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ABSTRACT 

The conventional heteroskedasticity-robust (HR) variance matrix estimator for 

cross-sectional regression (with or without a degrees of freedom adjustment), applied to 

the fixed effects estimator for panel data with serially uncorrelated errors, is inconsistent 

if the number of time periods T is fixed (and greater than two) as the number of entities n 

increases.  We provide a bias-adjusted HR estimator that is nT -consistent under any 

sequences (n, T) in which n and/or T increase to ∞.  This estimator can be extended to 

handle serial correlation of fixed order. 
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1.  Model and Theoretical Results 
Consider the fixed effects regression model, 

 

Yit = αi + β′Xit + uit, i = 1,…, n, t = 1,…, T,    (1) 

 

where Xit is a k×1 vector of regressors and where (Xit, uit) satisfy: 

 

Heteroskedastic panel data model with conditionally serially uncorrelated errors 

1. (Xi1,…, XiT, ui1,,…, uiT) are i.i.d. over i = 1,…, n (i.i.d. over entities),  

2. E(uit|Xi1,…, XiT) = 0 (strict exogeneity) 

3.  ≡ EXXQ � �
1

1

T
it itt

T X−
=

X ′∑ � �  is nonsingular (no perfect multicollinearity), and  

4. E(uituis| Xi1,…, XiT) = 0 for t ≠ s (conditionally serially uncorrelated errors).   

 

For the asymptotic results we will further assume: 

 

Stationarity and moment condition 

5. (Xit, uit) is stationary and has absolutely summable cumulants up to order 

twelve.   

 

The fixed effects estimator is, 

 

ˆ
FEβ  = 

1

1 1 1 1

n T n T

it it it it
i t i t

X X X
−

= = = =

⎛ ⎞′⎜ ⎟
⎝ ⎠
∑∑ ∑∑� � � �Y      (2) 

 

where the superscript “~” over variables denotes deviations from entity means 

( , etc.).  The asymptotic distribution of 1
1

T
it it iss

X X T X−
=

= − ∑� ˆ
FEβ  is [e.g. Arrelano 

(2003)] 

 

nT ( ˆ
FEβ  – β)  N(0, 

d
→ 1

XXQ−
� � Σ

1
XXQ−
� � ),  where Σ = ( )2

1

1 T

it it it
t

E X X u
T =

′∑ � � . (3) 
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The variance of the asymptotic distribution in (3) is estimated by 1ˆ ˆˆ
XX XXQ Q 1− −Σ� � � � , where  

=  and  is a heteroskedasticity-robust (HR) covariance matrix 

estimator. 

ˆ
XXQ � �

1
1 1

( ) n T
it iti t

nT X X−
= =

′∑ ∑ � � Σ̂

A frequently used HR estimator of Σ is 

 

ˆ HR XS−Σ  = 2

1 1

1 ˆ
n T

it it it
i t

X X u
nT n k = =

′
− − ∑∑ � � �      (4) 

 

where { } are the fixed-effects regression residuals,  =  – (ˆ
itu� ˆ

itu� itu� ˆ
FEβ  – β)′ .itX� 2  

Although ˆ HR XS−Σ  is consistent in cross-section regression [White (1980)], it turns 

out to be inconsistent in panel data regression with fixed T.  Specifically, an implication 

of the results in the appendix is that, under fixed-T asymptotics with T > 2, 

 

ˆ HR XS−Σ   ( ),  fixedn T

p

→∞→
1 (

1
B

T
Σ + −Σ

−
) , where B = 2

1 1

1 1T T

it it is
t s

E X X u
T T= =

⎡ ⎤⎛ ⎞⎛′ ⎞
⎢ ⎥⎜ ⎟⎜
⎝ ⎠⎝

⎟
⎠⎣ ⎦

∑ ∑� � .   (5) 

 

The expression for B in (5) suggests the bias-adjusted estimator,  

 

ˆ HR FE−Σ  = 1 1ˆ ˆ
2 1

HR XST B
T T

−−⎛ ⎞⎛Σ −⎜ ⎟⎜− −⎝ ⎠⎝
⎞
⎟
⎠

,  

where B̂  = 2

1 1 1

1 1 1 ˆ
1

n T T

it it is
i t s

X X
n T T= = =

⎛ ⎞⎛′⎜ ⎟⎜ −⎝ ⎠⎝
u ⎞
⎟
⎠

∑ ∑ � � �∑

                                                

  (6) 

 

where the estimator is defined for T > 2. 
 

2 For example, at the time of writing ˆ HR XS−Σ  is the estimator used in STATA and Eviews.  
Petersen (2007) reports a survey of 207 panel data papers published in the Journal of 
Finance, the Journal of Financial Economics, and the Review of Financial Studies 
between 2001 and 2004.  Of these, 15% used ˆ HR XS−Σ , 23% used clustered standard errors, 
26% used uncorrected OLS standard errors, and the remaining papers used other 
methods. 

 2



It is shown in the appendix that, if assumptions 1-5 hold, then under any sequence 

(n, T) in which n → ∞ and/or T → ∞ (which includes the cases of n fixed or T fixed), 

 

ˆ HR FE−Σ = Σ + Op(1/ nT )      (7) 

 

so the problematic bias term of order T−1 is eliminated if  ˆ HR FE−Σ  is used. 

 

Remarks 

1. The bias arises because the entity means are not consistently estimated when T is 

fixed, so the usual step of replacing estimated regression coefficients with their 

probability limits is inapplicable.  This can be seen by considering  

 

HR XS−Σ�  ≡ 2
1 1

1
( 1)

n T
it it iti t

X X u
n T = =

′
− ∑ ∑ � � � ,     (8) 

 

which is the infeasible version of ˆ HR XS−Σ   in which β is treated as known and the 

degrees-of-freedom correction k is omitted.  The bias calculation is short: 

 

E HR XS−Σ�  = 
2

1 1 1

1 1
( 1)

n T T

it it it is
i t s

E X X u
n T T= = =

⎛ ⎞′ −⎜ ⎟− ⎝ ⎠
∑∑ ∑� � u  

      = 2

1

1
1

T

it it it
t

E X X u
T =

′
− ∑ � �  – 

1 1

2
( 1)

T T

it it it is
t s

E X X u
T T = =

′
− ∑∑ � � u + 2

1 1 1

1
( 1)

T T T

it it is ir
t s r

E X X u
T T = = =

′
− ∑∑∑ � � u   

       = ( )2

1

2 1
1

T

it it it
t

T E X X u
T T =

−⎛ ⎞ ′⎜ ⎟−⎝ ⎠
∑ � �  + 2

2
1 1

1
( 1)

T T

it it is
t s

E X X
T T = =

u′
− ∑∑ � �  

= 2
1

T
T
−⎛ ⎞Σ⎜ ⎟−⎝ ⎠

 + 1
1

B
T −

,        (9) 

 

where the third equality uses the assumption E(uituis| Xi1,…,XiT) = 0 for t ≠ s; 

rearranging the final expression in (9) yields the plim in (5).  The source of the bias is 

the final two terms in the second line of (9), both of which appear because of 
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estimating the entity means.  The problems created by the entity means is an example 

of the general problem of having increasingly many incidental parameters (cf. 

