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Confronted with a rich sensory environment, the brain must learn
statistical regularities across sensory domains to construct causal
models of the world. Here, we used functional magnetic resonance
imaging and dynamic causal modeling (DCM) to furnish neurophysi-
ological evidence that statistical associations are learnt, even when
task-irrelevant. Subjects performed an audio-visual target-detection
task while being exposed to distractor stimuli. Unknown to them,
auditory distractors predicted the presence or absence of subsequent
visual distractors. We modeled incidental learning of these associa-
tions using a Rescorla--Wagner (RW) model. Activity in primary visual
cortex and putamen reflected learning-dependent surprise: these areas
responded progressively more to unpredicted, and progressively less
to predicted visual stimuli. Critically, this prediction-error response
was observed even when the absence of a visual stimulus was
surprising. We investigated the underlying mechanism by embedding
the RW model into a DCM to show that auditory to visual connectivity
changed significantly over time as a function of prediction error. Thus,
consistent with predictive coding models of perception, associative
learning is mediated by prediction-error dependent changes in con-
nectivity. These results posit a dual role for prediction-error in en-
coding surprise and driving associative plasticity.
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Introduction

Among the fundaments of adaptive behavior is the ability to

predict future events. This ability is crucial to functions ranging

from sensory processing to decision making. In psychology and

neuroscience, prediction has been studied most extensively in

the context of Pavlovian and instrumental conditioning tasks,

which measure how organisms anticipate (and act on)

affectively significant events such as food delivery or electric

shocks. A recent series of functional neuroimaging studies has

investigated the neurophysiological basis of prediction and

learning in humans. Using Pavlovian and instrumental condi-

tioning tasks, these studies have identified several areas where

blood oxygenation level--dependent (BOLD) signals correlate

with trial-wise estimates from formal learning models like

temporal difference (TD) learning (Sutton and Barto 1998) or

the Rescorla--Wagner (RW) model (Rescorla and Wagner

1972). In particular, BOLD activity in areas including the

striatum and the dorsolateral prefrontal cortex (DLPFC) (key

dopaminergic targets) has been shown to covary with both

predictions and prediction errors (Fletcher et al. 2001;

McClure et al. 2003; Corlett et al. 2004; O’Doherty et al.

2004; Seymour et al. 2004; Turner et al. 2004; Gläscher and

Büchel 2005; Pessiglione et al. 2006; Jensen et al. 2007).

In all of these previous studies, the learned associations had

direct relevance for behavior, either because they were linked

to rewarding or punishing outcomes (e.g., McClure et al. 2003;

O’Doherty et al. 2004; Seymour et al. 2004) or because subjects

received feedback on their performance (Fletcher et al. 2001;

Aron et al. 2004; Corlett et al. 2004; Turner et al. 2004). In

contrast, it is unclear whether incidental learning of stimulus--

stimulus associations, i.e., learning of associations that are

irrelevant for current behavioral goals, draws upon the same

neuronal mechanisms. A paradigm that shows that these types

of associations are learned is sensory preconditioning. Here, in

a first stage, the subject is exposed to behaviorally meaningless

CS1--CS2 associations and, in a second stage, to CS1--US (un-

conditioned stimulus) pairings. In a third and final stage, the

presentation of a CS2 alone generates a conditioned response,

indicating that the subject must have learned the initial CS1--CS2
association (Brogden 1939; Gewirtz and Davis 2000).

In this study we used a factorial design that extended the

first stage of classical sensory preconditioning paradigms.

Healthy volunteers performed an audio-visual target-detection

task, while being exposed to a stream of concurrent audio-

visual ‘‘distractor’’ stimuli (Fig. 1). These stimuli possessed

statistical regularities, which enabled prediction of the visual

distractor from the preceding auditory cue (Fig. 2). Critically,

however, these statistical associations were completely irrele-

vant to the target-detection task. Any learning of these

associations would therefore be of an incidental (task-

unrelated) nature and, in the absence of behavioral responses

to the learned associations, could only be inferred neurophys-

iologically. This paradigm capitalized on previous work by

McIntosh et al. (McIntosh et al. 1998) who used positron

emission tomography (PET) to show that learning of associa-

tions between sensory stimuli was reflected by activity in early

visual cortex. However, the use of PET permitted only a simple

conditioning scheme and precluded a full investigation of

dynamic changes in the brain’s representation of the learned

association. Here, we employed a more refined conditioning

scheme and used functional magnetic resonance imaging

(fMRI) to study learning-dependent changes in brain activity

over time. Additionally, we assessed learning-dependent

changes in effective connectivity between auditory and visual

cortex using dynamic causal modeling (DCM).

Using a 4-factorial design (c.f. Fig. 2), this study characterized

learning in terms of the temporal evolution (learning; factor 1)

of both brain activity and interregional connectivity in response

to a visual stimulus whose presence or absence (V
+
vs. V

–
; factor

2) was predicted in 2 contexts, established by 2 types of auditory

conditioning stimuli (CS
+
vs. CS

–
; factor 3), each of which could

be present or absent on each trial (A
+
vs. A

–
; factor 4). In other
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words, in contrast to a classical sensory preconditioning

paradigm, we could not only investigate differential learning,

depending on CS type but could also assess whether the

consequences of an absent CS were learned. It should be noted

that both the CS
+
and CS

–
context (or blocks) were balanced in

terms of stimuli; the a priori probabilities of the auditory CS and

of the visual stimulus occurring on a given trial were always 50%.

Critically, the task was not related to these auditory and visual

stimuli; subjects performed a target-detection task on unrelated

stimuli that were presented sporadically.

One of the features of our factorial paradigm is that on half

the trials the auditory CS is absent. This necessitates an

additional cue that marks the beginning of each trial which was

a visual trial onset (TO) cue. In other words, learning of

stimulus associations in this paradigm has 2 components, one

related to the auditory CS and another related to the visual TO

cue. As a consequence, any model of the learning process must

be able to formulate how a net prediction is computed from

the associative strengths of the 2 cue components. Here we

chose the RW model because it is the simplest and most

generic model of associative learning that accounts for cue

interactions (see Discussion for details). The RW model has

been validated extensively, using behavioral data from both

humans and animals and can account for many aspects of

associative learning (Schultz and Dickinson 2000; Pearce and

Bouton 2001). In our study, the trial-wise associative strength

predicted by the RW model was used to construct regressors

for a voxel-wise general linear model (GLM) of fMRI data and

modulatory inputs for dynamic causal models (Friston et al.

2003) of the effective connectivity between auditory and visual

areas. Specifically, we addressed the following 2 questions:

1) In the absence of any behavioral responses to the

audiovisual stimulus associations, can we obtain neurophysio-

logical evidence that the brain learns these associations?

Specifically, can we find brain regions whose activity correlates

with learning (throughout the paper, we will use the colloquial

term ‘‘learning curve’’ to denote the vector of predicted

associative strength over time, i.e., /j
t in eq. 1.) predicted by

a generic model of associative learning (i.e., the RW model)?

