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Influential recent work aims to ground psychiatric dysfunction in the brain’s basic computational mechanisms. 

For instance, the compulsive symptoms that feature prominently in drug abuse and addiction have been argued to 

arise from over reliance on a habitual “model-free ” system in contrast to a more laborious “model-based ” system. 

Support for this account comes in part from failures to appropriately change behavior in light of new events. 

Notably, instrumental responding can, in some circumstances, persist despite reinforcer devaluation, perhaps re- 

flecting control by model-free mechanisms that are driven by past reinforcement rather than knowledge of the 

(now devalued) outcome. However, another line of theory posits a different mechanism – latent causal inference 

– that can modulate behavioral change. It concerns how animals identify different contingencies that apply in 

different circumstances, by covertly clustering experiences into distinct groups. Here we combine both lines of 

theory to investigate the consequences of latent cause inference on instrumental sensitivity to reinforcer devalu- 

ation. We show that instrumental insensitivity to reinforcer devaluation can arise in this theory even using only 

model-based planning, and does not require or imply any habitual, model-free component. These ersatz habits 

(like laboratory ones) emerge after overtraining, interact with contextual cues, and show preserved sensitivity to 

reinforcer devaluation on a separate consumption test, a standard control. Together, this work highlights the need 

for caution in using reinforcer devaluation procedures to rule in (or out) the contribution of different learning 

mechanisms and offers a new perspective on the neurocomputational substrates of drug abuse. 
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. Introduction 

A key idea across psychological and neural theories is that the brain

udiciously simplifies laborious computations using heuristics or short-

uts [ 16 , 50 ]. One well-developed version of this idea concerns the trade-

ff between deliberative and automatic modes of control, as operational-

zed in rodents using a widely studied reinforcer devaluation procedure

 2 , 10 , 18 , 19 , 42 ] ( Fig. 1 a). Here, animals are trained to leverpress for

ood, then tested following reinforcer devaluation (e.g., by taste aver-

ion conditioning: pairing the food with illness). In some circumstances,

uch as when overtrained, animals nevertheless work persistently for the

evalued outcome ( Fig. 1 c). This failure to appropriately adjust behavior

ollowing reinforcer devaluation is widely viewed as a laboratory model

f the familiar human experience of habits, whereby with repetition,

ome actions (such as making a particular turn on the way to work) seem

o become automatized and we tend to slip and perform them even when

ontextually inappropriate (e.g., when we actually intend to go else-

here). Pathological dominance of these same habit mechanisms has

lso been argued to produce the compulsive, seemingly consequence-

nsensitive behaviors that characterize disorders of compulsion [ 29 , 31 ]
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uch as drug abuse [ 23 , 24 ], gambling addiction [54] and binge-eating

52] . 

An influential computational analysis, in turn, views these habitual

ehaviors as reflecting a simplified algorithmic strategy for evaluating

andidate actions to decide what to do [ 17 , 48 ]. Although it is gener-

lly most accurate to use a learned “internal model ” of the task contin-

encies iteratively to anticipate and evaluate an action’s consequences

a leverpress leads to food, which may or may not be desirable), such

omputation requires many steps which cheaper “model-free ” methods

ay skip by simply storing the endpoint of this computation (e.g., the

ecision to leverpress, called a policy in reinforcement learning or a

timulus-response association in classic associative learning accounts).

n this interpretation, the transition to habits reflects the brain shift-

ng from laborious but accurate model-based planning to cheaper but

pproximate model-free responding. Because – for highly practiced be-

aviors in stable circumstances – this shortcut generally produces the

ame result (a leverpress) with less computation at choice time, this

nalysis justifies habits as reflecting a rational, circumstantially appro-

riate tradeoff between the costs of computation and the costs of error

 17 , 34 ]. 
nuary 2023 

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.addicn.2023.100070
http://www.ScienceDirect.com
http://www.elsevier.com/locate/addicn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.addicn.2023.100070&domain=pdf
mailto:N.Garrett@uea.ac.uk
https://doi.org/10.1016/j.addicn.2023.100070
http://creativecommons.org/licenses/by/4.0/


N. Garrett, S. Allan and N.D. Daw Addiction Neuroscience 6 (2023) 100070 

Fig. 1. (a) Paired Condition. Typical experimental timeline used to test habit formation in which illness is paired with food during aversion conditioning which we 

base our simulations on. Animals are trained to leverpress for food ( acquisition ) then tested following aversion conditioning (pairing the food with illness, induced 

for example via injection of lithium chloride). A consumption test – in which the animal is freely provided with food pellets (without a lever present) – verifies the 

efficacy of the aversion conditioning. (b) Unpaired (control) Condition. Food and illness are separated during aversion conditioning preventing the formation of an 

association between the two. (c) In some circumstances, instrumental responding persists despite reinforcer devaluation (stylized data illustrated), a behavior which 

is viewed as arising from a reliance on habits (model free learning). This occurs, for example, when animals are overtrained [32] as well as when the context in 

which the aversion conditioning occurs differs to that used for the acquisition and test phases [6] . 
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However, a second and mostly separate line of influential theories

etails a different mechanism that may also contribute to changing –

r, crucially, failing to change – behavior in light of new experience.

tatistical accounts view Pavlovian conditioning as reflecting a process

f inferring the statistical structure of events. In particular, these la-

ent cause inference theories [ 12 , 13 , 27 , 28 ] view the brain as adaptively

lustering experiences into groups, representing different types of trials

r different ( “latent ” or subjectively inferred) contexts in which differ-

nt contingencies manifest. The rationale for these models is that expe-

iences are drawn from different contingencies in different situations;

nd therefore learning requires, in part, figuring out which contingen-

ies apply when. In effect, such clustering gates generalization: learning

bout contingencies applies within each context, but not between them.

ne particularly important application of this logic is in regard to the ex-

inction of previously conditioned associations: specifically, findings that

avlovian responding recurs even following extinction. By inferring that

xtinction trials in which a conditioned stimulus (CS) is no longer rein-

orced arise from a different latent context than did the initial acquisi-

ion trials, these theories explain many phenomena of renewal [7] and

ecovery [39] which imply that extinction learning coexists alongside

nitial acquisition learning, rather than simply erasing it [27] . 

