a k Xk matrix, detailed discussion of the
individual factors is unwarranted. Nevertheless the finding that good forecasts can be made
with only one or two factors suggests briefly characterizing the first few factors.

Figure 1 therefore displays the RZs of the regressions of the 215 individual time series
against each of the first six empirical factors from the balanced panel subset, estimated over the
full sample period. These R%s are plotted as bar charts with one chart for each factor. (The
series are grouped by category and ordered numerically using the ordering in the appendix.)
Broadly speaking, the first factor loads primarily on output and employment; the second factor
on interest rate spreads, unemployment rates, and capacity utilization rates; the third, on
interest rates; the fourth, on stock returns; the fifth, on inflation; and the sixth, on housing
starts. Taken together, these six factors account for 39% of the variance of the 215 monthly
time series in the full data set, as measured by the trace-R2; the first twelve factors together

account for 53% of the variance of these series.8
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6. Discussion and Conclusions

We find several features of the empirical results surprising and intriguing. Few theoretical
macroeconomic models suggest a linear factor structure for the overall macroeconomy, yet six
factors account for much of the variance of our 215 time series. Even if a factor structure
describes the joint behavior of these series, this does not imply that a forecast based on dynamic
factors estimated by principal components should outperform forecasts based on leading
indicators or other specialized models that have been fine tuned through years of experience.
Yet, forecasts based on just the first few factors perform well for both real activity measures
and inflation series, series that measure quite different economic concepts and have quite
different univariate time series properties. Evidently, these results raise numerous issues for
future empirical and theoretical research.

Several methodological issues remain. One is to explore estimation methods that might be
more efficient in fhe presence of heteroskedastic and serially correlated uniquenesses. Another
is to develop a distribution theory for the estimated factors that goes beyond the consistency
results shown here and provides measures of the sampling uncertainty of the estimated factors.
A third theoretical extension is to move beyond the 1(0) framework of this paper and to
introduce strong persistence into the series, for example by letting some of the factors have a
unit autoregressive root which would permit some of the observed series to contain a common
stochastic trend.

Another important extension is to real time forecasting with mixed frequency data (daily,
weekly, monthly and quarterly). The EM algorithm presented in appendix A addresses this
case, but it has not yet been implemented empirically. Other issues that arise in real time
include data revisions and the nonsynchronous timing of data releases. Work on these and

related issues is ongoing.
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Footnotes

1. The differing dates on y and X in (2.1) and (2.2) reflect the use of X, to forecast y, , ;.
This representation can be taken as primitive or alternatively can be derived from a dynamic
factor model for (X,,yp). Specifically, suppose that yt=Z§O(L)ft + e?, where E(t) isa
martingale difference with respect to F;_1, and further suppose that E(ftlFt- )=BI(L)ft_1 (a
standard assumption in parametric dynamic factor models). Then V¢ = 383 M4

+ L 0wy -8, | + (BBt |F, 1 + €. This yields (2.2) by setting B(L) =

BOB L) +L 1 BL)-B) and €, = [BYE-E(t, | F, I + €2, by noting that

E(e; | F;_ 1)=0, and by shifting the time subscript.

2. The extension to lagged dependent variables is handled by repeated application of appendix
lemma B1(c). The extension to h-step ahead forecasts, and thus overlapping data, is handled by
modifying the argument used to show T B 0, where gy is defined in the proof of theorem 1.

3. The 1/T nesting is also the local neighborbood within which break tests such as the Quandt
likelihood ratio test would have nondegenerate asymptotic power were F; observed. Stock and
Watson (1996, 1998a) argue that the 1/T nesting is empirically plausible for many
macroeconomic time series.

. - ~ - )} .
4.2 That is, )\’f = [R%(R%-l) l(var(2?=0)\ij0Ft_j)) 1] /2 (this uses Var(eit)=1), where
RY is i.i.d. U(0.1,0.8).

5. The I(2) specification is consistent with standard non-accelerationist Phillips curve equations
and is a good description of the series over much of the sample period. However, I(1)
specifications also provide adequate descriptions of the data, particularly in the early and late
parts of the sample. Stock and Watson (1998b) find little difference in I(1) and I(2) factor
model forecasts for these prices over the sample period studied here, so for the sake of brevity
we limit our analysis here to the I(2) specification.

6. The list used here consists of the leading indicators used to produce the XRI and the XRI-
2, which are released monthly (and documented) at the web site http://www.nber.org.

7. The wage and price control dummy is introduced for forecasts made in 1971:7+h, before
which it produces singular regressions.
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8. The contributions to the trace-R2 by the first six factors are, respectively: 0.137, 0.085,
0.048, 0.040, 0.034, and 0.041, for a total of 0.385.
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Appendix A: EM Estimation with an Unbalanced Panel and Data Irregularities

In practice, when N is large one encounters various data irregularities, including occasionally
missing observations, unbalanced panels, and mixed frequency (e.g., monthly and quarterly) data.
In this case, a modification of the least squares objective function (2.5) is appropriate. For
example, consider the unbalanced panel and let Iit=1 if Xit is observed and =0 otherwise; then

(2.5) becomes,
+ _ +vN T a2
(A.1) VIEN = 71T = 1K MF)”.

Eigenvalue calculations cannot be used directly to minimize (A.1), and iterative methods must be
used instead. This appendix summarizes a method method based on the EM algorithm that has
proven to be easy and effective.

To motivate this EM algorithm notice that V(F,A) in (2.5) is proportional to the log-likelihood
under the assumption that Xit are iid N()‘iFt’ 1), in which case the least squares estimators are
the Gaussian MLE:s; this is also true for the least squares estimators that minimize (A.1). Because
vi is just a "missing data" version of V and because minimization of V is computationally simple,
a simple EM algorithm can be constructed to minimize vt

The j-th iteration of the algorithm is defined as follows. Let A and F denote estimates of

A and F constructed from the (j-1)’st iteration, and let
(A.2) Qx",8,A,F,4) = Ep A[VE,0)|X]

where XT denotes the full set of observed data and Eﬁ, ALV(F,A) | XT] is the expected value of

the "complete data" log-likelihood V(F,A), evaluated using the conditional density of X | xt

evaluated at * and A. The estimates of F and A at iteration j solve MinF’ AQ(XT,F,K,F,A).
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To carry out the calculations, note that
A 2 ' '
A3)  QXLEAFN=1;T {Ep 431 XD+NF)*2%,NED)

where Xiti-Ep’ K(Xit | XT). The first term on the right hand side of (A.3) does not depend on F

or A, and so for purposes of minimization it can be replaced by ¥ iX txitz' This implies that the
values of F and A that minimize (A.3) can be calculated as the minimizers of V(F,A) =

D) t(Xit‘)‘iFt)2' At the jth step this reduces to the principal component eigenvalue calculations
discussed in section 2.2, where the missing data are replaced by their expectation conditional on

the observed data and using the parameter values from the previous iteration. If the full data set
contains a subset that constitutes a balanced panel, then starting values for F in the EM iteration

can be obtained using F from the balanced panel subset.

We now provide some additional details on the calculation of Xit for some important special
cases. Let Xi = (Xil,...,XiT)', and let XTIL be the vector of observations on the i-th variable.
Suppose that XirzAiXi; this can be done in the cases of missing values and temporal
aggregation, for example. Then E(Xi|XT) = E(XﬂXT) = F)\i+Ai(AiAi)'(X1l--AiF)\i), where
(AjA)) is the generalized inverse of A;A;. The particulars of these calculations are now
presented for some important special cases. In the first four special cases discussed below, this
level of generality is unecessary and the formula for Xit follows quite simply from the nature of

the data irregularity.

