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Abstract

■ Research in computational psychiatry has sought to under-
stand the basis of compulsive behavior by relating it to basic psy-
chological and neural mechanisms: specifically, goal-directed
versus habitual control. These psychological categories have
been further identified with formal computational algorithms,
model-based and model-free learning, which helps to provide
quantitative tools to distinguish them. Computational psychiatry
may be particularly useful for examining phenomena in individ-
uals with anorexia nervosa (AN), whose self-starvation appears
both excessively goal directed and habitual. However, these
laboratory-based studies have not aimed to examine complex
behavior, as seen outside the laboratory, in contexts that extend
beyond monetary rewards. We therefore assessed (1) whether

behavior in AN was characterized by enhanced or diminished
model-based behavior, (2) the domain specificity of any abnor-
malities by comparing learning in a food-specific (i.e., illness-
relevant) context as well as in amonetary context, and (3)whether
impairments were secondary to starvation by comparing learning
before and after initial treatment. Across all conditions, individuals
with AN, relative to healthy controls, showed an impairment in
model-based, but not model-free, learning, suggesting a general
and persistent contribution of habitual over goal-directed control,
across domains and time points. Thus, eating behavior in individ-
uals with AN that appears very goal-directed may be under more
habitual than goal-directed control, and this is not remediated by
achieving weight restoration. ■

INTRODUCTION

The emerging understanding of the brain’s systems for
habitual and goal-directed control has offered insight into
potential mechanisms of compulsive behaviors (Everitt &
Robbins, 2016). Such behaviors occur across a range of
psychiatric illnesses, including anxiety, obsessive compulsive
disorder (OCD), substance use, and eating disorders. The
seemingly compulsive nature of anorexia nervosa (AN)
has long been noted, but the clinical and neuropsychological
phenomena in AN challenge a simple goal-directed-versus-
habitual dichotomy.Whereas the pursuit of thinness appears
remarkably goal driven, patterns of eating appear rigidly
unchangeable even with treatment (Mayer, Schebendach,
Bodell, Shingleton, & Walsh, 2012; Schebendach, Mayer,
Devlin, Attia, & Walsh, 2012). Such assumptions about
the under- lying mechanisms can be tested experimentally
aided by advances in cognitive and computational neuro-
science (Huys, Maia, & Frank, 2016). In this study, we
apply methods for probing habitual and goal-directed
behavior in relation to AN.
A dual-system view of automatic or habitual versus

controlled or goal-directed behavior is a long-standing orga-
nizing principle in psychology and neuroscience (James,

1890). Research shows that these behaviors can be distin-
guished behaviorally and neurally (Graybiel, 2008; Yin &
Knowlton, 2006; Yin, Knowlton, & Balleine, 2004, 2005;
Dickinson & Balleine, 2002), and it has been argued that
they arise from distinct computational mechanisms for eval-
uating actions, known asmodel-based andmodel-free learn-
ing (Daw, Gershman, Seymour, Dayan, &Dolan, 2011; Daw,
Niv, &Dayan, 2005). In the laboratory, these approaches can
be distinguished using instrumental learning tasks that in-
clude outcome devaluation procedures and two-step
Markov decision tasks, and they have been associated with
partially distinct neural substrates (Lee, Shimojo, &
O’Doherty, 2014; Daw et al., 2011; Gläscher, Daw, Dayan,
& O’Doherty, 2010; Tricomi, Balleine, & O’Doherty, 2009;
Valentin, Dickinson, & O’Doherty, 2007; Yin, Knowlton, &
Balleine, 2006; Yin et al., 2004; Coutureau & Killcross, 2003;
Killcross & Coutureau, 2003). Experimental evidence shows
that healthy people generally use a mix of both model-free
and model-based approaches rather than one or the other
(Weissengruber, Lee, O’Doherty, & Ruff, 2019; Otto,
Gershman, Markman, & Daw, 2013; Otto, Raio, Chiang,
Phelps,&Daw, 2013;Dawet al., 2011). Compulsive behaviors
have been posited to relate to an imbalance in habitual versus
goal-directed control (Gillan, Robbins, Sahakian, van den
Heuvel, & vanWingen, 2016), either through excessive habit-
ual drive of behavior or through deficient goal-directed con-
trol. Thus far, reductions in model-based learning have been
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demonstrated in individuals with compulsive behaviors
(Wyckmans et al., 2019; Gillan, Kosinski, Whelan, Phelps, &
Daw, 2016; Gillan, Apergis-Schoute, et al., 2015; Voon
et al., 2015). Such an imbalance in control has not been
assessed specifically in AN. Here, we probe these mecha-
nisms to assess their contribution to illness in AN and fur-
ther address the domain specificity of any deficits and the
effect of acute treatment.

First, categorizing the real-world behaviors at the core of
psychiatric illnesses is complex, as many include behaviors
that can be considered compulsive but are not easily
captured by the simple, repetitive, stimulus-evoked habits
described in the experimental literature. For example,
engagement in a ritualized behavior to reduce anxiety
symptoms in OCDmay be habitual or automated yet could
also be construed as a successful, goal-directed strategy for
managing anxiety because of obsessions (Salkovskis,
1985). Relying on self-report or clinical judgment may
lead to mislabeling a behavior as goal directed or habitual
and misunderstanding the relevant neurocomputational
processes. AN provides a particularly intriguing example
of this conundrum. Maintenance of significantly low body
weight is a defining feature of AN (American Psychiatric
Association, 2013). This self-starvation appears to be an
unrelenting goal pursuit focused on weight loss (Bruch,
1979), and neuropsychological data support the character-
ization of patients with AN as engaging excessive control
(Lloyd, Yiend, Schmidt, & Tchanturia, 2014). Intertemporal
choice studies show that individuals with AN are more
patient than healthy comparison participants, consistent
with heightened self-control, and that this behavior is
associated with abnormal neural activity in the striatum
(Steinglass et al., 2012, 2017; Decker, Figner, & Steinglass,
2015). Yet, the restrictive eating that characterizes AN also
shares many features of habit (Foerde, Steinglass, Shohamy,
& Walsh, 2015; Walsh, 2013): It is learned (not innate) and
is inflexibly triggered by certain cues, and individuals with
AN are unable to readily change this behavior—evenwhen
seeking treatment, suggesting that it may have become
outcome independent over time. Although these candi-
date mechanisms are not exhaustive, they represent
prominent views of AN. Here, we assess model-based and
model-free behavior in a learning task as one way to test
the idea that AN is characterized by abnormalities in goal-
directed and/or habitual mechanisms. Although this task
provides measures of the strength of both model-based
and model-free learning (hypothetically underlying goal-
directed and habitual behavior, respectively), previous
studies have consistently reported decreased model-based
learning (but no changes in the model-free measure) in
compulsive disorders and other situations where habits
would be expected to dominate (Wyckmans et al., 2019;
Gillan, Kosinski, et al., 2016; Gillan, Otto, Phelps, & Daw,
2015; Otto, Raio, et al., 2013). Thus, following this previ-
ous work, we primarily focus on the strength of model-
based learning in the task as a measure of goal–habit
balance.