Though these theories have primarily been applied to Pavlovian con-

itioning, such latent grouping of contingencies into contexts is, in prin-

iple, equally relevant to instrumental learning. That is, the basic insight
2 
f these models applies to instrumental choice: that different task con-

ingencies may occur in different circumstances, so the organism must

imultaneously figure out which tasks are active while learning to per-

orm them. Indeed, Schwöbel et al. [45] recently put forward a theory

esting dual-process instrumental control (model-based learning along-

ide a modified model-free policy learner) underneath latent cause in-

erence, and used it to simulate several results involving the making and

reaking of habits. 

Here we dive more deeply into the merger of these two lines of the-

ry, by examining the implications of latent cause inference for fully de-

iberative model-based control alone – with a context-dependent learned

orld model but importantly without any model-free value or policy

aching component. We show that these mechanisms alone can repro-

uce the devaluation-insensitive instrumental responding thought to be

haracteristic of habits, for reasons entirely analogous to why latent

ause models explain failures of extinction. The account explains the

haracteristic emergence of habits with overtraining, as well as recent

esults concerning the effect of manipulations of training context on the

einforcer devaluation effect, which are on this view analogous to sim-

lar experiments exploring the context specificity of Pavlovian extinc-

ion. In particular, if the taste aversion conditioning used for reinforcer

evaluation is attributed to a different latent context than the instru-

ental probe (a lever test), then even fully deliberative model-based

ontrol will exhibit instrumental insensitivity to reinforcer devaluation.
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Fig. 2. Task representation (MDP) of reward devaluation as represented by a goal directed system and used in our simulations. S 1 -S 6 are the six possible states 

within the task. R = { − 3, 0, 1} represents rewards/losses obtained in each state. The agent can start in S 1 , S 2 or S 4 , depending on the phase of the task. Each trial 

of instrumental leverpressing acquisition starts in S 1 and proceeds to a rewarded outcome S 5 given the appropriate choices. Taste aversion conditioning for the 

paired condition (a) starts in S 2 with the action “pellet consume ” now transitioning to illness S 6 . In the control (unpaired) condition (b), animals instead start in S 4 
during their taste aversion condition and thus transition to illness S 6 without encountering a food pellet S 2 . For counterbalancing the other group’s taste aversion 

conditioning exposure, animals in the paired condition also encounter trials that start in S 4 but end in neutral outcome S 3 , while animals in the unpaired condition are 

exposed to food S 2 while still transitioning to the same positive outcome S 5 encountered during training. Note consuming a pellet (from S2) in the paired condition 

takes the agent to “pleasure ” (S5) during acquisition but to “illness ” (S6) during aversion conditioning; hence this action has arrows to both S5 and S6 (as they 

pertain to different points of the reward devaluation procedure). 
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urprisingly, in simulations, we observe that taste aversion condition-

ng can generalize to an outcome consumption test (intended to verify

aste aversion efficacy) despite also failing to generalize to the instru-

ental (lever) test, a pattern of results previously interpreted as ruling

ut model-based control. 

In short, our model and simulation results demonstrate that instru-

ental insensitivity to reinforcer devaluation need not imply or reflect

omputational simplification such as model-free learning [ 17 , 21 , 48 ] or

timulus-response [ 18 , 37 ] habits. Conversely, the demonstration that

nsensitivity of action choice to outcome value can arise for entirely

istinct computational reasons (involving contextual inference) offers a

istinct formal perspective on what types of dysfunctional computations

ight contribute to pathologically consequence-insensitive choice, as in

rug abuse, and a new interpretation of specific experimental evidence

often using a reinforcer devaluation procedure and related paradigms)

urportedly tying habits to disorders. This new perspective naturally

ccommodates aspects of drug abuse (such as the existence and context

ensitivity of craving, goal-directed drug-seeking, and relapse effects)

hat are hard to explain from a stimulus-response view alone. 

. The theory: instrumental learning with latent contexts 

We augment a standard theory of model-based instrumental learn-

ng – inferring an unknown Markov decision process (MDP) – with the

ossibility that different MDPs obtain on different trials. Learning in this

etting – inference given the model – thus, roughly, nests model-based

DP learning and planning [17] under latent cause inference [ 27 , 28 ]

bout which MDP is active. 

The model involves three key components: 

(1) Generative Model: We assume that the agent treats task events

as arising from a particular statistical generative model. Specifi-

cally, on each trial, a latent cause (henceforth, “context ”) gives

rise to the MDP the agent operates within. Although the rewards

available in each state are known (and the same in each MDP),

and the states of each MDP are observable (i.e., they know which

of the 6 states S 1 -S 6 in Fig. 2 a and b they are in at any particu-

lar time), different MDPs share the same states (what can differ

is how these states transition between one another). Hence their

occurrence can be aliased across different latent contexts. That

is - unlike in the fully observable setting - the agent must infer
3 
which MDP is “in play ”, while also learning how each different

MDP works, in order to be able to consider the consequences of

taking different actions from a particular state (e.g., the option

to press a lever in S 1, Fig. 2 a and b). 

(2) Inference: We assume that the agent forms a posterior belief

about how likely different latent causes (i.e. different MDPs) are

to be active via Bayesian inference. This posterior is proportional

to the interaction of two terms: 

(a) prior : here (following [27] ) we use a Chinese Restaurant

Process Prior (see Appendix for more details). 

(b) likelihood (of the observed data under each latent cause):

Observations in the model comprise 4 types: 

(i) presence/absence of contextual cues 

(ii) presence/absence of a lever 

(iii) start state in the MDP 

(iv) state-action-state transitions observed after each

action. 

In general, because all these events can be noisy, the agent must

infer the best explanation for events in terms of different possible

sets of latent causes, with different properties, visited on different

trials. Computing this posterior analytically quickly becomes in-

tractable. Therefore, following [ 25 , 27 , 44 ], we approximate this

using a Rao-Blackwell particle filter. Note however that we do

not claim that the particle filter is necessarily how this Bayesian

computation, or something like it, is approximated in practice. 

