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Abstract 
Any adaptive organism faces the choice between taking 
actions with known benefits (exploitation), and sampling new 
actions to check for other, more valuable opportunities 
available (exploration). The latter involves information-
seeking, a drive so fundamental to learning and long-term 
reward that it can reasonably be considered, through evolution 
or development, to have acquired its own value, independent 
of immediate reward. Similarly, behaviors that fail to yield 
information may have come to be associated with aversive 
experiences such as boredom, demotivation, and task 
disengagement. In accord with these suppositions, we propose 
that boredom reflects an adaptive signal for managing the 
exploration-exploitation tradeoff, in the service of optimizing 
information acquisition and long-term reward. We tested 
participants in three experiments, manipulating the 
information content in their immediate task environment, and 
showed that increased perceptions of boredom arise in 
environments in which there is little useful information, and 
that higher boredom correlates with higher exploration. These 
findings are the first step toward a model formalizing the 
relationship between exploration, exploitation and boredom.  
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Introduction 
The complexity and uncertainty of the real world makes 

choosing between behavioral options challenging. We often 
have numerous alternatives from which to choose, and we 
often have incomplete information about many of these. 
When making a choice, therefore, we must often consider 
two competing goals: one is earning as much reward as 
possible, and the other is to gain information about the 
alternatives, that may improve our choices in the future. 
This dilemma is known as the exploration-exploitation 
tradeoff (Cohen, McClure & Yu, 2007) that has been the 
subject of growing investigation.  

Ample evidence has shown that humans and animals 
engage in information-seeking, even at the cost of current 
reward (Behrens et al. 2007; Bromberg-Martin & Hikosaka, 
2009). Theoretical models show that the information 
acquired under these scenarios can improve the computation 
of value estimates, leading to better choices and greater 
reward over the longer term (Wilson et al. 2014). In this 
context, it is worth noting that evidence from the literatures 
on curiosity and creativity suggests that humans and other 
animals find new information valuable even when it is not 
possible to immediately use it to acquire better reward 
(Gottlieb, 2012; Kidd & Hayden 2015), and that this desire 
for information can lead to the disengagement from 
activities that are otherwise rewarding. This type of 

disengagement is a widespread and long-documented 
phenomenon, and has been considered to be an important 
factor in boredom (Csikszentmihalyi, 2000; Eastwood et al., 
2012).  That is, boredom may reflect a bias toward the 
pursuit of behavior that is not immediately rewarding, but 
that may provide information useful for increasing long-
term reward — in other words, exploration. 

 Consistent with this proposition, monotonous, repetitive, 
or insufficiently informative or stimulating tasks increase 
the perception of boredom (Hill & Perkins 1985; Pattyn et 
al. 2008), and they are valued and attended to less 
(Schmidhuber, 1997; Eastwood et al., 2012). Furthermore, 
observed behavioral correlates of boredom seem to suggest 
a link to exploration: boredom has been found to prompt the 
search for new stimulation (Fowler 1967; Meagher & 
Mason 2012), the increased drive to discover new goals and 
resources (Eastwood et al. 2012), and the tendency toward 
innovation and creativity (Bench & Lench 2013).  

Complementing these empirical findings, studies in the 
reinforcement learning and machine learning literatures 
have suggested that boredom might serve an adaptive 
function – for instance by signaling an increased 
opportunity cost of choosing the current option compared to 
other available options (Kurzban et al. 2013), or by ensuring 
that too-well-known (i.e. insufficiently informative) options 
are penalized in value, which can lead to better learning and 
a higher long-term reward rate (Schmidhuber, 1991; Simsek 
& Barto, 2006). While these empirical and theoretical lines 
of work are consistent with the assertion that boredom 
reflects a signal biasing behavior toward exploration, to date 
there has been no direct test of this hypothesis.  Empirical 
work has largely been qualitative and observational (Hill & 
Perkins 1985), while theoretical predictions have not been 
tested in human participants.  

To address this gap in the literature, we conducted three 
experiments that parametrically manipulated the information 
content of participants’ task environment, examined 
perceptions of boredom, choices to engage with the task or 
abandon it in favor of an alternative, and the link between 
self-reported boredom and overall exploration behavior. 
Results showed that varying information content elicited 
correlated changes in boredom, and that people showed 
increased exploration in response to boring (i.e., less 
informative) contexts. We conclude by discussing the 
relationship of our findings to a theoretical model that 
parallels optimal foraging theory (which focuses on 
immediate reward) to formalize the value of information (as 
a proxy for future reward) in explore-exploit decisions.  
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Experiment 1 
This experiment tested for correlations between self-

reports of boredom and the amount of useful information 
that can be gained by continued engagement in the current 
task. Previous theoretical work has suggested that prediction 
error (PE) can be used to measure the amount of useful 
information left to learn in a given task environment 
(Schmidhuber, 1997).  Specifically, it was proposed that 
asymptotically low prediction errors signal that a good 
representation of the task has already been learned, and 
persistently high PEs signal that the task environment is too 
random and errors cannot be reduced. Both cases were 
suggested to cause boredom, and the increased drive to 
disengage and search for more informative alternatives. 
(Schmidhuber, 1990; Luciw et al., 2013).  Accordingly, we 
used change in prediction error as an index of learning and, 
correspondingly, participants' estimates of information 
available in the task environment, 

We found that, in line with theoretical work, people's self-
reported boredom ratings correlated negatively with change 
in prediction errors, consistent with the hypothesis that 
boredom increases as the amount of  information that can be 
gained from the task decreases. When participants played a 
computer game for which they already had all the 
information necessary to perform perfectly (so there was 
nothing left for them to learn), or the outcomes were 
completely random (so there was no task structure to learn), 
they reported being more bored than in a task in which they 
could acquire useful information as they played.  

