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ABSTRACT 

 

This paper provides a simple shrinkage representation that describes the operational 

characteristics of various forecasting methods designed for a large number of orthogonal 

predictors (such as principal components).  These methods include pretest methods, 

Bayesian model averaging, empirical Bayes, and bagging.  We compare empirically 

forecasts from these methods to dynamic factor model (DFM) forecasts using a U.S. 

macroeconomic data set with 143 quarterly variables spanning 1960-2008.  For most 

series, including measures of real economic activity, the shrinkage forecasts are inferior 

to the DFM forecasts. 
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1. Introduction 

 

Over the past ten years, the dynamic factor model (DFM) (Geweke 1977) has 

been the predominant framework for research on macroeconomic forecasting using many 

predictors.  The conceptual appeal of the DFM is twofold: methods for estimation of 

factors in a DFM turn the curse of dimensionality into a blessing (Forni, Hallin, Lippi, 

and Reichlin 2000, 2004, Bai and Ng 2002, 2006, and Stock and Watson 1999, 2002a, b), 

and the DFM arises naturally from log-linearized structural macroeconomic models 

including dynamic stochastic general equilibrium models (Sargent 1989, Bovin and 

Giannoni 2006).  Bai and Ng (2008) and Stock and Watson (2011) survey econometric 

research on DFMs over this period.  But the forecasting implications of the DFM – that 

the many predictors can be replaced by a small number of estimated factors – might not 

be justified in practice.  Indeed, Eichmeier and Ziegler’s (2008) meta-study finds mixed 

performance of DFM forecasts, which suggests considering other ways to handle many 

predictors.  Accordingly, some recent papers have considered whether DFM macro 

forecasts can be improved upon using other many-predictor methods, including high-

dimensional Bayesian vector autogression (Andersson and Karlsson 2008, Bańbura, 

Giannone, and Reichlin 2010, Korobilis 2008, Carriero, Kapetanios, and Marcellino 

2011, and De Mol, Giannone, and Reichlin 2008), Bayesian model averaging (Koop and 

Potter 2004, Wright 2004, Jacobson and Karlsson 2004, and Eklund and Karlsson 2007), 

bagging (Inoue and Kilian 2008), Lasso (De Mol, Giannone, and Reichlin 2008, Bai and 

Ng 2007), boosting (Bai and Ng 2009), and forecast combination (multiple authors). 
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One difficulty in comparing these high-dimensional methods theoretically is that 

their derivations generally rely on specific modeling assumptions (for example, i.i.d. data 

and strictly exogenous predictors), and it is not clear from those derivations what the 

algorithms are actually doing when they are applied in settings in which the modeling 

assumptions do not hold.  Moreover, although there have been empirical studies of the 

performance of many of these methods for macroeconomic forecasting, it is difficult to 

draw conclusions across methods because of differences in data sets and implementation 

across studies. 

This paper therefore has two goals.  The first is characterize the properties of 

some forecasting methods applied to many orthogonal predictors in a time series setting 

in which the predictors are predetermined but not strictly exogenous.  The results cover 

pretest and information-criterion methods, Bayesian model averaging (BMA), empirical 

Bayes (EB) methods, and bagging.  It is shown that asymptotically all these methods 

have the same “shrinkage” representation, in which the weight on a predictor is the OLS 

estimator times a shrinkage factor that depends on the t-statistic of that coefficient.  These 

representations are a consequence of the algorithms and they hold under weak stationarity 

and moment assumptions about the actual statistical properties of the predictors; thus 

these methods can be compared directly using these shrinkage representations. 

The second goal is to undertake an empirical comparison of these shrinkage 

methods using a quarterly U.S. macro data set that includes 143 quarterly economic time 

series spanning 49 years.  The DFM imposes a strong restriction:  that there are only a 

few factors and these factors can supplant the full large data set for the purpose of 

forecasting.  There are now a number of ways to estimate factors in large data sets, and a 
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commonly used estimator is the first few principal components of the many predictors 

(ordered by their eigenvalues).  The empirical question, then, is whether information in 

the full data set, beyond the first few principal components, makes a significant marginal 

forecasting contribution.  There are various ways to approach this question.  One could, 

for example, retain the predictors in their original form, then (by appealing to Frisch-

Waugh) consider the marginal predictive power of the part of those predictors orthogonal 

to the factors.  Algorithms for averaging or selecting models using the original predictors, 

which have been used for macro forecasting or closely related problems, include BMA 

and large VARs.  However, we share De Mol, Giannone, and Reichlin’s (2008) 

skepticism about the reliability of any resulting economic interpretation because of the 

colinearity of the data and the resulting instability of the weights and variable/model 

selection.  Moreover, any economic interpretation that might have been facilitated by 

using the original series would be obscured by using instead their orthogonal projection 

on the first few factors.  A different approach, the one we adopt, is to retain the 

perspective of a factor model but to imagine that the number of selected factors is simply 

smaller than it should be, that is, that the conventional wisdom that a few factors suffices 

to describe the postwar U.S. data is wrong.  Because the principal components are 

estimates of the factors, this approach leads us consider forecasts that potentially place 

nonzero weight on principal components beyond the first few.  Because the principal 

components are orthogonal, shrinkage procedures for orthogonal regressors provide a 

theoretically well-grounded way to assess the empirical validity of the DFM forecasting 

restrictions. 
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We find that, for most macroeconomic time series, among linear estimators the 

DFM forecasts make efficient use of the information in the many predictors by using only 

a small number of estimated factors.  These series include measures of real economic 

activity and some other central macroeconomic series, including some interest rates and 

monetary variables.  For these series, the shrinkage methods with estimated parameters 

fail to provide mean squared error improvements over the DFM.  For a small number of 

series, the shrinkage forecasts improve upon DFM forecasts, at least at some horizons 

and by some measures, and for these few series, the DFM might not be an adequate 

approximation.  Finally, none of the methods considered here help much for series that 

are notoriously difficult to forecast, such as exchange rates, stock prices, or price 

inflation. 

The shrinkage representations for forecasts using orthogonal predictors are 

described in Section 2.  Section 3 describes the data and the forecasting experiment.  

Section 4 presents the empirical results, and Section 5 offers some concluding remarks. 

 

2.  Shrinkage Representations of Forecasting Methods  

 

We consider the multiple regression model with orthonormal regressors, 

 

Yt = ¢Pt–1 + t,   t = 1,…, T, P¢P/T = In   (1) 

 

where Pt is a n-dimensional predictor known at time t with ith element Pit, Yt is the 

variable to be forecast, and the error t has variance 2.  It is assumed that Yt and Pt have 
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sample mean zero.  (Extensions to multi-step forecasting and including lagged values of 

Y are discussed below.)  For the theoretical development it does not matter how the 

regressors are constructed; in our applications and in the recent empirical econometric 

literature they are constructed as the first n principal components, dynamic principal 

components, or a variant of these methods, using an original, potentially larger set of 

regressors, {Xt}. 