A. Missing observations. Suppose some observations on X, are missing. Then, during
iteration j, the elements of the estimated balanced panel are constructed as Xit=Xit if X,
observed, and Xit'—'xiﬁt otherwise. The estimate of F is then updated by computing the
eigenvectors corresponding to the largest r eigenvalues of N'1 ¥ .X.R. where Xi=(Xil,

=171
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Xiz,...,XiT)’. The estimate of A is updated by the OLS regression of X onto this updated

estimate of F.

B. Mixed monthly/quarterly data - 1(0) stock variables. A series that is observed quarterly
and is a stock variable would be the point-in-time level of a variable at the end of the quarter,
say the level of inventories at the end of the quarter. If this series is I(0) then it is handled as in
case A, that is, it is treated as a monthly series with missing observations in the first and second

months of the quarter.

C. Mixed monthly/quarterly data - 1(0) flow variables. A quarterly flow variable is the
average (or sum) of unobserved monthly values. If this series is I(0), it can be treated as follows.
The unobserved monthly series, Xit» 1s measured only as the time aggregate Xcilt where
X$=(1/3)X; 9 +X 1.1 +X;p) for t=3,6,9,12,...., and X, is missing for all other values of t. In
this case estimation procedes as in case A, but with Xitzxiﬁt + eit’ where éit=X?T-

N(E, 5 +F | +8 )3, where 7=3 when t=1,2,3, 7=6, when t=4,5,6, etc.

D. Mixed monthly/quarterly data - I(1) stock variables. Suppose that underlying monthly
data are I(1) and let X(llt denote the quarterly first difference stock variable, assumed to be
measured in the third month of every quarter, and let X denote the monthly first difference of
the variable. Then X =(X; { 5 +X; ;.1 +X;p) for t=3,6,9,12,..., and X}, is missing for all other

.., Where

values of t. In this case estimation procedes as in case A, but with Xit=Xiﬁt+(1/3)31

8lt=X(11T_Xi(FT-2+ﬁT-1 +ﬁ,r), where 7=3 when t=1,2,3, 7=6, when t=4,5,6, etc.

E. Mixed monthly/quarterly data - I(1) flow variables.
Construction of Xit is more difficult here than in the earlier cases. Here the general

regression formula given above can be implemented after specifying X]; and A;. Let the
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quarterly first differences be denoted by Xcllt, which is assumed to observed at the end of every
quarter. The vector of observations is then XT=(X(113, X(ll6,...,X(llT)’, where 7 denotes the

month of the last quarterly observation. If the underlying quarterly data are averages of monthly
series, and if the monthly first differences are denoted by Xi , then X(11t=(1/3)(xi,t+

2Xi,t—1 +3Xit-2 +2Xit—3 +Xit— 4) for t=3,6,9,12,..., and this implicitly defines the rows of Ai‘ Then

the estimate of X, is given by Xi=F>\i+Ai(AiAi 'I(Xg--AiF)\i).
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Appendix B: Proofs of Theorems

The proof of theorem 1 makes use of the following results. First, adopt some additional notation.
Let PF=F(F’F)'1F’, let MF=I-PF, and let §i=(ei1,...eiT)’.
Lemma B1. Under the conditions of theorem 1,

@ u[TE” (P-Pro)F¥] B 0;

(0) u[T ' E'(Pg-PRo)E] B 0; and

(c) if the T X1 vector z is such that z'z/T Be< o0, T'lz’(Pf;-PFo)z Bo.

Proof of Lemma B1
(a) As discussed in section 2.2, F = argmaxp. popyp - Q(F), where Q(F) = N (P XX'F) =

N eV XPeX;. Define 3*F) = N o _ MEOPLEON,. By direct calculation,

QE) - Q*E) = Ayp(F) + Agp(P), where Agp(F) = 2NT) T LN _ etPrFON,; and Agp(F) =
(NT)_1 Y 1;1= 1&{Pge;. It is shown below that

(B.1) supg| Ag(F)| B 0 and supg| Asp(®)] B0
for F: F'F/T=I_ (this normalization is maintained for the rest of this proof). Thus
(B.2) supp | QB)-Q*(®)| £ 0.

Let F* solve maxgQ*(F), and write, Q*() - Q*F") = [Q*(F) - Q)] + [Q(F) -
Qr(E*]1 + [Q*E%) - Q*E%)]. By (B.2), @*(F) - QF) B 0 and Q(F) - Q*(F*) =

suppQ(F) - suppQ*(E) B 0, so Q*(F) - Q*EY) = [Q*E) - Q@] + op(1). Now Q*(F) =
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T EOPEFOA AN)] = a[(FEO/T)(A’A/N)YEQB/T)] because F/F/T=1. Because (A'A/N) is rXr
and full rank by condition FL, evidently Q(F) is maximized by 15*=F01~{, where R is such that

FF/T =1, so R'GEVFUYDR = Tand FUFO/T) = ®R)L. Thus, P =

T'FORR EFODRIIREO = Ppo, so Q*(E*) = [T IFOPRorO(a A/N)] = Q*ED). Thus
Q*® - @*E%) B 0. But Q*FY) - Q*@) = [T IV Ppo-Pr)FO(A'A/N)] =

T FO (Ppo-Pe)F0Jmineval(A’A/N). By FL, mineval(A’A/N)=¢ >0, so tr[T"'FO'(Pro-P2)F% B 0.

(b) Using the normalization FE/T = Ir’ part (a), and condition M2, we have,

T F Pp-PRo)F] = 1 - el FODE T L E By
= r - tf EOFOD) I O PPy EO) - 1
< [T 'F? (Ppo-Pp) FOlmaxevall PO FOT) 11 B 0.

(c) Without loss of generality write z = Mf:,FOZ + Fa + Fob, where Ml';;,FO is the orthogonal
projection operator for the combined column space of (F, FO). Thus T_lz’(PI";-PFo)z =

@F +b'FO)PgPpo)Fa+F) < {|al (T @p-PRo)N % + I (T 1 (Pg-Pro)FO .
The assumption z'z/T B ¢ implies that ||a|| and |b] are Op(l). It follows from parts (a) and (b) that
T'lz’(PIa-PFo)z Bo.

It remains to show (B.1). Looking ahead to theorem 2, (B.1) is shown here for the case that the
number of estimated factors, kT, can differ from r, where kT=O(lnT). First consider A4T(F). Use

F'F/T = L to write A4p(F) = T L1 _ iy, where ¢, = FVF/DF, and v, = NTTN_ ey

Because v; does not depend on F, supg| %2A,47(F)| <
_ Y, 1 -
(uppT 2 T 10 2T T T jupp”. Now, T T_ 009, =
Ty T REFMEFDE, = ot FOPer0). Thus suppT ! £ T_ o6, < @ FOm) B
tr(EF). Also, as in condition M1 let Tij=E(eitejt)’ SO
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-2
ET Z:t lvtvt_N 2:1—121—1)‘111]
(B.3) < NI s 2N 1 hsupy N2 0

by assumptions M1 and FL. Thus supg|A47(F)| Bo.