(1) Action Selection and Belief Updating: Model-based planning

involves using the value iteration algorithm recursively to com-

pute the expected return for each candidate action from the cur-

rent state [48] . This requires knowing the rewards available in

each state ( 𝑟 s ) and how different states and actions connect to

one another, formally the state transition function 𝑃 ( 𝑠 ′|𝑠, 𝑎 ) . Here

we assume the learner knows ( 𝑟 s ) but needs to learn the mapping

of states, actions and future states ( 𝑃 ( 𝑠 ′|𝑠, 𝑎 ) ) by keeping a tally

of which states follow actions from each state (note: we assume

that the learner knows which of the 6 states S 1 -S 6 they are in at

any particular time but future work could consider partially ob-

servable MDPs in which the underlying state cannot be directly

observed). The additional component we introduce here is that

different state transition functions can pertain to different con-

texts (and there is uncertainty both about which context is cur-

rently active and which contexts were encountered on previous
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Table 1 

Trial setup used to compare reward devaluation when taste aversion conditioning occurs in different contexts - aversion same (where animals undertake the taste 

aversion conditioning in the same context as during acquisition) and aversion different (where these phases occur in different contexts such as the animals homecage 

and the instrumental test chamber). Refer to Fig. 2 for the corresponding MDPs. ∗ unpaired condition. 

Aversion Same Aversion Different 

N trials Start State 

Lever Features 

( n = 3) 

Contextual 

Features ( n = 3) 

Lever Features 

( n = 3) 

Contextual 

Features ( n = 3) 

Acquisition 30 S 1 1 1 1 1 

Aversion Conditioning (injection + pellet delivery / pellet delivery ∗ ) 15 S 2 0 1 0 0 

Aversion Conditioning (context exposure/ injection ∗ ) 15 S 4 0 1 0 0 

Lever Test 1 S 1 1 1 1 1 

Consumption Test 1 S 2 0 1 0 1 
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trials). We assume therefore that the agent uses their posterior

belief (from 2 above) about how likely different latent causes are

to be active in order to: (a) run the value iteration algorithm

and select reward maximizing actions at each decision point; (b)

decide which state transition model they should update. For in-

stance, if the agent infers latent cause 2 is active, they should

update the transition function for this MDP (according to which

actions, states and subsequent states were observed) and leave

the transition function for the MDP active under latent cause 1

unchanged. 

Further technical details about the model are provided in the Ap-

endix . 

.1. Task 

We simulate the effect of reward devaluation on instrumental con-

itioning using a stylized version of the task ( Fig. 2 , after [17 , 34] ; see

ethods), which preserves the logic of sequential action-outcome evalu-

tion while replacing self-paced free-operant leverpressing with a more

tructured trial-based MDP in which each trial contains a series of dis-

rete binary choices (e.g., whether to leverpress or whether to consume

 pellet). Using different series of state and outcome encounters in this

etting, we also simulate the food-illness pairing taste aversion 1 trials

nd unpaired illness control trials, along with the exposure experiences

iven to each group to counterbalance these experiences. Finally, we

lso conduct an instrumental extinction test and the outcome consump-

ion test again using the same states. 

. Results: persistent instrumental responding for a devalued 

einforcer 

The traditional empirical signature of habits is persistent instrumen-

al responding for a devalued reinforcer ( Fig. 1 c). The key insight of the

urrent model is that such insensitivity can arise not only because the

ction itself is chosen by model-free or stimulus-response methods, but

f the taste aversion training is inferred to arise from a distinct latent

ontext than the leverpress training and test. In this case, even though

he decision whether to leverpress is entirely model-based (that is, it is

nformed by anticipating and evaluating the food outcome), the taste

version conditioning experience does not apply to these calculations,

ut is instead viewed as relevant only in a different context. 

We first examine this phenomenon by simulating recent experiments

6] that explicitly manipulate the overt context for the leverpress train-

ng versus taste aversion conditioning (e.g., by conducting the proce-

ures in distinct physical environments), which demonstrate that the

ffect of taste aversion conditioning on instrumental training is modu-

ated by contextual similarity. Having understood the behavior of the
1 We use the terms aversion conditioning/trials/training in parts of the 

anuscript as an abbreviation of the more complete terms taste aversion condi- 

ioning/trials/training. 

t  

i  

s  

a  

s  

4 
odel in this setting, we move on to consider the effect of covert con-

extual grouping even in a single physical setting. 

.1. Aversion conditioning context 

First, we examined whether the physical context in which aversion

onditioning took place had an influence on subsequent lever press-

ng, as observed recently empirically [ 3 , 6 ]. To do this, we simulated

he reinforcer devaluation paradigm for paired and unpaired conditions

 Figs. 1 a and 1 b, 2 a and 2b), while also varying the context in which the

version conditioning occurred, which could either be the same as that

or the instrumental acquisition and test phases or different. (In the sim-

lations this occurs by changing the contextual features that are present

r absent in each phase, see Table 1 ). The basic empirical finding [6] is

hat animals in the paired condition demonstrate reduced leverpressing

n extinction relative to unpaired controls; but this sensitivity of instru-

ental responding to reward devaluation is abolished when the lev-

rpress training and aversion conditioning occur in different contexts.

his result presumably reflects a failure to generalize the aversion to the

ood across contexts when deciding whether to leverpress which results

n a pattern of devaluation-insensitive responding similar to that usually

nterpreted in terms of habits. 

Similar to the pattern observed empirically [6] , simulations from our

odel revealed that in the lever test ( Fig. 3 a) there was a significant in-

eraction between condition (paired, unpaired) and context (same, dif-

erent) (F(1, 76) = 19.81, p < 0.001). This was the result of reduced lever

ressing in the lever test between paired and unpaired conditions when

he aversion conditioning occurred in the same context as the acquisi-

ion phase (t(26.71) = − 6.16, p < 0.001), a difference which was absent

hen this occurred in a different context (t(37.68) = − 0.17, p = 0.87).

s shown in Fig. 3 c and d, these results reflect the model’s ability to

ssign different phases of training to the same or different latent causes,

nd thereby modulate generalization across them. In particular, aver-

ion training is assigned to the same or a different latent cause as that

or instrumental training and testing, when it occurs in the same or a

ifferent physical context respectively. This separation in the different

onditions is driven by different environmental cues, and results in the

ecision whether to leverpress being unaffected by the aversion condi-

ioning. 