Lancaster [2000]). 

2. The asymptotic bias in ˆ HR XS−Σ  is O(1/T).  An implication of the calculations in the 

appendix is that var( ˆ HR XS−Σ ) = O(1/nT), so MSE( ˆ HR XS−Σ ) = O(1/T2) + O(1/nT). 

3. In general, B – Σ is neither positive nor negative semidefinite, so ˆ HR XS−Σ  can be 

biased up or down. 

4. If (Xit, uit) are i.i.d. over t as well as over i, then the asymptotic bias in ˆ HR XS−Σ  is 

proportional to the asymptotic bias in the homoskedasticity-only estimator,  = ˆ homoskΣ

2ˆ ˆuXXQ σ� � , where 2ˆuσ  = 1
1 1

ˆ( ) n T
iti t

nT n k u−
= =

− − 2∑ ∑ � .  Specifically, plim( ˆ HR XS−Σ – Σ) = 

bTplim(  – Σ), where bT = (T – 2)/(T – 1)2.  In this sense, ˆ homoskΣ ˆ HR XS−Σ  undercorrects 

for heteroskedasticity. 

5. One case in which ˆ HR XS−Σ   Σ is when T = 2, in which case the fixed effects 

estimator and 

p
→

ˆ HR XS−Σ  are equivalent to the estimator and HR variance matrix 

computed using first-differences of the data (suppressing the intercept). 

6. Another case in which ˆ HR XS−Σ  is consistent is when the errors are homoskedastic:  if 

E( |Xi1,…,XiT) = 2
itu 2

uσ , then B = Σ = XXQ � �
2
uσ . 

7. Under T fixed, n → ∞ asymptotics, the assumptions of stationarity and twelve 

summable cumulants can be relaxed, and assumption 5 can be replaced by  < ∞ 

and  < ∞, t = 1,…, T.  The assumption of twelve moments, which is used in the 

proof of the 

12
itEX

12
itEu

nT -consistency of ˆ HR FE−Σ , is stronger than needed to justify HR 

variance estimation in cross-sectional data or heteroskedasticity- and autocorrelation-

consistent (HAC) variance estimation in time series data; it arises here because the 

number of nuisance parameters (entity means) increases with n.   

8. As written, ˆ HR FE−Σ is not guaranteed to be positive semi-definite (psd). 

Asymptotically equivalent psd estimators can be constructed in a number of standard 
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ways.  For example if the spectral decomposition of ˆ HR FE−Σ  is Q′ΛQ, then ˆ HR FE
psd

−Σ = 

Q′|Λ|Q is psd.  

9. If the errors are serially correlated, then (3) holds with the modification that Σ = 

( ) ( )1
1 1

T T
it it it itt t

ET X u X u−
= =

′∑ ∑� �� �  = ( ) ( )1
1 1

T T
it it it itt t

ET X u X u−
= =

′∑ ∑� �  (the second equality 

arises from the idempotent matrix identity).  The first of these expressions leads to the 

“clustered” (over entities) variance estimator, 

 

1 1 1

1 ˆˆ
n T T

cluster
it it is is

i t s

X u X u
nT = = =

ˆ
′⎛ ⎞⎛Σ = ⎜ ⎟⎜

⎝ ⎠⎝
∑ ∑ ∑� �� ⎞

⎟
⎠

�     (10) 

 

If T = 3, then the infeasible version of ˆ HR FE−Σ  (in which β is known) equals the 

infeasible version of , and ˆ clusterΣ ˆ HR FE−Σ  is asymptotically equivalent to  to 

order 1/

ˆ clusterΣ

n ; but for T > 3,  and ˆ clusterΣ ˆ HR FE−Σ  differ.  The problem of no consistent 

estimation of the entity means does not affect the consistency of ˆ clusterΣ , however it 

generally does introduce O(T-1) bias into weighted sum-of-covariances estimators 

based on kernels other than the nontruncated rectangular kernel used for . ˆ clusterΣ

10. If n and/or T → ∞, then  = Σ + Op(ˆ clusterΣ 1/ n ) (see the appendix of the working 

paper version of Hansen [2007]).  Because ˆ HR FE−Σ  = Σ + Op(1/ nT ), if the errors 

are conditionally serially uncorrelated and T is moderate or large then ˆ HR FE−Σ  is more 

efficient than .  The efficiency gain of ˆ clusterΣ ˆ HR FE−Σ  arises because imposing the 

condition that uit is conditionally serially uncorrelated permits averaging over both 

entities and time, whereas  averages only across entities.   ˆ clusterΣ

11. Under n fixed, T → ∞ asymptotics and i.i.d. observations across entities, the 

asymptotic null distribution of the t-statistic computed using ˆ clusterΣ  testing one 

element of β is 11
n

nn
t −−

 (Hansen [2007]), and the F-statistic testing p elements of β is 

distributed as ( ) ,
n

p n pn p
F −−

 (this follows from Hansen [2007, Corollary 4.1] and Rao 

[1973, Section 8b]).  If the divisor used to compute the clustered variance estimator is 
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(n – 1)T, not nT as in (10), then the Wald chi-squared statistic using  and testing 

p restrictions on β has the Hotelling T2(p,n–1) distribution.  In contrast, if 

ˆ clusterΣ

ˆ HR FE−Σ  is 

used the t-statistic is distributed N(0,1) and the F-statistic testing p restrictions is 

distributed 2 /p pχ  under any sequence with n and/or T → ∞.  All this suggests that, 

when n is small or moderate, the increased precision of ˆ HR FE−Σ  over  will 

translate into improved power and more accurate confidence intervals. 

ˆ clusterΣ

12. The estimator ˆ HR FE−Σ  can alternatively be derived as a method of moments estimator 

in which zero restrictions on the conditional autocovariances of uit are used to impose 

restrictions on the conditional autocovariances of .  Let ui = (ui1,…, uiT)′,  = 

( ,…, )′,  = ( ,…, )′, Ωi = 

itu� iu�

1iu� iTu� iX� 1iX� iTX� ( )|i i iE u u X′ � , and iΩ�  = ( )|i i iE u u X′ �� � .  Then 

 = MιΩMι, where Μι = IT – T-1ιι′, where ι is the T-vector of 1’s.  Now Σ  = 

, so vecΣ = 

iΩ�

( )1
i i iT E X X− ′Ω� � ( )1

i i iT E X X vec− ⎡ ⎤′⊗ Ω⎢ ⎥⎣ ⎦
� � .  Let S be a T2×r selection 

matrix with full column rank such that S′vecΩi is the r×1 vector of the r nonzero 

elements of Ωi.  If these zero restrictions are valid, then MSvecΩi = 0 (where MS = 2T
I  

– PS  and PS = ), so vecΣ = ( ) 1S S S S−′ ′ ( )1
i i S iT E X X P vec− ⎡ ⎤′⊗ Ω⎢ ⎥⎣ ⎦
� � .  Under these zero 

restrictions, if ( )S M M Sι ι′ ⊗  is invertible, then (as is shown in the appendix) 