Next turn to AST(F) and use F'F/T = IkT to write,

_ -1+«N o 2T T , 2+T T )
B AspE) = ND "Ly 16Ppe = T L =1 Dy 1FFrs + T L1 =1 L 5= FF1(®9)
where o, = N'leieS - y(t-s). Because T'ZET_IEE_l(F’ )2 = tr[(F’F/T)z] = K,
IT2E oy B o= FFgl < BaqT 28 1o D g™ Also,

2T 2 2
BT 2L | o1 % 5= 10F < kpsupy sE‘*’ts
(B.5) < (kT/N)supt,sN'IZ _ o Y Z1lcoveeigeieis) | >0

by condition M1. Thus supF | T2 )X Ff=1 ¥ Fg= 1FFewis 2 0. Finally, turn to the second term in
®.4): supp|T2E T _ 2T FFa(s)| < kT L % __, |¥@w] -0 by condition MI. Thus
supg| Agp(F)| Ro.

Inspection of the proof of this lemma reveals that limits are taken with respect to N only twice, in
(B.3) and (B.5). In both cases, T does not appear in these expressions. In all the limits taken as T->oo,

N does not enter the expressions. Thus these limits hold jointly if N-oco and T—oo0, where there is no

restriction on the joint rate. In particular, these limits hold if N=0(T”) for any constant p>0. [l

Proof of theorem 1

Define the full sample estimator ,3T = (E?_ 115 Ft) (X t —lﬁtyt+1) and let yT+1 IT =
3T'FT. Because ﬁT is Op(l), BT - B Boand yT+1 IT" yT+1 T B 0, so it suffices to prove
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the result for BT and §jl-“ +1|T Also, although the theorem is stated in terms of £, it is
convenient instead to prove it for statistics based on F because F'F/T=1. This change is without
loss of generality because the column spaces of F and F are identical. Accordingly, define 8 =
(Et=1FEp (ST Py p andlet ypy g7 = BEps then g pp = § g T- Toprove
this theorem, it therefore suffices to show that ng +1|T " YT+1|T Bo.

Lety = (yp,....¥y741)'- Now,

y = B/A O’ — ! ~I~"1~1 O,
YT+1|T " ¥YT+1|T = F18 - Fr'8 = F{(F'F) "'F'y - F'8

= gi18 + ZrFr

where gy = (FO’F/T)FT - F% and gy = F'e/T. It will be shown that g1T Boand T Bo,
from which it follows that flT +1|T YT+1|T Bo.

First consider g;p. It will be shown that EgiT(FO’FO/T)"lng - 0, from which it follows that
81T Bo (because FO'FO/T 2 EF, which is positive definite). Now,

g FOm) g 1 = BEEYT) - EE Oy @ EmEy - FY
b

—a C

=611 * i1 - 2617
where Gi1 = AT B'PpoP)Fr, G0 = X EVFOT) 1FY, and 6, =
120030 eV RTI Ta y)

Consider the terms G?T’ th)T’ and G(I:T . First, G?T = u(FpFp) +

[T B Ppo-PRRELEP]. Now |tlT B @po-PpEEEN]| <
T E'(Pg-PRo)E] | Ep 12 B 0 by lemma B1(b) because | Bl = Op(1). By the normalization of
F, B(Fpfp) > 1; thus EG3p 1. Second, by condition M2, FO'FU/T B £y, so EGYr
Etr(EFFr(I)«F%’) = r. Third, because lemma B1(b) implies | T_IF'(PP-PFO)IE | B0and
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~ ~ 1= ~ - ~ L C .
F'PEE/T = 1, T 'F'Ppof B T pobp!opo = 1. Thus (EY/T) B 5 po = £f, which is

full rank because I, is positive definite. Now use this observation to write,

C — 0, "1 ‘1~/ N\ T

= o{{T ' F' Ppo-PRRIEFYE ] po)} + B pofiy.

Now EF'E} pofi = 1 and, by lemma B1(b), |tr[T"F"(Ppo-PR)ETI| B 0. Thus GSp -1,

so Bgjp(EOFOT) g 1 = 0 50 g7 B0.

Next consider g,7. Because €'e/T B o% g8 = (€ FIMET) = 1!

1

€'Pge =

T "€'Ppoe + T'le’(Pla-PFo)e = T'le’PFoe + op(l) by lemma B1(c). Thus Egyrgyr = ET'le’Ppoe

+o(t) =T ET L T _ief L (FOEFODIEY + o(1) = o20/T + o(1) > 0. Thus g, B 0.
Note that all the limits in this proof, other than those that rely on lemma B1, are taken as T->o0

without reference to N. Thus the only restriction on the joint limits of (N, T) arise from lemma B1

which, as was discussed at the end of its proof, holds for N,T - o and N=O(Tp) forany p>0. 0O

The proofs of theorems 2 and 3 make use of inequalities similar to those used in the proof of
theorem 1, but because the conditions for theorems 2 and 3 are different and because theorem 2
provides a stronger result on uniform consistency at the rate dNT- these (and additional) inequalities

are shown to hold under the different conditions of theorems 2 and 3. These are collected in lemma

B2.

Lemma B2. Let F'F/T = 1. Under the conditions of theorem 2,
@ Sypkpsup (| FoAge/N| B0;
(b) dykysupg (|Fa'(Ac-Ag)'e/N| B0;

(©) Snrkrsupg (| eg'e/N - v(s-t)| B0;
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@ dnpkrsupg (|FY(AAUN - AfA/NEY| B o,

(©) NTkrsupg (| XiX(/N - Fa'(AgANEY - v(s-0)| B o;
® supp| NN _ 14?2 Bo.

@) supp|N1EN_ @Fma;| B o; and

®) supp| NTEN_ N @V Fma | Bo.

Proof of Lemma B2

The proof uses the following facts. Let pi, and v, o be random matrices indexed by t=1,...,T,

s=1,...,T. Then:

(B.62) If TsupE( u | Y - 0 for g =1, then sup, [ .|| B 0;

(B.6b) If Tsupg (E(lvg (1% >0 for g1, then sup (v ;| B 0; and

(B.6¢) If both supg | Evg | 0 and T2supg E(llv, g (|2 >0, then supy (I | Bo.

Also note that the rates given in theorem 2 imply the limits,
B.7) K365 > 0, Sy kS/T 0, and 8% T2KXINT)8/N - 0.

(8) Let v (=bpkpFQ' Age,/N and use (B.6b) with =2. Then T2supg Ev? =
T20RrFEIEY Ade/NI? < S4BEYVEDEEiAGAGe/ND). Now EEVE)

= tr(Zp) and B(ejagageyNY) < (NNNT BN 2N 171, so Thsupg Br? (<
GRrTAgNeEp N RN TN 7] - 0 by condition M3 and (8.7).

(b) Let Vs = ﬁNTkT(AS—AO)’et/N and note that, with probability one, |6NTkTF(S)’(AS-AO)’et/N| =
v (| < LNEQI/AnT) 13EanT)> I v 17, Thus the result follows from M3(c)(iii if
(lnT)2supS,t I Vs t | B 0. This is now shown using (B.6c).
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-1 -1 s
Now Eet(A -Ao)/N N Z i=1 E lEthg‘lr it KITN Z i=1 Z — I\I,ll(t r) SO

(T *supg ([ Evg (|| = @) supg dnpiep N EN_ 28 e
< [nT) %8y pep/ THThyPsup; T S oo 193w |

which tends to zero by (B.7) and M3(b)(i). In addition,

(1nT)2T2sups Ell Vs Evg t|| 2 - (lnT)szsupS t6NTkT Eép 1var[N Z 1 =18t

is,m’ 10 m)]
[(nT) 262 kZT2/N)(Tityp){r(sup: BeT) 2(sup: Bt )%
= 5NFT 2T Pi,tECit Pim,s,E8is,m

-1 N
NIz gy j =150y g 5 | trlcov(e;Sis, ;¢S |}
which tends to zero by (B.7) and conditions M1 and M3.