A subtler point concerns an additional aspect of these experiments,

he outcome consumption test used to verify the efficacy of the aver-

ion conditioning. This is a second test (performed in the instrumen-

al training context, but without the lever available), of the animal’s

illingness to consume the food ( “averted reinforcer ”). One might

ssume that reduced consumption in the paired group implies that

he aversion training successfully generalized to the instrumental con-

ext. But surprisingly, Bouton et al.’s [6] data show that consump-

ion is reduced for the paired group, even when aversion condition-

ng occurred in a different context: that is the consumption and in-

trumental leverpressing tests are dissociated in this regard. The model

lso captured this result: agents were reluctant to approach and con-

ume pellets regardless of where the aversion conditioning took place
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Fig. 3. (a) In the lever test, simulations revealed reduced lever pressing in the lever test between paired and unpaired conditions when the aversion conditioning 

occurred in the same context as the acquisition phase (t(26.71) = − 6.16, p < 0.001), a difference which was absent when it occurred in a different context where 

lever pressing similar between the paired and unpaired conditions (t(37.68) = − 0.17, p = 0.87). (b) In the consumption test, agents were reluctant to approach and 

consume pellets regardless of where the aversion conditioning had taken place (paired vs. unpaired different: t(33.08) = − 24.36, p < 0.001; paired vs. unpaired 

same: t(28.22) = − 22.08, p < 0.001, independent sample ttest). (c) Examining latent context assignments at each phase of the devaluation procedure when aversion 

conditioning occurred in the same context as acquisition revealed that – owing to the similarity of the contextual cues – the majority of trials in each phase were 

assigned to the same latent context (latent context 1 ). (d) In contrast, latent context assignments when aversion conditioning occurred in an alternate context revealed 

that trials during aversion conditioning and the consumption test were assigned to a different latent context (latent context 2 ) as for acquisition and the lever test 

(latent context 1 ). 
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paired vs unpaired different: t(33.08) = − 24.36, p < 0.001; paired vs

npaired same: t(28.22) = − 22.08, p < 0.001, independent sample ttest,

ig. 3 b) with no interaction between condition (paired, unpaired) and

version conditioning context (F(1, 76) = 1.36, p = 0.24). In the model

 Fig. 3 d), this occurs because the consumption test tends to be assigned

o the same latent cause as the aversion training rather than to the in-

trumental context; this in turn relates to the fact that although the en-

ironmental cues match those of the instrumental context, other aspects

f the situation (notably the start state and the absence of the lever) are

loser to the aversion training context. 

Another consequence of this different pattern of cause assignments

 Fig. 3 c, d) is that agents are slow to learn to avoid pellet consumption

uring aversion conditioning when this occurs in the same context as

he acquisition phase ( Fig. 4 ). This occurs as the latent context contains

 history of pellet consumption leading to rewards carried over from ac-

uisition that needs to be overwritten via new learning in the aversion

onditioning phase. In contrast, when aversion conditioning is assigned

o an alternate latent cause as acquisition, agents are quicker to stop

onsuming the pellet as they do not need to overwrite these new expe-

iences (consuming pellet leads to illness) with the old ones (consuming

ellet leads to reward). This is a similar pattern to that which has been

bserved empirically [ 3 , 6 ]. 

.2. Length of training 

The foregoing simulations demonstrate that even though the model

ecides whether to leverpress using only model-based evaluation of the

utcome, it can produce habit-like insensitivity of instrumental respond-

ng to reinforcer devaluation when the training context is manipulated

o discourage generalization between the task phases. A question re-
5 
ains whether the model can also produce such ersatz habits even in

he more usual experimental circumstance in which this is observed:

hen all training and testing occur in a single context, but the instru-

ental response is overtrained. 

We thus examined whether length of training trials during instru-

ental acquisition generated differences in lever pressing post devalua-

ion in the lever test (see Table 2 for parameters used in the simulations).

ntering mean lever pressing scores in the lever test from each simula-

ion ( N = 20) into a factorial regression on length of training and condi-

ion revealed a significant interaction of these factors (F(1, 76) = 16.65,

 < 0.001). This was the result of a difference between paired and un-

aired conditions under moderate training (t(26.71) = − 6.16, p < 0.001)

hich was absent under extended training (t(33.37) = − 1.45, p = 0.16;

ig. 5 a). Comparing lever pressing following extensive training relative

o moderate training in the paired condition revealed lever pressing in

n extinction test to be significantly greater following extensive training

t(33.44) = 4.77, p < 0.001, independent sample ttest) with no differ-

nce between training regimes observed for unpaired (t(38) = − 0.26,

 = 0.80). Again, examining responses in the consumption test (which

roceeded the lever test) confirmed the efficacy of the aversion condi-

ioning in both cases ( Fig. 5 c) – agents were reluctant to approach and

onsume pellets in the paired condition relative to the unpaired condi-

ion both under moderate (t(28.22) = − 22.08, p < 0.001)) and extensive

raining regimes (t(28.05) = − 33.27, p < 0.001) however the difference

as marginally greater following extensive training (condition ∗ training

nteraction: F(1, 76) = 3.46, p = 0.07). 