 

vecΣ = ( )1
i i iT E X X Hvec− ⎡ ′ ⎤⊗ Ω⎢⎣ ⎦

�� �
⎥

′⎤⎦

,     (11) 

 

where H = .  This suggests the estimator, ( ) 1
S S M M S Sι ι

−
′ ⊗⎡⎣

 

( )ˆ MA qvecΣ = ( ) (
1

1 ˆ ˆ
n

i i i i
i

)X X H u u
nT =

′⊗∑ � � � �⊗ ,    (12) 

 

 6



where the superscript MA(q) indicates that this estimator imposes a conditional 

moving average structure for the errors.  Under the assumption of no conditional 

autocorrelation (so q = 0), S selects the diagonal elements of Ωi, and the resulting 

estimator  is the same as (0)ˆ MAΣ ˆ HR FE−Σ  in (6) except that k is dropped in the degrees-

of-freedom correction (see the appendix).  If no zero restrictions are imposed, then S 

= 2T
I  and  is not invertible but setting H = (S M M Sι ι′ ⊗ ) 2T

I  yields  = 

.  The estimator for the MA(1) case obtains by setting S to select the diagonal 

and first off-diagonal elements of a vectorized T×T matrix.  

( 1)ˆ MA T −Σ

ˆ clusterΣ

13. If time fixed effects are estimated as well, the results of this section continue to hold 

under fixed T, n → ∞ asymptotics, for then the time effects are nT -consistently 

estimated. 

14. The theoretical results and remarks should extend to IV panel data regression with 

heteroskedasticity, albeit with different formulas. 

 

2.  Monte Carlo Results 

A small Monte Carlo study was performed to quantify the foregoing theoretical 

results.  The design has a single regressor and conditionally Gaussian errors: 

 

yit = xitβ  + uit         (13) 

xit = ζit + θζit-1, ζit  ~ i.i.d. N(0,1), t = 1,…, T,     (14) 

uit = εit + θεit-1, εit|xi ~ i.n.i.d. N(0, 2
itσ ), 2

itσ  = λ(0.1 + 2
itx )κ , t = 1,…, T, (15) 

 

where ζi0 and εi0 are drawn from their stationary distributions, κ = ±1, and λ is chosen so 

that var(εit) = 1. 

Table 1 presents results for ˆ HR XS−Σ  (given in (4)), ˆ HR FE−Σ  (given in (6)), and 

 (given in ˆ clusterΣ (10)) for κ = 1 (panel (a)) and κ = –1 (panel (b)), for conditionally 

serially uncorrelated errors (θ = 0).  The first three columns of results report the bias of 

the three estimators, relative to the true value of Σ [e.g., E( ˆ HR XS−Σ  – Σ)/Σ].  The next three 

columns report their MSEs, relative to the MSE of the infeasible HR estimator = ˆ infΣ
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1
1 1

( ) n T
it it iti t

nT X X u−
= =

′∑ ∑ � � 2  that could be constructed were the entity means and β known.  

The final three columns report the size of the 10% two-sided tests of β = β0 based on the 

t-statistic using the indicated variance estimator and asymptotic critical value (standard 

normal for ˆ HR XS−Σ  and ˆ HR FE−Σ , 11
n

nn
t −−

 for ˆ clusterΣ ).  Several results are noteworthy. 

First, the bias in ˆ HR XS−Σ  can be large, it persists as n increases with T fixed, and it 

can be positive or negative depending on the design.  For example, with T = 5, and n = 

500, the relative bias of ˆ HR XS−Σ  is –11.5% when κ = 1 and is 32% when κ = –1.  This 

large bias of ˆ HR XS−Σ  can produce a very large relative MSE.  Interestingly, in some cases 

with small n and T and κ = 1, the MSE of ˆ HR XS−Σ  is less than the MSE of the infeasible 

estimator, apparently reflecting a bias-variance tradeoff.  

Second, the bias correction in ˆ HR FE−Σ  does its job: the relative bias of ˆ HR FE−Σ  is 

less than 2% in all cases with n ≥ 100, and in most cases the MSE of ˆ HR FE−Σ  is very close 

to the MSE of the infeasible HR estimator. 

Third, consistent with remark 12, the ratio of the MSE of the cluster variance 

estimator to the infeasible estimator depends on T and does not converge to 1 as n gets 

large for fixed T.  The MSE of  considerably exceeds the MSE of ˆ clusterΣ ˆ HR FE−Σ  when T is 

moderate or large, regardless of n. 

Fourth, although the focus of this note has been bias and MSE, in practice 

variance estimators are used mainly for inference on β, and one would suspect that the 

variance estimators with less bias would produce tests of β = β0 with better size.  Table 1 

is consistent with this conjecture:  when ˆ HR XS−Σ  is biased up, the t-tests reject too 

infrequently, and when ˆ HR XS−Σ  is biased down, the t-tests reject too often.  When T is 

small, the magnitudes of these size distortions can be considerable:  for T = 5 and n = 

500, the size of the nominal 10% test is 12.2% for κ = 1 and is 5.8% when κ = –1.  In 

contrast, in all cases with n = 500, tests based on ˆ HR FE−Σ  and ˆ clusterΣ  have sizes within 

Monte Carlo error of 10%.  In unreported designs with more heteroskedasticity, the size 

distortions of tests based on ˆ HR XS−Σ  are even larger than reported in Table 1. 
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Table 2 also considers inference on β by comparing the size-adjusted power of 

two-sided t-tests of β = β0 using ˆ HR FE−Σ  or ˆ clusterΣ  when the errors are conditionally 

serially uncorrelated (θ = 0).  Monte Carlo critical values are used to correct for finite-

sample distortions in distribution of the t-ratio under the null.  Consistent with remark 11, 

when n is small the power of Wald tests based on the more precise estimator ˆ HR FE−Σ  can 

considerably exceed the power of the test based on ˆ clusterΣ . 

As discussed in remark 12, the approach used to obtain ˆ HR FE−Σ  can be extended to 

conditionally moving average errors.  Table 3 considers the MA(1) case (θ = ± 0.8) and 

compares the performance of , defined in and subsequent to (1)ˆ MAΣ (12), to .  As 

expected, both estimators show little bias and produce Wald tests with small or negligible 

size distortions.  Because  in effect estimates fewer covariances than , 

however,  has a lower MSE than 

ˆ clusterΣ

(1)ˆ MAΣ ˆ clusterΣ
(1)ˆ MAΣ ˆ clusterΣ , with its relative precision increasing as T 

increases. 

