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ABSTRACT
The conventional heteroskedasticity-robust (HR) variance matrix estimator for
cross-sectional regression (with or without a degrees of freedom adjustment), applied to
the fixed effects estimator for panel data with serially uncorrelated errors, is inconsistent

if the number of time periods T is fixed (and greater than two) as the number of entities n
increases. We provide a bias-adjusted HR estimator that is +/nT -consistent under any

sequences (N, T) in which n and/or T increase to co. This estimator can be extended to

handle serial correlation of fixed order.
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1. Model and Theoretical Results

Consider the fixed effects regression model,

Yitzai+ﬂxit+un,i=1,...,n,t=1,...,T, (1)

where Xj; is a kx1 vector of regressors and where (X, Uit) satisfy:

Heteroskedastic panel data model with conditionally serially uncorrelated errors

1. (Xi,..., XiT, Uit,,..., UiT) are i.i.d. over i = 1,..., n (i.i.d. over entities),

2. E(uigXii,..., Xit) = 0 (strict exogeneity)

[98)

Qu =ET - tT:l )ZitX~it' is nonsingular (no perfect multicollinearity), and

o

E(uitis| Xi1,..., Xjt) = 0 for t # s (conditionally serially uncorrelated errors).
For the asymptotic results we will further assume:

Stationarity and moment condition
5. (Xit, Uy) 1s stationary and has absolutely summable cumulants up to order

twelve.

The fixed effects estimator is,

b= (3R] S3 R, @

(IR
~

where the superscript over variables denotes deviations from entity means

etc.). The asymptotic distribution of ﬁFE is [e.g. Arrelano

is »

( Xit = X, —T%Z; X

(2003)]

T (e — ) - N(O, QgL ZQ3L ), where 3 = TliE(Xan’u;). (3)
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The variance of the asymptotic distribution in (3) is estimated by Qg >Q. , where Qg
= (nT)" Zin:l tT=1 X, X, and ¥ is a heteroskedasticity-robust (HR) covariance matrix

estimator.

A frequently used HR estimator of X is

L

nT —n—Kk 4

n T
LIRS = Xitxit’ai% 4)
=1 1

t=
where {(, } are the fixed-effects regression residuals, G, = 0, —( ,éFE o
Although $HR-X {5 consistent in cross-section regression [White (1980)], it turns

out to be inconsistent in panel data regression with fixed T. Specifically, an implication

of the results in the appendix is that, under fixed-T asymptotics with T > 2,

. P SR S
SRS 2+—T1_1(B—2),whereB= EKTLZXHXH]GZU%H- (%)

The expression for B in (5) suggests the bias-adjusted estimator,

iHR—FE _ (EJ(EHRXS _L Bj’
T-2 T-1

LYK ) ©

where the estimator is defined for T > 2.

? For example, at the time of writing "™ is the estimator used in STATA and Eviews.
Petersen (2007) reports a survey of 207 panel data papers published in the Journal of
Finance, the Journal of Financial Economics, and the Review of Financial Studies

between 2001 and 2004. Of these, 15% used """, 23% used clustered standard errors,
26% used uncorrected OLS standard errors, and the remaining papers used other
methods.



It is shown in the appendix that, if assumptions 1-5 hold, then under any sequence

(n, T) in which n — o and/or T — oo (which includes the cases of n fixed or T fixed)

SHRFE =3 + Oy(1//nT) (7)

so the problematic bias term of order T~ is eliminated if SHRFE s used.
Remarks

1. The bias arises because the entity means are not consistently estimated when T is

fixed, so the usual step of replacing estimated regression coefficients with their

probability limits is inapplicable. This can be seen by considering

iHR—XS 1

= mz Zt 1Xitxit Uy (8)

which is the infeasible version of ™ in which Sis treated as known and the

degrees-of-freedom correction k is omitted. The bias calculation is short:

T
it |s ir
t=

_lEglxnxnun—T(T_l)EZzlx i Ul T(T_I)Ezzz

1 s=1 r=1

(I22)s 4 L
_(T—IJZ+T—IB’ )

where the third equality uses the assumption E(UjUis| Xii,...,Xit) =0 fort #s;

rearranging the final expression in (9) yields the plim in (5). The source of the bias is

the final two terms in the second line of (9), both of which appear because of



estimating the entity means. The problems created by the entity means is an example
of the general problem of having increasingly many incidental parameters (cf.

Lancaster [2000]).

& HR-XS
)

The asymptotic bias in is O(1/T). An implication of the calculations in the

appendix is that var(2™* %) = O(1/nT), so MSE(Z"*"%) = O(1/T%) + O(1/nT).