() Let rg (=dnrkylege/N - y(t-s)] and use (B.6b) with q=2. Now T2supS Ell Vst I 2 _
o) B}
ERrigT /Nsupg (NN TN covie; ey eigeqn |~ 0 by (B.7) and M.

@ supg I oNrkFYIAA-AYAQNIEY | < supg Snrkr IFO 12 1 (A3A-AgAQ/NI |
< [sup, I3 1/anTy212{uTy*supq (lIv I + 200y *sup, I u, I}

where VS,t = 6NTkT(AS-A0)’(At-AO)/N and [Lt = BNTkT(At-AO)IAO/N
First, show that (lnT)45upS Mgl B 0 using (B.6c):

am*sup NEv (I = supg (@) ok INTEN_ 358 oh_ Bt
< [T pky/TI(Tiyp) 2sup, £ % _ o 1T |
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which tends to zero by (B.7) and M3. Also, by (B.7) and M3,

(lnT)4T2supt,sE I v sEBv g I 2
o 2 220w leN w8 oot 02 . wn2 s an2
= (nT) "supy NrT EINT Y oy Zro g Ty g I il EOG 3,401 |
= (nT)*sup, (SEKET?
r r -1«N S t 2 2 2
XLp=1 L= 1 BN L o1 Erm1 Dy = 108, 085 mB@T TS i )T}
< (a2 TN 2 4 4
< NTRTT/NIr(Trgp) “{sup; ¢ ESis m
1«N «N
+ Supl’,mN X i=1 Ej =1supt,u1,u2,u3|cov(g‘it,t’g'it+u1,m’§'jt+u2,fg'jt+u3,m)I <®
-0

by M3(a) so that (lnT)4sup v, .| B0. Next, show that (1nT)4sup I | B0 using (B.62) with q=2:
t,s%71,8 t1#t

T(nT) supE | |2 = (nT)3Tsup G338 | (A -Ag) Ag/N |12

< [ RN KA Ty sup N B N TN 20 iy )
which tends to zero by (B.7) and M3, so sup, | | Bo.
(€) Write Spyrkp[X!X/N - FY(ALANEY - vs-0] = T4 0. . wh
e oNTXTLAGAY s \AoAg/MNE - 78 i=1%,st> Woere
— O, ! ! O
V1 st = ONTRTE s [(AgA-AGAQ)/NIF
V2,St = 6NTkT[eéet/N - 'Y(S-t)]
— OI !
73,5t = 2ONTKTFs (Ag-Bg)'e/N

—_ O/ r .
V4,St = 25NTkTFS Aoet/N

It was shown in parts (a)-(d) that sup || 7; ot I Bo,i=1,...,4, and the desired result follows.
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(O Define Ag = NTEN_ O\ Aj)’. Then

suppN ' 2 11012 = SWpET L | =1 T & = {FFFY A FO
< [swppT2E o1 L1 BEQAAT2ET_ 2T ¥ 5%
< bepT2r o T 2NN 2 1A 12
< {sup IR/ ko ¥ 22 T 2T 1A 13,

By M3(c)(ii), sup; | F21/anT)* B 0. Tt will now be shown that EkpnT)®T 22 T_ v T_ JA |2 -
0, from which it follows that supFN'1 Y N_ 114 2Ro. To simplify the proof, this is shown for r=1:
the proof for general r is similar. First, write Ay = N1gN Yi—1h TE -1 TS, ' =18irSipr- Thus

supy (BAW” < Ty N1EN_ 2% Irywi1? = ¢ /12, say, where ¢ is a finite constant.
Also,

BlAEAgl” = BN T _ 2!, L5 - it T
+ E[N‘IEI?—ﬂh? 5D L1 Lo Ty
41
< Nl(Tx 47 N Ry i=1 E_] =15UPt uy,uy, u3Icov(g‘itfit+u1’g_jt+u2§'jt+u3)|
+ NTH Tyt e N 22 rw))?

so, by M3(a), supy sE[AtS—EAtS]2 < c2/N + c3/NT2, say, where Cy and c3 are finite constants. Thus
Bhp(nD T LT 1 2521 DA% < kpaD)Bsup, EIAGN? < kpnD)3(e, T2+ y/N-+cq/NT2 0.

- - 1
(&) Now supp| N IR _ @F/Da;| < TsuppAsy®) 2lsuppN SN _ 1 14,1%1%, where Agp(F) =
N1lyN Y= 18 Pge;- It was shown in the proof of lemma B1 that SUpE ] A5T(F)[ Bo (that proof is valid

under the conditions of theorem 2). The result follows from this and result (f).
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® supp| NN (Mg FMA? < 1suppN BN o EOFMEE DA lsuppN T N _ | MK
= supptrl(AGAy/NYT FOPEFOsuppN TN a1

Now supgtrl(AgAg/N)(T 'FOPLEO)] < tr(aga Ny EOT) B tr(DER), so the result follows by

applying result (f).

Proof of theorem 2

Note that £ = BE'£/T)”> = N'IXA, where & = T'IX'F, where E is (as in section 2) T"2
times the ordered eigenvectors of XX’. Thus we have the identity, 3 -HNTFO =
T8 g Forest + T T For, where Hyp = FEOT)(AGAYN) and £, = XIX/N -

FY'(AjAg/NIEY - y(s-t). Thus

snrsup | B HN TS| < anpsup T S T Beyso | + sgpsup IT R T_ B e 1.

Because EF/F < kT, Eégn«supt |1t g T 1 Frsoll 2 =

RSP T 2L T 1 Tt {ERE (070 < Gepafp/TAIE ® __ o, [v@)[12 > 0 by B.7).
Also,

onrrsup | T! z:r£=1f:s‘gst I < snpsupr{(T° ’r1 r=1Xs —I(F r) A%yt r=12s —l’fst‘fgt] e

1/4
= ONTKT SUpg ¢l Bo

by lemma B2(e). Thus Spsup; | pt'HNTF(t) | Bo.

It remains to characterize Hyp. Let Q(F) and Q*(F) be defined as in the proof of lemma B1
with Ay replacing A;, so Q*F) = (NT) ' TN _ MgFOPREON . Algebra reveals that, Qpp(P) -
QT = T3 1A, where for FE/T = L, Ajp) = NTEN_ A Ayp() =
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NN AEFITING, Agp® = 2N TN @Fma;, Ay =
NN @FmE TN, and Agp®) = NTEN _ @Fm@E'eT).