 

3.  Conclusions 

Our theoretical results and Monte Carlo simulations, combined with the results in 

Hansen (2007), suggest the following advice for empirical practice.  The usual estimator 

ˆ HR XS−Σ  can be used if T = 2 but it should not be used if T > 2.  If T = 3, ˆ HR FE−Σ  and ˆ clusterΣ  

are asymptotically equivalent and either can be used.  If T > 3 and there are good reasons 

to believe that uit is conditionally serially uncorrelated, then ˆ HR FE−Σ  will be more efficient 

than  and tests based on ˆ clusterΣ ˆ HR FE−Σ  will be more powerful than tests based on , 

so 

ˆ clusterΣ

ˆ HR FE−Σ  should be used, especially if T is moderate or large.  If the errors are well 

modeled as a low-order moving average and T is moderate or large, then ( )ˆ MA qΣ  is an 

appropriate choice and is more efficient than ˆ clusterΣ .  If, however, no restrictions can be 

placed on the serial correlation structure of the errors, then ˆ clusterΣ  should be used in 

conjunction with 11
n

nn
t −−

 or ,
n

p n pn p
F⎛ ⎞

⎜ ⎟⎜ ⎟ −−⎝ ⎠
 critical values for hypothesis tests on β. 
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Appendix: Proof of (7) 

 

All limits in this appendix hold for any nondecreasing sequence (n, T) in which n 

→ ∞ and/or T → ∞. To simplify the calculations, we consider the special case that Xit is a 

scalar.  Without loss of generality, let EXit = 0.  Adopt the notation iu  =  and 1
1

T
itt

T u−
=∑

iX  = .  The proof repeatedly uses the inequality 1
1

T
itt

T −
=∑ X ( )1

var m
jj

a
=∑  ≤ 

( )2

1
var( )m

jj
a

=∑ . 

Begin by writing nT ( ˆ HR FE−Σ  – Σ) as the sum of four terms using (6) and (9): 

 

   nT ( ˆ HR FE−Σ  – Σ) = 1 1 1 1ˆ ˆ
2 1 2

HR XS HR XST TnT B E B
T T T T

− −− −⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛Σ − − Σ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜⎢ ⎥− − −⎝ ⎠⎝ ⎠ ⎝ ⎠⎝⎣ ⎦
�

1
⎞
⎟− ⎠

 

( ) ( )1 ˆ ˆ
2 2

HR XS HR XST nnT E B B
T T

− −−⎛ ⎞= Σ − Σ −⎜ ⎟− −⎝ ⎠
� T

−  

( ) ( )1 ˆ
2

HR XS HR XS HR XS HR XST nT nT E
T

− − − −−⎛ ⎞ ⎡ ⎤= Σ − Σ + Σ − Σ⎜ ⎟ ⎣ ⎦−⎝ ⎠
� � �  

    ( ) (ˆ
2

T n n )B B B
T T T

⎡ ⎤⎛ ⎞− − +⎢⎜ ⎟−⎝ ⎠ ⎣ ⎦
� � B− ⎥      (16) 

 

where HR XS−Σ�  is given in (8) and  is B� B̂  given in (6) with  replaced by . ˆ
itu� itu�

The proof of (7) proceeds by showing that, under the stated moment conditions,  

 

(a) ( )HR XS HR XSnT E−Σ − Σ� � −  = Op(1),   

(b) ( )/n T B B−�  = Op(1/ T ),  

(c) ( )ˆ HR XS HR XSnT − −Σ − Σ�
p
→  0,  

(d) ( )ˆ/n T B B− �
p
→  0. 
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Substitution of (a) – (d) into (16) yields nT ( ˆ HR FE−Σ  – Σ) = Op(1) and thus the result (7)

. 

 

(a)  From (8), we have that 

 

( )var HR XS HR XSnT E− −⎡ ⎤Σ − Σ⎣ ⎦
� �  = ( )2 2 2 2

1 1

1var
1

n T

it it it it
i t

T X u EX u
T nT = =

⎡ ⎤⎛ ⎞ −⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦
∑∑ � �� �  

= 
2

2 2

1

1var
1

T

it it
t

T X u
T T =

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

∑ � �  

 

so (a) follows if it can be shown that ( )1/ 2 2 2
1

var T
it itt

T X−
=∑ � �u  = O(1).  Expanding 

2 2
1

1 T
it itt

X u
T =∑ � �  yields: 

  

      2 2

1

1 T

it it
t

X u
T =
∑ � �  = A0 – 2A1D3 + ( )2 2

1 2 2 1 2 4
1 2A D A D A A
T

+ −  + 1 2 3
4 A A A
T

 – 2 2
1 23/ 2

3 A A
T

  

     

where A0 = 2 2

1

1 T

it it
t

X u
T =
∑ , A1 = 

1

1 T

it
t

X
T =
∑ , A2 = 

1

1 T

it
t

u
T =
∑ , A3 = 

1

1 T

it it
t

X u
T =
∑ , A4 = 

2

1

1 T

it it
t

X u
T =
∑ , D1 = 2

1

1 T

it
t

X
T =
∑ , D2 = 2

1

1 T

it
t

u
T =
∑ , and D3 = 2

1

1 T

it it
t

X u
T =
∑ .  Thus 

 

2 2

1

1var
T

it it
t

X u
T =

⎛
⎜ ⎟
⎝ ⎠

∑ � � ⎞  ≤ {var(A0)1/2 + 2var(A1D3)1/2 + T–1/2var( 2
1 2A D )1/2  

+ T–1/2var( 2
2 1A D )1/2 + 2T–1/2var(A2A4)1/2  

+ 4T–1var(A1A2A3)1/2  + 3T-3/2var( 2 2
1 2A A )1/2}2 

≤  {  +  + 1/ 2
0var( )A ( )1/ 44 4

1 32 EA ED ( )1/ 41/ 2 8 4
1 2T EA ED−  + ( )1/ 41/ 2 8 4

2 1T EA ED−   

+  + ( )1/ 41/ 2 4 4
2 42T EA EA− ( ) ( )1/8 1/ 41 8 8 4

1 2 34T EA EA EA−  + ( ) }21/ 43/ 2 8 8
1 23T EA EA−  (17) 
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where the second inequality uses term-by-term inequalities, for example the second term 

in the final expression obtains using var(A1D3) ≤  ≤ 2 2
1 3EA D ( )1/ 24 4

1 3EA ED .  Thus a 

sufficient condition for ( )1/ 2 2 2
1

var T
it itt

T X−
=∑ � �u  to be O(1) is that var(A0), , , , 

, , , and  all are O(1). 

8
1EA 8

2EA 4
3EA

4
4EA 4

1ED 4
2ED 4

3ED

First consider the D terms.  Because  ≤ ,  ≤ , and (by Hölder’s 

inequality)  ≤  ≤ ( )

4
1ED 8

itEX 4
2ED 8

itEu

4
3ED 4 8

it itEX u ( )1/ 3 2 / 312 12
it itEX Eu , under assumption 5 all the D moments 

in (17) are O(1). 