& HR-XS
z

In general, B — X is neither positive nor negative semidefinite, so can be

biased up or down.
iHfos

If (Xit, Uit) are i.i.d. over t as well as over i, then the asymptotic bias in is

proportional to the asymptotic bias in the homoskedasticity-only estimator, S"™* =

(j)bz 62, where 6, = (N”T —n— k)’lz:in=1 ZT ik Specifically, plim(Z™*° - %) =

t=1 It °

brplim(£™™* — %), where br = (T — 2)/T — 1)>. In this sense, £"™*** undercorrects
for heteroskedasticity.

& HR-XS
h)

p
One case in which — X 1s when T = 2, in which case the fixed effects

& HR-XS
h)

estimator and are equivalent to the estimator and HR variance matrix

computed using first-differences of the data (suppressing the intercept).

Another case in which 3" is consistent is when the errors are homoskedastic: if
E(Ug [Xit,....XiT) = o_, then B=2= Qy; 0.

Under T fixed, N — oo asymptotics, the assumptions of stationarity and twelve

summable cumulants can be relaxed, and assumption 5 can be replaced by EX;* < oo
and Eui‘f <o, t=1,..., T. The assumption of twelve moments, which is used in the

proof of the ~/nT -consistency of ™ | is stronger than needed to justify HR
variance estimation in cross-sectional data or heteroskedasticity- and autocorrelation-
consistent (HAC) variance estimation in time series data; it arises here because the

number of nuisance parameters (entity means) increases with n.

& HR-FE
h)

As written, is not guaranteed to be positive semi-definite (psd).

Asymptotically equivalent psd estimators can be constructed in a number of standard



10.

11.

& HR-FE
Z —

ways. For example if the spectral decomposition of =™ is Q'AQ, then !5y

Q'|A|Q is psd.
If the errors are serially correlated, then (3) holds with the modification that X =

ET—]( ;Xitan)( tT:lXitGit) - ET_I( ;Xitun)( ; )Zituit) (the second equality

arises from the idempotent matrix identity). The first of these expressions leads to the

“clustered” (over entities) variance estimator,

!

s L3RG, 20 (10
nT t=1 s=1

i=1

If T = 3, then the infeasible version of "% (in which Bis known) equals the

infeasible version of =™ and "*"FF is asymptotically equivalent to =" to

order 1/+/n ; but for T> 3, £ and £ differ. The problem of no consistent

estimation of the entity means does not affect the consistency of ™", however it

generally does introduce O(T™') bias into weighted sum-of-covariances estimators
based on kernels other than the nontruncated rectangular kernel used for ",

If n and/or T — oo, then ™ =3 + Oy(1/ Jn) (see the appendix of the working

paper version of Hansen [2007]). Because "% =3 + 0,(1/+/nT ), if the errors

& HR-FE
z

are conditionally serially uncorrelated and T is moderate or large then 1S more

efficient than . The efficiency gain of "% " arises because imposing the

condition that Uj; 1s conditionally serially uncorrelated permits averaging over both

ﬁ:cluster

entities and time, whereas averages only across entities.

Under n fixed, T — oo asymptotics and i.i.d. observations across entities, the
asymptotic null distribution of the t-statistic computed using ™" testing one

element of f1is \/gtn_1 (Hansen [2007]), and the F-statistic testing p elements of fis

distributed as ( ! ) F (this follows from Hansen [2007, Corollary 4.1] and Rao

_n
n-p p,n—p

[1973, Section 8b]). If the divisor used to compute the clustered variance estimator is
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(n— DT, not nT as in (10), then the Wald chi-squared statistic using Z®***" and testing

p restrictions on £ has the Hotelling T*(p,n—1) distribution. In contrast, if SHRFE g
used the t-statistic is distributed N(0,1) and the F-statistic testing p restrictions is
distributed ;(,2) / p under any sequence with n and/or T — oo. All this suggests that,

. . . & HR-FE Sl .
when n is small or moderate, the increased precision of X over X" will

translate into improved power and more accurate confidence intervals.