By lemma B2(f)-(h), supg| Ayp(F)| B0, i=1,2,3. The results supg| A;p(F)| B0, i=4,5 follow from
(B.1) because (B.1) was proven under the conditions of theorem 2 (note that the terms in $t and )‘it do
not enter the expressions for A,(F) and Ag(F)). Thus supg | QNT(F) - QNT(F)| Bo. Let F*
maximize Q*(F). The argument following (B.2) applies here; thus,

B.8)  Q*E%) - Q) = (T 'F P PREI (A4 (/N)} B 0.
Result (B.8) is now used to characterize HNT for (i) kTSr and (ii) kT >r.

tr[T'lF’FlFl’F] + op(l), where F1 = FODI/Z. For k<r, Q*(F) evidently is maximized for F* =

Tl/ 2FIS, where Sisan O(1) r Xk matrix such that the columns of F* are Tl/2 times the eigenvectors

Irl". Now (B.8) implies T 'F!"Pz.F! -

corresponding to the k- largest eigenvalues of F
TEVPeE! B 0. But TIEVPR,F! = BVFYmysts 5l FUmysy s @ FLm) B slspsielsyls izl
where 2 = D*'5D”. Thus T'FV'PgF! B D% prozrposD” = £lss'zls)ls'z!, so #'EOT B
Lgpo = (E'8)'S'EID™. Thus, for k<r, | Hyp-HI B0, where H = IzpoD. Because S has full

rank and D and EF are positive definite, EI":FO has full row rank so H has row rank kT = min(r,kT).

(i) kp>r. Now F* = FO and Q*®*) - Q*(F) = t{[T PO Pro-PRE(AgA/N)} >
mineval(AjA /Nyt [T FO (Pro-PE)FV], so by FL and (B.8),

i T FO (Ppo-PRF®] B 0 so [ TR (Ppo-PRFC | B 0. Thus TTFO'PeF0 B rozmios = T,
where Lpof: is 1 Xkp. Because I, is positive definite, rank(Zpog) = 1, so [|Hyp-HI B0 where H =
LppgD is ke Xr and has row rank r = min(r,kp). 0O
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Next turn to theorem 3. It is useful first to set out some additional notation and preliminary
results. When k>, it is convenient to consider forecasts based on F rather than £ (this is done
without loss of generality because they have identical column spaces in finite samples). Partition F
asF = [Fa Fb], where F? is Txr and Fb is T X (k-r), where the column space of £ equals the
column space of the first r ordered eigenvectors of XX', and the columns of o are (in order) T
times the next k-r eigenvectors of this matrix. The uniqueness of the eigenvectors implies that, given
X, the column space of F? does not depend on k when k>r. Define the r Xr matrix H? = Lfap0lp

1, which by the argument in the proof of theorem 2 is full rank. Then theorem 2 implies that

SNTsupt " IE? - HaF? " 'p) 0.

The following lemma is used in the proof of theorem 3.

Lemma B3.

Under the assumptions of theorem 3,

(a) Letzbe a Tx1 random vector with z'z/T B ¢ < oo. Then oNT z'(Pga - Ppo)z/T| Bo.
(b) S\ p8'FOPoE8/T B 0

(©) dnTe'Peve/T B0

(d) sy Proy/T B0

(©) Snrly'(Pga - PRoy/T| B0

® bnply'®Pg - Ppo)y/T| Bo.

Proof
Because H,, is invertible, Ppo = Ppyapo, so without loss of generality set H? = L.
(@ Let Voo = FVFUIT, V,0=2'FO/T, v, = 29T, v, = FYE¥T, etc. Then,
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SN2 PRaPROZT| < Sp IV, Voo L IV IV, |

+ oIV, NIV Va3 1TV, |
+ oIV, IV I 1V,,V 0

.. 73 -1 73
By condition M3(c), | Vol <r”*d and | Voo I < r”c. Also, ol V. Vs0 I
1 - N -
< Iz ) opgpsup IF-EQ1 B0, and spp I VgV | < Spp I E2EO) E-EOT
+ 287 I F-F%'FOT] B 0. By the continuity of the inverse, sypl Vgi-VoLll B 0. By
assumption, | T || and || Vol are Op(l). The result follows.

(b) Use Fa’f?b=0 to write, Mf; = I—PIEa-PIEb = MI‘;a-PI?;b, SO z’Mlaaz = z’Pf;bz + z’MIaz =

Z'PIE;bZ. Also, z’MIsaz = z’MFoz + z’(PFo—PFa)z. Thus, 5NTZ'PI”3bZ/T < 6NTZ’MFoz/T +
6NT|z’(P1~;a—PFo)z|/T. Nowletz = FOB. Then B’FO’MFoFoﬁ = 0 and 6NT|B ’FO’(Pf;a-PFo)FOB/T| B
0 by part a of this lemma, because | Ty I = T'I/ZFOB I 2R B'EpB < oo and

IVl = ITTEVEO8 1 B 581l < oo; thus sygp8'FOPpoF08iT B0,

(c) This follows because €; , | is a martingale difference sequence with respect to {Xt’ Yo Foo Xi_15

¥t-1» Fy.1>---} and because Pgb is idempotent with rank g-r.

@ SNry'PEsy/T < [y FOPRoF /T + (dppe'Peve/T) 1%, which converges in probability
to zero by parts (b) and (c).

() This follows from (a) with x=y because | T2y |2 B Ey2 and [T 10y B | Zp 81

(f) This follows from (d) and (e). [J
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Proof of theorem 3

(a) Let 20 = Y- BO’FO, where BO = (FO’FO)_I(FO'Y), and write
02 - % = (&7 - 0Ty + 0T - ety + [eerT - 2.

Consider the three bracketed terms separately.
@ eer-99T = y'(Pg-Ppo)y/T £ 0 by lemma B3(9).
(ii) The moment conditions imply that 30 B 8, from which it follows that 00T e'e/T Bo.

(iii) This follows from the moment assumptions on €.

(b) The proof proceeds by showing (i) Pr[?> r] - 0 and (ii) Pr[?< r} —= 0, hence Prﬁ=r] - 1. The

results 3%@ B o% follows from the consistency of r and from part (a) of this theorem.
(i) This holds trivially if k . =T so suppose that Knax>1. Now
Prir>1] < Prlminy _ g 4 IC < IC]
< phmax . prisyp(IC,IC) < 0]
= p¥max | Prisypln@2®)/62@) + (kn)dppe(T) < 0],
By assumption, dppg(T)>c. Thus, because k>, to prove Pr[r > r]-0 it suffices to show that

SNTIn020)/62(x)] B 0 for k=r+1,....kyp,. But because §2(K) < 52(k-1) < oow <52(r), it
suffices to show this for k=kmax' Now,

ONTINO A (K ) O2(D] = SpInl1+ {8 (62 (kpyd-02 (/G20 Y o]
= Sppin[l +{Sp (v PRoy/ T2} oyl
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From part (a), 3%(r)2>02 , and from Lemma B3(d), 6NT(y’PI~;by/T)P>O, so the final expression

above converges to zero in probability and the desired result follows.