Candidate areas included early visual cortex and the striatum.

Furthermore, do these areas show a response profile across

cue--outcome combinations that reflects a match between

prediction and outcome or rather a prediction-error response?

2) Because the predictive auditory cue temporally precedes

the visual outcome, learning should modify neuronal activity in

early visual cortex in response to auditory cues. Can these

putative learning-related changes in visual cortex activity be

explained by changes in the effective connectivity from

auditory to visual cortex (c.f., (McLaren et al. 1989; McIntosh

et al. 1998)? Specifically, do these changes conform to changes

in associative strength under a RW model of learning?

Before describing our experiment, 2 important issues should

be highlighted. First, the goal of this fMRI study was not to

pinpoint the exact mathematical form of incidental learning by

comparing different models of associative learning. Instead, we

used the simplest (i.e., the RW) model of associative learning

that could accommodate our paradigm. In the Discussion, we

argue why the RW can be considered an appropriate a priori

learning model for our particular paradigm, relative to other

models of associative learning. Second, it is important to note

that within a given experimental condition the predicted

outcomes and prediction errors are perfectly anticorrelated

(see Supplementary Material for details). This means they

cannot be distinguished as alternative predictors of observed

brain responses. However, with our factorial design one can

analyze the pattern of parameter estimates across experimental

conditions, contrasting expected and unexpected cue--outcome

combinations. This enabled us to distinguish, voxel by voxel,

brain responses that reflected a match between predicted and

actual trial outcomes from responses that encode prediction

error or surprise.

Methods and Materials

Subjects
Sixteen healthy volunteers, 25.3 ± 3.3 years of age, (mean age ± SD, 8

female) participated in the study. The subjects had no history of

psychiatric or neurological disorders. Written informed consent

Figure 1. Experimental design. (A) stimuli presented during the experiment. The
‘‘distractor’’ stimuli, whose associations are being learned incidentally, comprised 2
auditory CS corresponding to high- and low-frequency tones and one visual US
consisting of 3 concentric squares. The target stimuli, to which the subjects
responded, comprised a white noise burst and a circle. (B) Temporal sequence of
a single trial. The CS and US could be either presented or omitted. The average trial
duration was 2 s. The TO cue was a small central dot (100 ms); the auditory CS was
presented for 500 ms, starting 400 ms after TO. The visual stimulus was presented
750 ms after TO, also for 500 ms. The intertrial interval (ITI) was jittered, ranging from
350--1350 ms, and target stimuli were inserted only in the longest ITIs, lasting for 300
ms.

Figure 2. Probabilistic relationship between auditory and visual stimuli. Contingency
tables showing the proportion of each trial type occurring during CSþ and CS� blocks
respectively. Below the tables are the resulting conditional probabilities of the visual
stimulus being present (or absent), given the presence (or absence) of the auditory
CS; these probabilities can be inferred by comparing the frequencies within each
column of the table.

Page 2 of 11 Predictive Coding during Associative Learning d den Ouden et al.



was obtained from all volunteers prior to the study, which was

approved by the National Hospital for Neurology and Neurosurgery

Ethics Committee.

Experimental Design—fMRI
The central idea of this study was to present subjects with ‘‘distractor’’

stimuli that were linked by predictive associations: 2 auditory stimuli

served as CS and differentially predicted whether or not a visual

stimulus would follow. Critically, the volunteers performed an un-

related detection task on separate auditory and visual targets; for this

task, the predictive relationships between the distractor stimuli were

completely irrelevant. Stimuli were presented using Cogent2000

(www.vislab.ucl.ac.uk/Cogent/index.html). An initial sound matching

task and the subsequent learning study (4 3 10 min) were all

completed inside the scanner. Subjects were debriefed with a postscan

questionnaire to assess whether they had learned the experimental

contingencies.

Sound Matching

Preceding the learning experiment, subjects had to match the 2 CS

(450 and 1000 Hz) and the auditory target stimulus (white noise burst)

for perceived loudness. Stimuli were presented sequentially and

dichotically. Subjects adapted the volume of the 1000-Hz tone to the

450-Hz tone until they perceived them to be of equal loudness. This

procedure was repeated 8 times and the results averaged. Sub-

sequently, subjects matched the perceived loudness of the white noise

burst to the pure tones, each repeated 4 times. The adapted volumes, as

a percentage of the volume of the low tone were 94.0 ± 6.2% (mean ±
SD) for the high tone, and 104 ± 4.9% for the white noise burst.

Differential Conditioning

During the experiment, subjects were exposed to alternating blocks of

trials in which one of 2 auditory CS (high and low tone) predicted the

presence (CS
+
) or omission (CS

–
) of a subsequent visual stimulus with

a fixed probability of 80% (Fig. 1 and 2). On each trial, a CS was

presented (A
+
) with 50% probability. On 50% of all trials, a visual

stimulus was present (V
+
). Every trial was preceded by a visual TO cue.

Our paradigm thus used a 4-factor design with the following factors

for each trial: 1) CS context (CS
+
vs. CS

–
), 2) CS presence (A

+
vs. A

–
), 3)

visual outcome (V
+
vs. V

–
), and 4) learning (or time). We used a mixed

event and epoch design in which CS type was blocked, whereas the

presentation of the CS and visual outcome were randomized (event-

related) within blocks. CS
+
and CS

–
blocks were completely balanced so

that in each block of 10 trials 5 CS and 5 visual stimuli were presented.

Within each subject, the auditory CS
+
and CS

–
and their probabilistic

relation to subsequent visual stimuli were fixed throughout the

experiment. The assignment of tones to the 2 CS was counterbalanced

across subjects, that is, in half the subjects the high tone served as CS
+

(and the low tone as CS
–
), and vice versa the other half of the subjects.

Each of the 4 sessions consisted of 20 blocks of 10 trials, interspersed

with periods of rest (12 s), in which subjects fixated on a fixation cross.

Blocks and sessions were balanced across and within subjects.

Target-Detection Task

To ensure continuous attention to auditory and visual targets per se

(but not their statistical associations), subjects performed a concurrent

target-detection task. The target stimuli were randomly interspersed

between trials and consisted of either a white noise burst or a circle.

Target stimuli occurred on average once per block (at most 2 times). In

total, 40 auditory and 40 visual target stimuli were presented,

randomized within conditions and sessions.

fMRI Data Acquisition
A 3 Tesla Siemens Allegra MRI scanner (Siemens, Erlangen, Germany)

was used to acquire T1-weighted fast-field echo structural images and

multislice T2
*-weighted echo-planar volumes with BOLD contrast (time

repetition = 2.08 s). For each subject, functional data were acquired in

4 scanning sessions of approximately 10 min each. 306 volumes were

acquired per session (1224 scans in total per subject). The first 6

volumes of each session were discarded to allow for T1 equilibrium

effects. Each functional brain volume comprised 34 2-mm axial slices

with a 2-mm interslice gap, and an in-plane resolution of 3 3 3 mm. The

field of view covered the whole brain, except for the cerebellum

and brainstem. The total duration of the experiment was approximately

60 min per subject.