When n is large, there are many regressors and OLS will work poorly. Therefore 

we consider forecasting methods that impose and exploit additional structure on the 

coefficients in (1).  We show that all these methods have a shrinkage representation, by 

which we mean that the forecasts from these methods can all be written as, 

 

1|T TY 
  = 

1

ˆ( )
n

i i iT
i

t P  

  + op(1),    (2) 

 

where 1|T TY 
  is the forecast of YT+1 made using data through time T, î  = 1

11

T

it tt
T P Y

  is 

the OLS estimator of i (the ith element of ), ti = îT /se , where 2
es  = 

2
11

ˆ( ) ( )
T

t tt
Y P T n 

  , and  is a function specific to the forecasting method.  We 

consider four classes of forecasting procedures: pretest and information criterion 

methods, Bayesian methods (including Bayesian model averaging), empirical Bayes, and 

bagging.  The factor  depends on the method.  For pretest methods and bagging,  = 1.  

For the Bayes methods,  = ( ˆ/es  ), where 1/̂ 2 is the Bayes method’s posterior mean of 

1/2.  This factor arises because the posterior for  may not concentrate around 2
es . 
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Under general conditions, for Bayes, empirical Bayes, bagging and pre-test 

estimators, 0 £  (x) £ 1, so the operational effect of these methods is to produce linear 

combinations in which the weights are the OLS estimator, shrunk towards zero by the 

factor .   This is the reason for referring to (2) as the shrinkage representation of these 

forecasting methods. 

  A key feature of these results is that the proof that the remainder term in (2) is 

op(1) for the different methods relies on much weaker assumptions on the true 

distribution of (Y, P) than the modeling assumptions used to derive the methods.  As a 

result, these methods can be applied and their performance understood even if they are 

applied in circumstances in which the original modeling assumptions clearly do not hold, 

for example when they are applied to multistep-ahead forecasting. 

 

2.1  Pretest (PT) and Information Criterion Methods 

Because the regressors are orthogonal, a hard threshold pretest for model selection 

in (2) corresponds to including those regressors with t-statistics exceeding some threshold 

c.  For the pretest (PT) method, the estimator of the ith coefficient, PT
i , is the OLS 

estimator if |ti| > c, and is zero otherwise, that is, 

 

PT
i  = 1(|ti| > c) î .      (3) 

 

Expressed in terms of (2), the pretest  function is, 
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PT(u) = 1(|u| > c).      (4) 

 

Under some additional conditions, the pretest methods correspond to information 

criteria methods, at least asymptotically.  For example, consider AIC applied sequentially 

to the sequence of models constructed by sorting the regressors by the decreasing 

magnitude of their t-statistics.  If n is fixed then AIC selection is asymptotically 

equivalent to the pretest selector (4) with c = 2 .  

 

2.2 Normal Bayes (NB) Methods 

For tractability, Bayes methods in the linear model have focused almost 

exclusively on the case of strictly exogenous regressors and independently distributed 

homoskedastic (typically normal) errors.  For our purposes, the leading case in which 

these assumptions are used is the Bayesian model averaging (BMA) methods discussed in 

the next subsection.  This modeling assumption is, 

 

(M1)  {t} ^{Pt} and t is i.i.d. N(0,2).   

 

We also adopt the usual modeling assumption of squared error loss.  Bayes procedures 

constructed under assumption (M1) with squared error loss will be called “Normal 

Bayes” (NB) procedures.  Note that we treat (M1) as a modeling tool, where the model is 

in general misspecified, that is, the true probability law for the data, or data generating 

process (DGP), is not assumed to satisfy (M1). 
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Suppose that the prior distribution specifies that the coefficients {i} are i.i.d., that 

the prior distribution on i given 2 can written in terms of i = /iT  , and that {i} 

and 2 have independent prior distributions, respectively G and 2G


 (where G denotes a 

generic prior): 

 

(M2)  {i = /iT  } ~ i.i.d G, 2 ~ 2G


, and {i} and 2 are independent. 

 

Under squared error loss, the normal Bayes estimator NB
i  is the posterior mean,  

 

NB
i  = 2,

( | , )iE Y P
 

 ,     (5) 

 

where the subscript 2,
E
 

 indicates that the expectation is taken with respect to  (which 

reduces to i by independence under (M2)) and 2.  Under (M1), ( ̂ , 2
es ) are sufficient 

for ( ̂ , 2).  Moreover î  and ˆ
j  are independently distributed for all i  j conditional on 

(, 2), and î |, 2 is distributed N(i, 2/T).  Thus (M1) and (M2) imply that, 

conditional on 2, the posterior mean has the so-called simple Bayes form (Maritz and 

Lwin 1989), 

 

NB
i | 2 = î  + 

2

T

 ˆ( )i  ,     (6) 
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where ( )x  = dln(m(x))/dx, where m(x) = 2

2

/ |
( ) ( | )

T
x dG

  
     is the marginal 

distribution of an element of ̂ , 2|
G
 

 is the conditional prior of an element of  given 2, 

and  is the pdf of a N(0,2) random variable. 

The shrinkage representation of the NB estimator follows from (6) by performing 

the change of variables i = T i/.  For priors satisfying (M2) and under conditions 

made precise below, the shrinkage function for the NB estimator is, 

 

NB(u) = 1 + ( )u /u,          (7) 

 

where ( )u  = dlnm(u)/du, m(u) = ( ) ( )u dG   , and  is the standard normal density.  

Integrating over the posterior distribution of 2 results in the posterior mean approaching 

its probability limit, which leads to NB being evaluated at u = ti×plim( ˆ/  ). 

It is shown in the online Supplement that, if the prior density g = dG(u)/du is 

symmetric around zero and is unimodal, then for all u, 

 

NB(u) = NB(–u) and 0  NB(u)  1.    (8) 

 

2.3 Bayesian Model Averaging (BMA). 

Our treatment of BMA with orthogonal regressors follows Clyde, Desimone, and 

Parmigiani (1996), Clyde(1999a,b), and Koop and Potter (2004).  The Clyde, Desimone, 

and Parmigiani (1996) BMA setup adopts (M1) and a Bernoulli prior model for variable 

inclusion with a g-prior (Zellner 1986) for  conditional on inclusion.  Specifically, with 
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probability p let i| ~ N(0, 2/(gT)) (so i ~ N(0, 1/g)), and with probability 1 – p let i = 

0 (so i = 0).  Note that this prior model satisfies (M2).  Direct calculations show that, 

under these priors, the shrinkage representation (7) specializes to 

 

BMA(u) = 
( ) ( ( ) )

(1 )[ ( ) ( ( ) ) (1 ) ( )]

pb g b g u

g pb g b g u p u


   

                       (9) 

 

where b(g) = /(1 )g g  and  is the standard normal density, and where BMA is 

evaluated at u = ti, just as in the general case (7).  The Bernoulli/normal BMA prior is 

symmetric and unimodal, so BMA satisfies (8). 