(ii) This holds trivially if r=1 so suppose that r> 1. Following the reasoning in (i), it suffices to show
that Pr[ICk sICr]—>O, 1<k<r. Now ICk-ICr = ln[ai(k)/ai(r)] + (k-r)g(T). Because g(T) - 0 and
620) B 02, Pr{IC, <IC,] - 0 if plim[6%(k) - 52()] > 0. For a given k<r, from theorem 2

and the equivalence of the column spaces of f:; and F, there is a k xr matrix H with full row rank

such that sup, | FT-ﬁF(t) |B0. Thus
5200 - 570 = T8 FF% - 1o EO P8 + 0 1)
= T'8FFO8 - T8 FOPpog FOB + o (1)

= B'[Zp - i (AZRH) T AZEIE + o)1),

Because the term in brackets in the final line is positive definite, plim[ﬁ%(r) - 3§(k)] > 0, which

yields the desired result. [J
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Appendix C: Data Description

This appendix lists the time series used to construct the diffusion index forecasts discussed in section
5. The format is: series number; series mnemonic; data span used; transformation code; and brief
series description. The transformation codes are: 1 = no transformation; 2 = first difference; 4 =
logarithm; 5 = first difference of logarithms; 6 = second difference of logarithms. An asterisk after
the date denotes a series that was included in the unbalanced panel but not the balanced panel, either
because of missing data or because of gross outliers which were treated as missing data. The series
were either taken directly from the DRI-McGraw Hill Basic Economics database, in which case the
original mnemonics are used, or they were produced by authors’ calculations based on data from that
database, in which case the authors calculations and original DRI/McGraw series mnemonics are
summarized in the data description field. The following abbreviations appear in the data definitions:
SA = seasonally adjusted; NSA = not seasonally adjusted; SAAR = seasonally adjusted at an annual

rate; FRB = Federal Reserve Board; AC = Authors calculations

Real output and income (Out)

VO NS U AW

DO DN DD = = = e e b e e e
FENEESE®xN50RBEES

ip 1959:01-1998:12 5 industrial production: total index (1992 =100,sa)

ipp 1959:01-1998:12 5 industrial production: products, total (1992 =100,sa)

ipf 1959:01-1998:12 5 industrial production: final products (1992 =100,sa)

ipc 1959:01-1998:12 5 industrial production: consumer goods (1992 =100,sa)

iped 1959:01-1998:12 5 industrial production: durable consumer goods (1992 =100,sa)
ipen 1959:01-1998:12 5 industrial production: nondurable condsumer goods (1992 =100,sa)
ipe 1959:01-1998:12 5 industrial production: business equipment (1992 =100,sa)

ipi 1959:01-1998:12 5 industrial production: intermediate products (1992=100,sa)

ipm 1959:01-1998:12 5 industrial production: materials (1992 =100,sa)

ipmd 1959:01-1998:12* 5 industrial production: durable goods materials (1992 =100,sa)
ipmnd 1959:01-1998:12 5 industrial production: nondurable goods materials (1992 =100,sa)
ipmfg 1959:01-1998:12 5 industrial production: manufacturing (1992 =100,sa)

ipd 1959:01-1998:12 5 industrial production: durable manufacturing (1992 =100,sa)
ipn 1959:01-1998:12 5 industrial production: nondurable manufacturing (1992 =100,sa)
ipmin 1959:01-1998:12 5 industrial production: mining (1992 =100,sa)

iput 1959:01-1998:12 5 industrial production: utilities (1992-=100,sa)

ipx 1967:01-1998:12* 1 capacity util rate: total industry (% of capacity,sa)(frb)

ipxmca 1959:01-1998:12 1 capacity util rate: manufacturing,total(% of capacity,sa)(frb)
ipxdca 1967:01-1998:12* 1 capacity util rate: durable mfg (% of capacity,sa)(frb)

ipxnca 1967:01-1998:12* 1 capacity util rate: nondurable mfg (% of capacity,sa)(frb)
ipxmin 1967:01-1998:12* 1 capacity util rate: mining (% of capacity,sa)(frb)

ipxut 1967:01-1998:12* 1 capacity util rate: utilities (% of capacity,sa)(frb)

pmi 1959:01-1998:12 1 purchasing managers’ index (sa)

pmp 1959:01-1998:12 1 NAPM production index (percent)
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25.
26.

gmpyq

gmyxpq

1959:01-1998:12*
1959:01-1998:12

Employment and hours (EMP)

217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45,
46.
47.
48.
49.
50.
51.
52.
53.
54.

Real retail, manufacturing and trade sales (RTS)

lhel
lhelx
lhem
Ihnag
thur
1hu680
1hus
lhul4
lhuls
thu26
Ipnag
Ip
Ipgd
Ipmi
Ipcc
Ipem
Iped
Ipen
Ipsp
Iptu
Ipt
Ipfr
Ips
Ipgov
1w
Iphrm
Ipmosa
pmemp

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12*
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12*
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1964:01-1998:12*
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

55.
56.
57.
58.
59.
60.
61.
62.

63.

Consumption (PCE)
64.

65.
66.
67.

68.

msmtq
msmgq
msdq
msnq
witq
witdq
winq
rtq
rtnq

gmeq
gmcdq
gmenq
gmesq
gmcanq

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

Housing starts and sales (HSS)

69,
70.
71.

72.
73.
74.
75.

hsfr
hsne
hsmw
hssou
hswst
hsbr
hsbne

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1960:01-1998:12*
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personal income (chained) (series #52) (bil 92$,saar)
personal income less transfer payments (chained) #51) (bil 92%,saar)

index of help-wanted advertising in newspapers (1967 =100;sa)
employment: ratio; help-wanted ads:no. unemployed clf

civilian labor force: employed, total (thous.,sa)

civilian labor force: employed, nonagric.industries (thous.,sa)
unemployment rate: all workers, 16 years & over (%,sa)
unemploy.by duration: average(mean)duration in weeks (sa)
unemploy.by duration: persons unempl.less than 5 wks (thous.,sa)
unemploy.by duration: persons unempl.5 to 14 wks (thous.,sa)
unemploy.by duration: persons unempl.15 wks + (thous.,sa)
unemploy.by duration: persons unempl. 15 to 26 wks (thous.,sa)
employees on nonag. payrolls: total (thous.,sa)

employees on nonag payrolls: total, private (thous,sa)

employees on nonag. payrolls: goods-producing (thous.,sa)
employees on nonag. payrolls: mining (thous.,sa)

employees on nonag. payrolls: contract construction (thous.,sa)
employees on nonag. payrolls: manufacturing (thous.,sa)
employees on nonag. payrolls: durable goods (thous.,sa)
employees on nonag. payrolls: nondurable goods (thous.,sa)
employees on nonag. payrolls: service-producing (thous.,sa)
employees on nonag. payrolls: trans. & public utilities (thous.,sa)
employees on nonag. payrolls: wholesale & retail trade (thous.,sa)
employees on nonag. payrolls: finance,insur.&real estate (thous.,sa
employees on nonag. payrolis: services (thous.,sa)

employees on nonag. payrolls: government (thous.,sa)

avg. weekly hrs. of prod. wkrs.: total private (sa)

avg. weekly hrs. of production wkrs.: manufacturing (sa)

avg. weekly hrs. of prod. wkrs.: mfg.,overtime hrs. (sa)

NAPM employment index (percent)

manufacturing & trade: total (mil of chained 1992 dollars)(sa)
manufacturing & trade:manufacturing;total(mil of chained 1992 dollars)(sa)
manufacturing & trade:mfg; durable goods (mil of chained 1992 dollars)(sa)
manufact. & trade:mfg;nondurable goods (mil of chained 1992 dollars)(sa)
merchant wholesalers: total (mil of chained 1992 dollars)(sa)

merchant wholesalers:durable goods total (mil of chained 1992 dollars)(sa)
merchant wholesalers:nondurable goods (mil of chained 1992 dollars)(sa)
retail trade: total (mil of chained 1992 dollars)(sa)

retail trade:nondurable goods (mil of 1992 dollars)(sa)

personal consumption expend (chained)-total (bil 928,saar)
personal consumption expend (chained)-total durables (bil 92$,saar)
personal consumption expend (chained)-nondurables (bil 92$,saar)
personal consumption expend (chained)-services (bil 92$,saar)
personal cons expend (chained)-new cars (bil 923,saar)

housing starts:nonfarm(1947-58);total farm&nonfarm(1959-)(thous.,sa
housing starts:northeast (thous.u.)s.a.