Second, goal-directed andhabitual behaviors aredomain-
general mechanisms, yet different psychiatric illnesses
involve quite specific compulsive behaviors (e.g., specific
compulsions in OCD, abuse of specific substances, gam-
bling, or excessive weight loss). Most laboratory studies
have used generic outcomes, such as money (Gillan,
Kosinski, et al., 2016; Voon et al., 2015), and an important
interpretational question left open is whether apparent
deficits in goal-directed control in psychiatric patients are
because of impairments in a domain-general mechanism
or, possibly, to a reorienting of goal-directed behavior
toward the object of compulsion at the expense of other
domains. The latter view would predict that substance
abusers, for instance, might be relatively unmotivated by
money and their impairment in goal-directed control
could be mitigated or even reversed if their drug of abuse
was at stake. Among individuals with AN, the question is
whether the influence of model-based control may diverge
in the setting of food outcomes compared to monetary
outcomes.
Third, model-based deficits in populations with psycho-

pathology indicate a correlation between the two and do
not inform whether such deficits are a causal factor in
maladaptive compulsions. Indeed, decreased goal-directed
control may be a result of compulsive behaviors, as has
been argued, for instance, for neurological effects of drugs
of abuse (Volkow et al., 2010). Overall, little is known about
the longitudinal progression of these deficits. One question
is whether deficits in model-based control are remediated
by treatment. A recent study suggested that, in OCD,
impairments in model-based behavior are not remediated
by cognitive behavioral therapy (Wheaton, Gillan, &
Simpson, 2019). For ANparticularly, the effects of starvation
on cognition might be substantial. By studying individuals
with AN during acute illness and again after extensive inpa-
tient weight-restoration treatment, the persistence of any
learning differences and their relation to changes in psycho-
pathology can be assessed.
In this study, we addressed these three questions with a

population of individuals with AN, using a two-step Markov
decision task (Figure 1) designed, and widely used in
psychiatric populations, to assess the extent ofmodel-based
and model-free learning. By examining an illness with
complex and seemingly highly controlled (yet maladaptive)
behaviors, we aimed to test whether these reflect height-
ened or deficient model-based behavior (Question 1). We
also compared results from food and monetary versions of
the task to examine the specificity of findings in the eating
disorder domain and tested for the presence of model-
based versus model-free behavior in the context of out-
comes directly relevant to underlying psychopathology
(Question 2). Whereas the monetary task assumes that
money is rewarding, in the food task, participants were
rewarded with points that they could use to select a food
they preferred (e.g., a low-fat food for an individual with
AN), thereby allowing the food task to bemotivationally rel-
evant to both controls and patients. Finally, we evaluated
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patients before and after inpatient weight-restoration
treatment, to begin to study the progression of model-
based and model-free processes (Question 3).

METHODS

Participants

Participants were 41 women with AN and 53 healthy com-
parison women (or healthy controls [HCs]). Individuals
were eligible if they were between the ages of 16 and
46 years (Table 1), with an estimated IQ > 80 (measured
by Wechsler Abbreviated Scale of Intelligence, Second
Edition [WASI-II; Wechsler, 1999]). Eligible patients met
Diagnostic and Statistical Manual of Mental Disorders-5
(DSM-5) (American Psychiatric Association, 2013) criteria
for AN—restricting (AN-R, n= 19) or binge eating/purging
(AN-BP, n = 22) subtype—and were receiving inpatient
treatment at the New York State Psychiatric Institute

(NYSPI) specialized Eating Disorders Unit. Patients with
AN were not eligible if they had a history of a psychotic dis-
order, were at an imminent risk of suicide, or met criteria
for substance use disorder. Anxiety and depressive disor-
ders were not exclusionary, as these commonly co-occur
with AN (Hudson, Hiripi, Pope, & Kessler, 2007). Three
individuals with ANwere taking antidepressantmedications
(selective serotonin reuptake inhibitors). Treatment at
NYSPI is provided at no cost for those interested in and
eligible for participation in research, and those with AN
were not additionally compensated for their time.HCswere
recruited through the community and were compensated
$50 for their time. HCs were group-matched for age and
ethnicity and were included if they had no current or past
psychiatric illness, including any history of an eating disor-
der, and had a body mass index (BMI) in the normal range
(18–25 kg/m2). The HC group included 19 individuals who
endorsed a history of dieting behavior. This study was ap-
proved by the NYSPI institutional review board; after

Figure 1. Two-step decision tasks used to assess model-free and model-based learning. (A) Decision task with monetary outcomes. Alien treasure
pieces were converted into a monetary bonus paid out at the end of the task to all participants. (B) Task with food outcomes. Food tokens were
converted into access to a range of preferred food items, and the selected food was consumed as a snack after the task. (A, B) In both tasks, the Stage
1 choice determined the transition to the next stage according to a fixed probability. One choice was associated with transition to one particular Stage
2 state 70% of the time (Common transition) and the other state 30% of the time (Rare transition). At Stage 2, participants made choices followed by
reward or no reward (both monetary and food outcomes were actualized after the task). Each Stage 2 option was associated with a probabilistic
reward, which ranged from 0.25 to 0.75 and varied gradually (according to a Gaussian random walk) and independently across trials (see examples in
bottom rows of A and B). (C) Example trial steps from the monetary task.
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complete description of the study to the participants, adult
participants provided written informed consent and ado-
lescents provided written assent with parental consent.

Procedure

Psychiatric diagnoses were established using the Structured
Clinical Interview for DSM-IV (First, Spitzer, Gibbon, &
Williams, 2002) and the Eating Disorders Assessment for
DSM-5 (Sysko et al., 2012). Height and weight were
obtained on a wall stadiometer and a beam balance scale,
respectively. Estimated IQ was assessed with the WASI-II
(Wechsler, 1999). Severity of eating disorder psychopathol-
ogy was measured by the Eating Disorder Examination
Questionnaire (EDE-Q; Fairburn, 2008; Fairburn & Beglin,
1994), a 36-item self-report assessment of eating disorder
symptoms that has established community norms for
adolescents and adults. In addition, participants with AN
completed the Yale–Brown–Cornell Eating Disorder Scale
(YBC-EDS; Mazure, Halmi, Sunday, Romano, & Einhorn,
1994), an interview measure of eating disorder symptoms
with separate subscales related to Preoccupations and
Rituals adapted from the Yale–Brown–Cornell Obsessive-
Compulsive Scale (Goodman et al., 1989); this is a standard

measure of obsessions and compulsions in eating disorders.
Symptoms of anxiety were assessed with the State-Trait
Anxiety Inventory (STAI; Spielberger, Gorsuch, & Lushene,
1970); and depression, with the Beck Depression Inventory
(BDI; Beck & Steer, 1993). Higher scores indicate greater
symptom severity on each measure.
Participants were enrolled in either a longitudinal study

that included two assessment time points or a study with
a single assessment (Time 1). For all individuals with AN,
Time 1 assessments occurred within 1 week of hospital
admission; and Time 2 assessments, after weight restora-
tion treatment to at least 90% ideal bodyweight (Metropolitan
Life Insurance, 1959), corresponding to a BMI of approx-
imately 19.5–20.0 kg/m2. For HC individuals, Time 1 and
Time 2 assessments occurred at an interval group
matched to AN (MHC = 51 ± 23 days, MAN = 59 ± 22
days), t(45) = 1.17, p = .25. Thirty-two individuals with
AN participated in the longitudinal study—18 completed
both time points, 7 completed only Time 1, and 7 com-
pleted only Time 2—and nine individuals participated in
the single-assessment study. Food outcome task data at
Time 2 of one participant with AN were lost because of
computer malfunction. Thirty-four HC individuals partici-
pated in the longitudinal study—29 completed both time