 

2.4 Empirical Bayes (EB) 

Empirical Bayes estimation treats the prior G as an unknown distribution to be 

estimated.  Under the stated assumptions, { î } constitute n i.i.d. draws from the marginal 

distribution m, which in turn depends on the prior G.  Because the conditional distribution 

of ̂ |  is known under (M1), this permits inference about G.  In turn, the estimator of G 

can be used in (6) to compute the empirical Bayes estimator.  The estimation of the prior 

can be done either parametrically or nonparametrically.  We refer to the resulting 

empirical Bayes estimator generically as EB
i .  The shrinkage function for the EB 

estimator is, 

 

EB(u) = 1 + ˆ( )u /u,          (10) 
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where ˆ( )u  is the estimate of the score of the marginal distribution of {ti}.  This score 

can be estimated directly or alternatively can be computed using an estimated prior Ĝ , 

in which case ˆ ( )t  = ˆd ln ( ) /dm t t , where ˆ ( )m t  = ˆ( ) ( )t dG   . 

 

2.5 Bagging (BG) 

Bootstrap aggregation or “bagging” (Breiman 1996) smooths the hard threshold in 

pretest estimators by averaging over a bootstrap sample of pre-test estimators.  Inoue and 

Kilian (2008) apply bagging to a forecasting situation like that considered in this paper 

and report some promising results; also see Lee and Yang (2006).  Bühlmann and Yu 

(2002) considered bagging with a fixed number of strictly exogenous regressors and i.i.d. 

errors, and showed that asymptotically the bagging estimator can be represented in the 

form (2), where (for u ¹ 0), 

 

BG(u)  = 1 – (u + c) + (u – c) + t–1[(u – c) – (u + c)],           (11) 

 

where c is the pre-test critical value,  is the standard normal density, and  the standard 

normal CDF.  We consider a variant of bagging in which the bootstrap step is conducted 

using a parametric bootstrap under the exogeneity-normality assumption (M1).  This 

algorithm delivers the Bühlmann-Yu (2002) expression (11) under weaker assumptions 

on the number and properties of the regressors than in Bühlmann and Yu (2002). 
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2.6  Theoretical results 

We now turn to a formal statement of the validity of the shrinkage representations 

of the foregoing forecasting methods.   

Let PT denote a vector of predictors used to construct the forecast and let { i } 

denote the estimator of the coefficients for the method at hand.  Then each method 

produces forecasts of the form 1|T TY 
  = 

1

p

i iTi
P

  , with shrinkage approximation 

1| 1
ˆˆ ( )

p

T T i i iTi
Y t P   

  for appropriately chosen (.).  It follows immediately from the 

definition of the pretest estimator that its shrinkage representation is 1|
PT

T TY 
  = 

1
ˆ( )

n PT
i i iTi

t P 
 , where PT(u) = 1(|u| > c), is exact.  This section shows that 1|T TY 

 − 

1|T̂ TY 

. .m s

  0 for the NB and BG forecasts.  

First consider the NB forecast described in section (2.2).  If 2 were known, then 

equation (7) implies that the shrinkage representation would hold exactly with  = se/.  

The difference 
1|T T

NBY


 − 1/
ˆ NB
T TY   is therefore associated with estimation of 2.  The properties 

of the sampling error associated with estimation of 2 depend on the DGP and the 

modeling assumptions (likelihood and prior) underlying the construction of the Bayes 

forecast.  Assumptions associated with the DGP and Bayes procedures are provided 

below.  Several of these assumptions use the variable  = 2̂ /2, where 1/ 2̂  is the 

posterior mean of 1/2.  The assumptions use the expectation operator E, which denotes 

expectation with respect to the true distribution of Y and P, and EM, which denotes 

expectation with respect to the Bayes posterior distribution under the modeling 

assumptions (M1) and (M2).  
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The assumptions for the NB forecasts are: 

 

(A1)   maxi |PiT| ≤ Pmax, a finite constant. 

(A2)    21 2
tt

E T Y  ~ O(1) . 

(A3)   n/T → , where 0 ≤  < 1. 

(A4)   E{EM[( – 1)4|Y,P] }4~ O( 4T   ) for some  > 0. 

(A5)  E{EM[–4|Y,P] }4~ O(1). 

(A6)  supu|u
mdmNB(u)/dum)|  M for m = 1, 2. 

 

Assumptions (A1)-(A2) are restriction on the DGP, while (A3) is the asymptotic 

nesting.  Assumptions (A4)-(A5) involve both the DGP and the assumed model for the 

Bayes forecast, and these assumptions concern the rate at which the posterior for   

concentrates around ̂ .  To interpret these assumptions, consider the usual Normal-

Gamma conjugate prior  (i.e., i  ~ N(0,g–1) and 1/2 ~ Gamma).  A straightforward 

calculation shows that EM[( – 1)4|Y,P] = 12(+2)/3 and EM[–4|Y,P] = (/2)4/[(/2–

1)(/2–2)(/2–3)(/2–4)] where  denotes the posterior degrees of freedom. Because  = 

O(T) under (A3), E{EM[( – 1)4|Y,P] }4 ~ O(T–8), and E[EM[–4|Y,P] ]4 ~ O(1),  so that 

assumptions (A4) and (A5) are satisfied in this case regardless of the DGP.  Assumption 

(A6) rules out priors that induce mass points in NB or for which NB(u) approaches 1 

very slowly as u  . 

With these assumptions, the behavior of 1/
NB

T TY 


 − 1/
ˆ NB
T TY   is characterized in the 

following theorem: 
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Theorem 1: Under (A1)-(A6),  1/
NB

T TY 
 − 1/

ˆ NB
T TY   

. .m s

  0. 

 

Proofs are given in the online Supplement. 

An analogous result holds for the bagging forecast.  To prove this result, we make 

two additional assumptions: 

 

(A7) n/B → 0. 

(A8) 12max ( )i iE t < ∞. 

 

In (A7), B denotes the number of bootstrap replications, and the finite twelfth moment 

assumption in (A8) simplifies the proof of the following theorem:  

 

Theorem 2: Under (A1)-(A3) and (A7)-(A8), 1/
BG

T TY 
 − 1/

ˆ BG
T TY   

. .m s

  0. 

 

Remarks 

1. The theorems show that shrinkage factor representations hold under weaker 

assumptions than those upon which the estimators are derived:  the shrinkage 

factor representations are consequences of the algorithm, not properties of the 

DGP. 

2. Consider the (frequentist) MSE risk of an estimator  , R( ,) = E(  – )(  – 

), which is motivated by interest in the prediction problem with orthonormal 
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regressors.  Setting i  = ˆ( )i it   , this risk is E(  – )(  – ) =  

 2
1

1
ˆ( )

n

i i ii
n E t T T    


 .  Suppose that { ˆ( ) /i iT    } are identically 

distributed, i = 1,…, n, and let r(i)  =  2ˆ( ) /i i iE t T     , where i = T

i/.  Then R( ,) = 2 ( ) ( )nr dG    , where nG  is the empirical cdf of {t}.  