The estimator ™% can alternatively be derived as a method of moments estimator
in which zero restrictions on the conditional autocovariances of Uj; are used to impose

restrictions on the conditional autocovariances of 0, . Let Ui = (Uig,..., Uit)", 0, =

(TG )y Ko = (Ko, X Y, Q1= E(uiui' | Xi),and Q= E(aiai’pzi). Then
fli = MQM, where M, = IT—T'llz’, where 1s the T-vector of 1’s. Now X~ =
T‘IE()Zi'Qi)Zi), S0 VecT = T"E{(Xi ® )Zi)l vech] Let S be a T°xr selection

matrix with full column rank such that S'vecQ); is the rx1 vector of the r nonzero

elements of Q;. If these zero restrictions are valid, then MsvecQ; = 0 (where Mg = |T2
—Ps and Ps= $(S'S) "' S"), sovecT = T™'E {()Z, ® X, )! PsveCQi} . Under these zero

restrictions, if S’(Ml ® M,) S is invertible, then (as is shown in the appendix)
vecZ:T“E{(Xi@Xi)' Hvecﬁi}, (11)
where H= S [S'( M,®M,) S]fl S’. This suggests the estimator,

n '

#_ (X, ®X,) H(

o
o

vecs MA@ = ® i) : (12)



where the superscript MA(Q) indicates that this estimator imposes a conditional
moving average structure for the errors. Under the assumption of no conditional
autocorrelation (so g = 0), S selects the diagonal elements of €);, and the resulting

$MA(0) $HR-FE

estimator is the same as in (6) except that k is dropped in the degrees-

of-freedom correction (see the appendix). If no zero restrictions are imposed, then S
=1, and S'(M,®M,)S is not invertible but setting H = 1_, yields =" =

ST The estimator for the MA(1) case obtains by setting S to select the diagonal

and first off-diagonal elements of a vectorized TxT matrix.

13. If time fixed effects are estimated as well, the results of this section continue to hold
under fixed T, n — oo asymptotics, for then the time effects are +/nT -consistently
estimated.

14. The theoretical results and remarks should extend to IV panel data regression with

heteroskedasticity, albeit with different formulas.

2. Monte Carlo Results
A small Monte Carlo study was performed to quantify the foregoing theoretical

results. The design has a single regressor and conditionally Gaussian errors:

Yit = Xt + Uit (13)
Xit = é,it + Hg”it_l, é,it ~1.1.d. N(O,l), t=1,..., T, (14)
Uit = &t + Ogie1, &Xi~inid. N©0,07), oF = A0.1+ x)<,t=1,....T, (15

where gjp and & are drawn from their stationary distributions, ¥ = £1, and A is chosen so

that var(g;) = 1.

& HR-XS & HR-FE
z hX

Table 1 presents results for (given in (4)), (given in (6)), and

icluster

(given in (10)) for k=1 (panel (a)) and k¥ =—1 (panel (b)), for conditionally

serially uncorrelated errors (8= 0). The first three columns of results report the bias of
the three estimators, relative to the true value of X [e.g., E(iHR_XS —2)/Z]. The next three

columns report their MSEs, relative to the MSE of the infeasible HR estimator it =



(nT)™ zin:l z; )Zit Xit'uﬁ that could be constructed were the entity means and f known.

The final three columns report the size of the 10% two-sided tests of = [ based on the

t-statistic using the indicated variance estimator and asymptotic critical value (standard
normal for "7 and T, [0t | for 27"). Several results are noteworthy.

&HR-XS
z

First, the bias in can be large, it persists as n increases with T fixed, and it

can be positive or negative depending on the design. For example, with T =5, and n =

500, the relative bias of ™ is —11.5% when =1 and is 32% when x=—1. This

&HR-XS
z

large bias of can produce a very large relative MSE. Interestingly, in some cases

with small n and T and &= 1, the MSE of £"%° is less than the MSE of the infeasible

estimator, apparently reflecting a bias-variance tradeoft.
Second, the bias correction in =™ does its job: the relative bias of ™ is

less than 2% in all cases with n > 100, and in most cases the MSE of "% is very close
to the MSE of the infeasible HR estimator.

Third, consistent with remark 12, the ratio of the MSE of the cluster variance
estimator to the infeasible estimator depends on T and does not converge to 1 as n gets
large for fixed T. The MSE of 3" considerably exceeds the MSE of £"% when T is
moderate or large, regardless of n.

Fourth, although the focus of this note has been bias and MSE, in practice
variance estimators are used mainly for inference on £, and one would suspect that the
variance estimators with less bias would produce tests of = /% with better size. Table 1

& HR-XS
z

is consistent with this conjecture: when is biased up, the t-tests reject too

infrequently, and when £"%* is biased down, the t-tests reject too often. When T is
small, the magnitudes of these size distortions can be considerable: for T=35and n=
500, the size of the nominal 10% test is 12.2% for k=1 and is 5.8% when x=-1. In
contrast, in all cases with n = 500, tests based on =" and S have sizes within

Monte Carlo error of 10%. In unreported designs with more heteroskedasticity, the size

distortions of tests based on =" are even larger than reported in Table 1.