This pattern of results - greater lever pressing in an extinction test

nder extended relative to moderate training – closely resembles the pat-

ern observed empirically [ 1,32 ]. However, whilst this phenomenon has

n the past been interpreted as evidence of habit formation in the case of
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Fig. 4. A consequence of assigning experiences during taste aversion condi- 

tioning to a new latent cause (which occurs for aversion when this occurs in a 

different context to the acquisition ) is that agents can quickly learn to avoid 

consuming the pellet as this new latent cause has no history it needs to over- 

write. In contrast, when aversion conditioning is assigned to the same latent 

cause as acquisition (which occurs when aversion occurs in the same context 

as acquisition), agents are slower to stop consuming the pellet as they need to 

overwrite the new experiences (consuming pellet leads to illness) with the old 

ones (consuming pellet leads to reward). 
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xtended training, here it emerges in the service of an exclusively model

ased learning system absent of habits (i.e., without a model free learn-

ng component). To understand how these differences in lever pressing

ould arise out of a purely model based system, next we examined the

ause assignment during the aversion condition phase in our simula-

ions. This revealed that following moderate training, the majority of

xperience accrued during aversion conditioning was assigned to the

ame latent context as the context experiences during acquisition were

ssigned to (latent context 1, Fig. 5 b). In practice this has the effect that

xperiences learnt during acquisition - specifically that consumption of

 pellet leads to reward - are overwritten during aversion conditioning

 as consumption of a pellet now leads to a loss (illness). Following ex-

ensive training however, more aversion conditioning experiences are

ssigned to a separate latent cause (latent cause 2) to those that acquisi-

ion learning experiences are assigned to. The reason that overtraining

as this effect is that a new cause is more likely to be inferred when a

iolation of expectations (under an existing latent cause) occurs. This vi-

lation is greater, the greater the history of past observations associated

ith an existing latent cause is. Pellet consumption abruptly leading to

isgust (which starts occurring during devaluation), for instance, will be
able 2 

rial setup used to compare moderately trained with extensively trained animals. Th

he corresponding MDPs. ∗ unpaired condition. 

N trials 

Moderate Training Ex

Acquisition 30 60

Aversion Conditioning (injection + pellet delivery / pellet delivery ∗ ) 15 15

Aversion Conditioning (context exposure/ injection ∗ ) 15 15

Lever Test 1 1 

Consumption Test 1 1 

6 
ore surprising (and hence more likely to be subsumed under a separate

atent cause) following an extensive number of past instances of pellet

onsumption leading to reward (which occurs during training) and as-

igned to cause 1 compared to a moderate number of cases. In practice,

his has the effect that state action state sequences learnt during acquisi-

ion are “protected ” from new experiences encountered during aversion

onditioning. Hence the animal does learn that pellet consumption leads

o illness but segments this experience to an alternate transition model,

eaving the original transition model learnt in acquisition intact. 

The change over training in the tendency to lump versus split expe-

iences across causes reflects a characteristic feature of statistical infer-

nce in this type of model: the model starts with a bias to favor simpler

nterpretations (the so-called Bayesian Occam’s razor), and it takes ad-

itional evidence to justify a more complex interpretation containing

ultiple latent causes [13] . In general, the more experience a Bayesian

gent has, the more it will be able (and willing) to make finer grained

istinctions, here between two distinct causes for instrumental and aver-

ion training. 

. Discussion 

Computational models have separately explored two distinct mech-

nisms relevant to conditioning. The first concerns the strategy for eval-

ating the decision variable. The fact that instrumental responses are

ometimes sensitive – but sometimes insensitive – to reinforcer devalu-

tion has been argued to reflect the use of two learning mechanisms, a

eliberative model-based mode of control and an automatic model-free

ode of control [ 16 , 17 ]. In the terms of traditional associative learning

odels, these findings are, analogously, interpreted in terms of goal-

irected action-outcome versus habitual stimulus-response responding

 18 , 19 ]. However, a second mechanism – heretofore studied mostly in

he context of Pavlovian conditioning – concerns how animals track dif-

erent contingencies in different situations, by grouping experiences into

ifferent covert latent causes [27] . This grouping process leads to dif-

erential generalization across them. 

Here, we present a new model combining elements of both lines, to

xplore the consequences of latent cause inference for instrumental con-

itioning. We show that an exclusively model-based learner can show

nsensitivity to reinforcer devaluation due to a failure to generalize taste

version conditioning to the lever test. The model reproduces patterns

f behaviors previously thought to be a signature of habits: persistent in-

trumental responding in extinction for an averted reinforcer. We show

his can arise following extended training [1] and when the aversion

onditioning and acquisition/test contexts differ [6] . In both cases, the

odel captures value-insensitive responding within each cause due to

ailure to generalize aspects of taste aversion learning to the latent cause

here the instrumental test is inferred to occur. Taste aversion experi-

nce generalizes more readily during the consumption test because of

reater feature overlap (e.g., the absence of the lever). Although these

esults do not rule out a contribution of model-free (including value

ree, see [37] ) learning, they point to the importance of state inference

n instrumental learning. 

One influential application of habit models has been as a candidate

ubstrate for seemingly consequence-insensitive choices in compulsive
e main difference is the number of trials during acquisition. Refer to Fig. 2 for 

tensive Training Start State Lever Features ( n = 3) Contextual Features ( n = 3) 

 S 1 1 1 

 S 2 0 1 

 S 4 0 1 

S 1 1 1 

S 2 0 1 
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Fig. 5. (a) Propensity to lever press in the lever test following moderate and extensive training. We observed an interaction between condition and training length 

(F(1, 76) = 16.65, p < 0.001), the result of greater lever pressing following extensive training relative to moderate training in the paired condition (t(33.44) = 4.77, 

p < 0.001, independent sample ttest) with no difference between training regimes observed in the unpaired condition (t(38) = − 0.26, p = 0.80). This pattern 

of results closely resembles the pattern observed empirically [ 1,32 ] despite arising from an exclusively model based learning system absent of habits. (b) Cause 

assignment during aversion conditioning under moderate and extensive training for the paired condition simulations. Under moderate training, the majority of 

transition sequences observed and used to update transition knowledge are assigned to latent context 1, the same context as experiences during acquisition. Under 

extensive training, the majority of transition sequences observed are assigned to latent context 2, an alternate context to the context experiences observed during 

acquisition are assigned to. (c) In the consumption test, agents were reluctant to approach and consume pellets regardless of the length of the acquisition training 