Thus the risk depends only on , nG  and the sampling distribution of  

({ ˆ( ) /i iT    }, 2 2ˆ /  ).  Holding constant this sampling distribution, risk 

rankings of various estimators depend only on nG .  If ˆ( ) /i iT     is 

asymptotically normally distributed, then the optimal choice of  is NB, with 

prior distribution equal to (the limit of) Gn (for details see Knox, Stock, and 

Watson 2004).  These considerations provide a justification for thinking that 

parametric empirical Bayes estimators will perform well even though the model 

assumption (M1) used to derive the parametric Bayes estimator does not hold in 

the time series context of interest here.  

3. For empirical Bayes estimators, the shrinkage function depends on the estimated 

prior.  Under suitable regularity conditions, if the empirical Bayes estimation step 

is consistent then the asymptotic empirical Bayes shrinkage representation EB is 

NB with the probability limit of the estimated prior replacing G. 

4. These representations permit the extension of these methods to direct multistep 

forecasting.  In a multistep setting, the errors have a moving average structure.  

However the forecasting methods can be implemented by substituting HAC t-

statistics into the shrinkage representations. 
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5. The shrinkage representation of bagging allows us to obtain a condition which, if 

satisfied, implies that bagging is asymptotically admissible; this result appears to 

be unavailable elsewhere. Setting BG equal to NB yields the integral-differential 

equation, 

 

dln ( ) ( )

d
z u

z s dG s

z






 = u[(u – c) – (u + c)] + (u – c) – (u + c), (12) 

 

where both sides are treated as functions of u. If there is a proper prior G that 

satisfies (12), then this is the prior for which bagging is asymptotically Bayes, in 

which case bagging would be asymptotically admissible.  Let G have density g 

and characteristic function ( )g s  = ( )iste g t dt .  Then g satisfies (12) if g  satisfies 

the Fredholm equation of the second kind, ( )g s  = ( , ) ( )K s t g t dt  , where  

 

K(s,t) = 

2

2

sin( ( )) cos( ( ))
2

( )

t ste c s t c s t
c

s s t s t

    
   

.  (13) 

 

6. Tibshirani (1996, Section 2.2) provides a soft-thresholding or shrinkage 

representation for the Lasso estimator with orthonormal regressors, derived for 

strictly exogenous regressors.  
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3. Empirical Analysis:  Data and Methods 

 

The empirical analysis examines whether the shrinkage methods improve upon 

dynamic factor model forecasts that use only the first few principal components. 

 

3.1 The Data 

The data set consists of quarterly observations on 143 U.S. macroeconomic time 

series from 1960:II through 2008:IV, for a total of 195 quarterly observations, with 

earlier observations used for lagged values of regressors as necessary.  We have grouped 

the series into thirteen categories, which are listed in Table 1.  The series are transformed 

by taking logarithms and/or differencing.  In general, first differences of logarithms 

(growth rates) are used for real quantity variables, first differences are used for nominal 

interest rates, and second differences of logarithms (changes in rates of inflation) for 

price series.  Let h
t hY   denote the variable to be forecasted in a h-period ahead forecast.  

For real activity variables,  h
t hY   is the h-period growth at an annual rate; for interest rates, 

h
t hY   is the h-period change; and for nominal price and wage series, h

t hY   is h-quarter 

inflation minus current 1-quarter inflation (both at annual rates).  

Of the 143 series in the data set, 34 are high-level aggregates that are related by 

an identity to subaggregates in the data set.  Because including the higher-level 

aggregates does not add information, only the 109 lower-level disaggregated series were 

used to compute principal components.  All 143 series were used, one at a time, as the 

dependent variable to be forecasted, using principal components computed from the 109 

disaggregates. 
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  The series, their sources, the one- and h-step ahead transformations for each 

series, and whether the series is one of the 109 series used to estimate the factors are 

provided in the online Supplement. 

 

3.2 Methods 

This section summarizes the forecasting procedures and the estimation of their 

parameters and mean square forecast error (MSE).  Estimating the shrinkage parameters 

by least squares would drive the estimated parameters towards  = 1, that is, eliminate 

shrinkage to obtain the least squares forecast.  We therefore instead estimate the 

shrinkage parameters by minimizing the “leave m out” cross-validation MSE.  The 

performance of the shrinkage methods using the cross-validation estimates of the 

parameters is then evaluated using two methods:  a rolling pseudo out-of-sample 

forecasting estimate of the MSE and the full-sample cross-validation MSE.  The full-

sample cross-validation parameters are also used to compare estimated shrinkage 

functions. 

We begin by detailing the forecasting procedures, then describe the computation 

of the cross-validation MSE and its use in the rolling pseudo out-of-sample forecasting 

exercise. 

Forecasting procedures.  We examine six forecasting procedures. 

1. DFM-5.  The DFM-5 forecast uses the first five principal components as 

predictors, with coefficients estimated by OLS without shrinkage; the remaining 

principal components are omitted. 
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2. Pretest.  The pretest shrinkage function is given by (4) and has one estimated 

parameter, c. 

3. Bagging.  The bagging shrinkage function is given by (11) and has one estimated 

parameter, c. 

4. BMA.  The BMA shrinkage function is given by (9) and has two parameters, p 

and g.  Because the parameters are estimated, the BMA method as implemented 

here is parametric empirical Bayes. 

5. Logit.  In addition to the methods studied in Section 2, we considered a logit 

shrinkage function, chosen because it is a conveniently estimated flexible 

functional form with two parameters, 0 and 1: 

 

logit (u) = 0 1

0 1

exp( )

1 exp( )

u

u

 
 


 
.      (14) 

 

6. OLS.  For comparison purposes we also report the OLS forecast based on all 

principal components (so OLS = 1). 

Preliminary investigation showed considerable instability in nonparametric empirical 

Bayes estimators, perhaps because the number of observations is too small for 

nonparametrics, so those methods are not pursued here. 

MSE estimation by cross-validation.   Consider the h-step ahead series to be predicted, 

h
t hY  , let Xt denote the vector of 109 transformed time series, and let (;) denote a 

candidate shrinkage function with parameter vector .  Estimation of the parameters  

and  and of the MSE for that series/horizon/forecasting method proceeds in three steps.  
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The method is laid out for a sample t = 1,…, T, which can be either the full sample period 

or a subperiod. 

1. Autoregressive dynamics are partialed out by initially regressing h
t hY   and Xt on 1, 

1
tY , 1

1tY  , 1
2tY  , and 1

3tY  ; let ,h cv
t hY 
  and cv

tX  denote the residuals from these 

regressions, standardized to have unit variance in the full sample.  The principal 

components 
cv

tP  of cv
tX  are computed using observations t = 1,…, T on the 109 

series in the data set that are not higher-level aggregates.  The principal 

components are ordered according to the magnitude of the eigenvalues with 

which they are associated, and the first n standardized principal components are 

retained as cv
tP . 