Data Analysis

Functional Neuroimaging Analysis

fMRI data were analyzed using the statistical software packaged SPM5

(Wellcome Trust Centre for Neuroimaging, London, UK; http://

www.fil.ion.ucl.ac.uk/spm). The 1200 images from each subject were

realigned to correct for head movements, corrected for movement-by-

distortion interactions (Anderson et al. 2001), spatially normalized to

the Montreal Neurological Institute (MNI) template brain, smoothed

spatially with a 3-dimensional Gaussian kernel of 8-mm full width half

maximum and resampled to 3 3 3 3 3 mm voxels. The data were then

modeled voxel-wise, using a GLM that included regressors for all

experimental trials as well as regressors for the target-detection task.

Trial-specific effects were modeled by trains of delta functions

convolved with 3 hemodynamic basis functions (a canonical hemody-

namic response function, and its temporal and dispersion derivatives).

Additionally, the time-dependent associative strengths from the RW

model (/j

i;t ; see eq. 1) and their partial derivatives with respect to

learning rate (see next section) were used as parametric modulators of

each trial-specific regressor. The data were high-pass filtered (cut-off

128 s) to remove low-frequency signal drifts, and a first-order

autoregressive model was used to model the remaining serial

correlations (Friston et al. 2002). Contrast images of parameter

estimates encoding trial-specific effects were created for each subject

and entered separately into voxel-wise one-sample t-tests (df = 15), to

implement a second-level random effects analysis. We report regions

that survive cluster-level correction for multiple comparisons (family-

wise error, FWE) across the whole brain at P < 0.05. Because previous

studies demonstrated the role of the striatum and the prefrontal cortex

in associative learning (e.g., Fletcher et al. 2001; O’Doherty et al. 2004;

Corlett et al. 2004), we performed an additional restricted search in

these areas, using anatomical masks generated from the PickAtlas

toolbox (Maldjian et al. 2003). Again, we only report activations that

survived a small volume correction (SVC) at P < 0.05.

RW Model

We used a RW model of associative learning to generate predictors of

learning-dependent changes in brain activity (as indexed by the BOLD

signal) and inter-regional connectivity over time. The basic principle of

this model is that the size of the trial-specific prediction error, that is,

the degree of surprise incurred by an event, determines the change in

associative strength. From the train of observed events a learning curve

was computed and fitted to the fMRI data. Trial-specific cueing was

modeled by means of 2 separate components (see Fig. 1): the visual TO

cue, which was present on every trial and the auditory CS per se, which

was present on half the trials. This allowed us to model learning effects

on trials where no CS was present. In the RW framework, the predicted

outcome on trial t, /j
t , is the sum of the associative strengths of each

cue component:

/j

i ;t + 1 = /j

i ;t + ei
�
kt –/

j
t

�
3ui ;t ð1Þ

where

/j
t = +

i

/j
i ;t 3ui ;t ð2Þ

On each trial t, equation (1) is calculated separately for each cue

component, indexed by i (i.e., the auditory CS, and TO), whereas ui,t

indexes which of the cue components is actually present on trial t (see

the Supplementary Material). kt indicates the actual outcome at trial t,

being 1 for V
+
and 0 for V

–
; et is the learning rate that determines how

strongly the prediction error affects the update of the prediction.

Separate components are summed in equation (2), where /j
t is the

summed prediction of whether a visual stimulus will be presented at

trial t, and j indexes whether this is a CS
+
or CS

–
trial. (When considered

for a single cue per trial, eq. 1 can also be seen as a simple model of

Hebbian or associative plasticity. In this context, /j
i ;t encodes the
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associative strength, which changes according to the second term in

eq. 1. This associative term comprises a (presynaptic) input ui ;t

encoding the outcome on any trial, and a (postsynaptic) prediction

error.)

A challenge when applying the RW model to our experiment was to

determine an appropriate learning rate. In principle this could be done

by fitting the model to behavioral data and using the resulting learning

rate to construct regressors for the fMRI analysis. However, our

experimental design deliberately precluded behavioral responses;

instead, learning could only be assessed neurophysiologically in terms

of changes in cortical activity and inter-regional connectivity. Alterna-

tive strategies are to choose the learning rate based on principled

considerations (e.g., O’Doherty et al. 2004) or using model comparison

(Gläscher and Büchel 2005). Because we knew from a previous study

that learning should occur in the visual cortex (McIntosh et al. 1998),

we adopted the approach by Gläscher and Büchel (2005) of optimizing

the value of ei to best explain putative learning-induced responses

within the main area of interest, the visual cortex. Given our volunteers

did not notice the statistical associations (and thus learning was

presumably slow) and given that another study of perceptual

association learning showed small learning rates eCS below 0.1

(Gläscher and Büchel 2005), we tested the following values of eCS in
separate models: 0.01, 0.025, 0.05, 0.075, 0.1. We found that eCS = 0.075

gave the best fit to the data in primary visual cortex for the main

contrast of interest (i.e., the 4-way interaction in a random effects

second-level analysis); this learning rate was then used for further

analysis across the entire brain and for the connectivity analyses

described below. Importantly, we used a first-order Taylor expansion

around the learning rate eCS = 0.075 to make the model less dependent

on the particular choice of learning rate and to account for intersubject

variability in the shape of the learning curves. This was implemented by

including the partial derivative of the learning curve /j
t with respect to

the learning rate ei as an additional parametric modulator in the GLM

for the fMRI data.

These analyses assumed that the optimal learning rate was identical

for CS
+
or CS

–
trials. In additional analyses suggested by our reviewers,

we tested this assumption. We examined whether 1) a selective

decrease of the learning rate for CS
–
trials improved our ability to detect

learning effects during this trial type, and, more generally, whether 2)

trial-type specific tests of the partial derivatives indicated a learning

rate that was different from eCS = 0.075. As detailed in the

Supplementary Material, neither of these analyses provided any

evidence for a differential learning rate over stimuli or regions.

Because of its short duration and small size, the TO cue is less salient

than the CS. Because in the RW model the learning rate reflects

stimulus properties including salience (Rescorla and Wagner 1972), eTO
can be assumed to be considerably smaller than eCS. In this study eTO
was assumed to be 4 times smaller than the eCS. It should be noted that

violations of this assumption are unlikely to have a dramatic effect

because the inclusion of the derivatives enables the model to cope with

deviations from the assumed learning rates (see above). The resulting

learning curves are shown in Figure 3 (see Supplementary Fig. 1A for

a breakdown of the learning curves with regard to the 2 cue

components).