Table 1. Demographic and Clinical Information

HC (n = 53) AN (n = 41) HC vs. AN AN T1 vs. T2

Mean ± SD Mean ± SD t p t p

Time 1

Age, years 25.6 ± 5 27.1 ± 7 1.2 .236

Estimated IQ 111.8 ± 12.2 105.1 ± 11.3 −2.7 .008

Dur. ill (years) 9.6 ± 7.1

BMI 21.3 ± 1.5 16 ± 2 −14.6 <.001

EDE-Q 0.5 ± 0.6 4.16 ± 1.5 15.8 <.001

BDI 2.1 ± 2.4 27.6 ± 12.6 14.4 <.001

STAI 31.3 ± 7.3 61 ± 11.2 15.5 <.001

YBC-EDS n/a 22.5 ± 6.4

YBC-EDS pre. n/a 11.7 ± 3.2

YBC-EDS rit. n/a 10.8 ± 3.7

Time 2 HC (n = 29a) AN (n = 25a)

BMI 20.9 ± 1.3 20.3 ± 1 −1.4 .172 −13.0 <.001

EDE-Q 0.4 ± 0.4 2.8 ± 1.2 9.8 <.001 6.7 <.001

BDI 3.0 ± 2.6 16.7 ± 12.1 5.7 <.001 5.2 <.001

STAI 33.6 ± 8.7 55.9 ± 11.4 7.9 <.001 3.4 .003

WASI IQ data are missing from one individual with AN. At Time 1 (T1), BDI data are missing from one individual with AN. At Time 2 (T2), BMI data
are missing from one individual with AN. Dur. ill = duration of illness; pre. = preoccupations; rit. = rituals.

a Thirty-four HCs and 32 individuals with AN participated in the longitudinal study.
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points, and 5 completed only Time 1—and 19 individuals
participated in the single-assessment study. The dropout
rate was 21.8% for the AN group and 14.7% for the HC
group.

Two-Step Decision Task

Eachparticipant completed two versions of the two-stepde-
cision task (Figure 1; Decker, Otto, Daw, & Hartley, 2016;
Sharp, Foerde, Daw, & Shohamy, 2016; Daw et al., 2011)
—one that involvedplaying formoney andone that involved
playing for a food snack to be consumed after the task (order
counterbalanced across participants). In the monetary ver-
sion of the task, participants collected pieces of “space trea-
sure,” each worth $0.10, with the total earned paid in cash at
the end of the experiment for both HC participants and par-
ticipantswithAN. In the food versionof the task, participants
collected tokens that were converted into access to food
items to be consumed as a snack. Before completing the
task, participants were given a “menu” (see Appendix) of
15 food items to rank in order of preference; they were
not instructed as to how the ratings would be used in con-
junction with task performance to determine later snack op-
tions. A greater number of tokens earned on the task
translated into the ability to choose among more desirable
food items as a snack. For example, earning 110 tokens al-
lowed access to all but the most preferred food item, and
earning 100 tokens allowed access to food items ranked
7–15. Upon task completion, participants selected among
the food items they had earned access to. In this way, all par-
ticipants played to gain their most preferred food outcome.
This approach holds constant that participants are playing to
obtain preferred foods and accounts for the likely inherent
group difference in HC and AN food preferences (i.e., most
in the AN group prefer low-fat food items). HC participants
were given their snack to consume after the task. Patients
with AN were given their selected food as an evening snack
on the Eating Disorders Unit. The consumption of the eve-
ning snack counted toward privileges on the unit, as part of
standard behavioral treatment.
A subset of participants (HC: n = 15, AN: n = 17) com-

pleted a version of the food decision task in which the
outcome was shown as preferred and nonpreferred food
items, rather than as tokens. The specific food items were
individually determined per participant: Before the decision
task, participants completed a rating task in which nine food
items were rated on a scale from 1 to 9 (1 = highly pre-
ferred). Participants were not instructed that their ratings
would relate to their later snack options. The food image
participants received onmost trials determinedwhich snack
they would receive after the task. In this task, participants
had 2 sec to make choices in both stages. The pattern of be-
havior—decreasedmodel-based learning in the AN group—
was the same in the two variations of the food decision task.
The monetary task was the same for all participants.
The food and monetary tasks were structurally identical

but included distinct cover stories and task environments

that matched the outcomes used (see Figure 1A and B).
For both tasks, each trial proceeded in two stages
(Figure 1C). In the first stage (Stage 1), participants chose
between two spaceships (or cafés), revealing a second-
stage (Stage 2) choice between two aliens (or food trays).
Each second-stage alien (or food tray) had a slowly chang-
ing chance of delivering space treasure (or a food token)
versus nothing, necessitating continuous learning by trial
and error. The four Stage 2 options were determined
by independently drifting Gaussian random walks with
SD = 0.025 and bounded by .25 and .75 probability of
reward, such that the reward probability associated with
each Stage 2 option changed slowly from trial to trial
(Figure 1A and B, bottom). The response window at each
stage was 3 sec. Participants completed 200 trials of each
task.

A key design feature of the task was the probabilistic as-
sociation between first- and second-stage choices: Choosing
the blue spaceship (or blue café) led to the purple planet (or
green kitchen) 70% of the time, that is, a “common” transi-
tion, and the red planet (or yellow kitchen) 30% of the time,
that is, a “rare” transition. The contingencies were reversed
for the green spaceship (or pink café). The transition struc-
ture between stages allows dissociation ofmodel-free versus
model-based learning strategies:Model-free learning is igno-
rant of transition structure and favors repeating a first-step
choice that ultimately results in reward, even if it does so via
a low-probability transition. By contrast, model-based
learning is sensitive to the transition contingencies and uses
them to infer the first-stage choice most likely to lead to the
preferred second-stage environment.

After completing the two-step tasks, participants’ knowl-
edge of the transition structure between Stage 1 and Stage 2
(e.g., “If you picked the blue spaceship, which planet
would you most likely land on?”) and their estimates of
the transition probabilities were assessed (e.g., “If you
picked the blue spaceship, how likely would you be to
see the purple planet?”).

Data Analysis

Demographic and clinical variables were compared using
independent t tests. Measures of psychopathology at
Time 1 and Time 2 were compared within AN using
paired t tests.