For the remainder of the proof of (a), drop the subscript i.  Now turn to the A 

terms, starting with A1. Because Xt (Xit) has mean zero and absolutely summable eighth 

cumulants, 

 

8
1EA  = 

8

1

1 T

t
t

E X
T =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  ≤ 
4

8 cov( , )t t j
j

h X X
∞

−
=−∞

⎛ ⎞
⎜
⎝ ⎠
∑ ⎟  + O(T–1) = O(1) 

 

where h8
 is the eighth moment of a standard normal random variable.3  The same 

argument applied to ut yields  = O(1). 8
2EA

Now consider A3 and let ξt = Xtut.  Then 

 

4
3EA  = 

4

1

1 T

t
t

E
T

ξ
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  = 
1 2 3 4

1 4

2
,..., 1

1 T

t t t t
t t

E
T

ξ ξ ξ ξ
=

∑  

 = 
1 2

1 2

2

1 1

13 cov( , )
T T

t t
t tT

ξ ξ
= =

⎡ ⎤
⎢ ⎥
⎣ ⎦
∑∑  + 

1 2 3 4

1 4

2
,..., 1

1 cum( , , , )
T

t t t t
t tT

ξ ξ ξ ξ
=

∑  

= 3var(ξt)2 + 
1 2 3

1 2 3

0
, , 1

1 cum( , , , )
T

t t t
t t tT

ξ ξ ξ ξ
=

∑  

                                                 
3 If at is stationary with mean zero, autocovariances γj,  and absolutely summable 

cumulants up to order 2k, then E(T−1/2
1

T
tt

a
=∑ )2k ≤ h2k ( )k

jj
γ∑ + O(T−1). 
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≤ 3 4 4
t tEX Eu  + 

1 1 2 2 3 3

1 2 3

0 0
, , 1

1 cum( , , , )
T

t t t t t t
t t t

X u X u X u X u
T =
∑   (18) 

 

where cum(.) denotes the cumulant, the third equality follows from assumption 1 and the 

definition of the fourth cumulant (see definition 2.3.1 of Brillinger (1981)), the fourth 

equality follows by the stationarity of (Xt, ut) and because cov(ξt,ξs) = 0 for t ≠ s by 

assumption 4, and the inequality follows by Cauchy-Schwartz (first term). 

It remains to show that the final term in (18) is finite.  We do so by using a result 

of Leonov and Shiryaev (1959), stated as Theorem 2.3.2 in Brillinger (1981), to express 

the cumulant of products as the product of cumulants.  Let zs1 = Xs and zs2 = us, and let ν 

= 
1

m

j
j

ν
=
∪  denote a partition of the set of index pairs 

3AS  = {(0,1), (0,2), (t1,1), (t1,2), (t2,1), 

(t2,2), (t3,1), (t3,2)}.  Theorem 2.3.2 implies that  = 
1 1 2 2 3 30 0cum( , , , )t t t t t tX u X u X u X u

1 1 2 2 3 301 02 1 2 1 2 1 2cum( , , , )t t t t t tz z z z z z z z  = 1cum( , ) cum( , )ij ij mz ij z ij
ν

ν ν∈ ∈∑ " , where the 

summation extends over all indecomposable partitions of 
3AS .  Because (Xt, ut) has mean 

zero, cum(X0) = cum(u0) = 0 so all partitions with some νk having a single element make 

a contribution of zero to the sum.  Thus nontrivial partitions must have m ≤ 4.  Separating 

out the partition with m = 1, we therefore have that 

 

    
1 1 2 2 3 3

1 2 3

0 0
, , 1

cum( , , , )
T

t t t t t t
t t t

X u X u X u X u
=

∑  ≤ 
1 1 2 2 3 3

1 2 3

0 0
, ,

cum( , , , , , , , )t t t t t t
t t t

X u X u X u X u
∞

=−∞
∑  

+ 
1 2 3

1
: 2,3,4 t , ,

cum( , ) cum( , )ij ij m
m t t

z ij z ij
ν

ν ν
∞

= =−∞

∈∑ ∑ " ∈ .  (19) 

 

The first term on the right hand side of (19) satisfies  

 

1 1 2 2 3 3

1 2 3

0 0
, , 1

cum( , , , , , , , )
T

t t t t t t
t t t

X u X u X u X u
=

∑  ≤ 
1 2 3 4 5 6 7

1 2 7

0
, ,...,

cum( , , , , , , , )t t t t t t t
t t t

X u X u X u X u
∞

=−∞
∑   

 

which is finite by assumption 5. 
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It remains to show that the second term in (19) is finite.  Consider cumulants of 

the form 
1 1

cum( ,..., , ,..., )
rt t s sp

X X u u  (including the case of no X’s).  When p = 1, by 

assumption 1 this cumulant is zero.  When p = 2, by assumption 4 this cumulant is zero if 

s1 ≠ s2.  Thus the only nontrivial partitions of 
3AS  either (i) place two occurrences of u in 

one set and two in a second set, or (ii) place all four occurrences of u in a single set. 

In case (i), the three-fold summation reduces to a single summation which can be 

handled by bounding one or more cumulants and invoking summability.  For example, 

one such term is 

 

3 1 2 2 1 3

1 2 3

0 0
, ,

cum( , )cum( , , )cum( , , )t t t t t
t t t

tX X X u u X u u
∞

=−∞
∑  

= 0 0 0 0cum( , )cum( , , )cum( , , )t t t
t

tX X X u u X u
∞

=−∞
∑ u  

≤ 
1 2

1 2

2 4
0 0 0 0

,

var( ) cum( , , )t t
t t

X EX Eu X u u
∞

=−∞
∑  < ∞   (20) 

 

where the inequality uses 0cum( , )tX X  ≤  var(X0), 0 0cum( , , )tX u u  ≤  2
0tEX u  ≤ 

2 4
0 0EX Eu , and 0cum( , , )t tt

X u u∞

=−∞∑  ≤ 
1 21 2

0,
cum( , , )t tt t

X u u∞

=−∞∑ ; all terms in the final 

line of (20) are finite by assumption 5.  For a partition to be indecomposable, it must be 

that at least one cumulant under the single summation contains both time indexes 0 and t 

(if not, the partition satisfies Equation (2.3.5) in Brillinger (1981) and thus violates the 

row equivalency necessary and sufficient condition for indecomposability).  Thus all 

terms in case (i) can be handled in the same way (bounding and applying summability to 

a cumulant with indexes of both 0 and t) as the term handled in (20).  Thus all terms in 

case (i) are finite. 

In case (ii), the summation remains three-dimensional and all cases can be 

handled by bounding the cumulants not containing the u’s and invoking absolute 

summability for the cumulant containing the u’s.  A typical term is 
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1 2 3 1 2 3

1 2 3

0 0
, ,

cum( , , , , )cum( , , )t t t t t t
t t t

X u u u u X X X
∞

=−∞
∑  ≤ 

1 2 3

1 2 3

3
0 0 0

, ,

cum( , , , , )t t t
t t t

E X X u u u u
∞

=−∞
∑  

≤ 
1 2 3 4

1 4

3
0 0

,...,

cum( , , , , )t t t t
t t

E X X u u u u
∞

=−∞
∑  < ∞. 