Statistical Analysis of Learning Effects

In our factorial design, learning is reflected by time-evolving, context-

dependent brain responses to visual stimuli. Specifically, over time,

learning should change how differential brain responses to visual

stimuli depend on the presence of an auditory CS and whether it is

presented in a CS
+
or CS

–
context. Furthermore, the emergence of

differential responses should follow the time-course predicted by the

RW model. In other words, learning is expressed as a 4-way interaction

CS type 3 CS presence 3 visual outcome 3 RW learning. (Note that

when the CS is absent on a specific trial, this trial can be assigned

unambiguously to the CS
+

or CS
–
factor because this factor was

blocked.) The primary goal of our GLM analyses was therefore to test

this interaction. To establish which CS was driving this interaction, we

also tested, the simple (3-way) interactions CS presence 3 visual

outcome 3 RW learning within each CS type. Finally, to test for

responses reflecting the prediction (/j
t ) entailed by the auditory CS,

independently of the prediction error ðkt –/j
t Þ elicited by the visual

outcome, we tested the simple 3-way interaction CS type 3 CS presence

3 RW learning, which is independent of visual outcome.

An important feature of our factorial design is that it enabled us to

determine whether the responses of a particular brain region reflected

the prediction of the visual target or the prediction error. This is

important because one cannot include separate regressors based on

predictions and prediction errors in the same design matrix. This is due

to the form of the RW equation, in which predictions and prediction

errors are perfectly correlated (within a given experimental condi-

tion), after mean-correction (see Supplementary Materials for details).

However, in a factorial design like ours such a distinction can be made

by analyzing the pattern of parameter estimates across conditions,

contrasting conditions that correspond to expected and unexpected

cue--outcome combinations. Specifically, our factorial design provided

us, in a mirror-symmetric fashion, with 2 expected outcomes and 2

unexpected outcomes for each CS type. For example, on CS
+
trials,

A
+
V
+
and A

–
V

–
trials represented expected cue--outcome combinations

(conditional probability = 80%) whereas A
+
V

–
and A

–
V
+
trials consisted

of unexpected cue--outcome combinations (conditional probability =
20%); c.f. Figure 2. This means one can effectively compare expected

and unexpected trials (with low and high prediction error, respec-

tively), with a contrast that is orthogonal to the presence or absence of

the visual outcome and its prediction. This enabled us to distinguish,

voxel by voxel, brain responses that reflected expected visual

outcomes from those that represented unexpected or surprising

outcomes. During learning, brain regions encoding prediction errors

should show increasing activation on trials where the outcome was

unexpected according to the learned contingencies and decreasing (or

nonchanging) activation on trials where the outcome was expected.

We will call such an activation pattern a ‘‘prediction-error response’’;

this activation pattern would be expected if surprise was the driving

force for learning. In this case, surprising events, or prediction errors,

signal the need for learning in order to update predictions. This idea is

not only a core component of associative learning models (Shanks

1995; Schultz and Dickinson 2000), but is also central to predictive

coding theories of perception (Rao and Ballard 1999; Friston 2005):

that the brain should concentrate resources on representing surprising

sensory events.

Note that our factorial analysis was not geared towards detecting

prediction-error responses only. It was equally capable of finding

opposite activation patterns, that is, increasing activation on trials

where the prediction based on the learned contingencies matched the

outcome, and decreasing (or nonchanging) activation on trials where

Figure 3. Compound learning curves. Learning curves were calculated separately for
trials on which the auditory CS was present (dots) and absent (crosses), during CSþ

(blue), and CS� (red) blocks. Note that learning is slower in the absence of an
auditory CS than in its presence and faster for CSþ than for CS� trials.
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the prediction did not match the outcome (c.f. Baier et al. 2006).

Notably, for our particular design, both types of responses could be

identified by the same statistical test, that is, the 4-way interaction CS

type 3 CS presence 3 visual outcome 3 learning (see above). Because

it is only the direction of the interaction that differs between the 2

types of responses, our factorial design enabled an analysis that

simultaneously tested for these 2 aspects of associative learning.

Dynamic Causal Modeling

In DCM, the states of multiple interacting brain regions are modeled as

a set of coupled bilinear differential equations (Friston et al. 2003). The

neuronal states, which represent the neuronal population activity of

the modeled brain regions, change in time according to the system’s

connectivity and experimentally controlled inputs u. These inputs can

enter the model in 2 different ways; they can either elicit responses

through direct influences on specific regions (‘‘driving inputs,’’ e.g.,

sensory inputs) or they can change the strength of connections

between regions (‘‘modulatory inputs,’’ e.g., task effects or learning).

The hidden neural dynamics (i.e., not directly observed by fMRI) are

modeled by the following bilinear differential equation:

dz

dt
=
�
A + +

m

j=1

ujB
ðjÞ
�
z +Cu ð3Þ

Here, z is the state vector (with each state variable representing the

population activity of one region in the model, in this study the

auditory and visual cortex), t is continuous time, and uj is the j-th input

to the modeled system (here the stimuli and learning curve). In this

state equation, the A matrix represents the fixed (endogenous)

strength of connections between regions and the B
(1). . .B(m) matrices

represent the modulation of these connections by (exogenous) inputs

(in this case, learning), as an additive change. Finally, the C matrix

represents the influence of exogenous inputs on each area (here the

auditory and visual stimuli). Note that DCM allows one to make

inferences about changes in effective connections between areas,

which do not necessarily correspond to direct anatomical connections

but may be via intermediary regions.

In DCM, the hidden neuronal dynamics described by equation (3) is

linked to predicted BOLD responses by a hemodynamic forward model

(Friston et al. 2003). Given measured BOLD responses, maximum

a posterior estimates of the parameters in equation (3) can be obtained

through an optimization scheme based on variational Bayes (Friston

et al. 2003).

Choice of areas and time series extraction. The goal of the present

DCM analysis was to explain the (3-way) simple interaction CS

presence 3 visual outcome 3 RW learning for CS
+
trials in V1 (see

SPM findings in the Results section) by a simple model, in which the

strength of the A1 / V1 connection was modulated as a function of

the RW predictions, /j
t (i.e., learning curves; Fig. 3). Representative A1

time series were chosen by testing for the main effect of CS presence,

and V1 time series were selected by testing for the simple interaction

described above. (The goal of DCM is to explain regional effects [as

detected in a voxel-wise GLM analysis] in terms of interregional

connectivity and its experimentally induced changes. This puts

congruence constraints on the contrast used to identify a regional

time series and the mechanisms in a DCM that are proposed to model

this time series. Therefore, different contrasts are typically required for

selecting time series representing the different areas in a model; c.f.

Stephan, Harrison, et al. 2007.) We did not model the 4-way interaction

with DCM because the SPM analysis showed that the learning effect

was driven by the CS
+
(see Results section).