Table 2 also considers inference on £ by comparing the size-adjusted power of

two-sided t-tests of S= /& using "™ F or ™" when the errors are conditionally
serially uncorrelated (6= 0). Monte Carlo critical values are used to correct for finite-

sample distortions in distribution of the t-ratio under the null. Consistent with remark 11,

& HR-FE
h)

when n is small the power of Wald tests based on the more precise estimator can

considerably exceed the power of the test based on S

& HR—FE
h)

As discussed in remark 12, the approach used to obtain can be extended to

conditionally moving average errors. Table 3 considers the MA(1) case (6= % 0.8) and

compares the performance of "1 | defined in and subsequent to (12), to ™. As
expected, both estimators show little bias and produce Wald tests with small or negligible

i MA(1) icluster

size distortions. Because in effect estimates fewer covariances than

b
however, ™" has a lower MSE than X", with its relative precision increasing as T

Increases.

3. Conclusions
Our theoretical results and Monte Carlo simulations, combined with the results in

Hansen (2007), suggest the following advice for empirical practice. The usual estimator

SHRXS can be used if T = 2 but it should not be used if T>2. If T =3, S"RFE and Sester

are asymptotically equivalent and either can be used. If T > 3 and there are good reasons

to believe that Uy is conditionally serially uncorrelated, then "% will be more efficient

than 2" and tests based on "% will be more powerful than tests based on Z*

5

so S"™FE should be used, especially if T is moderate or large. If the errors are well

modeled as a low-order moving average and T is moderate or large, then 2"¥ is an

appropriate choice and is more efficient than X" If, however, no restrictions can be

z":cluster

placed on the serial correlation structure of the errors, then should be used in

conjunction with /%tn_l or [L] Fon_p critical values for hypothesis tests on S.

n-p
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Appendix: Proof of (7)

All limits in this appendix hold for any nondecreasing sequence (n, T) in which n

— o and/or T — . To simplify the calculations, we consider the special case that Xj; is a

scalar. Without loss of generality, let EX;t = 0. Adopt the notation U, = T~ z u, and

t=1 it

T

X, =T X, . The proof repeatedly uses the inequality Var(zzrjn a.) <

t=1 =1

(5 )

Begin by writing v/nT (£"%" — ) as the sum of four terms using (6) and (9):

& HR-FE _ u SHR-XS 1 s _ T-1 ~HR—X5_L
L

:II:__lj\/n_T(iHRxs _ EiHRXS)_ﬁ(B _ B)

T-2

uj[\/ﬁ(im—xs _iHR—XS)_i_ nT (iHR—XS _ ESHR-XS )]
2 (5-8)+ %(E—B)} (16)

S HR-XS
z

where is given in (8) and B is B given in (6) with ﬁit replaced by U, .

The proof of (7) proceeds by showing that, under the stated moment conditions,

(a) \/ﬁ(iHR—XS _ EiHR—XS) _ Op(l),
(b) Vn/T (B-B) = 0u(1/NT ),

(C) \/ﬁ( STHR-XS _ HR xs)_p)o’

(& /T (B-B) > o.

11



Substitution of (a) — (d) into (16) yields v/nT (ZHRFE %)= Op(1) and thus the result (7)

(a) From (8), we have that

(e e -l L)L

n T ~ ~
ML ]

1

so (a) follows if it can be shown that var (T v 22 X2a n) =0(1). Expanding

%z; X202 yields:

%;X;aﬁon 2A1D3+\/—(A.D+AZD 2A2A4)+—AA2A3 AA

T3/2

M—c

1 < 1
where Ag= — > X Ul A = —
0 T; it it 1 ﬁ
T T

:lei%’ D2 Tl;uii,and D3 le . Thus

= t=1

T T
lt’ Z Z it |t’ -
t=1 t=1

—
1

1

X-ZU- D, =

it=it 2

—||»—

1 T
Tz

.
ar (%Z Xiai] < {var(A))'? + 2var(AiDy)* + T "var( A'D,)"
t=1

+4T 'var(A1AA)'? + 3T var(A'A))2)

< {Var(Ah)l/z + 2(EA|4ED34)1/4 n T_l/z(EAIsED;)IM n T_l/z(EAngDl“)M

cor (enEn) o ar (enen) " (ex) 5T (enen) | an)

12



where the second inequality uses term-by-term inequalities, for example the second term

in the final expression obtains using var(A;D;) < EA’D; < (EAfED; )1/2 . Thus a
sufficient condition for var (T Y 22; )Z;Gi) to be O(1) is that var(Ag), EA’, EAY, EA/,

EA/, ED/, ED;, and ED; all are O(1).