Assessment of Model-based and Model-free Learning
(Computational Model)

To capture the influence of incremental learning across
many trials, we fit participants’ choices using a reinforce-
ment learning model in which choices are modeled as
arising because of the weighted combination of model-
free and model-based reinforcement learning. The model
is based on the “hybrid model” originally applied to
healthy participants with this task (Daw et al., 2011), but
incorporating a set of modifications that have been used
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to improve the robustness of parameter estimation and
the characterization of population-level parameter esti-
mates in later studies of individual or group differences.
Specifically, to eliminate unnecessary free parameters,
we (1) use a single learning rate for both levels (i.e., take
α1 = α2; these are typically similar when estimated sepa-
rately) and (2) set the eligibility trace parameter formodel-
free learning,λ=1 (this is typically near 1 when estimated
freely, and constraining it improves the robustness of
estimating the model-free effect by making it log-convex
conditional only on the learning rate). Next, to improve
group-level estimation and the transparency of the model,
we (3) use an algebraically equivalent change of variables
where βMB equals wβstage1 in the Daw et al. (2011) param-
eterization and βMF equals (1−w)βstage1 (this makes their
estimation log-convex conditional on the learning rate
and reexpresses them in the more interpretable form of
logistic regression coefficients); (4) further change variables
to rescale all three β parameters by α (this reduces the βs’
collinearity with the learning rate, which also makes them
more comparable and their group-level distributions less
dispersed across participants); and (5) decay the Q values
of unchosen options by multiplying them by (1 − α) after
each trial (this typically improves fit and also makes the
model limit to a one-trial back logistic regression analysis,
discussed later, as α → 1). All these modifications except
for (2) were used by Otto, Gershman, et al. (2013); Gillan,
Kosinski, et al. (2016); and Vikbladh et al. (2019) and also
provided the best test–retest reliability relative to two ear-
lier model variants in Brown, Chen, Gillan, and Price’s
(2020) analysis; we added the additional simplification
(2, which was not considered by Brown et al.) in our
previous collaborative patient study (Sharp et al., 2016).

On each trial, t, participants make a Stage 1 choice c1,t,
leading to a transition to a Stage 2 state st where another
choice, c2,t, is made, followed by reward rt. At Stage 2, it is
assumed that participants learn a value function over states
and choices,Qstage2(s, c), whose value for the chosen action
is updated based on the reward received at each trial accord-
ing to a delta rule,Qstage2

tþ1 (st, c2,t)= (1− α)Qstage2
t (st, c2,t)+ rt.

Here, α is a free learning rate parameter. (In this, and analo-
gous update equations, a factor of α is omitted from the last
term of the update, equivalent to rescaling the rewards and
Qs by 1

α and the corresponding weighting parameters β by α
[Otto, Raio, et al., 2013]). The probability of a particular
Stage 2 choice is modeled as governed by these values
according to a logistic softmax, with free inverse temper-
ature parameter βstage2: P(c2,t = c) ∝ exp(βstage2Q

stage2
t

(st, c)), normalized over both options c.
Stage 1 choices are modeled as determined by the

weighted combination of both model-free and model-
based value predictions about the ultimate, Stage 2 value
of each Stage 1 choice. Model-based values QMB are given
by the learned values of the corresponding Stage 2 state,
maximized over the two actions: QMB(c) = max c2(Q

stage2
t

(s, c2)), where s is the Stage 2 state predominantly

produced by Stage 1 choice c. Model-free values are
learned by TD(1), where QMF

tþ1(c1, t) = (1 − α)QMF
t + rt.

The Stage 1 choice probabilities are given by a logistic soft-
max, with a contribution from each value estimate weight-
ed by its own free inverse temperature parameter: P(c1,t=
c) ∝ exp(βMBQMB

t (c) + βMFQMF
t (c) + βstickI(c = c1,t−1)).

Here, I(c= c1,t−1) is a binary indicator of whether a choice
repeats the previous trial’s choice, so the weight βstick

measures the general tendency to perseverate or switch
regardless of feedback.
At the end of each trial, all value estimates Q for

unchosen actions and unvisited states are decayed by multi-
plying by (1 − α).
The model has five free parameters: four weights

β (βstage2, βMB, βMF, and βstick) and a learning rate α. Our
main measures of interest are βMB and βMF, measuring
the contribution of model-based and model-free learning.
The free parameters of the model were estimated by

maximizing the likelihood of each participant’s sequence
of choices, using a distinct set of parameters for each game
(i.e., each combination of participant, session, and task
type: up to four games per participant, two task types at
two time points). These were estimated jointly with
group-level distributions over the entire population using
an expectation maximization procedure (Huys et al.,
2011) implemented in the Julia language (Bezanson,
Karpinski, Shah, & Edelman, 2012). The per-game model-
based and model-free weightings βMB and βMF, indicating
the strength of each type of learning, were extracted for
further analysis.
These estimates were used as dependent variables in a

series of regression analyses with group as themain explan-
atory variable of interest. All analyses controlled for task
type, session, IQ, and age as additional independent vari-
ables. In follow-up analyses, we included interactions of
Group × Session or Task and measures of eating disorder
disease severity (BMI, duration illness, EDE-Q), and specif-
ically of compulsivity (YBC-EDS), as well as anxiety (STAI)
and depression (BDI). Group, task type, and session were
dummy coded, and all covariates were z scored. The regres-
sions were conducted using mixed-effects logistic regres-
sion and estimated using Julia’s MixedModels package. All
within-participant parameters (e.g., task and session) were
taken as randomeffects per participant, so as to capture the
repeated-measure structure of the data (e.g., tasks repeated
at two time points) and also the imbalanced data (e.g., not
all participants completed both time points).

Examination of Approximate Learning Effects in Raw
Choice Data (Logistic Regression)

To visualize approximate model-based and model-free
learning effects in more interpretable terms closer to
raw data, we followed up our main analysis with a facto-
rial mixed-effects logistic regression analysis (Daw et al.,
2011), which considers each trial’s Stage 1 choice in terms
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only of the events on the previous trial. This corresponds to
a limiting case of the computational model in the case
where the learning rate α = 1; that is, choices are driven
only by themost recent feedback, unlike the fullmodel with
α< 1 where value estimates are built up incre- mentally
over multiple trials and guide choice. Hence, by neglecting
the effect of earlier trials’ events, we can visualize the pat-
terns of events approximately corresponding tomodel-based
and model-free learning. This analysis considers whether a
current Stage 1 choice (coded as stay = 1 and switch = 0,
relative to the preceding trial’s choice) is influenced by
Reward (coded as rewarded = 1 and unrewarded = −1),
Transition (coded as common=1 and rare=−1), and their
interaction on the previous trial. The interaction between re-
ward and transition is taken to indicate the contribution of
model-based learning, whereas amain effect of reward is tak-
en to indicate a significant contribution of model-free
learning (Daw et al., 2011).
All four terms of the model (the intercept, Reward and

Transition main effects, and Reward × Transition interac-
tion) were further interacted with Group, Session, and
Task (dummy coded) and Age and IQ (z scored) as in the
main analyses. All 12 within-participant coefficients (the
four base effects, and their interactions with task and ses-
sion) were initially taken as random effects by participants.
However, this specification encountered numerical errors
related to singular covariance estimates, apparently be-
cause of near-zero variation between participants in the
main effect of transition and its interactions with session
and task. (Principal components analysis on the random ef-
fects also indicated that the remaining 9 of 12 random ef-
fects captured 99.995% of the variance [Bates, Kliegl,
Vasishth, & Baayen, 2015].). Accordingly, we omitted these
three random effects from the specification to arrive at an
estimable model.

Simulation

We verified that the full computational model could cap-
ture the key effects in the raw data by extracting the es-
timated parameters for each participant and game (one
200-trial game for each game in the original data set, in-
cluding participant, session, and task type, resulting in
281 games in all), simulating model performance on
the task (learning and drawing choices according to the
model with those parameters, rewarded according to the
same procedure as the original experiment). The result-
ing simulated data set was plotted according to the same
factorial stay/switch analyses as for the original data.