As the exact locations of activation maxima varied over subjects, we

ensured the comparability of our models across subjects by using

combined anatomical--functional constraints in selecting the subject-

specific time series (c.f. Stephan, Marshall, et al. 2007). Specifically, we

thresholded the subject-specific SPMs at P < 0.05 and chose the local

maximum within 8 mm of the group activation maxima in primary

auditory cortex (A1) and primary visual cortex (V1) as inferred by

a probabilistic cytoarchitectonic atlas in MNI space (Eickhoff et al.

2005). As a summary time series, we computed the first eigenvector

across all suprathreshold voxels within a radius of 4 mm around the

chosen local maximum. Overall, we were able to extract time series in

14 out of 16 subjects. In 2 subjects, V1 could not be defined due to the

lack of a significant interaction that met the anatomical and functional

criteria described above. These 2 subjects were excluded from the

DCM analysis.

DCM specification. The question addressed by DCM was whether

learning effects in V1 could be explained by changes in the

connectivity of a simple auditory--visual network. Our DCMs modeled

the entire time series, so data from all trials or conditions, trying to

explain regional activations by condition-dependent changes in

connectivity. We tested 3 simple models that could potentially account

for the interaction we found in V1. These models were fitted separately

to each subject’s data and compared using Bayesian model selection

(Penny et al. 2004). In these models, auditory and visual stimuli from all

trials elicited activity directly in their respective primary sensory areas

(see Fig. 4). These driving inputs were modeled as individual events.

The first model only had a connection from A1 to V1, whereas the

second and third models included the reciprocal connection (see Fig.

5). The A1 / V1 connection in model 1 and 2, and the V1 / A1

connection in model 3 were modulated by the Hadamard product

(point-wise multiplication) of the RW associative strength /j
t and

a vector encoding visual outcome (1 for visual stimulus present, –1 for

visual stimulus absent) during CS
+
trials. In the first 2 models, this

modulatory effect corresponds to the interaction of the auditory CS
+

prediction with the visual outcome and models a learning-dependent

contribution from CS
+
responses in auditory cortex to visual cortex

responses that depends on whether the visual stimulus was present or

not (c.f., a prediction error that rests on top-down signals from auditory

areas). In the third model, which represented a control suggested by

Figure 4. Dynamic causal models of learning effects on audio-visual connectivity. For
all 3 models, the primary auditory (A1) and visual (V1) areas are both driven by their
respective sensory inputs. The first model tested had a single connection from A1 to
V1 (M1). In model 2 (M2) the V1 / A1 connection was added. In both M1 and M2,
the A1 / V1 connection was allowed to change during CSþ trials as a function of
the visual outcome (Vþ vs. V�) and the RW learning curve (/). This modulatory
effect corresponds to the interaction of the auditory CSþ prediction with the visual
outcome and models a learning-dependent contribution to V1 responses from CSþ

responses in A1; and this contribution depends on whether the visual stimulus
was present or not (c.f., a prediction error mediated by top-down signals from A1). In
the third model, suggested as a control by one of the reviewers, instead of the A1 / V1
connection, the V1 / A1 connection is modulated by the learning signal.
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one of our reviewers, this modulatory effect acted on the reverse

connection, V1/A1.

Results

The postscan debriefing questionnaire showed that none of the

subjects had become aware of the contingencies between the

auditory and visual stimuli. Prior to the fMRI data analysis we

verified subjects’ performance on the target-detection task. On

average, subjects responded to 93 ± 3% of the target stimuli.

Following Gläscher and Büchel (2005) we determined an

optimal learning rate for the RW model, evaluating the primary

contrast of interest (i.e., the 4-way interaction in a random

effects second-level analysis) under different learning rates in

the primary visual cortex (as defined by a probabilistic

cytoarchitectonic atlas (Eickhoff et al. 2005). Model fits under

5 different learning rates, suggested eCS = 0.075 was the optimal

learning rate (see Fig. 3 and Methods section for details).

Statistical Parametric Mapping

First, we examined the 4-way interactionCS type3CS presence3

visual outcome 3 RW learning. We found learning-

dependent responses in the primary visual cortex and putamen

that survived whole-brain correction for multiple comparisons

(see Fig. 5A,B). To characterize the nature of this interaction,

we tested the simple interaction (CS presence3 visual outcome

3RW learning) within each CS type. This showed that the 4-way

interaction was driven mainly by learning during the CS
+
blocks

(see Supplementary Fig. 1B for the parameter estimates). As

shown in Figure 5A,B, testing the simple interaction for CS
+
trials

afforded almost identical results in the visual cortex and the

putamen as the 4-way interaction (see also Table 1). In contrast,

no evidence of learning, that is, no significant interaction of CS

presence and outcome with learning, was found for CS
–
trials.

The nature of the simple 3-way interaction was such that V1

and the putamen showed an increased response when an

expected visual stimulus was omitted, or when an unexpected

visual stimulus was presented (i.e., A
+
V

–
and A

–
V
+

trials).

Critically, this response to surprising visual outcomes increased

over time as the association was learned, following the form of

the RW learning curve. Conversely, V1 responses to predicted

stimuli diminished during learning. The putamen showed the

same pattern of responses bilaterally; this activation extended

into the insula bilaterally (see Table 1).

Because previous studies have implicated the right DLPFC in

prediction (error) processing (Fletcher et al. 2001; Corlett et al.

2004), we used an anatomically defined fronto-striatal mask to

test the 3-way interaction CS type 3 CS presence 3 RW

learning, which characterizes responses to the prediction

entailed by the auditory CS, independent of the visual outcome.

During learning, the right DLPFC became increasingly active

when a visual stimulus was predicted compared to when it was

not; activity was higher for CS
+
A
+
and CS

–
A

–
trials compared

with CS
+
A

–
and CS

–
A
+
trials (compare the probabilities in Fig. 2).

As above, we characterized the nature of the 3-way interaction

by testing the associated simple interactions, confirming it was

also driven by CS
+

trials (Fig. 4C). The same pattern of

activation was found in the left putamen, but this activation

did not survive correction for multiple comparisons.

Learning-Dependent Changes in Connectivity

Because the learning effect was mainly driven under CS
+

blocks, we focused on changes in connectivity between

auditory and visual cortices during incidental learning of the

predictive attributes of CS
+
trials (see Fig. 6). Bayesian model

comparison showed that a DCM with a single connection from

A1 to V1 (model 1) was superior to alternative models with

reciprocal connections (group Bayes factor in favor of model 1:

2.1 3 1017 and 2.2 3 1018 when compared with model 2

and model 3, respectively). Across subjects, the A1 / V1

connection in the optimum model had an average strength of

0.10 s
–1 (p = 0.003, df = 13, t = 3.57). During CS

+
trials, this

connection was significantly modulated by learning, depending

on whether the visual stimulus was present or not (i.e., CS
+
3

(V
+
vs. V

–
) 3 / in Fig. 6). Note that the modulatory variable

in the DCM corresponds to the interaction of the auditory

prediction with the visual outcome during CS
+

trials. It

accounts for a learning-dependent contribution from CS
+

responses in auditory cortex to visual cortex responses that

depends on whether the visual stimulus was present or not

(c.f., a prediction error mediated by top-down signals from

auditory areas). Quantitatively, the strength of this modulation

was –0.01 s
–1 (p = 0.028, df = 13, t = 2.49). This corresponds to

learning-induced changes in connectivity ranging from 2% (for

Figure 5. fMRI results. (A) Significant activations in V1 as a function of RW learning, for both the 4-way interaction (CS type 3 CS presence 3 visual outcome 3 RW learning;
red), and the simple (3-way) interaction (blue), which is restricted to the CSþ trials (x 5 �6, also showing the caudate activation) and (B) in the putamen bilaterally (y 5 6),
displayed on the mean structural image across all subjects. (C) z5 12. Significant 3-way interaction CS type3 CS presence3 RW learning in the DLPFC and left putamen (red).
This interaction is driven by the CSþ trials, as shown by the simple interaction in blue.
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CS
+
A

–
trials) to 8% (for CS

+
A
+
trials) (Fig. 6). (As shown by eq. 3,

the overall strength of a connection, given a single modulatory

parameter, is the sum of the intrinsic connection strength [A]

and the modulatory parameter [B] multiplied with its associ-

ated input [u]. In the present case, the asymptotic magnitude of

the input function is 0.8 for CS
+
A
+
trials and 0.2 for CS

+
A

–
trials

[see Fig. 5].)

Critically, the negative sign of the modulatory parameter

reflects the nature of the visual responses to auditory afferents

under CS
+

trials: V1 responses to predicted visual stimuli

diminished during learning and the DCM explained this

through a decrease in the strength of the A1/ V1 connection.

This is exactly consistent with an increase in the ‘‘explaining

away’’ of predicted visual input under predictive coding; in

other words, if top-down predictions /j
t (see eq. 2) from

auditory cues decrease the amplitude of V1 prediction error

jkt –/j
t j, a better prediction corresponds to a decrease in

effective connectivity. Conversely, V1 responses to unpre-

dicted (i.e., absent) visual stimuli increased during learning.

This was modeled in the DCM through an increase in the A1/
V1 connection strength; again this is consistent with an

increase in V1 prediction-error amplitude jkt –/j
t j, when

predictions are violated. In summary, A1 / V1 influences

depended on whether the visual outcome was expected or

surprising and were consistent with an ‘‘explaining away’’ role.

The emergence of this effect conformed to the learning curve

provided by the RW model.

Discussion

McIntosh and colleagues showed that after a predictive

relationship between an auditory stimulus and a visual stimulus

had been learned, the auditory stimulus alone was able to evoke

responses in the visual cortex (McIntosh et al. 1998). The

current study extended this work, pairing a visual stimulus

with a predictive auditory stimulus in a 4-factorial design, with

the factors CS type (CS
+
, CS

–
), CS presence (A

+
, A

–
), visual

stimulus presence (V
+
, V

–
), and learning (over time). Both CS

+

and CS
–
blocks were exactly balanced in terms of sensory

stimulation, so that the a priori probabilities of the auditory CS

and of the visual stimulus occurring on a given trial were always

50%. Critically, the volunteers did not make any responses to

the stimuli whose associations were being learned; instead,

they performed a target-detection task on unrelated stimuli.

Our factorial design enabled us 1) to characterize changes in

neurophysiological responses due to learned associations that

were incidental to behavior, and 2) to investigate whether

activity in specific brain areas, and the connection strengths

amongst them, reflected a match between predictions and

outcome or prediction errors, respectively.

Our results demonstrate that during incidental learning of

audio-visual associations changes in both regional activity and

underlying connectivity reflect prediction errors. Furthermore,

we show that learning-dependent responses in visual cortex

can be elicited, even in the absence of visual stimuli. This

finding can be explained by changes in top-down influences

from auditory regions that are consistent with predictive

coding models of perceptual inference.

RW Model: Predictions and Prediction Error

The goal of this study was not to pinpoint the exact

mathematical form of learning by comparing different models

of associative learning. Instead, we focused on changes in

regional activity and interregional connectivity that could be

explained by a specific learning model, namely the RW model.

The RW model is a generic and well-established model of

associative learning that has been successful in modeling a wide

range of learning processes (Rescorla and Wagner 1972;

Schultz and Dickinson 2000; Pearce and Bouton 2001). We

chose this model because it is the simplest learning model

appropriate for our particular paradigm. In the absence of

interactions among multiple cues per trial, the RW model is

mathematically equivalent to a Hebbian model of associative

learning (Montague and Berns 2002). A crucial aspect of our

paradigm, however, is that on each trial the net prediction

resulting from 2 interacting cue components (the auditory CS

and the visual TO cue) must be considered (see Methods

sections for details). This excludes the use of any associative

learning model that cannot accommodate cue interactions

(e.g., Hebbian models). In contrast, the RW model accommo-

dates this aspect gracefully. Another learning model, TD

learning, can also deal with multiple cues and their temporal

relationships; however, under our design with temporally

overlapping cue and outcome, the TD model is effectively

equivalent to the simpler RW model. Finally, the associative

learning models of Pearce and Hall (1980) and Mackintosh

(1975) assume that prediction errors affect the amount of

attention that is allocated to stimuli and that the more attention

is allocated to a specific stimulus, the more strongly it becomes

associated with an outcome or reinforcer. This is not relevant

to our experimental paradigm in which attention is actively

directed away from the stimuli whose associations are learned.

The RW model has one problematic limitation, however: as

detailed in the supplementary materials, its equation uses both

predictions and prediction errors that are perfectly correlated

under mean-correction. In situations where mean-correction is

mandatory (e.g., when using them to form interaction terms)

this makes it impossible to disambiguate/interpret their

contributions to a dependent variable. However, the factorial

Table 1
MNI coordinates and Z-values for significantly activated regions

MNI coordinates

Foci of activation x y z Z value Cluster size

Four-way interaction: CS type 3 CS presence 3 visual outcome 3 RW learning
L occipital lobe* �6 �75 �9 4.25 41
L insula and putamen* �30 18 6 4.84 84

L putamen** �24 12 6 3.85 20
R insula and putamen* 36 12 3 4.72 82

R putamen** 27 6 �3 4.48 35
L caudate/thalamus* �9 �15 15 4.70 40
L SII cortex* �51 �27 24 4.39 93
L middle temporal gyrus* �57 �39 �3 3.88 26

Simple (3-way) interaction: CS presence 3 visual outcome 3 RW learning (restricted to CSþ)
L occipital lobe* �9 �78 �3 4.31 36
L insula and putamen* �33 12 3 4.55 57

L putamen** �27 12 6 3.63 10
R insula and putamen* 36 12 3 3.98 57

R putamen** 27 9 0 3.94 32
L caudate/thalamus* �21 �9 9 4.32 54

L caudate** �15 �9 21 4.19 14
R caudate** 15 12 18 4.24 7
L SII cortex* �60 �33 15 4.15 87
L middle temporal gyrus* �57 �36 �6 4.30 34
R posterior insula* 39 12 �12 5.01 38

Three-way interaction: CS type 3 CS presence 3 RW learning
R inferior frontal gyrus** 42 27 12 4.39 10

*Significant at P\ 0.05 (FWE whole-brain cluster-level corrected).