housing starts:midwest(thous.u.)s.a.

housing starts:south (thous.u.)s.a.

housing starts:west (thous.u.)s.a.

housing authorized: total new priv housing units (thous.,saar)

houses authorized by build. permits:northeast(thou.u.)s.a
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76. hsbmw

77. hsbsou
78. hsbwst
79. hns
80. hnsne

81. hnsmw
82. hnssou

83. hnswst
84. hnr

85. hniv
86. hmob
87. contc
88. conpc
89. conqc
90. condo9

Real inventories and inventory-sales ratios (Inv)

1960:01-1998:12*
1960:01-1998:12*
1960:01-1998:12*
1963:01-1998:12*
1973:01-1998:12*
1973:01-1998:12*
1973:01-1998:12*
1973:01-1998:12*
1963:01-1998:12*
1963:01-1998:12*
1959:01-1998:12

1964:01-1998:12*
1964:01-1998:12*
1964:01-1998:12*
1959:01-1998:10*

91. ivmtq
92. ivinfgq
93. ivmfdq
94. ivimfngq
95. ivwrq
96. ivrrq
97. ivsrq
98. ivsrmq
99, ivsrwq
100.  ivsrrq
101. pmnv

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

Orders and unfilled orders (Ord)

102. pmno
103.  pmdel
104. mocmg
105. mdoq
106. msondq
107. mo

108.  mowu
109. mdo
110. mduwu
111. mno
112.  mnou
113, mu

114. mdu
115. mnu
116. mpcon
117.  mpcongq

Stock prices (SPr)

118. fsncom

119.  fsnin
120.  fsntr
121.  fsnut
122.  fsnfi
123.  fspcom
124. fspin
125.  fspcap
126. fsptr
127.  fsput
128.  fspfi

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

1959:01-1998:12
1966:01-1998:12*
1966:01-1998:12*
1966:01-1998:12*
1966:01-1998:12*
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1970:01-1998:12*
1959:01-1998:12
1970:01-1998:12*
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houses authorized by build. permits:midwest(thou.u.)s.a.
houses authorized by build. permits:south(thou.u.)s.a.

houses authorized by build. permits:west(thou.u.)s.a.

new 1-family houses sold during month (thous,saar)

one-family houses sold:northeast(thou.u.,s.a.)

one-family houses sold:midwest(thou.u.,s.a.)

one-family houses sold:south(thou.u.,s.a.)

one-family houses sold:west(thou.u.,s.a.)

new 1-family houses, month’s supply @ current sales rate(ratio)
new 1-family houses for sale at end of month (thous,sa)

mobile homes: manufacturers’ shipments (thous.of units,saar)
construct.put in place:total priv & public 1987$(mil$,saar)
construct.put in place:total private 1987$(mil$,saar)
construct.put in place:public construction 87$(mil$,saar)
construct.contracts: comm’l & indus.bldgs(mil.sq.ft.floor sp.;sa)

manufacturing & trade inventories:total (mil of chained 1992)(sa)
inventories, business, mfg (mil of chained 1992 dollars, sa)
inventories, business durables (mil of chained 1992 dollars, sa)
inventories, business, nondurables (mil of chained 1992 dollars, sa)
manufacturing & trade inv:merchant wholesalers (mil of chained 1992 dollars)(s
manufacturing & trade inv:retail trade (mil of chained 1992 dollars)(sa)
ratio for mfg & trade: inventory/sales (chained 1992 dollars, sa)

ratio for mfg & trade:mfg;inventory/sales (87$)(s.a.)

ratio for mfg & trade:wholesaler;inventory/sales(87$)(s.a.)

ratio for mfg & trade:retail trade;inventory/sales(87$)(s.a.)

napm inventories index (percent)

napm new orders index (percent)

napm vendor deliveries index (percent)

new orders (net)-consumer goods & materials, 1992 dollars (bci)
new orders, durable goods industries, 1992 dollars (bci)

new orders, nondefense capital goods, in 1992 dollars (bei)

mfg new orders: all manufacturing industries, total (mil$,sa)

mfg new orders: mfg industries with unfilled orders(mil$,sa)

mfg new orders: durable goods industries, total (mil$,sa)

mfg new orders:durable goods indust with unfilled orders(mil$,sa)
mfg new orders: nondurable goods industries, total (mil$,sa)

mfg new orders: nondurable gds ind.with unfilled orders(mil$,sa)
mfg unfilled orders: all manufacturing industries, total (mil$,sa)
mfg unfilled orders: durable goods industries, total (mil$,sa)

mfg unfilled orders: nondurable goods industries, total (mil$,sa)
contracts & orders for plant & equipment (bil$,sa)

contracts & orders for plant & equipment in 1992 dollars (bci)

NYSE common stock price index: composite (12/31/65 =50)
NYSE common stock price index: industrial (12/31/65 =50)
NYSE common stock price index: transportation (12/31/65 =50)
NYSE common stock price index: utility (12/31/65=50)
NYSE common stock price index: finance (12/31/65 =50)
S&P’s common stock price index: composite (1941-43=10)
S&P's common stock price index: industrials (1941-43 =10)
S&P's common stock price index: capital goods (1941-43=10)
S&P’s common stock price index: transportation (1970=10)
S&P's common stock price index: utilities (1941-43=10)
S&P’'s common stock price index: financial (1970=10)
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129. fsdxp
130. fspxe
131.  fsnvv3

Exchange rates (EXR)

132.  exrus
133.  exrger
134.  exrsw
135.  exrjan
136. exruk

137.  exrcan

Interest rates (Int)

Money and credit quantity aggregates (Mon)

1959:01-1998:12
1959:01-1998:12
1974:01-1997:07*

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12*
1959:01-1998:12

1959:01-1998:12*
1959:01-1998:12*
1959:01-1998:12*
1959:01-1998:12*
1959:01-1998:12*
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1973:01-1994:04*
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

138.  fyff
139.  fycp90
140. fygm3
141, fygmé6
142.  fygtl
143,  fygts
144. fygtl0
145. fyaaac
146. fybaac
147.  fwafit
148. fytha
149.  sfycp
150. sfygm3
151.  sfygm6
152.  sfygtl
153.  sfygts
154.  sfygtl0
155. sfyaaac
156.  sfybaac
157. sfyfha
158.  fml
159.  fm2
160. fm3
161. fml
162. fm2dq
163. fmfba
164. fmrra
165. fmrnbc
166. fcls
167.  fesgv
168. fclre
169. fclin
170.  fcinbf
171. fcing
172, fclbme
173.  cci30m
174.  ccint
175.  ccinv
176. ccinrv

Price indexes (Pri)

177. pmcp
178. pwfsa
179. pwfcsa

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:09*
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1973:01-1998:12*
1973:01-1998:12*
1973:01-1998:12*
1973:01-1998:12*
1973:01-1994:01*
1959:01-1998:12*
1959:01-1998:12*
1959:01-1995:09*
1975:01-1995:09*
1975:01-1995:09*
1980:01-1995:09*

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
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S&P’s composite common stock: dividend yield (% per annum)
S&P's composite common stock: price-earnings ratio (% ,nsa)
NYSE mkt composition:reptd share vol by size,5000+ shrs, %