Power Analysis

The current study included a sample size comparable to
previous studies in psychiatric and neurological patient
populations in the laboratory, although the sample was
relatively small compared with recent online studies
(e.g., Gillan, Kosinski, et al., 2016). A priori power ana-

lysis was not carried out, but we conducted post hoc
power analysis to assess whether the current study was
adequately powered. On the basis of a recent study that
included neurological (patients with Parkinson’s disease)
and HC groups and used an analysis approach (computa-
tional model) similar to ours (Sharp et al., 2016; supple-
mentary material), we computed an effect size of d =
0.65 for the key group difference in model-based learning
(here viewed, for this purpose, as equivalent to a two-
sample t test). Using the software package G*Power
(Faul, Erdfelder, Lang, & Buchner, 2007; Version 3.1) with
power (1− β) set at 0.80 and α= .05, two-tailed, we deter-
mined that a sample size of 38 per groupwas required. Thus,
the current study was adequately powered. In addition, the
inclusion of two assessments (money and food versions) per
time point doubled the available data, further increasing
power for the overarching group comparison.

Reliability Analysis

Some concerns have been raised about the reliability of
the two-step task (Shahar et al., 2019), although more de-
tailed follow-up analyses have been reassuring (Brown
et al., 2020). Reliability varies depending on the depen-
dent measure (model-based vs. model-free), computa-
tional model, and estimation method, and analytic
approaches similar to those used in the current study
yield reliability in the fair-to-good range (Brown et al.,
2020). Nonetheless, we additionally calculated reliability
for model-based and model-free effects from the current
data set. Test–retest reliability was assessed by estimating
the across-session correlation coefficient from the hierar-
chical model of Haaf and Rouder (2019), estimated using
Markov chain Monte Carlo sampling as implemented in
Stan software (Stan Development Team, 2018). We esti-
mated the model over the full data set, comparable to the
way the main analyses were conducted, and further (with
caution because of the smaller size of the subgroups) in-
vestigated reliability broken down by group and task by
reestimating the model on subsets of the data. In all
cases, we also included the data from participants of
the appropriate groups for whom only Session 1 was ob-
tained. (Although these do not directly influence estimated
variability on retest, their inclusion does help to achieve
better estimates of the Session 1 effects especially in smaller
subsets of the data.)

RESULTS

Demographic and Psychopathology Measures

As expected, the HC and AN groups differed on measures
of eating disorder severity (EDE-Q), depression (BDI), anx-
iety (STAI), and BMI at Time 1 but did not differ on age
(see Table 1). Although all participants had IQ scores in
the normal range, there was a statistically significant group
difference; IQ (which has been associated with model-
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based learning in previous studies [Gillan, Kosinski, et al.,
2016]) was included as a covariate in all analyses. In addi-
tion, age was included as a covariate, as the sample spanned
adolescents and adults and use ofmodel-based learning has
been shown to develop gradually across adolescence
(Decker et al., 2016). Mean BMI increased significantly from
Time 1 to Time 2 among individuals with AN and did not
differ significantly between groups at Time 2, indicating suc-
cessful weight restoration among individuals with AN.
Among individuals with AN, the expected psychological
change was seen as measures of eating disorder pathology,
depression, and anxiety, significantly improved fromTime 1
to Time 2, although these measures remained elevated rel-
ative to HC (see Table 1).

Model-based and Model-free Learning in AN vs. HC

To examine task performance, we first tested whether in-
dividuals with AN differed from HCs in model-free and
model-based learning overall (βMB and βMFÞ, across both
monetary and food outcome versions at both assessment
points (modeling any effects of Task, Session, IQ, and Age,
but considering first the main effect of Group). There

were a significant contribution of model-free learning to
behavior in both groups ( ps < 1e-5) and no significant
difference between groups (Est = 0.09, SE = 0.06, z =
1.36, p= .174; Figure 2, Table 2). In contrast, model-based
learning was also present in both groups ( ps < 1e-5) but
significantly attenuated in the AN group relative to the HC
group (Est = 0.15, SE= 0.06, z= 2.27, p= .023; Figure 2,
Table 2). There were no significant Group effects on other
parameters (βstick, α, βstage2; ps > .14).

Domain Specificity of Deficits in Model-based
Learning and Effects of Treatment

There was a tendency toward greater model-based learn-
ing in the monetary task relative to the food task (main
effect of task, Table 2; Est = 0.1, SE = 0.04, z = 2.98, p =
.002) and a main effect of Session (Time 1 vs. Time 2)
reflecting greater model-based learning on retest (Est =
0.11, SE = 0.04, z = 2.55, p = .011; Table 2).
We followed up these results to test whether it differed

by group and, conversely, whether the model-based deficit
was domain-general or specific to monetary versus food
outcomes (modeling the interactions between Group and
Task Type, again alongside effects of IQ and Age). Task
Type did not interact significantly with group differences
in model-based learning (Est = −0.08, SE = 0.07, z =
−1.11, p = .27), indicating that the same pattern of im-
pairedmodel-based learning in ANwas observed regardless
of outcome (Figure 3A, Table 3). To further investigate this
negative result for the Task Type × Group interaction, we
computed Bayes factors using a Bayesian information cri-
terion approximation to the model evidence, comparing
nested models with and without the interaction. The log
Bayes factor was 2.2 in favor of themodel without the Task
Type × Group interaction. This constitutes “positive” evi-
dence for the null hypothesis under the classification of
Kass and Raftery (1995) but misses their threshold (log
BF = 3, or 20:1 odds, often viewed as analogous to p <
.05) for “strong” evidence.
In another follow-up analysis, we also compared the two

variants of the food task. The results were qualitatively and

Figure 2. Overall model-free andmodel-based contributions to learning
for HCs and individuals with AN across task type (monetary and food)
and session (Time 1 and Time 2). Error bars represent SEM.

Table 2. Model-based Learning (Related to Figure 2)

Model-based Learning Model-free Learning

Estimate SE z p Estimate SE z p

Intercept 0.26 0.05 5.12 <1e-6 0.48 0.05 8.79 <1e-17

Group: HC 0.15 0.06 2.27 .023 0.09 0.06 1.36 .17

Task type: Money 0.1 0.04 2.98 .002 −0.02 0.04 −0.5 .62

Session: Time 2 0.11 0.04 2.55 .011 −0.02 0.04 −0.35 .72

IQ (z scored) 0.05 0.03 1.47 .142 0.03 0.03 0.87 .38

Age (z scored) −0.002 0.03 −0.08 .934 0.03 0.03 1.01 .31

Regression analysis including group, session, and task type.
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quantitatively consistent for both variants; there was no sig-
nificant main effect of the Task version (Est = 0.03, SE =
0.08, z = 0.34, p = .74) nor an interaction with Group
(Est = 0.01, SE= 0.11, z = 0.12, p = .90) on model-based
learning.
We additionally assessed correlations between model-

based estimates for monetary and food outcomes across
all individuals and found significant correlations at both
Time 1 (rho85 = 0.33, p < .001) and Time 2 (rho51 = 0.47,
p< .001).
Following up themain effect of Session (Time 1 vs. Time 2)

in the initial analysis (Table 2), to test for an interaction
between Session and Group on model-based learning (as
might be expected if the deficit improved with weight
restoration), no significant effect was found (Est = 0.02,
SE = 0.08, z = 0.27, p = .79; Figure 3B, Table 3).
Interrogating the negative result, the log Bayes factor was
2.8 in favor of the model without the Session × Group
interaction, again constituting “positive” but not “strong”
evidence for the null hypothesis (Kass & Raftery, 1995).