**Significant at P\ 0.05 (SVC).
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design in our study allows us to circumvent this problem, as it

comprises conditions that correspond to congruent and

incongruent prediction/outcome combinations, respectively.

Analyzing the 4-way interaction between our experimental

factors, we found that responses in the primary visual cortex

and the putamen were sensitive to surprising events; over time,

these areas became significantly more active when presented

with a surprising cue--outcome combination. Learning was

stronger for the CS
+
blocks than for the CS

–
blocks, which is in

line with previous behavioral evidence (Wasserman et al. 1993;

Fletcher et al. 2001). Previous fMRI studies in humans have

demonstrated that BOLD activity in the striatum is correlated

with (signed) prediction errors during reinforcement learning

(O’Doherty et al. 2003; McClure et al. 2003; O’Doherty et al.

2004; Seymour et al. 2004; Jensen et al. 2007; Menon et al.

2007) and other associative learning tasks (Corlett et al. 2004).

In these studies, the learned associations, and the sign of the

resulting prediction errors, were of direct relevance for

behavior. The current study shows that the putamen is

sensitive to unexpected outcomes even when the cue-stimulus

association is learned incidentally and has no relevance to

behavior. However, in contrast to the previous studies, the

pattern of putamen activity does not appear to be sensitive

to the direction of the prediction error, only to its amplitude.

This difference may reflect the fact that learning was

perceptual as opposed to operant. In other words, the

occurrence of an unpredicted or surprising event may play

the role of negative reward, irrespective of whether the

surprising event entailed the presence of absence of a stimulus.

This issue will be discussed further in the section on predictive

coding below.

Role of Prediction Errors Beyond Reinforcement
Learning

Our finding that learning-induced responses in primary visual

cortex and the putamen reflected prediction errors accords

with a basic principle emerging from many previous studies:

prediction errors, or surprise, constitute a driving force for

learning because they signal the need for learning in order to

update predictions (Shanks 1995; Schultz et al. 1997; Schultz

and Dickinson 2000). Although the role of prediction errors

has been mainly explored for reinforcement learning so far,

there is growing evidence that prediction errors may be equally

important for learning statistical relationships that are affec-

tively neutral and behaviorally irrelevant. In other words, the

same mechanisms that optimize the learning of stimulus--

response links may operate during the perceptual learning of

stimulus--stimulus associations (Rao and Ballard 1999; Friston

2005). Evidence that organisms learn predictive associations

between initially neutral stimuli is seen in classical conditioning

effects such as sensory preconditioning (Brogden 1939). Some

forms of sensory learning also exhibit such features, for

example, the mismatch negativity (MMN) paradigm, in which

responses to sensory stimuli decrease with predictability

(Friston 2005; Baldeweg 2006), regardless of whether stimuli

are attended. A mechanism similar to predictive coding has

been proposed in the motor domain for cancellation of self-

generated events (Wolpert et al. 1995; Blakemore et al. 1998;

Shergill et al. 2005). Moreover, the learning of predictive

relationships that are affectively neutral and task-irrelevant may

engage similar computational and neural mechanisms as those

for predicting significant events (Zink et al. 2006; Wittmann

et al. 2007).

The results of the present study support the notion that the

role of prediction errors in learning transcends the simple

reinforcement of stimulus--response links and plays a more

pervasive and general role in various forms of learning. Indeed

a hallmark of adaptive systems is their ability to minimize

surprising exchanges with their environment (Friston et al.

2006). This entails adjustments to their internal models of the

environment so that potentially surprising event can be

predicted. Almost universally, this adjustment involves changes

Figure 6. Learning effects on audio-visual connectivity. Bayesian model comparison showed that the DCM with a single connection from A1 to V1 was superior to the other
models. Across subjects, there was a significant ‘‘endogenous’’ or ‘‘fixed’’ strength of the A1 / V1 connection (0.10 s�1, P 5 0.003) and a significant learning-induced
modulation (magenta arrows) of this connection (P 5 0.028). The insets show the parameter estimates for the main effects in both A1 and peripheral V1. The magenta arrows
indicate how the main effect in peripheral V1 is modulated by changes in connectivity from A1 to V1 during CSþ trials: over time the response to surprising visual outcomes is
upregulated, whereas the response to unsurprising visual outcomes is downregulated. Note that in this plot the magenta arrows designate the direction in which V1 responses
change due to modulation of connectivity; for quantitative information on this modulatory effect, see the main text.
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in the system’s connections; it is therefore perhaps a little

surprising that most previous imaging studies on learning and

conditioning have exclusively searched for brain areas whose

activity correlated with specific variables of a particular

learning model (e.g., prediction or prediction error), but have

not investigated how these variables change interactions

among areas (but see McIntosh et al. 1998; Büchel et al.

1999). Functional interactions are central to the physiological

implementation of learning; it has long been suggested that

plasticity in connection strengths between neurons underlies

the learning of predictive associations (Hebb 1949). Put simply,

2 neural units encoding associated entities increase their

synaptic connections to encode the learned associative

strength of the stimuli. More precisely, for RW and similar

‘‘caching’’ models (Daw et al. 2005) the connection strength at

time t should carry the predicted association at time t (McLaren

et al. 1989; Schultz and Dickinson 2000). This hypothesis

requires models of effective connectivity, in which connection

strengths vary as a function of the associative strength

predicted by the learning model. To our knowledge, the

present study has implemented this approach for the first time,

modeling how learning, as described by a RW model, modulates

the effective connectivity, as assessed by a DCM, between

primary auditory and visual areas.

Changes in Connectivity between Auditory and Visual
Areas

In accordance with the considerations above, we investigated

whether the learning-related changes in visual cortex

responses could be explained by a simple model of effective

connectivity, in which the strength of A1 / V1 connection

changed as a function of the associative strength predicted by

the RW model. We modeled observed responses in the primary

visual cortex by means of a simple 2-area DCM in which activity

in the visual cortex was modeled by 2 components, 1) a direct

effect of visual stimulation and 2) a modulation of the A1 / V1

connection by the interaction of the time-evolving prediction

with the visual input (in CS
+
blocks; see Fig. 6). Across subjects,

this DCM showed a significant change in the strength of the A1

/ V1 connection congruent with the pattern of responses in

V1: the A1/V1 connection strength increased on trials where

the visual outcome did not match the auditory prediction and

decreased on trials where prediction and outcome matched. In

other words, the learning-induced changes in A1 / V1

connection strength reflected the same pattern of surprise or

prediction errors as the regional activity in V1. This demon-

strated that the response of V1 to visual stimuli was modulated

by learning-dependent changes in top-down auditory influen-

ces that were consistent with the notion of predictive coding,

a general framework for perceptual inference and learning that

is discussed in the next section (Friston 2005).