2. Let cv
t  = {1,…, t–2h–3, t+2h+3,…, T} be the indices of the data set dropping the 

tth observation and 2h+2 observations on either side.  At each date t = 1,…, T–h, 

the OLS estimators of  are computed by regressing ,h cv
t hY 
  on cv

tP  using 

observations t  cv
t .  Denote these estimators as ,

,
ˆh cv

j t , j = 1,.., n.  Let ,
,ˆh cv

j t  denote 

the conventional OLS t-statistic corresponding to ,
,

ˆh cv
j t  (not adjusting for 

heteroskedasticity or serial correlation). 

3. The parameter  is then estimated by minimizing the sum of squared cross-

validation prediction errors: 

 

ˆh  = argmin MSEcv(), where MSEcv() = 
2100

, , ,
, , ,

1 1

1 ˆˆ( ; )
T h

h cv h cv h cv cv
t h i t i t i t

t i

Y P
T h

   



 

    
 

 (15)
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Because these are direct forecasts, the estimator ˆh  differs by forecast horizon.  

The estimated shrinkage function for this dependent variable and horizon is 

ˆ(., )h  .  The cross-validation estimate of the MSE is MSEcv( ˆh ). 

 

All regressions involving P (over all sample periods) impose the moment condition that 

P′P/rows(P) = I. 

MSE estimation by rolling pseudo out-of-sample forecasts.   In the rolling calculation, 

the forecaster, standing at date t, applies the cross-validation algorithm described above 

to the most recent 100 observations (with n = 50 principal components) to estimate θ for 

a series/horizon/forecasting method, then uses this estimate of θ to forecast h
t hY  ; this is 

repeated for the 96 – h rolling forecast dates t = 1985:I,…, 2008:IV–h.  This produces a 

sequence of rolling pseudo out-of-sample forecasts, ,
|

ˆ h rolling
t h tY  , computed using the rolling 

window of length 100-h.  The rolling estimate of the MSE for a candidate forecast is 

MSErolling =   22008:IV1 ,
|1985:I

ˆ(96 )
h h h rolling

t h t h tt
h Y Y


 

  . 

  

4. Empirical Results 

 

We begin with results for all series combined, then break the results down by 

category of series.  With the exception of Table 4, all results are presented in terms of 

root mean square error (RMSE) relative to the DFM-5 benchmark; for example, the 

relative RMSE for the BMA forecast is (MSErolling,BMA/MSErolling,DFM-5)1/2. 
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4.1 Results for all series: pseudo out-of-sample forecast relative RMSEs 

Table 2 reports percentiles of the distributions of 1, 2, and 4-quarter ahead rolling 

pseudo out-of-sample RMSEs over the 143 series for the seven forecasting methods, 

where the RMSEs are relative to the DFM-5 benchmark.  For one-quarter ahead 

forecasts, the DFM-5 model provides modest forecasting improvements over the AR(4).  

At horizons h = 2 and 4, the DFM-5 improves over the AR(4) for fewer than half the 

series.  These results are in line with results in the literature for U.S. data over this Great 

Moderation period, during which these series experienced reduced volatility (Kim and 

Nelson 1999, McConnell and Perez-Quiros 2000, Stock and Watson 2002) and reduced 

predictability (Stock and Watson 2002, D’Agostino, Giannone, and Surico 2007). 

Our primary interest is in whether the use of principal components beyond the 

first five improves upon conventional low-dimensional factor model forecasts.  As 

expected, OLS with all 50 principal components in the pseudo out-of-sample experiment 

results in substantially worse performance at all horizons, relative to the DFM-5.  More 

noteworthy is that the shrinkage methods generally do not improve upon the DFM-5 

forecasts: at all horizons, at the median, all hard- and soft-threshold shrinkage methods 

produce larger RMSEs than the DFM-5, and their upside improvement at the 25th and 5th 

percentile of RMSEs is nearly always less than their downside at the 75th and 95th 

percentile of RMSEs, respectively.  Of the shrinkage methods, BMA dominates the 

others in Table 2 in the sense that the distribution of RMSEs is to the left of the RMSE 

distributions for the other methods, a result that holds at all horizons.  The one cell of 

Table 2 that suggests a role for shrinkage over DFM-5 is that for a small number of series 

at h = 4, BMA improves substantially over DFM-5, with 5th percentile of 0.898. 
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For many series, principal component methods do not improve upon the AR(4), 

so it is of interest to focus on those series for which principal component methods appear 

to be useful.  Table 3 therefore reports the median rolling pseudo out-of-sample RMSE, 

relative to DFM-5, conditional on the candidate method improving upon the AR forecast 

for that series/horizon combination.  For nearly all shrinkage methods and horizons, these 

medians are quite close to 1, indeed they exceed 1 in 8 of the 12 method/horizon 

combinations.  Even for those series for which the shrinkage method outperforms the 

AR(4), the forecaster is typically better off just using DFM-5. 

Tables 4-6 explore the extent to which the shrinkage forecasts differ from each 

other and from the DFM-5 forecast.  Table 4 presents two measures of similarity of the 

performance of one-step ahead forecasts: the correlation (over series) among the rolling 

RMSEs, here relative the AR(4) forecasts, and the mean absolute difference of these 

relative RMSEs.  The shrinkage forecast relative RMSEs tend to be highly correlated 

among themselves, with correlations in the range 0.897-0.963, however the correlations 

between the shrinkage and DFM-5 relative RMSEs are only approximately 0.67.  The 

mean absolute differences between the RMSEs of DFM-5 and each shrinkage forecast 

(averaged across series) are also substantial. 

Tables 5 and 6 provide some summary statistics about the estimated shrinkage 

functions for the various methods.  To reduce sampling variability, these summary 

statistics are computed for shrinkage parameters estimated over the full 1960-2008 

sample (full-sample cross-validation estimates).  Because the estimation period is longer 

than for the rolling subsamples, these shrinkage functions are evaluated using 100 

principal components so that n/T = 0.51, approximately the same as the value of 0.50 
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used in the rolling forecasting exercise.  Table 5 reports the distribution across series of 

the root mean square shrinkage function,  1/2100 , , 2
,1

ˆˆ( ; ) 100h cv h cv
i t ji

  
 , where ,ˆh cv

j  is the 

full-sample cross-validation estimated parameter for series j for the row method; because 

 = 1 for all principal components for OLS, for OLS this measure is 1.00 for all series.  

For DFM-5,  = 1 for the first five principal components and zero otherwise, so this 

measure is 5 /100  = .224 for all series.  Table 6 reports the distribution across series of 

the average fraction of the mean squared variation in the ’s attributable to the first five 

principal components, 
5 100, , 2 , , 2

, ,1 1
ˆ ˆˆ ˆ( ; ) ( ; )h cv h cv h cv h cv

i t j i t ji i
     

   , among those series for 

which the root mean square shrinkage function considered in Table 5 is at least 0.05.  (A 

model with shrinkage weight equal to 0.5 for one principal component and equal to zero 

for the remaining 99 principal components has a root mean square  of .05.)  The final 

column of Table 6 reports the fraction of these series for which at least 90% of the mean-

square weight, for the row model, is placed on the first five principal components. 