(paired vs unpaired moderate: t(28.22) = − 22.08, p < 0.001; paired vs unpaired extensive: t(28.05) = − 33.27, p < 0.001, independent sample ttest). Bars represent 

averages over the simulations ( N = 20). Individual data points represent the average for each simulation. Error bars represent standard error of the mean. 

d  

i  

e  

r  

c

o  

t  

a  

i  

r  

p  

t  

o  

[  

c  

w  

c  

t  

m  

T  

m  

m  

a

 

a  

b  

h  

t  

u  

m  

s  

t  

i  

f  

d  

h  

i  

a  

a  

w  

t  

t  

a  

a

 

o  

c  

b  

h  

s  

1  

v  

l  

b  

d  

o  

a  

m  

s  

i  

o  

i  

p  

d  

i  

d  

a  

n  

c  

s  

a

 

f  

[  
isorders including drug abuse [ 23 , 24 ]. The present work offers a new

nterpretation of this view, and specifically a different perspective on

xperimental evidence (much of it from instrumental devaluation and

elated procedures). In general, the specificity of learning to a latent

ontext – and the failure to generalize that learning across contexts –

ffers another way of explaining why behaviors may be detached from

heir consequences (potentially to deleterious ends), even when actions

re chosen in a fully deliberative, model-based manner. Indeed, the ev-

dence for stronger habitual responding in patients with addiction is

ather mixed [ 22 , 51 ], whilst previous theoretical studies have also pro-

osed roles of model based behavior in addiction, for instance in rela-

ion to forward planning malfunctions [41] , incomplete representations

f the internal model [40] , access to the internal model during recall

46] and insufficient model-based resources [38] . One common criti-

ism of the habit view of addiction is that although it can explain some

ell-trained stereotyped actions (e.g., drug consumption) it seems diffi-

ult to explain many behaviours involved in drug-seeking, which seem

o involve outcome-specific deliberation (e.g., craving) and seemingly

odel-based or goal-directed ability to choose novel actions [ 15 , 49 ].

he emphasis on the contextual specificity of learning in the current

odel (and latent cause models generally) also connects naturally to

uch data on contextual sensitivity in drug abuse, including relapse

nd craving [ 5 , 8 , 14 , 53 ]. 

There is also more specific evidence leveraging the reinforcer devalu-

tion procedure to investigate a putative habitual basis for drug seeking

ehavior [ 9 , 11 , 20 , 36 ] generally reporting that drug reinforcers support

abitual (devaluation insensitive) instrumental responding more readily

han natural ones. An alternative interpretation of some of these results

nder the current model is that (in addition to, or instead of, promoting

odel-free responses) drug reinforcers promote a greater tendency to

plit causes and fail to generalize between them, for instance because of

he salience of drug cues or enhanced salience attributed to other cues

n the presence of drugs [26] , and/or because the acute intoxicating ef-

ects of the drug itself serve as an additional context cue. In humans,

rug addiction has also been associated with reduced model-based be-

avior on a “two-step ” Markov decision task [ 29 , 52 ] whose logic is sim-

lar to reward devaluation. In the current model, such behavior might
7 
gain alternatively reflect a greater tendency in these disorders to group

 subset of trials ( “rare transitions ”) into a distinct latent cause. Overall,

ithout ruling out a contribution of model-free or habitual processes

o drug abuse, the present model offers an additional potentially con-

ributing mechanism, and also may explain aspects of drug abuse (such

s craving and contextual sensitivity) not easily understood by habit

ccounts. 

We have deliberately emphasized the effect of latent cause inference

n model-based learning by examining behavior that arises when this

ontroller is used in isolation. However, we do think it likely that the

rain also employs simpler heuristic-based approaches of the type that

ave previously been shown to generate devaluation insensitive deci-

ions. This includes model-free learning approaches (Sutton & Barto,

998; [17] ) which we have largely focused on here and also value-free

ariants [37] whereby actions that have recently been taken are more

ikely to be taken again (irrespective of their outcomes). Hence it may

e that devaluation-insensitive instrumental leverpressing is multiply

etermined. For instance, the current work explains many phenomena

f habits when devaluation occurs via taste aversion conditioning, but

n alternative approach (which produces broadly similar results) instead

anipulates the animal’s motivational state, studying instrumental re-

ponding under satiety [4] . In general, these results appear less eas-

ly explained by latent cause inference as the motivational state itself

ught to enter into the contextual inference in a way that would tend

n any case to discourage instrumental responding. Another alternative

aradigm believed to test habitual control is that of contingency degra-

ation, in which the relationship between leverpressing and rewards

s made less contingent. Persistent leverpressing following contingency

egradation is also less easily explained by our current model. Whilst

 sudden change in action outcome contingencies (such as a leverpress

o longer being predictive of a reward) may result in inference of a new

ause, this would likely see leverpressing reduce rather than persist at a

imilar rate as before, since any new latent cause would begin without

n expectation that leverpressing led to reward. 

In any case, future work could consider the integration of model-

ree and/or value free learning back into the current model (see also

45] ); in which case the parsing of experiences among causes would be
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xpected to affect the progression of learning from model-based to sim-

ler algorithmic strategies for evaluating candidate actions within each

ause [17] . This might occur when an action starts to dominate others

ver and above a threshold and/or when action-outcome contingencies

re low or degraded [37] in which case there is little benefit to going

o the expense of implementing laborious model-based control. In con-

rast, switching across causes might drive unlearning and the renewal

f habits [ 37 , 45 , 47 ]. Recent research has emphasized other optimiza-

ions or simplifications of model-based choice short of fully model-free

abits, including temporal abstraction [43] , pruning [ 33 , 35 ] and model

haring [30] , all of which might potentially interact with latent cause

nference in an extension of the current work. Finally, future work could

lso look to consider whether new latent causes are equally likely fol-

owing positive and negative mispredictions, or are more likely to be

nferred for one type of valance (versus the other). A greater tendency

o split causes following negative mispredictions for instance would be

onsistent with a related account of addictive behavior under model free

earning [40] in which negative prediction errors bring about a change

n the state space representation, akin to the formation of a new latent

ause in the model we propose here. 