 

Because the number of partitions is finite, the final term in (19) is finite, and it follows 

from (18) that  = O(1).  4
3EA

Next consider A4.  The argument that  = O(1) closely follows the argument 

for A3.  The counterpart of the final line of 

4
4EA

(18) is  

 

4
4EA  ≤ 3 8 4

t tEX Eu  + 
1 1 1 2 2 2 3 3 3

1 2 3

0 0 0
, , 1

1 cum( , , , )
T

t t t t t t t t t
t t t

X X u X X u X X u X X u
T =
∑  

 

so the leading term in the counterpart of (19) is a twelfth cumulant, which is absolutely 

summable by assumption 5.  Following the remaining steps shows that  < ∞. 4
4EA

Now turn to A0.  The logic of (19) implies that 

 

          var(A0) = 2 2

1

1var
T

it it
t

X u
T =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑   

≤  2 2 2 2
0 0cov( , )t t

t

X u X u
∞

=−∞
∑  

≤  0 0 0 0cum( , , , , , , , )t t t t
t

X X u u X X u u
∞

=−∞
∑  

+ 1
: 2,3,4

cum( , ) cum( , )ij ij m
m t

z ij z ij
ν

ν ν
∞

= =−∞

∈∑ ∑ " ∈   (21) 

 

where the summation over ν extends over indecomposable partitions of 
0AS  = {(0,1), 

(0,1), (0,2), (0,2), (t,1) , (t,1) , (t,2) , (t,2)} with 2 ≤ m ≤ 4.  The first term in the final line 

of (21) is finite by assumption 5.  For a partition of 
0AS  to be indecomposable, at least 
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one cumulant must have indexes of both 0 and t (otherwise Brillinger’s (1981) Equation 

(2.3.5) is satisfied).  Thus the bounding and summability steps of (20) can be applied to 

all partitions in (21), so var(A0) = O(1).  This proves (a).  

 

(b) First note that E  = B: B�

E  = B� 2 2

1 1 1

1 1 1
1

n T T

it is
i t s

E X
n T T= = =

⎛ ⎞⎛
⎜ ⎟⎜ −⎝ ⎠⎝

∑ ∑ ∑� �u ⎞
⎟
⎠

 

= 2 2
2

1 1 1 1

1 1
1 ( 1)

T T T T

it is is ir
t s s r

TE X u u u
T T T T= = = =

⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟ − −⎝ ⎠⎝ ⎠
∑ ∑ ∑∑�  

= 2 2

1 1

1 1 1
1 ( 1)

T T

it is is
t s s

E X u u
T T T T= =

⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟ − −⎝ ⎠⎝ ⎠
∑ ∑ ∑� 2

1

T

=

 = B 

 

where the penultimate equality obtains because uit is conditionally serially uncorrelated.  

Thus 

 

( )
2

nE B B
T

⎡ ⎤
−⎢ ⎥

⎣ ⎦
�  =  2 2

1 1

1 1 1var
1

T T

it is
t s

X u
T T T= =

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ −⎝ ⎠⎝

⎟
⎠⎣ ⎦

∑ ∑� �  

≤ 
2 2

2 2

1 1

1 1 1
1

T T

it is
t s

E X u
T T T= =

⎛ ⎞ ⎛
⎜ ⎟ ⎜ −⎝ ⎠ ⎝
∑ ∑ ⎞

⎟
⎠

 

       ≤ 8 81
it isEX Eu

T
        (22) 

 

where the first inequality uses  ≤ 2
1

T
itt

X
=∑ � 2

1

T
itt

X
=∑  and 2

1

T
itt

u
=∑ �  ≤ 2

1

T
itt

u
=∑ .  The result 

(b) follows from (22).  Inspection of the right hand side of the first line in (22) reveals 

that this variance is positive for finite T, so that under fixed-T asymptotics the estimation 

of B makes a 1/nT contribution to the variance of ˆ HR FE−Σ . 

 

(c)       ( )ˆ HR XS HR XSnT − −Σ − Σ�  = 2

1 1

ˆ
n T

it it it
i t

nT X X u
nT n k = =

′
− − ∑∑ � � �  – 2

1 1( 1)

n T

it it it
i t

nT X X u
n T = =

′
− ∑∑ � � �  
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= ( )2 2

1 1

1 ˆ
( 1)

n T

it it it it
i t

nT X X u u
n T k nT = =

⎛ ⎞ ′ −⎜ ⎟− −⎝ ⎠
∑∑ � � � �  – 

( 1)
HR XSk nT

n T k
−⎛ ⎞

Σ⎜ ⎟− −⎝ ⎠
� . (23) 

 

An implication of (a) is that HR XS−Σ�   E
p
→ HR XS−Σ� , so the second term in (23) is 

Op(1/ nT ).  To show that the first term in (23) is op(1) it suffices to show that 

( )2 2

1 1

1 ˆ
n T

it it it it
i t

X X u u
nT = =

′ −∑∑ � � � �
p
→  0.  Because  =  – ˆ

itu� itu� ˆ( )FE itXβ β− � , 

 

( )2 2

1 1

1 ˆ
n T

it it it it
i t

X X u u
nT = =

′ −∑∑ � � � �  = ( )2 4

1 1

1ˆ
n T

FE it
i t

nT X
nT

β β
= =

− ∑∑ �   

– ( ) 3

1 1

1ˆ2
n T

FE it it
i t

nT X u
nT

β β
= =

− ∑∑ � �   

  = ( ) 2
4

3/ 2
1 1

1ˆ
( )

n T

FE it
i t

nT X
nT

β β
= =

⎡ ⎤−⎣ ⎦ ∑∑ �  – ( ) 3

1 1

1ˆ2
n T

FE it it
i t

nT X u
nT

β β
= =

− ∑∑ �  

 + ( ) 3

1 1

1 1ˆ2
n T

FE it i
i t

nT X u
n T

β β
= =

⎛− ⎜
⎝ ⎠

∑ ∑ � ⎞
⎟ .   (24) 

 

Consider the first term in (24).  Now ( )ˆ
FEnT β β−  = Op(1) and 

 

E 4
3/ 2

1 1

1
( )

n T

it
i t

X
nT = =

∑∑ �   =  41 ( ) 0itE X
nT

→�  

     

where convergence follows because  < ∞ is implied by  < ∞. Thus, by 

Markov’s inequality the first term in 

4( itE X� ) )4( itE X

(24) converges in probability to zero.  Next consider 

the second term in (24).  Because  uit is conditionally serially uncorrelated, uit has 

(respectively) 4 moments, and has 12 moments (because Xit has 12 moments), itX�

 

3

1 1

1var
n T

it it
i t

X u
nT = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑∑ �  = ( )6 21
it itE X u

nT
�  ≤ ( ) ( )12 41

it itEX Eu
nT

�  → 0. 
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This result and ( ˆ
FEnT )β β−  = Op(1) imply that the second term in (24) converges in 

probability to zero.  Turning to the final term in (24), because  uit is conditionally serially 

uncorrelated,  has 12 moments, uit has 4 moments, itX�

 

3

1 1

1 1var
n T

it i
i t

X u
n T= =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ �  =  

2
3 2

1 1

1 1 1T T

it it
t t

E X u
nT T T= =

⎛ ⎞⎛ ⎞ ⎛
⎜ ⎟⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎝ ⎠

∑ ∑� ⎞
⎟
⎠

 

≤ 
4

3 4

1

1 1 T

it it
t

E X E
nT T =

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ � u  → 0 

 

This result and ( ˆ
FEnT )β β−  = Op(1) imply that the final term in (24) converges in 

probability to zero, and (c) follows. 