First consider the D terms. Because ED; < EX},

ED; < Eu}, and (by Hélder’s
. . 4 4.8 12\1/3 121273 .
inequality) ED; < EX;u; < (EX " ) (Euit ) , under assumption 5 all the D moments

in (17) are O(1).
For the remainder of the proof of (a), drop the subscript i. Now turn to the A
terms, starting with A;. Because X; (Xjt) has mean zero and absolutely summable eighth

cumulants,

(1Y : o
EA’ = E(ngtj < h{Z\cov(xt,xt_j)U +0O(T)=0(1)

j=—o

where hgis the eighth moment of a standard normal random variable.® The same
argument applied to Uy yields EAY = O(1).

Now consider A; and let & = XUr. Then

i_ LT 4:L T
EA E( ﬁZéj IR

AAAAA

2

1 T T 1 T

=3+ z Z COV(ftl ’ é:tz ) + 2 Cum(é:t] ’ é:tz > §t3 > §t4 )
T t=11t,=1 T t,ty =1

,,,,,

@+ 4 Y cm(&,.8.8,.8)

.G =1

*If a; is stationary with mean zero, autocovariances 7, and absolutely summable

cumulants up to order 2k, then E(T™"? z; & Y < hzk(zj ‘71 Dk +O(T ).

13



)
<3 JEX Eu} +Tl D feum(X Uy, X, Uy, X U, X ) (18)

t b =1

where cum(.) denotes the cumulant, the third equality follows from assumption 1 and the
definition of the fourth cumulant (see definition 2.3.1 of Brillinger (1981)), the fourth
equality follows by the stationarity of (X, Us) and because cov(&;,&) =0 for t # S by
assumption 4, and the inequality follows by Cauchy-Schwartz (first term).

It remains to show that the final term in (18) is finite. We do so by using a result
of Leonov and Shiryaev (1959), stated as Theorem 2.3.2 in Brillinger (1981), to express

the cumulant of products as the product of cumulants. Let zs; = Xs and zs, = Us, and let v

= U v; denote a partition of the set of index pairs SA3 ={(0,1), (0,2), (t;,1), (11,2), (t2,1),
j=1

(12,2), (3,1), (13,2)}. Theorem 2.3.2 implies that cum(X,u,, X, U, , X, U, , X, U, ) =

cum(Zy, 2,52, 12, 5, 2, 12t 55 2 Zyn) = Zvcum(zij,ij €v)---cum(z;,ij € v, ), where the

summation extends over all indecomposable partitions of S, . Because (X;, Uy) has mean

zero, cum(Xp) = cum(Uo) = 0 so all partitions with some 14 having a single element make
a contribution of zero to the sum. Thus nontrivial partitions must have m < 4. Separating

out the partition with m = 1, we therefore have that

T ©
D feum(X Uy, X, g, X U XUl <D0 feum(X Uy, XU XU X))

t.h, =1 t,t ,ly=—0

+ z i ‘cum(zij,ijevl)--~cum(zij,ijevm)‘. (19)

vim=234 1t t;=—0

The first term on the right hand side of (19) satisfies

T o0
D feum(X o,y X oty XU, XU € D0 feum(X ot s XU, X oty XUy

t b =1 bty ponsty =00

which is finite by assumption 5.

14



It remains to show that the second term in (19) is finite. Consider cumulants of

the form cum(X,,..., Xtr,usl,...,usp) (including the case of no X’s). When p =1, by

assumption 1 this cumulant is zero. When p = 2, by assumption 4 this cumulant is zero if

S; # S2. Thus the only nontrivial partitions of SA3 either (i) place two occurrences of U in

one set and two in a second set, or (ii) place all four occurrences of U in a single set.
In case (1), the three-fold summation reduces to a single summation which can be
handled by bounding one or more cumulants and invoking summability. For example,

one such term is

z ‘cum( X, Xy Jeum(X, , Uy, U, Jeum(X, ,u, , U, )‘

t.h =0

= Z |Cum(X05 Xt)Cum(Xt’uoauO)Cum(XO’ut:ut)|

t=—o0

< var(X WEX Euy Y [oum(X,,u,,u,)

t,ty=—00

< o0 (20)

where the inequality uses |cum(X0, Xt)| < var(Xp),

cum (X, U, U)| < [EX,ug] <

2 4 o ®
VEXGEU; ,and 307 Jeum(X ot ) < D07 Jeum(X,,4,,U,)

line of (20) are finite by assumption 5. For a partition to be indecomposable, it must be

; all terms in the final

that at least one cumulant under the single summation contains both time indexes 0 and t
(if not, the partition satisfies Equation (2.3.5) in Brillinger (1981) and thus violates the
row equivalency necessary and sufficient condition for indecomposability). Thus all
terms in case (i) can be handled in the same way (bounding and applying summability to
a cumulant with indexes of both 0 and t) as the term handled in (20). Thus all terms in
case (1) are finite.