Logistic Regression Analysis of Raw
Choice Behavior

To visualize how these results are reflected in raw choice
behavior, as in previous studies (Daw et al., 2011), we
plotted stay versus switch behavior (Figure 4) as a function
of the previous trial’s reward and transition type. Here, the
model-free effect (with respect to only the previous trial’s
events) is approximated by the main effect of Reward, and
model-based learning is similarly assessed by the size of the
interaction between Reward and Transition (Daw et al.,
2011). Similar to the results from the full model described
above, a reduction in model-based learning is apparent in
the AN group relative to the HC group (Figures 4 and 5A).
This is easiest to appreciate, across conditions, by plotting
an index of the approximatemodel-based effect (the size of
the interaction using a contrast: the stay probability for
common/rewarded plus rare/unrewarded trials, minus
rare/rewarded and common/unrewarded; Figure 5C). We
also tested this appearance statistically using mixed-effects
logistic regression. However, in this coarser analysis, the
Group effect on model-based learning was only marginally
significant (Est= 0.13, z= 1.96, p= .0501; Table 4) and did
not survive including Age and IQ in the model (Est =
0.08, z = 1.12, p = .26; Table 4).

To verify that the full computational model was able to
recapitulate these patterns of observations, we simulated
it playing the task (participant by participant and session
by session, using the estimated parameters for each, to
produce a full simulated data set) and plotted the same
quantities for the simulated data set (Figure 5).

Posttest Assessment of Task Transition Structure

HCandANgroups did not differ significantly in their recall of
the transition structure for the monetary or food outcomes
task at Time 1 (money:χ2(1,n=87)=0.274, p= .60; food:
χ2(1, n = 84) = 0.925, p = .34) or Time 2 (money: χ2(1,
n = 52) = 0.006, p = .94; food: χ2(1, n = 52) = 0.650,
p= .42). HC and AN groups also did not differ significantly

Figure 3. (A) Model-based contributions to learning for the monetary
and food tasks collapsed across session (Time 1 and Time 2). (B)
Model-based contributions to learning at Time 1 and Time 2 collapsed
across task type (monetary and food task). Error bars represent SEM.

Table 3. Model-based Learning (Related to Figure 3)

Estimate SE Z p

Intercept 0.25 0.05 4.74 <1e-5

Group: HC 0.16 0.07 2.26 .024

Task type: Money 0.15 0.05 2.78 .006

Session: Time 2 0.09 0.06 1.44 .15

IQ (z scored) 0.05 0.03 1.46 .15

Age (z scored) 0.00 0.03 −0.08 .93

Group: HC × Task Type: Money −0.08 0.07 −1.11 .27

Group: HC × Session: Time 2 0.02 0.08 0.27 .79

Regression analysis including interaction between group and task type and between group and session.

Foerde et al. 471

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/33/3/463/1862630/jocn_a_01655.pdf by guest on 02 June 2021



Figure 4. Behavioral data—stay
probability at Stage 1 as a
function of transition type
(common/rare) and the outcome
(rewarded/unrewarded) on the
previous trial—across groups,
task types, and sessions. (A) Food
outcome task at Time 1. (B) Food
outcome task at Time 2. (C)
Money outcome task at Time 1.
(D) Money outcome task at
Time 2. Error bars represent
SEM.

Figure 5. Raw data (A, C) and
simulations (B, D) for overall stay
probability at Stage 1 (A, B) and
model-based effect (contrast
measuring size of Reward × Rare
interaction) for task outcome
types and sessions (C, D). Error
bars represent SEM.
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Table 4. Logistic Regression Analyses of Raw Choice Including Group, Session, and Task Type (Related to Figure 4)

Without Age and IQ With Age and IQ

Est. SE z p Est. SE z p

Intercept 1.28 0.23 5.50 <1e-7 1.31 0.23 5.72 <1e-7

Transition 0.04 0.05 0.91 .36 0.07 0.05 1.50 .13

Reward 0.57 0.11 5.37 <1e-7 0.59 0.10 5.84 <1e-8

Group: HC 0.33 0.21 1.52 .13 0.23 0.22 1.05 .29

Task type: Money 0.13 0.08 1.59 .11 0.12 0.08 1.40 .16

Session 0.40 0.11 3.75 .0002 0.39 0.11 3.63 .0003

Age (z scored) 0.22 0.10 2.15 .032

IQ (z scored) 0.29 0.11 2.71 .0068

Tran × Rew −0.08 0.08 −1.07 .28 −0.03 0.08 −0.32 .75

Tran × Group: HC 0.04 0.03 1.56 .12 0.03 0.03 0.86 .39

Tran × Task: Money 0.01 0.03 0.43 .67 0.01 0.03 0.41 .68

Tran × Session −0.02 0.03 −0.82 .41 −0.03 0.03 −1.15 .25

Tran × Age −0.01 0.02 −0.90 .37

Tran × IQ 0.01 0.01 0.70 .48

Rew × Group: HC 0.13 0.08 1.61 .11 0.10 0.08 1.20 .23

Rew × Task: Money −0.02 0.06 −0.37 .713 −0.05 0.05 −0.99 .32

Rew × Session 0.02 0.05 0.43 .67 0.03 0.05 0.48 .63

Rew × Age 0.11 0.04 2.65 .008

Rew × IQ 0.09 0.04 2.29 .022

Tran × Rew × Group: HC 0.13 0.07 1.96 .0501 0.08 0.07 1.12 .26

Tran × Rew × Task: Money 0.16 0.04 4.27 <1e-4 0.14 0.04 3.73 .0002

Tran × Rew × Session 0.23 0.05 4.63 <1e-5 0.21 0.05 4.37 <1e-4

Tran × Rew × Age 0.00 0.04 0.13 .90

Tran × Rew × IQ 0.08 0.04 2.35 .019

Rew = reward; Tran = transition.

Table 5. Model-based Learning and Disease Severity

Estimate SE z p

BMI (z scored) 0.003 0.03 0.09 .928

EDE-Q (z scored) 0.05 0.06 0.86 .39

BDI (z scored) 0.03 0.05 0.68 .50

STAI (z scored) −0.07 0.06 −1.14 .25

YBC-EDS Totala (z scored) −0.09 0.06 −1.64 .10

Duration illnessa (z scored) 0.05 0.07 0.80 .42

Regression analyses including measures of eating disorder severity and
general psychopathology (BMI, EDE-Q, BDI, STAI, YBC-EDS, and dura-
tion of illness). Each measure was included in a separate regression
analysis including Group, Session, Task Type, and measure of interest.

a YBC-EDS and duration of illness obtained only in the AN group at
Time 1.