Nonetheless, the results we present here show that by integrating

eliefs about state dynamics into a latent cause inference model, the

readth of behaviors that can potentially be accounted for under a

urely model-based learner is larger than previously appreciated. 

. Methods 

.1. Simulations 

First, we simulated the reward devaluation procedure 20 times, vary-

ng the context in which the taste aversion conditioning phase occurred

by altering the contextual cues present/absent, see Table 1 ). In one set

f simulations ( aversion same ), the taste aversion conditioning occurred

n the same context as the acquisition context. In another ( aversion dif-

erent ) the taste aversion conditioning occurred in a different context. 

Next, we simulated each condition (paired, unpaired) 20 times for

wo different training lengths: moderate training - in which the acqui-

ition phase lasted for 30 trials - and extensive training - in which the

cquisition phase lasted for 60 trials (double the number of trials as

he aversion conditioning phase). In these simulations, the contextual

eatures present/absent in each phase were matched between condi-

ions (paired/unpaired) and training durations (moderate/extensive, see

able 2 ). 

.2. Paired condition 

The MDPs used in each simulation for each condition are displayed

n Fig. 2 . The contingency between these states, actions and subsequent

tates changed between phases. In the paired condition ( Fig. 2 a), during

he Acquisition phase animals began in S 1 and selected whether to press

 lever or not. Pressing a lever delivered a pellet (transition to S 2 ) where

hey faced a second action choice: whether to consume the pellet or not.

onsumption of the pellet transitioned to a terminating state with a pos-

tive reward (S 5 ). Decision not to consume the pellet (from S 2 ) or not to

ress the lever (from S 1 ) terminated the episode without a reward (tran-

ition to S 3 ). The Taste Aversion Conditioning phase was separated into

wo sections. In the first section, agents began in S 2 where a decision to

onsume a pellet now transitioned to a terminating state with a nega-

ive reward (transition to S 6 ). In the second section, animals began in

n “context exposure state ” (S 4 ) where an obligatory action transitioned

hem to a terminating state with no reward (S 3 )( 6 . This was done such

hat animals had both the same amount of “pellet consume ” decisions

nd exposure to the aversion conditioning context in each condition [6] .

ever Test and Consumption Test phases each consisted of a single trial

nd were exactly as described for Acquisition and Taste Aversion Con-

itioning ( Section 1 ) phases respectively except that a decision to lever
8 
ress (from S 1 in the Lever Test) now led to S 3 (to mimic the fact that

ever presses in the test phases are usually carried out in extinction). 

.3. Unpaired condition 

Start states and transition dynamics for the unpaired condition

 Fig. 2 b) were the same as the paired condition for the Acquisition and

wo test phases. However the taste aversion conditioning phase differed.

his phase was again separated into two sections. In the first section,

nimals began in S 2 where a decision to consume a pellet continued to

ransition to a terminating state which accrued a positive reward. [Note

his is different to the paired condition where consumption of a pellet in

his phase led the agent to a terminating state with a negative reward.]

n the second section, animals began in an “injection state ” (S 4 ) where

n obligatory action transitioned them to a terminating state with nega-

ive reward (S 6 ). This therefore (in principle) unpairs transitions to the

egative reward state (i.e. illness) and pellet consumption. 

In each simulation we ran 4 virtual agents (animals). “Lever press ”

ctions in the lever test and “consume pellet ” actions in the consumption

est were averaged per simulation (i.e., over the 4 agents) and then these

er simulation scores were averaged (over the 20 simulations) to get

n overall mean tendency to lever press and pellet consume. Code and

imulations were run in MATLAB (2020b). In all simulations we set the

oncentration parameter, 𝛼, equal to 1 𝑒 − 7 . The slope of the softmax

unction, 𝛽 was drawn from a normal distribution on each trial with a

ean of 6 and a standard deviation of 1. We used a particle filter with

000 particles. We set the maximum number of causes in the model to

0 (although in principle generative models allow for an ever-expanding

umber of latent causes, setting a low value of 𝛼, as we do here, meant

hat in practice the number of latent causes established at the end of

ach simulation never exceeded 3). 
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ppendix 

Below we provide a mathematical description of the model we use

n the simulations. 

enerative model 

To model conditioning as Bayesian inference, we first describe the

tatistical generative model that is assumed to govern task events. The
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gent then infers the task contingencies through standard inference in

his model, and makes action choices appropriate to the inferred task.

or the generative model, we assume an infinite mixture model over

pisodic, fully observable Markov decision processes. That is, for each

rial, a latent cause (henceforth, “context ”) is drawn that is associated

ith a particular MDP, which governs the resulting episode until ter-

ination. Although the states of each MDP are observable, the different

DPs can share the same states, so their occurrence can be aliased across

ifferent latent contexts. That is (unlike in the more usual fully observ-

ble setting) the agent must infer whether a particular state like the

ption to press a lever (S 1 in Fig. 2 a and b) is occurring in the same or

ifferent context as other previous experiences with a similar situation.

More specifically, at each trial 𝑡 a latent context 𝑐 𝑡 is drawn from an

nfinite multinomial mixture model according to a Chinese restaurant

rocess prior, i.e., 𝑐 1 = 1; 𝑃 ( 𝑐 𝑡 = 𝑘 ) = 

𝑁 𝑘 

𝑡 + 𝛼 for a previously encountered

ontext 𝑘 , and 𝛼

𝑡 + 𝛼 for a previously unobserved context. Here 𝑁 𝑘 is the

umber of times context 𝑘 has previously occurred, and 𝛼 is a concen-

ration parameter which governs how often new causes are likely to be

ncountered. We used a very low value of 𝛼, 1 𝑒 − 7 ; this means that an-

mals assume a priori that observations tend to be generated by a small

umber of causes which is plausible in terms of a biological agent with

 constrained amount of cognitive resources available to them. 

Conditional on the latent context, a number of random variables are

bserved. In particular, on each trial a single episode of a MDP is played.