According to Table 5, the median weight ψ for the shrinkage methods is 

somewhat less than for DFM-5, but these weights differ substantially across series. Table 

6 shows that the fraction of mean-square weight placed by the shrinkage methods on the 

first five principal components also varies considerably across series.  For approximately 

one-quarter of the series (26%), BMA places at least 90% of its mean-square weight on 

the first five principal components, but for one-quarter of the series BMA places only 

5.1% of its mean-square weight on the first five principal components. 

 

4.2  Results for cross-validation RMSEs 
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The pseudo out-of-sample results in Tables 2-4 pertain to the historically special 

Great Moderation period.  Although these results cannot be extended to the full 1960-

2008 period because of the need for a startup window for the rolling forecasts, it is 

possible to compute the MSEs for the full sample using cross-validation.  We therefore 

computed the counterparts of Tables 2-4 using full-sample cross validation RMSEs; we 

summarize the main findings here and provide tables of results in the Supplement.  Three 

features of the full-sample cross-validation MSEs are noteworthy. 

First, the performance of the DFM-5 and shrinkage forecasts, relative to the 

AR(4), is substantially better when the pre-Great Moderation period is included:  based 

on the full-sample cross-validation RMSEs, the DFM-5 outperforms the AR(4) in more 

than 75% of series at h = 1, as opposed to approximately 50% of series for the RMSEs 

computed over 1985-2008 by either cross-validation or pseudo out-of-sample forecasts.  

This result is in keeping with results in the literature documenting reduced predictability 

in the Great Moderation period.  Second, the distributions of RMSEs of the shrinkage 

methods, relative to DFM-5, are quite similar in the full sample and in the 1985-2008 

subsample.  There is an increase in dispersion of the RMSE distributions in the 1985-

2008 period, compared to the full-sample distributions, but this increase  in dispersion is 

consistent with the shorter period having half as many time series observations.  This 

finding of substantial stability in these distributions of MSEs, relative to DFM-5, is rather 

surprising given the large documented shifts in the time series properties of these series 

across the pre-85 and post-85 samples.  Third, the overall pattern of correlations in Table 

4 (high among shrinkage forecasts, smaller between shrinkage and DFM-5, and smaller 
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still between shrinkage and OLS) is similar when the correlations are computed using the 

full sample cross-validation RMSEs, although all the correlations are larger. 

Taken together, these results suggest that the shrinkage methods seem to offer 

little or no improvements over DFM-5, at least on average over all these series.  The 

median cross-validation relative RMSEs are somewhat less than 1 and the median rolling 

RMSEs are somewhat greater than 1.  It is plausible to think that these two estimates 

bracket the true RMSE: the cross-validation estimates are biased down because they do 

not include an adjustment for the estimation of θ, while the rolling estimates arguably 

understate performance because the rolling estimation using 100 observations increases 

estimation uncertainty for the shrinkage parameters, relative to estimation over the full 

sample.  This bracketing argument suggests that, for this full sample of series, the typical 

relative RMSE of a shrinkage method to the DFM-5 is quite close to 1 at all horizons 

considered. 

 

4.3 Results by category of series 

Table 7 breaks down the results of Table 2 by the 13 categories of series in Table 

1.  Generally speaking, the categories fall into three groups.  The first group consists of 

series for which the DFM-5 forecasts have the lowest, or nearly the lowest, category-wise 

median relative RMSE compared to the shrinkage methods, and for which the DFM-5 

improves upon the AR(4) benchmark even in the 1985-2008 period.  Series in this first 

group include the major measures of real economic activity (GDP components, IP, 

employment, and unemployment rates) and interest rates.  For series in this group, 

typically the fraction of the mean-square weight placed by the shrinkage methods on the 
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first five principal components is large (full sample cross-validation weights; detailed 

results are provided in the Supplement).  For these series, the DFM-5 outperforms the 

AR(4), the shrinkage methods are essentially approximating the DFM-5 model, and the 

DFM-5 works as well as or better than the shrinkage approximations to it. 

Figure 1 presents estimated shrinkage functions for a series in this first group, 

total employment, at h = 1, computed using the full-sample parameter estimates.  The 

upper panel presents the estimated shrinkage functions, and the lower panel plots the 

weight placed by the various shrinkage functions on each of the 100 ordered principal 

components.  At h = 1, the AR(4) rolling RMSE, relative to DFM-5, is 1.098, while the 

shrinkage estimate rolling RMSEs, relative to DFM-5, range from 1.027 to 1.115; the 

corresponding full-sample cross-validation relative RMSEs are 1.174 for AR(4) and 

1.021 to 1.044 for the shrinkage methods.  All the estimated shrinkage functions are 

similar, placing substantial weight only on t-statistics in excess of approximately 3.2, and 

the estimated logit and pretest shrinkage functions are nearly identical.  The shrinkage 

functions end up placing nearly all the weight on the first few principal components, and 

only a few higher principal components receive weight exceeding 0.1. For total 

employment, the shrinkage methods support the DFM-5 restrictions, and relaxing those 

restrictions increases the RMSE. 

There is some evidence of a second, smaller group of series for which one or 

more shrinkage forecast improves on both the AR and DFM-5 forecast, but that evidence 

is delicate and mixed over horizons, among series within categories, and over cross-

validation versus rolling RMSEs.  Series in this group include real wages and some 

housing variables.  For example, for real wages in goods producing industries, the median 
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full-sample cross-validation RMSE, relative to DFM-5, is between .916 and .934 for all 

four shrinkage methods at the 2-quarter horizon, whereas the corresponding relative 

RMSE for AR(4) is .980.  These improvements for real wages by shrinkage methods are 

not found, however, using the rolling RMSEs or in the post-1985 cross-validation 

subsample. 

The final group consists of hard-to-forecast series for which the principal 

components do not provide meaningful reductions in either rolling or cross-validation 

RMSEs, relative to AR, using either the DFM-5 or shrinkage forecasts.  This group 

includes price inflation, exchange rates, stock returns, and consumer expectations.  The 

shrinkage parameter objective function (15) is quite flat for many of these series.  Figure 

2 presents estimated shrinkage functions and weights for a series in this third group, the 

percentage change in the S&P 500 Index.  For all but the pretest forecast, most shrinkage 

methods place a weight of 0.1 to 0.2 on most of the principal components.  For the S&P 

500, the rolling RMSE of AR(4), relative to DFM-5, is 1.006 at h = 1, and for the 

shrinkage methods the relative RMSEs range from 1.019 to 1.033; the corresponding full-

sample cross-validation RMSEs, relative to DFM-5, are 1.011 for AR(4) and, for 

shrinkage methods, from 1.005 to 1.011. 