Table 6. Model-based Learning and YBC-EDS

Estimate SE z p

Intercept 0.25 0.05 5.02 <1e-6

Task type: Money 0.14 0.048 2.91 .004

YBC Total (z scored) −0.06 0.047 −1.35 .178

IQ (z scored) 0.01 0.05 0.18 .854

Age (z scored) −0.02 0.045 −0.49 .623

Task type: Money × YBC 0.09 0.046 1.95 .051

Task type: Money ×
YBC Rituals

0.04 0.048 0.77 .44

Task type: Money ×
YBC Preoccupations

0.13 0.042 3.07 .002

Interactions between Task Type (for individuals with AN at Time 1).
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in the average discrepancy between their estimates of the
transition probabilities and the actual probabilities at Time
1 (money: t(82) =−0.91, p= .37; food: t(82)=−0.59,p=
.56) or Time 2 (money: t(51) = −1.73, p = .09; food:
t(51) =−1.34, p= .18). Responses on the posttest assess-
ment were not collected from three HCs for the monetary
task at Time 1 and from one individual with AN on both
the monetary and food tasks at Time 2.

Correlations with Clinical Variables

Model-based behavior was not significantly associated
with BMI, EDE-Q, BDI, STAI (over and above the group
difference), or duration of illness in the patient group
(Table 5), although there was a trend-level association
with YBC-EDS (Est = −0.09, SE = 0.05, z = −1.64,
p = .10) at Time 1 (the only time point at which it was

obtained: YBC-EDS data were not collected from HCs, for
whom scores would be expected to be zero, or from
those with AN after weight restoration). Exploring this last
association further, in those with AN at Time 1, higher
scores on the YBC-EDS were associated with less model-
based learning for food outcomes relative to monetary out-
comes (Est = 0.09, SE= 0.05, z = 1.95, p = .051; Table 6,
Figure 6A), a trend mainly driven by (and significant for)
the Preoccupations subscale (Est = 0.13, SE = 0.04, z =
3.07, p = .002; Figure 6B) rather than the Rituals subscale
(Est = 0.04, SE = 0.05, z = 0.77, p = .44).
Although the study was not designed to compare AN-R

and AN-BP subtypes as the subgroup sample sizes were
small (AN-R/AN-BP, n= 19/22), we include the comparison
for completeness. We tested the main effect of subgroups
on model-based learning overall (βMB), modeling any
effects of Task, Session, IQ, and Age. The AN-BP subgroup

Figure 6. Association between
model-based learning for food
versus money outcomes and
the YBC-EDS Total score (left)
and Preoccupations subscale
(right) in individuals with AN.

Table 7. Reliability Analysis Results

r, Model-based r, Model-free

Median (95% Credible Interval) Median (95% Credible Interval)

All participants

Both tasks n = 54 + 40 0.74 (.42, .89) 0.61 (.31, .78)

Food task n = 54 + 40 0.62 (.27, .83) 0.54 (.23, .74)

Money task n = 54 + 40 0.70 (.42, .88) 0.68 (.41, .83)

HC

Both tasks n = 29 + 24 0.69 (.02, .94) 0.72 (.33, .90)

Food task n = 29 + 24 0.66 (.17, .92) 0.64 (.28, .86)

Money task n = 29 + 24 0.46 (−.03, .79) 0.63 (.25, .86)

AN

Both tasks n = 25 + 16 0.74 (.39, .91) 0.34 (−.17, .72)

Food task n = 24 + 16 0.58 (−.01, .89) 0.30 (−.24, .69)

Money task n = 25 + 16 0.90 (.57, .99) 0.71 (.26, .91)
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was least model-based, with AN-R falling in between AN-BP
and HC (HC vs. AN-BP: Est = 0.21, SE = 0.06, z = 3.36,
p = .0008; HC vs. AN-R: Est = −0.09, SE = 0.08, z =
−1.05, p = .29; AN-R vs. AN-BP: Est = 0.12, SE = 0.09, z =
1.33, p = .18). Given the small sample size for these com-
parisons, the result should be treated with caution and
examined in a larger study aimed at understanding pos-
sible differences between subtypes of AN.

Test–Retest Reliability

Some reports have suggested poor reliability of the two-
step decision task under some circumstances (Shahar
et al., 2019). However, more detailed follow-up analyses
show that these conclusions depend substantially on the
dependent measure (model-based vs. model-free), com-
putational model, and estimationmethod. Overall, analytic
approaches similar to those used in the current study yield
reliability in the fair-to-good range (.4–.75; (Brown et al.,
2020), a range that also held for test–retest reliability esti-
mated from our current data (Table 7).

DISCUSSION

This study addressed three questions about model-based
and model-free learning mechanisms in AN. We tested
whether AN, which appears at once excessively goal-
directed and habitual, is characterized by enhanced or
diminished model-based behavior. We further examined
model-based versus model-free learning in a food-specific
context as well as a monetary context, to test the domain
specificity of any differences, and before and after weight
restoration, to test whether impairments were present only
during acute illness in patients with AN. Individuals with AN
showed less model-based learning than HCs, and groups
did not differ significantly in model-free learning. This
group difference was present when playing for both food
and monetary outcomes and persisted after successful
weight-restoration treatment.

How Does the Extreme, Yet Inflexible,
“Self-control” That Characterizes AN
Relate to Model-based Learning?

AN poses a fascinating conceptual challenge for the classic
psychological dichotomy between goal-directed, controlled
behavior and inflexible, habitual responses. Maladaptive
eating behaviors in AN are commonly understood to reflect
heightened self-control (King et al., 2019; Wang et al.,
2019), whichmight be expected to relate to enhanced dom-
inance of model-based behavior. Yet, these same behaviors
are also rigid and difficult to change— selection of a low-fat,
low-calorie diet with limited variety is a stereotyped feature
of illness in AN (Mayer et al., 2012; Schebendach et al., 2008;
Sysko,Walsh, Schebendach,&Wilson, 2005)—whichmight
suggest the opposite result: relatively weakened model-
based control.

Our results suggest that, compared to HCs, those with AN
rely significantly less on themodel-based approach, similar to
individuals with other disorders involving compulsion such
as OCD or drug abuse (Gillan, Kosinski, et al., 2016; Voon
et al., 2015). The pathology of AN involves complex, multi-
step phenomena to avoid food intake. The findings in this
study suggest that these computational mechanisms may
be relevant even to producing behaviors, like pathological
food avoidance, that extend beyond the traditional notion
from animal behavioral psychology of habits as simple
stimulus–responsemotor programs. Indeed, a recent study
in a large general population sample found that model-
based behavior in the two-step task correlated with a
set of psychiatric symptoms that included not only sim-
ple compulsive actions (such as repetitive checking or
morning drinking) that extend easily from a basic notion
of habits but also broader, more cognitive symptoms
such as intrusive thoughts (Gillan, Kosinski, et al., 2016).

In contrast to the difference in the model-based ap-
proach, this study found no significant difference between
AN and HC in the model-free approach in the task. That
said, as with previous studies using this task (Gillan,
Kosinski, et al., 2016), we focused our hypotheses and anal-
yses on themodulationofmodel-based behavior, as this has
proven to be the measure from this task that has most reli-
ably tracked manipulations or individual differences likely
to be relevant to the goal–habit balance (Gillan et al.,
2020; Wyckmans et al., 2019; Sharp et al., 2016; Gillan,
Otto, et al., 2015; Otto, Raio, et al., 2013). Although changes
in this balance might be expected also to be reflected in
countervailing changes in model-free learning, studies
using this task have not generally reported concomitant
differences in this measure. This may reflect some combi-
nation of at least three factors: first, a true difference in the
biological substrate, that is, model-free learning may be
less sensitive to neurocognitive dysfunction (Keramati,
Dezfouli, & Piray, 2011; Reber, 1989), and second, a differ-
ence in themapping fromneuropsychological categories to
computational substrate, that is, the link between model-
based learning and goal-directed behavior may be tighter
than that between model-free learning and habitual
behavior (Dezfouli & Balleine, 2012). Third, the task itself
may be less sensitive to model-free than model-based
learning (e.g., Table 7). Regardless, model-free and
model-based learning need not directly trade off between
each other.