In case (ii), the summation remains three-dimensional and all cases can be
handled by bounding the cumulants not containing the U’s and invoking absolute

summability for the cumulant containing the u’s. A typical term is

15



o0 3 0
z ‘cum(XO,uo,utl,utz,uta)cum(th,th,th)‘SE|X0| z ‘cum(XO,uO,utl,utz,uta)‘

t,b fy=—0 ty,b ty=—0

Because the number of partitions is finite, the final term in (19) is finite, and it follows
from (18) that EA] = O(1).
Next consider A;. The argument that EA; = O(1) closely follows the argument

for A;. The counterpart of the final line of (18) is

.
EA! <3 JEXTES + 4 Y Joum (X, X oy, X, XUy, X, X, Uy, X, X, )|

=1

so the leading term in the counterpart of (19) is a twelfth cumulant, which is absolutely
summable by assumption 5. Following the remaining steps shows that EA; < oo

Now turn to Ag. The logic of (19) implies that

.
var(Ag) = Var(L Xifuij

IN

> Jeov(Xgug, X7ud))
t=—c0

> Jeum(X g, X, Uy, Uy, X, X, U, Uy)|

t=—o0

IA

+ Y i‘cum(zij,ijevl)---cum(zij,ijevm)‘ 21)

v:m=2,3,4 t=—00

where the summation over v extends over indecomposable partitions of S, = {(0,1),

(0,1), (0,2), (0,2), (t,1), (t,1), (£,2), (t,2)} with 2 <m < 4. The first term in the final line

of (21) is finite by assumption 5. For a partition of S, to be indecomposable, at least
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one cumulant must have indexes of both 0 and t (otherwise Brillinger’s (1981) Equation
(2.3.5) is satisfied). Thus the bounding and summability steps of (20) can be applied to
all partitions in (21), so var(Ag) = O(1). This proves (a).

(b) First note that E B =B:

[es ]}
m

E l
ns;

where the penultimate equality obtains because Uj; is conditionally serially uncorrelated.
Thus

1 (1&Y (1 &Y
<S—E[=) Xi | | =—> u;
T (T; "j (T—lg j
<1 EXSEU} (22)
T
where the first inequality uses Z X2 < zt 1X2 and Zt i < Zt U . The result

(b) follows from (22). Inspection of the right hand side of the first line in (22) reveals

that this variance is positive for finite T, so that under fixed-T asymptotics the estimation

of B makes a 1/nT contribution to the variance of %" FF

(c) \/ﬁ(iHR—XS _iHR—XS) _ \/— Zn:i txlt un \/ﬁ iixitx'a?

nT —n-k<'4S n(T -1)3%5



- nT ] S o (2 KVNT  Veroxs
B (n(T _1)_kj\/n_-|-zzxitxn (Un _Un) - LWJZ . (23)

i=l t=1

- P .
An implication of (a) is that X" — EX™* 5o the second term in (23) is

Op(1/+/nT ). To show that the first term in (23) is 0y(1) it suffices to show that

o2

VnT 3%

T

v iar o\ P JO A -
Xi Xy (uii_uii) — 0. Because 0 = 0; — (S = F) X,
o

where convergence follows because E(X ) < oo is implied by E(X.) <oo. Thus, by

Markov’s inequality the first term in (24) converges in probability to zero. Next consider

the second term in (24). Because Uij; is conditionally serially uncorrelated, uj; has

(respectively) 4 moments, and X, has 12 moments (because Xi; has 12 moments),
var[ L3 %2, | = (X)) < L [(EXE)(Eul) —o0.
nT o T nT
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This result and v/nT ( ,BFE -p ) = Op(1) imply that the second term in (24) converges in

probability to zero. Turning to the final term in (24), because Uj is conditionally serially

uncorrelated, )Zit has 12 moments, Uj; has 4 moments,

This result and VnT ( ﬁFE -p ) = Op(1) imply that the final term in (24) converges in

probability to zero, and (c) follows.