 

(d)  Use  =  – ˆ
itu� itu� ˆ( )FE itXβ β− �  and collect terms to obtain 

 

( )ˆ/n T B B− �  = ( )2 2

1 1 1

1 1 1 ˆ
1

n T T

it it is is
i t s

X X u u
T TnT = = =

⎛ ⎞⎛′ −⎜ ⎟⎜ −⎝ ⎠⎝
∑ ∑ ∑� � � � ⎞

⎟
⎠

 

= ( )
2

2
2

3/ 2
1 1

1 1ˆ
1 ( )

n T

FE it
i t

T nT X
T nT

β β
= =

⎛ ⎞⎛ ⎞ ⎡ ⎤−⎜ ⎟ ⎜ ⎟⎣ ⎦−⎝ ⎠ ⎝ ⎠
∑ ∑ �

T
  

– ( ) 2

1 1 1

1 1 1ˆ2
1

n T T

FE it is is
i t s

nT X X u
nT T T

β β
= = =

⎛ ⎞⎛− ⎜ ⎟⎜ −⎝ ⎠⎝
∑ ∑ ∑� � ⎞

⎟
⎠

� .  (25) 

 

Because ( ˆ
FEnT )β β−  = Op(1) and Xit has four moments, by Markov’s inequality the 

first term in (25) converges in probability to zero (the argument is like that used for the 

first term in (24)).  Turning to the second term in (25), 

 

      2

1 1 1

1 1 1var
1

n T T

it is is
i t s

X X
nT T T= = =

⎡ ⎤⎛ ⎞⎛ u⎢ ⎥⎜ ⎟⎜ −⎝ ⎠⎝⎣ ⎦
∑ ∑ ∑� � � ⎞

⎟
⎠

 = 2
2 2

1 1

1 1var
( 1)

T T

it is is
t s

X X u
n T T = =

⎛ ⎞
⎜ ⎟− ⎝ ⎠

∑∑ � � �  
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≤ 12 4
2

1
( 1) it itEX Eu

n T −
�  → 0 

 

so the second term in (25) converges in probability to zero, and (d) follows. 

 

Details of remark 7.  The only place in the foregoing proof that the summable 

cumulant condition is used is to bound the A moments in part (a).  If T is fixed, a 

sufficient condition for the moments of A to be bounded is that Xit and uit have 12 

moments.  Stationarity of (Xit, uit) is used repeatedly but, if T is fixed, stationarity could 

be relaxed by replacing moments such as  with maxt .  Thus, under T-fixed, n → 

∞ asymptotics, assumption 5 could be replaced by the assumption that  < ∞ and 

 < ∞ for t = 1,…, T. 

4
itEX 4

itEX

12
itEX

12
itEu

 

Details of remark 4.  If (Xit, uit) is i.i.d., t = 1,…, T, i = 1,…, n, then Σ = 

 = 2
it it itEX X u′� � 2

uXXQ σ� �  + Ω, where Ωjk = 2cov( , )jit kit itX X u� � , where jitX�  is the jth element of 

.  Also, the (j,k) element of B is  itX�

 

Bjk = 2
2

1 1

1 T T

jit kit is
t s

E X X u
T = =
∑∑ � �  = 2 2

, 2
1 1

1 cov( , )
T T

u jit kit isXX jk
t s

X u
T

σ
= =

+ ∑∑� �
� �Q X   

= 2
,

1
1u jXX jkQ

T
σ + Ω

−� � k , 

 

where the final equality uses, for t ≠ s, 2cov( , )jit kit isX X u� �  =  = 

 (because (Xit, uit) is i.i.d. over t).  Thus B = 

2 2cov( , )jit kit itT X X− u

2( 1) jkT −− Ω 2
uXXQ σ� �  + (T – 1)–1Ω = 2

uXXQ σ� �  + 

(T – 1)–1(Σ – 2
uXXQ σ� � ).  The result stated in the remark follows by substituting this final 

expression for B into (5), noting that ˆ homoskΣ   
p
→ 2

uXXQ σ� � , and collecting terms. 
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Details of remark 12.  To derive (11), first note that ivecΩ�  = ( ) iM M vecι ι⊗ Ω  = 

( ) ( )S S iM M P M vecι ι⊗ + Ω  = ( ) iM SS vecι ι ′M ⊗ Ω , where the final equality imposes the 

zero restrictions MSvecΩi = 0 and uses the fact that S′S = I.  The system of equations 

vec  = (Mι ⊗ Mι)SS′vecΩi, is overdetermined, but the system S′veciΩ� iΩ�  = S′(Mι ⊗ 

Mι)SS′vecΩi is exactly determined, so if ( )S M M Sι ι′ ⊗  is invertible, then S′vecΩi = 

.  (This final expression also can be obtained as the least 

squares solution to the overdetermined system.)  One obtains 

( ) 1
' iS M M S S vecι ι

−
′ ⊗⎡ ⎤⎣ ⎦

�Ω

(11) by substituting this 

final expression into vecΣ = ( )1
i i S iT E X X P vec− ⎡ ⎤⊗ Ω⎣ ⎦
� �  and using S′S = I. 

We now show that , given by (0)ˆ MAΣ (12) for the MA(0) case, is the same as 

ˆ HR FE−Σ  up to the degree of freedom correction involving k.  For the MA(0) case, S is 

T2×T with nonzero elements {S(j–1)T+j,j = 1, j = 1,…, T}.  Direct calculations show that 

( )S M M Sι ι′ ⊗  = ( ) ( ) 11 12 2T T I T T ιι−− −⎡ ⎤′− + −⎣ ⎦  and ( ) 1
S M M Sι ι

−
′ ⊗⎡ ⎤⎣ ⎦  = 

( ) ( )1 112 1T T I T T ιι− −−⎡ ⎤′− − −⎣ ⎦ .  Now ( )i iS u u′ ⊗� �  = ( ,…, )′ ≡ and   

= ( ,…, )′ ≡ .  Thus, starting with 

2
1iu� 2

iTu� 2
iu� ( )i iS X X′ ⊗� �

1 1iX X⊗� �
i iT iTX X⊗� � 2

iX� (12) and the definition of H, 

  

vec  = (0)ˆ MAΣ ( ) ( ) (1

1

1 n

i i i
i

)iX X S S M M S S u u
nT ι ι

−

=

′ ′ ′⊗ ⊗⎡ ⎤⎣ ⎦∑ � � � �⊗  

= 
( )

2 2

1

1 1
2 1

n

i i
i

TX I u
nT T T T

ιι
=

⎡ ⎤⎛ ⎞′ ′−⎢ ⎥⎜ ⎟− −⎝ ⎠ ⎣ ⎦
∑ � �  

= 
2 2

2 2

1 1

1 1 1 1
2 ( 1) 1 1

n n
i i

i i
i i

T XX u
T n T T n T T

ι ι
= =

⎡ ⎤⎛ ⎞⎛ ⎞′ ′−⎛ ⎞ ′ −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− − − −⎝ ⎠ ⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∑ ∑