Does Specific Psychopathology Reflect a
Domain-General Failure of Model-based Learning?

Our data indicate that the deficit in model-based learning
in AN was not significantly remediated in a food context, in
which participants played to receive the food they preferred.
Rather, it was consistent across both domain-general
(money) and illness-specific (food) outcomes, with no
significant task differences in the group effect. This finding
cuts against one potential explanation for the current
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results on the money task and other similar results
showing reduced model-based learning for money in psy-
chiatric populations (Wyckmans et al., 2019; Voon et al.,
2015): that generic monetary outcomes are less moti-
vating in psychiatric populations than they are for HC
participants. By using an incentive-compatible, individ-
ually determined, preferred food outcome (success on the
two-step task led to actual snack choices after the task), this
study included a condition in which motivation would be
expected to be more salient for individuals with AN than
for HCs. Yet, even in the food context, when performance
directly impacted the food they would need to consume,
patients with AN showed less model-based behavior than
HCs. Of course, the failure to detect a Group× Task inter-
action is a negative result, and as with any such result, the
possibility remains that there does exist some interaction
smaller than our study was powered to detect. However,
the Bayes factor analysis provides some evidence for the
lack of effect here, albeit not reaching the level (log
Bayes factor > 3) traditionally viewed as comparable to
p < .05. In addition, this negative effect is mitigated by
another relevant positive result: that those with AN were
significantly impaired at model-based learning, relative to
HCs, even in the food task considered alone (Est = 0.17,
SE= 0.067, z= 2.6, p = .01). Moreover, model-based esti-
mates for monetary and food outcomes were correlated
across individuals, consistent with a domain-general deficit
in model-based learning and inconsistent with the idea
that a focus on particular outcomes, such as food, pre-
cludes focus on other outcomes. The domain generality
is interesting given the idiosyncratic nature of compul-
sions across individuals, and future work is needed to un-
derstand how deficits in model-based learning may lead
to highly specific maladaptive behaviors.

Exploratory analyses of the relationship between symp-
tom severity and task performance in AN did suggest one
result that was selective for the food task: Higher scores
on the YBC-EDS, especially the Preoccupations subscale,
were associated with less model-based learning for food
outcomes relative to monetary outcomes. Such a graded
deficit seems plausible, and its specificity to food seems
intriguing, but it is of note that the direction of the effect
(worse learning with food outcomes) is opposite that
predicted by a motivational account. In addition, given
the exploratory nature of the analysis and the smaller
number of data points underlying it, there is a danger
of false positives, and replication will be required to con-
firm this finding. Assessing a potential lack of domain
specificity of model-based deficits in individuals with
AN—and other disorders characterizes by compulsivity
for which specificity has not been examined—is relevant
for understanding the role of model-basedness in psy-
chopathology. It is possible that decreased model-based
learning constitutes a general vulnerability to illness that
manifests in quite specific ways (e.g., food restriction,
gambling). If so, it could be interesting to test whether
interventions to increase model-based behavior in general

(cf. Patzelt, Kool, Millner, & Gershman, 2019) may affect
disorder-specific psychopathology.

Are Model-based Deficits Secondary to
Psychopathology or Potentially Primary?

The idea that compulsive psychopathology might relate to
impairedmodel-based learning is appealing in part because
it hints at a causal mechanism by which pathological habits
might emerge. This study does not address causality, nor
even whether the cognitive deficits precede the symptoms.
However, we were able to address whether the cognitive
differences between individuals with AN and HCs persisted
after acute weight restoration. That they did decreases the
likelihood that these differences are because of starvation
alone. Prior research has shown that, whereas psycholog-
ical measures improve with weight restoration, eating
behavior—namely, the pursuit of low-fat low-calorie diets—
does not improve substantially with weight restoration
(Mayer et al., 2012; Sysko et al., 2005). Similarly, in a previous
study, we found that deficits in feedback-based learning
remained after weight restoration (Foerde & Steinglass,
2017). This result also parallels a recent report, using the
same task, that cognitive behavioral therapy for OCD does
not improve model-based deficits in that population
(Wheaton et al., 2019). In the current data set, the absence
of an effect of weight restoration is a negative result and sub-
ject to similar interpretational caveats as the money versus
food contrast. However, again, the Bayes factor analysis pro-
vides someevidence for the lack of effect, and the frequentist
confidence interval on the effect also suggests that any unde-
tected effect of weight restoration on model-based behavior
is likely to be quite small relative to the overall deficit.

Conclusion

Previous work has shown deficits in responding to reward
(DeGuzman, Shott, Yang, Riederer, & Frank, 2017; O’Hara,
Campbell, & Schmidt, 2015; Frank, Shott, Hagman, &
Mittal, 2013) and learning from feedback in individuals with
AN (Foerde & Steinglass, 2017; Shott et al., 2012; Lawrence
et al., 2003). The present results suggest that a more fine-
grained parsing of this deficit is necessary. Basic habitual
learning mechanisms may be intact, whereas flexible
responses to changing contingencies and the ability to
integrate a model of the environment into choices are
impaired. Individuals with AN understood the structure of
the task as well as did HCs, as both groups were able to
report verbally on the rules of transition in the task. Yet,
individuals with AN were less able to successfully use this
information in their decision-making during the task.
Although decreased model-based learning was present

among individuals with AN across monetary and food
outcomes, cutting against a general motivational account
for the deficit, it is still possible that individuals with AN
and HC individuals approached the task with differences in
motivation to approach versus avoid outcomes. Future
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studies should examine how choices in individuals with
AN are related to motivation to obtain low-fat, low-calorie
foods versusmotivation to avoid high-fat, high-calorie foods.
The divergence between model-based and model-free

behavior in individuals with AN could have implications
for how illness develops and how it becomes resistant to
change. It is particularly important for an illness that often
develops in adolescence, a time during which model-free
learning reigns and model-based behavior only begins to
emerge (Decker et al., 2016). The slower emergence of
model-based behavior across development suggests one
mechanism that may nudge dieting behavior down the
habit (model-free) path. Even further decreased model-
based behavior in some individuals may confer added

vulnerability to developing maladaptive behaviors and may
be one contributing factor to how eating behavior becomes
so entrenched.

More generally, these results also speak to the promise
of the goal-directed versus habitual dichotomy as a mech-
anism of compulsive symptomatology across disorders:
The decision-making deficit here was domain general,
not food specific, and not apparently secondary to starva-
tion. In summary, we found that model-based, and not
model-free, behavior was impaired among individuals
with AN relative to HCs. The deficit was not remediated
by using real food as the outcomes of choices to enhance
motivational salience nor by weight restoration and asso-
ciated improvement in psychological symptoms.
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