(d) Use G, = 0, — (ﬁFE — )X, and collect terms to obtain

1o, | vy -
?zxitj(ﬁzxisuisj' (25)

Because VnT ( ﬁFE -p ) = Op(1) and X has four moments, by Markov’s inequality the

first term in (25) converges in probability to zero (the argument is like that used for the

first term in (24)). Turning to the second term in (25),
var Li li)@ Li)? a Z;Var Liiizx a
n-I- 4 T it T 1 is™is n(T _ 1)2 -I-z it “Vis™is
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1 =
< —JEXPEu -0

n(T -1y’

so the second term in (25) converges in probability to zero, and (d) follows.

Details of remark 7. The only place in the foregoing proof that the summable
cumulant condition is used is to bound the A moments in part (a). If T is fixed, a
sufficient condition for the moments of A to be bounded is that Xj: and uj; have 12

moments. Stationarity of (Xjt, Uit) is used repeatedly but, if T is fixed, stationarity could

be relaxed by replacing moments such as EX; with max;EX; . Thus, under T-fixed, n —
o0 asymptotics, assumption 5 could be replaced by the assumption that EX;* <o and

Eu’ <ofort=1,...,T.

Details of remark 4. If (X, Uip) isi.i.d.,t=1,...,T,i=1,...,n,then X =

EX, X = Q.00 +Q, where Qj = cov(X is the j™ element of

XX U

X,i,U2), where X

it |t jit jit

)Zit . Also, the (],k) element of B is

- 1 T T
Jltxkltulzs = Qxx Ljk u T ZZCOV(XJH kit > |s)

t=1 s=1 t=1 s=1

0
J
m
==
M—|
M—|
><z

where the final equality uses, for t # s, cov(X iit Xt uz) = T2 cov(X iit Xt us) =

(T-1)" ij (because (Xjt, Ujt) is i.i.d. over t). Thus B = QXX S+ (T-1) 0= QXX ,

T-1)'E- Q0 2). The result stated in the remark follows by substituting this final

expression for B into (5), noting that "™ —> Q. and collecting terms.

XX U’
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Details of remark 12. To derive (11), first note that vecQ, = (M, ® M, )vecQ, =
(M, ®M,) (P + Mg )vec, = (M, ®M,)SS'vecQ,, where the final equality imposes the

zero restrictions MsvecQ); = 0 and uses the fact that S'S = I. The system of equations

vec f)i = (M, ® M)SS'vecQ);, is overdetermined, but the system S'vec f)i =S'M,®

M,)SS'vecQ); is exactly determined, so if S'(M,® M,)$S is invertible, then S'vecQ); =

[S’( M,®M),) S]_l S'vecQ),. (This final expression also can be obtained as the least
squares solution to the overdetermined system.) One obtains (11) by substituting this
final expression into vecX = T 'E [( X, ®X, ) PsveCQi] and using S'S= 1.

We now show that SMA® | given by (12) for the MA(0) case, is the same as
SHRFE up to the degree of freedom correction involving k. For the MA(0) case, S is

T°xT with nonzero elements {S; 1yr+jj =1, j = 1,..., T}. Direct calculations show that

S'(M,®M,)S =T (T=2)[ 1+T7(T-2)" /| and [S'(M,®M,)S] " =

(T —2)‘1T[| ~TNT —1)‘11/]. Now §'(G, ®0,) = (0j.....07 )’ = GFand S'(X;®X))

Il
I~
Pal

®
X
x
=

®
Pal
=
~

1l

>
I )

—

=

o

g

&

=3

=
()]

z

—*

=

—

—

\]

p—a

&

=

o

-

=

(@]

o

(@]

=h

=3
=

o

=

o

=

s

_(I=L) (T =n=K) eesirs L ech | (26)
T-2 nT —n T-1

The only difference between SMAO i (26) and SHRFE in (6) is that k in the degrees-of-

freedom adjustment in $HR-XS s eliminated in (26).

21



Table 1. Monte Carlo results for ™ SHRFE and S . hias, MSE relative to the
infeasible variance estimator with known entity means and £, and size of two-sided Wald
tests of f=0