� �� � u  

= 1 ˆ
2 1

HR XST nT n k vec vecB
T nT n T

−− − −⎡ ⎤⎛ ⎞ ⎛ ⎞ Σ −⎜ ⎟ ⎜ ⎟⎢ ⎥− − −⎝ ⎠ ⎝ ⎠⎣ ⎦

1 ˆ .   (26) 

 

The only difference between  in (0)ˆ MAΣ (26) and ˆ HR FE−Σ  in (6) is that k in the degrees-of-

freedom adjustment in ˆ HR XS−Σ  is eliminated in (26). 
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Table 1.  Monte Carlo results for ˆ HR XS−Σ , ˆ HR FE−Σ , and ˆ clusterΣ : bias, MSE relative to the 
infeasible variance estimator with known entity means and β, and size of two-sided Wald 

tests of β = 0 
 

Monte Carlo design: Equations (13) – (15) with θ = 0 (uncorrelated errors) and β = 0 
 

Bias relative to true MSE relative to infeasible Size (nominal level 10%) 
T n ˆ HR XS−Σ  ˆ HR FE−Σ  ˆ clusterΣ  ˆ HR XS−Σ  ˆ HR FE−Σ  ˆ clusterΣ  ˆ HR XS−Σ  ˆ HR FE−Σ  ˆ clusterΣ  

(a) κ = 1 
5 20 -0.170 -0.069 -0.111 0.72 0.87 1.07 0.152 0.132 0.124 

10 20 -0.085 -0.025 -0.072 0.83 0.92 1.52 0.125 0.113 0.111 
20 20 -0.045 -0.014 -0.062 0.91 0.96 2.29 0.113 0.108 0.108 
50 20 -0.016 -0.003 -0.050 0.96 0.98 4.73 0.105 0.102 0.101 

           
5 100 -0.126 -0.018 -0.027 1.05 1.04 1.32 0.128 0.107 0.107 

10 100 -0.064 -0.004 -0.013 1.01 1.01 1.69 0.114 0.103 0.102 
20 100 -0.038 -0.006 -0.017 1.03 1.01 2.44 0.107 0.102 0.103 
50 100 -0.016 -0.003 -0.014 1.02 1.00 4.87 0.103 0.101 0.101 

           
5 500 -0.115 -0.004 -0.006 2.06 1.09 1.38 0.122 0.103 0.103 

10 500 -0.060 0.001 -0.001 1.57 1.03 1.72 0.110 0.099 0.099 
20 500 -0.013 0.019 0.017 0.87 1.01 2.29 0.104 0.098 0.097 
50 500 -0.014 -0.001 -0.003 1.16 1.01 4.95 0.102 0.100 0.100 

(b) κ = –1 
5 20 0.317 0.022 -0.032 2.05 1.32 1.41 0.060 0.106 0.094 

10 20 0.235 0.006 -0.044 2.25 1.21 2.37 0.068 0.101 0.096 
20 20 0.149 0.007 -0.044 2.08 1.14 4.39 0.077 0.099 0.098 
50 20 0.058 -0.007 -0.055 1.47 1.06 10.58 0.091 0.101 0.100 

           
5 100 0.320 0.009 -0.001 4.72 1.30 1.46 0.060 0.102 0.100 

10 100 0.228 -0.004 -0.013 5.52 1.21 2.42 0.069 0.102 0.100 
20 100 0.134 -0.008 -0.018 4.49 1.12 4.46 0.081 0.101 0.101 
50 100 0.052 -0.013 -0.022 2.30 1.05 10.09 0.091 0.101 0.101 

           
5 500 0.320 0.007 0.005 18.16 1.31 1.50 0.058 0.099 0.099 

10 500 0.230 -0.003 -0.005 22.13 1.20 2.43 0.067 0.099 0.099 
20 500 0.150 0.006 0.004 20.83 1.12 4.37 0.078 0.099 0.099 
50 500 0.056 -0.009 -0.010 7.73 1.05 9.37 0.091 0.102 0.103 

 
Notes:  The first three columns of results report the bias of the indicated estimator as a 
fraction of the true variance.  The next three columns report the MSE of the indicated 
estimator, relative to the MSE of the infeasible estimator ˆ infΣ = 1 2

1 1
( ) n T

it iti t
nT X u−

= =
2∑ ∑ � .  

The final three columns report rejection rates under the null hypothesis of the 2-sided test 
of β = β0 based on the t-statistic computed using the indicated variance estimator and the 
10% asymptotic critical value (using ˆ HR XS−Σ  and ˆ HR FE−Σ , the critical value is from the 
standard normal distribution, using ˆ clusterΣ  it is from the 11

n
nn

t −−
 distribution).  All results 

are based on 50,000 Monte Carlo draws. 
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Table 2.  Size-adjusted power of level-10% two-sided Wald tests of β = 0 based on 
ˆ HR FE−Σ  and  against the local alternative β = b/ˆ clusterΣ nT   

 
Monte Carlo design: (13) – (15) with κ = 1, θ = 0 (uncorrelated errors), and T = 20 

 
Size-adjusted power of z-test based on: 

n ˆ HR FE−Σ  ˆ clusterΣ  
(a) b = 2 

3 0.338 0.227 
5 0.324 0.269 
10 0.332 0.305 
20 0.322 0.307 

100 0.321 0.316 
(b) b = 4 

3 0.758 0.504 
5 0.750 0.629 
10 0.760 0.710 
20 0.760 0.731 

100 0.761 0.756 
 
Notes: Entries are Monte Carlo rejection rates of two-sided t-tests using the indicated 
variance estimator, with a critical value computed by Monte Carlo for β = 0, κ = 1, θ = 0, 
T = 20, and n given in the first column.  Based on 50,000 Monte Carlo draws. 
 
 
 

Table 3.  Performance of  and (1)ˆ MAΣ ˆ clusterΣ  with MA(1) errors:  Bias, MSE of  
relative to , and size of Wald tests of β = 0 

(1)ˆ MAΣ
ˆ clusterΣ

 
Monte Carlo design: (13) – (15) with κ = 1, θ = ±0.8, β = 0, and n = 100 

 
Bias relative to true Size (nominal level 10%) 

T (1)ˆ MAΣ  ˆ clusterΣ  

( )
( )

(1)ˆ

ˆ

MA

cluster

mse

mse

Σ

Σ
 (1)ˆ MAΣ  ˆ clusterΣ  

(a) θ = 0.8   
5 -0.022 -0.023 0.99 0.113 0.108 
10 -0.013 -0.019 0.73 0.107 0.105 
20 -0.006 -0.015 0.52 0.103 0.102 

(b) θ = –0.8 
5 -0.032 -0.035 0.93 0.112 0.109 
10 -0.018 -0.025 0.72 0.107 0.106 
20 -0.007 -0.015 0.52 0.103 0.102 

 
Notes:  is defined in (1)ˆ MAΣ (12), where S selects the diagonal and first upper and lower 
off-diagonal elements of a vectorized T×T matrix.  Size was computed using asymptotic 
critical values (standard normal for (1)ˆ MAΣ , 11

n
nn

t −−
 for ˆ clusterΣ ) for two-sided Wald tests 

using the indicated variance estimator.  Based on 50,000 Monte Carlo draws. 
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