 

4.4 Additional results and sensitivity checks  

We also estimated by cross-validation a logit model with a quadratic term to 

obtain a more flexible parametric specification.  The shrinkage function for the quadratic 

logit model is, 
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logit-q(u) = 
2

0 1 2
2

0 1 2

exp( )

1 exp( )

u u

u u

  
  
 

  
  .    (16) 

 

The cross-validation fit of (16) is only marginally better than the linear logit model (14), 

which we interpret as yielding no meaningful improvement after accounting for the 

estimation of additional parameter in the quadratic logit. 

We also repeated the analysis using Newey-West (1987) standard errors (with a 

window width of h+1), instead of the homoskedasticity-only OLS standard errors used 

above, including reestimating (by full-sample cross-validation) the shrinkage parameters 

using the Newey-West t-statistics.  There were no substantial changes in the findings 

discussed above. 

 

5. Discussion  

 

Two points should be borne in mind when interpreting the empirical results.  

First, we have focused on whether the DFM provides a good framework for macro 

forecasting.  This focus is related to, but different than, asking whether the DFM with a 

small number of factors explains most of the variation in macro time series; for a 

discussion of this latter issue, see Giannone, Reichlin, and Sala (2004) and Watson 

(2004).  Second, the DFM forecasting method used here (the first five principal 

components) was chosen so that it is nested within the shrinkage function framework (2).  

To the extent that other DFM forecasting methods, such as iterated forecasts based on a 

high-dimensional state space representation of the DFM (e.g. Doz, Giannone, and 



 31

Reichlin 2011), improve upon the first-five principal components forecasts used here, the 

results here understate forecasting potential of improved DFM variants. 

The facts that some of these shrinkage methods have an interpretation as an 

empirical Bayes method and that we have considered a number of flexible functional 

forms leads us to conclude that it will be difficult to improve systematically upon DFM 

forecasts using time-invariant linear functions of the principal components of large macro 

data sets like the one considered here.  This conclusion complements Bańbura, Giannone, 

and Reichlin (2010) and De Mol, Giannone, and Reichlin (2008), who reached a similar 

conclusion concerning many-predictor models specified in terms of the original variables 

instead of the factors.  This suggests that further forecast improvements over those 

presented here will need to come from models with nonlinearities and/or time variation, 

and work in this direction has already begun (e.g. Banerjee, Marcellino, and Masten 

2009, Del Negro and Otrok 2008, Stock and Watson 2009, and Stevanović 2010a, b). 
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Table 1 

Categories of series in the data set 

 

Group Brief description Examples of series Number 
of series 

1 GDP components GDP, consumption, investment 16 
2 IP IP, capacity utilization 14 
3 Employment Sectoral & total employment and hours 20 
4 Unemployment rate unemployment rate, total and by duration 7 
5 Housing Housing starts, total and by region 6 
6 Inventories NAPM inventories, new orders 6 
7 Prices Price indexes, aggregate & disaggregate; commodity 

prices 
37 

8 Wages Average hourly earnings, unit labor cost 6 
9 Interest rates Treasuries, corporate, term spreads, public-private 

spreads 
13 

10 Money M1, M2, business loans, consumer credit 7 
11 Exchange rates average & selected trading partners 5 
12 Stock prices various stock price indexes 5 
13 Consumer expectations Michigan consumer expectations 1 
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Table 2 

Distributions of Relative RMSE for 1985-2008 by Forecasting Method, Relative to 
DFM-5, Estimated by Rolling Forecasts, h = 1, 2, and 4 

 

(a) h = 1 

Method Percentiles 
 0.050 0.250 0.500 0.750 0.950 
      

AR(4) 0.918 0.979 1.007 1.041 1.144 
OLS 0.968 1.061 1.110 1.179 1.281 

DFM-5 1.000 1.000 1.000 1.000 1.000 
Pretest 0.966 1.007 1.048 1.091 1.144 
Bagging 0.938 0.996 1.022 1.060 1.104 

BMA 0.921 0.993 1.014 1.053 1.103 
Logit 0.941 0.999 1.027 1.071 1.120 

 

(b) h = 2 

Method Percentiles 
 0.050 0.250 0.500 0.750 0.950 
      

AR(4) 0.889 0.958 0.990 1.025 1.134 
OLS 0.963 1.024 1.087 1.135 1.231 

DFM-5 1.000 1.000 1.000 1.000 1.000 
Pretest 0.957 1.003 1.030 1.082 1.156 
Bagging 0.931 0.982 1.011 1.043 1.106 

BMA 0.918 0.976 1.009 1.038 1.106 
Logit 0.937 0.988 1.019 1.052 1.116 

 
(c) h = 4 

Method Percentiles 
 0.050 0.250 0.500 0.750 0.950 
      

AR(4) 0.879 0.945 0.980 1.020 1.107 
OLS 0.942 1.015 1.066 1.113 1.194 

DFM-5 1.000 1.000 1.000 1.000 1.000 
Pretest 0.934 1.011 1.048 1.084 1.128 
Bagging 0.924 0.984 1.016 1.052 1.094 

BMA 0.898 0.979 1.014 1.047 1.086 
Logit 0.924 0.982 1.022 1.064 1.120 

 
Notes:  Entries are percentiles of distributions of relative RMSEs over the 143 variables being 
forecasted, by series, at the 2- and 4-quarter ahead forecast horizon.  RMSEs are relative to the 
DFM-5 forecast RMSE.  All forecasts are direct.  RMSEs are calculated using rolling pseudo out-
of-sample forecasts over 1985-2008 as described in the text. 
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Table 3 

Median Relative RMSE, Relative to DFM-5, Conditional on the Forecasting Method 
Improving on AR(4), Estimated by Rolling Forecasts, h = 1, 2, and 4 

 
Horizon OLS DFM-5 Pretest Bagging BMA Logit 

h = 1 1.087 
(13) 

1.000 
(85) 

1.015 
(33) 

1.007 
(45) 

1.009 
(51) 

1.014 
(43) 

h = 2 1.002 
(17) 

1.000 
(59) 

1.008 
(32) 

0.986 
(49) 

0.989 
(46) 

0.998 
(39) 

h = 4 1.000 
(18) 

1.000 
(53) 

1.012 
(29) 

1.007 
(40) 

1.007 
(39) 

0.997 
(36) 

 
Notes: Entries are the relative RMSE of the column forecasting method, relative to DFM-5, 
computed for those series for which the column forecasting method has an RMSE less than the 
AR(4) forecast.  The number of such series appears in parentheses below the relative RMSE.  
RMSEs are calculated using rolling pseudo out-of-sample forecasts over 1985-2008 as described 
in the text. 
 