United States effective exchange rate (merm)(index no.)
foreign exchange rate: Germany (deutsche mark per U.S.$)
foreign exchange rate: Switzerland (swiss franc per U.S.$)
foreign exchange rate: Japan (yen per U.S.$)

foreign exchange rate: United Kingdom (cents per pound)
foreign exchange rate: Canada (canadian $ per U.S.$)

interest rate: federal funds (effective) (% per annum,nsa)
interest rate: 90 day commercial paper, (ac) (% per ann,nsa)
interest rate: U.S.treasury bills,sec mkt,3-mo.(% per ann,nsa)
interest rate: U.S.treasury bills,sec mkt,6-mo.(% per ann,nsa)
interest rate: U.S.treasury const maturities,1-yr.(% per ann,nsa)
interest rate: U.S.treasury const maturities,5-yr.(% per ann,nsa)
interest rate: U.S.treasury const maturities, 10-yr.(% per ann,nsa)
bond yield: moody’s aaa corporate (% per annum)

bond yield: moody’s baa corporate (% per annum)

weighted avg foreign interest rate(%,sa)

secondary market yields on ftha mortgages (% per annum)
spread fycp - fyff

spread fygm3 - fyff

spread fygm6 - fyff

spread fygtl - fyff

spread fygt5 - fyff

spread fygtl0 - fyff

spread fyaaac - fyff

spread fybaac - fyff

spread fyfha - fyff

money stock: mi(curr,trav.cks,dem dep,other ck’able dep)(bil$,sa)
money stock:m2(ml +o'nite rps,euro$,g/p&b/d mmmfs&sav&sm time dep(bil$,
money stock: m3(m2 +Ig time dep,term rp’s&inst only mmmfs)(bil$,sa)
money stock:l(m3 + other liquid assets) (bil$,sa)

money supply-m2 in 1992 dollars (bci)

monetary base, adj for reserve requirement changes(mil$,sa)

depository inst reserves:total,adj for reserve req chgs(mil$,sa)
depository inst reserves:nonborrow +ext cr,adj res req cgs(mil$,sa)
loans & sec @ all coml banks: total (bils,sa)

loans & sec @ all coml banks: U.S.govt securities (bil$,sa)

loans & sec @ all coml banks: real estate loans (bil$,sa)

loans & sec @ all coml banks: loans to individuals (bil$,sa)

loans & sec @ all coml banks: loans to nonbank fin inst(bil$,sa)
commercial & industrial loans oustanding in 1992 dollars (bci)

wkly rp lg com'l banks:net change com’l & indus loans(bil$,saar)
consumer instal.loans: delinquency rate,30 days & over, (%,sa)

net change in consumer instal cr: total (mil$,sa)

net change in consumer instal cr; automobile (mil$,sa)

net change in consumer instal cr: revolving(mil$,sa)

napm commodity prices index (percent)
producer price index: finished goods (82 =100,sa)
producer price index:finished consumer goods (82 =100,sa)
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180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193,
194.
195.
196.
197.
198.
199.
200.
201.
202.

pwimsa
pwemsa
pwfxsa
pw160a
pwl150a
psm99q
punew
pu8l
puh
pu83
pu84
pu8s
puc
pucd
pus
puxf
puxhs
puxm
pegold
gmdc
gmded
gmden
gmdcs

1959:01-1998:12*
1959:01-1998:12*
1967:01-1998:12%*
1974:01-1998:12*
1974:01-1998:12*
1959:01-1998:12
1959:01-1998:12
1967:01-1998:12*
1967:01-1998:12*
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1975:01-1998:12*
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

Average hourly earnings (AHE)

203.
204.
205.
206.
207.
208.
209.

Miscellaneous (Oth)
210.

211.
212.
213.
214.
215.

leh
lehce
lehm
lehtu
lehtt
lehfr
lehs

fste
fstm
ftmd
fstb
ftb
hhsntn

1964:01-1998:12*
1959:01-1998:12

1959:01-1998:12

1964:01-1998:12*
1964:01-1998:12*
1964:01-1998:12*
1964:01-1998:12*

1986:01-1998:12*
1986:01-1998:12*
1986:01-1998:12*
1986:01-1998:12*
1986:01-1998:12*
1959:01-1998:12

- =2 W= W~ N N~ W= - W = W= W~ N e W = e = e N Nl e = = =)

AT

NNt

1

producer price index:intermed mat.supplies & components(82 =100,sa)

producer price index:crude materials (82=100,sa)

producer price index: finished goods,excl. foods (82 =100,sa)
producer price index: crude materials less energy (82 =100,sa)
producer price index: crude nonfood mat less energy (82=100,sa)
index of sensitive materials prices (1990 =100)(bci-99a)

cpi-u: all items (82-84 =100,sa)

cpi-u: food & beverages (82-84=100,sa)

cpi-u: housing (82-84 =100,sa)

cpi-u: apparel & upkeep (82-84=100,sa)

cpi-u: transportation (82-84 =100,sa)

cpi-u: medical care (82-84=100,sa)

cpi-u: commodities (82-84 =100,sa)

cpi-u: durables (82-84 =100,sa)

cpi-u: services (82-84=100,sa)

cpi-u: all items less food (82-84 =100,sa)

cpi-u: all items less shelter (82-84=100,sa)

cpi-u: all items less midical care (82-84=100,sa)

commodities price:gold,london noon fix,avg of daily rate,$ per oz
pee,impl pr defl:pce (1987=100)

pee,impl pr defl:pce; durables (1987 =100)

pee,impl pr defl:pce; nondurables (1987=100)

pee,impl pr defl:pce; services (1987=100)

avg hr earnings of prod wkrs: total private nonagric ($,sa)
avg hr earnings of constr wkrs: construction ($,s2)

avg hr earnings of prod wkrs: manufacturing ($,sa)

avg hr earnings of nonsupv wkrs: trans & public util($,sa)
avg hr earnings of prod wkrs:wholesale & retail trade(sa)
avg hr earnings of nonsupv wkrs: finance,insur,real est($,sa)
avg hr earnings of nonsupv wkrs: services ($,sa)

U.S.mdse exports: total exports(f.a.s. value)(mil.$,s.a.)
U.S.mdse imports: general imports(c.i.f. value)(mil.$,s.a.)
U.S.mdse imports: general imports (customs value)(mil$,s.a.)
U.S.mdse trade balance:exports less imports(fas/cif)(mil$,s.a.)
U.S.mdse trade balance:exp.(fas) less imp.(custom)(mil$,s.a.)
u. of mich. index of consumer expectations(bcd-83)
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Notes to table 2: For each variable/forecast method combination, the first
entry is the ratio of the MSE of the forecast made by the method for that row,
to the MSE of a univariate autoregressive forecast with lag length selected by
BIC ("AR" in the table), and the HAC standard error of that ratio appears next
in parentheses. The second pair of entries are the estimated forecast
combining coefficient a from regression (5.5) and its HAC standard error.

All forecasts are simulated out of sample. The LI (leading indicator),
Phillips curve (for inflation series), DI, DI-AR, and DI-AR,Lag forecasts were
computed with BIC lag and/or variable selection, see the text for details.

The method for computing the factors (full data set, balanced panel, stacked
balanced panel) are indicated in italics above the associated panel of
results. The final line presents the root MSE for the AR model in native

(decimal growth rate) units at an annual rate.
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