Although connections in models of effective connectivity do

not need to correspond to monosynaptic anatomical connec-

tions, it is of interest to note that the surprise-related response

in visual cortex appears to be in the peripheral visual field

(Fig. 3A), and anatomical connections from primary auditory

cortex to peripheral visual cortex have been demonstrated in

recent monkey studies (Falchier et al. 2002; Rockland and

Ojima 2003). Additionally, numerous fMRI studies have

demonstrated that auditory stimulation or auditory attention

affect activity in visual cortices during simultaneous processing

of visual stimuli (e.g., McIntosh et al. 1998; Baier et al. 2006;

Watkins et al. 2006).

Predictive Coding in Visual Cortex

In previous neurophysiological studies of reinforcement

learning, a negative prediction error, in the form of unexpected

absence of a reinforcer (e.g., a reward), often led to a decrease

in neuronal or BOLD activity (Schultz 1998; McClure et al.

2003; Tobler et al. 2007). Such directed excursions are thought

to reflect the fact that the prediction error is a signed quantity:

it signals not just that predictions need to be updated, but in

which direction. In contrast, in our study we found an increase

in striatum and visual cortex activity not only for unexpectedly

presented stimuli, but also for the unexpected absence of

a stimulus. Similarly, the strength of the A1 / V1 connection

decreased whenever the visual outcome was expected, and it

increased whenever the outcome was surprising.

A useful perspective that explains our 2 main findings, the

implicit encoding of surprise by V1 responses and its mediation

by learning-dependent changes in input from the auditory

cortex, is provided by the framework of predictive coding.

Predictive coding posits a hierarchy of connected brain areas in

which each level strives to attain a compromise between

information about sensory inputs provided by the level below

and predictions (or priors) provided by the level above (Rao

and Ballard 1999; Murray et al. 2002; Friston 2003; Summerfield

et al. 2006). The central learning principle is to establish a good

model of the world, which is achieved by changing connection

strengths such that prediction errors are minimized at all levels

of the hierarchy. The hierarchy of a predictive coding

architecture is often defined anatomically (in terms of forward

and backward connections) and within one sensory modality,

but it is equally possible to examine cross-modal predictive

coding relationships (c.f. von Kriegstein and Giraud 2006). In

the present study, a temporal hierarchical relation between

auditory and visual areas is induced by presenting the auditory

cue prior to the visual stimulus.

Predictive coding may be a general principle of brain

function in which statistical relationships in the world are

monitored, even when they are not attended and not relevant

for ongoing behavior. This would allow the brain to ignore

predictable and therefore uninteresting events in the environ-

ment, thereby enhancing the saliency of unexpected events. A

good example of this notion is given by the mismatch negativity

(MMN), the difference between the event-related potential to

an unexpected ‘‘deviant’’ and predictable ‘‘standard’’ stimuli

(Naatanen et al. 2001). Importantly, the relationship between

the MMN and learning was not established on the basis of

behavioral data; in fact, it was initially not even recognized

(Naatanen et al. 1978). This relationship was only subsequently

inferred from striking relationships between the probability of

deviants and neurophysiological time series (e.g., Csepe et al.

1987; Pincze et al. 2002). Current theories of MMN, which

interpret it as a paradigmatic example of learning based on

predictive coding (Friston 2005; Baldeweg 2006), have recently

received empirical support by DCM studies of electroenceph-

alographic measurements (David et al. 2006; Garrido et al.

2007). These studies demonstrated that MMN can be un-

derstood as a prediction-error signal, which results from

deviant-induced changes in inter-regional connection strengths.

A similar conclusion is offered by the present study. Here, we
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found that, at least during CS
+
trials, BOLD responses in area V1

increased when the prediction provided by the auditory cue did

not match the subsequent visual stimulus (analogous to MMN

elicited by deviants). This surprise signal progressively increased

as the predictive properties of the auditory cue were learnt.

Moreover, in direct analogy to DCM studies of the MMN (David

et al. 2006; Garrido et al. 2007), we found a decrease in the A1

/ V1 connection strength on ‘‘standard’’ trials (where the

prediction by the auditory cue was correct), and an increase on

‘‘deviant’’ trials where the visual outcome did not match the

prediction by the auditory cue. In the context of predictive

coding, learning involves a more efficient suppression of sensory

events, which is manifest by an apparent reduction in evoked

responses, mediated by top-down predictions (which explain

away bottom-up sensory afferents). Within the framework of

our bilinear DCM, this is modeled as a decrease in top-down

effective connectivity for visual stimuli that match the current

prediction.

Limitations and Future Directions

We conclude this article by discussing a number of limitations

of the present study. First, because we wished to study brain

responses to stimulus associations that were irrelevant to

behavior, we did not obtain behavioral evidence for learning.

Instead, as with the MMN paradigm described above, learning is

characterized neurophysiologically as a change in activity over

time. We are currently conducting similar experiments with

stimuli that do require a behavioral response, providing us with

a behavioral assessment of the learning process. It might be

useful to emphasize that a neurophysiological characterization

of incidental associative learning processes, only requires that

the statistical associations between the CS/US stimuli are

irrelevant for task performance. In contrast, it is not essential

that the CS and US stimuli themselves are behaviorally

irrelevant. In fact, in our experiment these stimuli have some

behavioral relevance insofar as they constitute distractors to

which responses must be suppressed.

A second limitation is that the magnitude of the learning

effects (i.e., changes in A1 / V1 connection strength in the

range of 2--8%) was rather modest at the single-subject level.

This is likely to be due to the incidental nature of the learning

in the present study, with attention being directed away from

stimulus associations and none of the subjects noticing the

contingencies. However, the expression of these learning

effects was highly consistent across subjects.

Finally, the dynamic causal model presented here does not

make any assumptions about where in the brain the predicted

associative strength is calculated; that is, which brain area

exerts the modulatory influence onto the A1 / V1 connec-

tion. Given the responses that we observed in the putamen, it is

possible that the modulation of the A1 / V1 connection is

mediated via this region. Testing this hypothesis, however,

requires the inclusion of nonlinear terms in the neuronal state

equation of DCM which goes beyond its bilinear mathematical

framework. However, very recently, there has been methodo-

logical progress in nonlinear extensions of DCM (Stephan,

Harrison, et al. 2007), and once this approach is firmly

established and accepted, it should be possible to investigate

the source of the modulatory influences we observed.

Notwithstanding this limitation, the current study has pre-

sented a novel combination of dynamic system models and

formal learning theory, which were used to model human

neuroimaging data. This is a further step toward the long-term

goal of constructing invertible models that unite the neuro-

physiological and computational aspects of learning (c.f.

Stephan 2004).

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/
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