We index trials 𝑡 and steps within each trial as 𝑖 ). The resulting state

rajectory is determined, conditional on the context and the agent’s ac-

ion choices, by an initial state distribution 𝑃 ( 𝑠 0 ,𝑡 = 𝑠 |𝑘 𝑡 ) and a state-

ction-state transition function 𝑃 ( 𝑠 𝑖 +1 ,𝑡 = 𝑠 |𝑠 𝑖,𝑡 , 𝑎 𝑖,𝑡 , 𝑘 𝑡 ) . These functions

re defined over a set of states 𝑠 ∈ 𝑆 that are shared across contexts.

e also assume the state-reward mapping 𝑟 𝑖,𝑡 = 𝑓 ( 𝑠 𝑖,𝑡 ) is deterministic

nd shared across contexts. (This is because we assume the state iden-

ity itself - e.g., illness - directly determines the state’s utility.) Alongside

he MDP state trajectory, on each trial the context also emits 𝐽 binary

eatures, with probabilities 𝑃 ( 𝑓 𝑗,𝑡 = 1 |𝑘 𝑡 ) , meant to capture environmen-

al features that are constant during the trial and action-independent. A

riori, each feature’s probability, the initial state, and the state-action-

tate transition functions are each independent uniform (i.e., Beta(1,1)

r Dirichlet( ⃗1 )). 

nference 

The goal of the learner is to learn the MDP contingencies (notably

he state transition model) so as to evaluate the long-run reward con-

equences for candidate actions. This, in turn, requires inferring the

apping from trials to latent contexts. Following [ 25 , 27 , 44 ], we ap-

roximate inference in this model using a Rao-Blackwell particle filter

o represent hypotheses about the sequence of latent context identities

ith an ensemble of samples. At the start of each trial t , each particle

 represents a candidate assignment of all previous trials to contexts;

ollectively, the ensemble of particles are samples from the posterior

istribution over such partitions conditioned on previous experience

hrough trial 𝑡 − 1 . This property is maintained recursively using a com-

ined sampling-resampling step at the end of each trial t , whereby a new

nsemble of particles is sampled (with replacement) from all possible

xtensions of the previous particles plus a context assignment for trial 𝑡

44] . These are sampled proportional to the prior probability of the con-

ext (from the Chinese restaurant process equations conditioned on each

article’s previous context sequence) times the likelihood of the obser-

ations during trial t (which is analytically computable, conditional on

he particle’s previous and proposed current contexts), normalized over

ll particle-context combinations. 

Importantly, conditioning on samples of the context assignments

educes the rest of the model learning problem (inferring the poste-

ior distribution over the per-context feature, initial state, and state

ransition functions) to the same simple form as in previous theories

 17 , 27 , 34 ]. With the context assignments for particle 𝑚 known, the
9 
xact posterior distributions over the per-context observation distribu-

ions each have conjugate Beta or Dirichlet forms. Updating these per-

article/per-context distributions then correspond to the standard pro-

edure of counting the features, states, and state transitions observed

n each context, according to particle 𝑚 ’s sampled context sequence.

or instance, the Bernoulli probability that feature 𝑓 𝑗 = 1 for context 𝑘

n particle 𝑚 is 𝐵𝑒𝑡𝑎 ( 1 + 𝑁 𝑗=1 |𝑘,𝑚 , 1 + 𝑁 𝑗=0 |𝑘,𝑚 ) , where the 𝑁s count fea-

ures observed on each visit to the context, added to the initial pseudo-

ounts from the 𝐵𝑒𝑡𝑎 ( 1 , 1 ) prior. Thus, at the end of each trial, for each

esampled particle, we increment feature and state counts in the context

o which that particle assigned the trial, for the observed features and

tate trajectory. 

ction selection 

Model-based planning involves using the value iteration algorithm

ecursively to compute the expected return for each candidate action in

he current state, 𝑄 ( 𝑠, 𝑎 ) = 𝑟 𝑠 + 𝑃 ( 𝑠 ′|𝑠, 𝑎 ) max 
𝑎 ′

𝑄 ( 𝑠 ′, 𝑎 ′) [48] . This in turn

epends on the learned state transition function 𝑃 ( 𝑠 ′|𝑠, 𝑎 ) . In the usual

single, known context) case, this is usually taken as the mean of the

irichlet posterior distribution, 𝑃 ( 𝑠 ′|𝑠, 𝑎 ) ∝ 1 + 𝑁 𝑠 ′|𝑠,𝑎 , where 𝑁 counts

revious state transitions (and 1, is again, the initial pseudocount from

he prior; e.g., [17] ). 

In the current setting, the same state and action can imply differ-

nt state transition distributions in different contexts; moreover, there

s uncertainty both about which context is currently active and which

ontexts were encountered on previous trials. We again use the ensem-

le of particles to marginalize all these at each choice step during trial

 . The high-level strategy is to compute a state transition function in

xpectation over all this uncertainty by averaging the mean transition

istribution associated with each possible context (as a candidate cur-

ent context) within each particle (as a candidate assignment of previous

rials to contexts), and then further averaging these transition functions

ver particles. Finally, we compute 𝑄 ( 𝑠, 𝑎 ) for each candidate action in

he current state using the resulting net transition function. Note that

his procedure is approximate (for instance, it neglects correlations in

tate encounters over timesteps induced by the latent cause structure).

lso note that although before each trial starts, all particles 𝑚 are equally

ikely under the posterior (and each particle then specifies a prior prob-

bility over contexts 𝑘 ), once context features and states are observed

n a trial, this additional evidence affects the conditional probability of

articles and of contexts within each particle. We thus average contexts

within particles) weighted by their posterior probability, prior times

ikelihood, given the observations (states and features) so far in the trial,

nd similarly importance weight the particles by the associated marginal

ikelihoods of the observations. The agent selects an action softmax in

he 𝑄 values ( 𝑃 ( 𝑎 |𝑠 ) ∝ exp ( 𝛽𝑄 ( 𝑠, 𝑎 ) ) ); a new state is observed and the pro-

ess is repeated (recomputing the importance-weighted marginal tran-

ition function and repeating value iteration for the next choice) until

eaching a terminal state. 
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