 

 

 

Table 4 
Two Measures of Similarity of Rolling Forecast Performance, h = 1: 
Correlation (lower left) and Mean Absolute Difference (upper right) 

of Forecast Relative MSEs, 1985-2008 
 

 OLS DFM-5 Pretest Bagging BMA Logit 
OLS  0.121 0.077 0.093 0.098 0.090 

DFM-5 0.353  0.058 0.044 0.040 0.048 
Pretest 0.593 0.670  0.030 0.035 0.028 
Bagging 0.617 0.690 0.916  0.013 0.020 

BMA 0.620 0.670 0.906 0.963  0.022 
Logit 0.551 0.663 0.897 0.930 0.915  

 

Notes: Entries below the diagonal are the correlation between the rolling pseudo out-of-sample 
RMSEs for the row/column forecasting methods, compute over the 143 series being forecasted.  
Entries above the diagonal are the mean absolute difference between the row/column method 
RMSEs, averaged across series.  For this table, RMSEs are computed relative to the AR(4). 
Forecasts and RMSEs are calculated using rolling pseudo out-of-sample forecasts over 1985-
2008 as described in the text. 
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Table 5 

Distribution of Root Mean Square Values of Shrinkage Function  , h = 1 

 

Method Percentiles 
 0.050 0.250 0.500 0.750 0.950 
      

OLS 1.000 1.000 1.000 1.000 1.000 
DFM-5 0.224 0.224 0.224 0.224 0.224 
Pretest 0.000 0.100 0.141 0.300 0.812 
Bagging 0.000 0.100 0.151 0.299 0.697 

BMA 0.077 0.118 0.183 0.354 0.639 
Logit 0.100 0.141 0.222 0.482 0.769 

 
Notes: Shrinkage function parameters are estimated by full-sample cross validation.   

 

 

 

 

Table 6 

Distribution of Fraction of Mean-Squared Variation of   Placed on the  
First Five Principal Components among Series with  

Root Mean Square Shrinkage Functions  > 0.05, h = 1 
 

Method Number Percentiles Frac > 0.90 
0.050 0.250 0.500 0.750 0.950

        
OLS 143 0.050 0.050 0.050 0.050 0.050 0.00 

DFM-5 143 1.000 1.000 1.000 1.000 1.000 1.00 
Pretest 112 0.000 0.121 0.429 1.000 1.000 0.38 
Bagging 119 0.030 0.147 0.359 0.737 1.000 0.13 

BMA 136 0.050 0.051 0.215 0.921 1.000 0.26 
Logit 138 0.022 0.057 0.233 0.667 1.000 0.21 

 
Notes: Shrinkage function parameters are estimated by full-sample cross validation.  The final 
column is the fraction of series for which the row method places at least 90% of the mean square 
weight on the first five principal components. 
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Table 7 
Median RMSE by Forecasting Method and by Category of Series,  

Relative to DFM-5, Rolling Forecast Estimates 
 

(a) h = 1 
 

Category Brief description AR(4) OLS DFM-5 Pretest Bagging BMA Logit
1 GDP components 1.029 1.107 1.000 1.081 1.046 1.032 1.045
2 IP 1.028 1.182 1.000 1.056 1.031 1.031 1.024
3 Employment 1.022 1.164 1.000 1.068 1.048 1.033 1.062
4 Unemployment rate 1.138 1.142 1.000 1.048 0.989 0.995 1.029
5 Housing 0.973 0.968 1.000 0.973 0.960 0.965 0.995
6 Inventories 1.020 1.126 1.000 0.973 0.938 0.920 0.960
7 Prices 1.000 1.104 1.000 1.033 1.021 1.010 1.026
8 Wages 1.000 1.054 1.000 1.050 1.034 1.008 1.027
9 Interest rates 1.006 1.169 1.000 1.049 1.032 1.020 1.034
10 Money 1.008 1.035 1.000 1.013 0.988 0.997 1.003
11 Exchange rates 0.992 1.105 1.000 1.008 1.002 1.003 1.004
12 Stock prices 0.996 1.049 1.000 1.015 1.010 1.001 1.015
13 Consumer expectations 0.960 1.156 1.000 0.983 0.986 0.985 0.972
         
 Overall 1.007 1.110 1.000 1.048 1.022 1.014 1.027

 

 
 

(b) h = 2 
 

Category Brief description AR(4) OLS DFM-5 Pretest Bagging BMA Logit
1 GDP components 1.009 1.095 1.000 1.050 1.008 1.015 1.024
2 IP 0.990 1.121 1.000 1.061 1.046 1.038 1.053
3 Employment 0.990 1.100 1.000 1.041 1.009 1.011 1.022
4 Unemployment rate 1.235 1.231 1.000 1.018 1.030 1.021 1.009
5 Housing 0.963 0.969 1.000 0.977 0.954 0.965 0.987
6 Inventories 0.938 1.090 1.000 1.012 0.972 0.973 0.961
7 Prices 0.985 1.098 1.000 1.018 0.999 0.992 1.001
8 Wages 0.997 1.062 1.000 1.020 0.994 0.996 1.023
9 Interest rates 0.971 1.057 1.000 1.031 1.019 1.015 1.031

10 Money 0.986 1.010 1.000 1.012 0.997 1.001 0.992
11 Exchange rates 0.987 1.087 1.000 1.050 1.020 1.009 1.023
12 Stock prices 0.996 0.980 1.000 0.978 0.979 0.980 0.981
13 Consumer expectations 0.976 1.111 1.000 1.010 0.994 0.993 1.019
         
 Overall 0.99 1.087 1.000 1.030 1.011 1.009 1.019
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(c) h = 4 

 
Category Brief description AR(4) OLS DFM-5 Pretest Bagging BMA Logit

1 GDP components 0.981 1.045 1.000 1.081 1.039 1.033 1.031
2 IP 0.953 1.068 1.000 1.054 1.011 1.008 1.010
3 Employment 0.978 1.048 1.000 1.052 1.014 1.022 1.030
4 Unemployment rate 1.218 1.194 1.000 1.073 1.049 1.056 1.044
5 Housing 0.965 0.972 1.000 1.019 0.990 0.992 1.008
6 Inventories 0.932 1.060 1.000 1.046 1.014 1.021 1.074
7 Prices 0.973 1.100 1.000 1.035 0.998 0.991 0.993
8 Wages 0.975 1.051 1.000 1.037 1.038 1.008 1.029
9 Interest rates 1.010 1.071 1.000 1.052 1.028 1.023 1.035

10 Money 0.985 1.012 1.000 1.011 1.004 0.998 0.998
11 Exchange rates 0.974 1.072 1.000 1.027 1.043 1.018 1.008
12 Stock prices 0.967 0.957 1.000 0.968 0.967 0.958 0.978
13 Consumer expectations 1.001 1.078 1.000 1.114 1.083 1.086 1.043
         
 Overall 0.980 1.066 1.000 1.048 1.016 1.014 1.022

 
 
Notes: Entries are median RMSEs, relative to DFM-5, for the row category of series.  Relative 
RMSEs are computed as in Table 2. 
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Figure 1 

Estimated shrinkage functions (upper panel) and weights (ti,̂ ) on ordered principal 
components 1-100:  Total employment growth, h = 1 
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Figure 2 

Estimated shrinkage functions (upper panel) and weights (ti,̂ ) on ordered principal 
components 1-100:  percentage change of S&P500 Index, h = 1 

 
 
 