Monte Carlo design: Equations (13) — (15) with €= 0 (uncorrelated errors) and =0

Bias relative to true MSE relative to infeasible Size (nominal level 10%)
T n iHR—XS ‘ iHR—FE ‘ iclusler iHR—XS ‘ iHR—FE ‘ iclusler iHR—XS ‘ iHR—FE ‘ z":cluster
@x=1
5 20 -0.170 -0.069 -0.111 0.72 0.87 1.07 0.152 0.132 0.124
10 20 -0.085 -0.025 -0.072 0.83 0.92 1.52 0.125 0.113 0.111
20 20 -0.045 -0.014 -0.062 0.91 0.96 2.29 0.113 0.108 0.108
50 20 -0.016 -0.003 -0.050 0.96 0.98 4.73 0.105 0.102 0.101
5 100 -0.126 -0.018 -0.027 1.05 1.04 1.32 0.128 0.107 0.107
10 100 -0.064 -0.004 -0.013 1.01 1.01 1.69 0.114 0.103 0.102
20 100 -0.038 -0.006 -0.017 1.03 1.01 2.44 0.107 0.102 0.103
50 100 -0.016 -0.003 -0.014 1.02 1.00 4.87 0.103 0.101 0.101
5 500 -0.115 -0.004 -0.006 2.06 1.09 1.38 0.122 0.103 0.103
10 500 -0.060 0.001 -0.001 157 1.03 1.72 0.110 0.099 0.099
20 500 -0.013 0.019 0.017 0.87 1.01 2.29 0.104 0.098 0.097
50 500 -0.014 -0.001 -0.003 1.16 1.01 4.95 0.102 0.100 0.100
(b) x=-1
5 20 0.317 0.022 -0.032 2.05 1.32 141 0.060 0.106 0.094
10 20 0.235 0.006 -0.044 2.25 121 2.37 0.068 0.101 0.096
20 20 0.149 0.007 -0.044 2.08 1.14 4.39 0.077 0.099 0.098
50 20 0.058 -0.007 -0.055 147 1.06 10.58 0.091 0.101 0.100
5 100 0.320 0.009 -0.001 4.72 1.30 1.46 0.060 0.102 0.100
10 100 0.228 -0.004 -0.013 5.52 121 242 0.069 0.102 0.100
20 100 0.134 -0.008 -0.018 4.49 1.12 4.46 0.081 0.101 0.101
50 100 0.052 -0.013 -0.022 2.30 1.05 10.09 0.091 0.101 0.101
5 500 0.320 0.007 0.005 18.16 131 1.50 0.058 0.099 0.099
10 500 0.230 -0.003 -0.005 22.13 1.20 243 0.067 0.099 0.099
20 500 0.150 0.006 0.004 20.83 1.12 4.37 0.078 0.099 0.099
50 500 0.056 -0.009 -0.010 7.73 1.05 9.37 0.091 0.102 0.103

Notes: The first three columns of results report the bias of the indicated estimator as a
fraction of the true variance. The next three columns report the MSE of the indicated

. . . . . i - T g
estimator, relative to the MSE of the infeasible estimator ™ = (nT) lzin:l o XU

The final three columns report rejection rates under the null hypothesis of the 2-sided test
of = /b based on the t-statistic computed using the indicated variance estimator and the

10% asymptotic critical value (using =™ and £"% | the critical value is from the
standard normal distribution, using ™" it is from the [-"t,, distribution). All results

are based on 50,000 Monte Carlo draws.
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Table 2. Size-adjusted power of level-10% two-sided Wald tests of = 0 based on
SHRFE and 7" against the local alternative = b//nT

Monte Carlo design: (13) — (15) with k=1, = 0 (uncorrelated errors), and T =20

Size-adjusted power of z-test based on:

n iHR—FE z":cluster
(@b=2

3 0.338 0.227

5 0.324 0.269

10 0.332 0.305

20 0.322 0.307

100 0.321 0.316
(b)b=4

3 0.758 0.504

5 0.750 0.629

10 0.760 0.710

20 0.760 0.731

100 0.761 0.756

Notes: Entries are Monte Carlo rejection rates of two-sided t-tests using the indicated
variance estimator, with a critical value computed by Monte Carlo for f=0, k=1, §=0,
T =20, and n given in the first column. Based on 50,000 Monte Carlo draws.

Table 3. Performance of "A® and ™" with MA(1) errors: Bias, MSE of £
relative to 2", and size of Wald tests of B=0

Monte Carlo design: (13) — (15) with k=1, = 10.8, =0, and n = 100

Bias relative to true mse (iMA(l)) Size (nominal level 10%)

T iMA(l) icluster m iMA(l) icluster
(@) 6=0.8

5 -0.022 -0.023 0.99 0.113 0.108

10 -0.013 -0.019 0.73 0.107 0.105

20 -0.006 -0.015 0.52 0.103 0.102
b) =-0.8

5 -0.032 -0.035 0.93 0.112 0.109

10 -0.018 -0.025 0.72 0.107 0.106

20 -0.007 -0.015 0.52 0.103 0.102

Notes: =M is defined in (12), where S selects the diagonal and first upper and lower
off-diagonal elements of a vectorized TxT matrix. Size was computed using asymptotic

critical values (standard normal for ") |-nt, , for 31y for two-sided Wald tests

using the indicated variance estimator. Based on 50,000 Monte Carlo draws.
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