Methods 
Participants Twenty-five Princeton University 
undergraduates (ages 18 to 22) performed the experiment in 
exchange for course credit.  

 
Task Participants were asked to predict numbers generated 
by a virtual machine (for a similar design, see Nassar et 
al.2010). On each trial, they made their predictions by 
adjusting a vertical slider (the "prediction slider", see fig 
1A) between 0 and 100 to indicate the next value that the 
virtual machine would generate. After they adjusted the 
slider, they pressed the space key to confirm their 
prediction, and the machine generated the number for that 
trial. Games in the task consisted of thirty trials, and 
changes between games were signaled to the participants; 
there were twenty-four games in total, with the session 
lasting approximately one hour.   
    The critical experimental variable was the difference 
between the participants’ prediction and the actual generated 
number, that we refer to as the Prediction Error (PE). 
Participants were rewarded based on these prediction errors: 
the smaller the error (i.e., the closer their prediction was to 
the actual number), the more points they received.  
    The machine generated numbers according to an 
underlying distribution, which differed between conditions. 
In the “Gaussian” condition, numbers were generated from a 
Gaussian distribution with a fixed mean and standard 

deviation; however, each number was not displayed until 
after the participant recorded their guess. In the “Certain” 
condition, numbers were generated from a Gaussian, and 
displayed on the screen before the participant made their 
response. In the “Random” condition, numbers were 
generated uniformly between 0 and 100, but again not 
displayed until after the participant recorded their guess. 
Therefore, the underlying distribution of the number-
generating machine was such that participants had to either 
learn the generative process to gradually reduce their 
prediction error (in the Gaussian condition), they were 
already told the next number and did not need to learn 
anything to make perfect predictions (the Certain condition), 
or the numbers were randomly generated and participants 
could not reduce their prediction error (in the Random 
condition). Participants were also asked to self-report their 
level of boredom on every fourth trial (for a total of ten 
times throughout each game).  They did so by adjusting 
another slider (the "boredom slider") at the bottom of the 
screen (figure 1A). 

Results 
The “Certain” condition elicited the highest boredom ratings 
in all participants (repeated measures ANOVA, F(2, 60) = 
5.03 , p = 0.01). The ratings for the Certain condition were 
consistently higher than for the Gaussian and Random 
conditions in both early trials (first six games) and late trials 
(last six games), as shown in figure 1B, and for the average 
ratings within a game (1C). The Gaussian condition, by 
contrast, was consistently rated as the least boring. The 
Random condition was rated in-between the other two. 

 
Figure 1: A. Task design: participants had to predict the 
next number generated by the virtual machine (the red 
rectangle). They predicted by adjusting the vertical slider to 
the left. They rated their boredom using the horizontal slider 
at the bottom. B, C. Ratings for the Certain condition (no 
useful information content) were significantly higher both 
within a game, and for early and late games. D.  Average 
change in prediction error within a game correlated with the 
average boredom rating for that game.  
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    There was also a significant observed main effect of time 
on boredom ratings: for all three conditions, later ratings 
were significantly higher than earlier ratings, both within a 
game , and across the entire session in early versus late trials 
(figures 2A and 2B, two-way repeated measures ANOVA, 
F(2,18) = 13.39 , p < 0.01).  
    Absolute prediction errors were computed for each game 
(as the absolute value of the difference in participants’ 
prediction from the number generated on each trial), and the 
average change in prediction error for each game was 
computed as the average difference between PEs on 
consecutive trials. These values were then binned for 
changes in PE, and the average boredom ratings 
corresponding to those games were calculated (regardless of 
which condition those games were in – although, as 
explained in the methods, the participants were only able to 
significantly reduce their PE in the Gaussian condition). As 
shown in figure 1D, there was a significant negative 
correlation between the change in prediction error and the 
boredom ratings (𝑅2=0.2613, p < 0.01). 

Discussion 
This first experiment revealed a correlation between the 
information content available in a task (operationalized as 
change in prediction error), and the subjective perception of 
boredom. The results suggest that the amount of information 
that can be learned from a task is linked to how boring the 
task is perceived: the Certain condition – i.e., the one in 
which there was no useful information to be learned by 
performing the task, because all the information was already 
given to participants – elicited the highest boredom ratings 
(fig. 1B). Conversely, the Gaussian condition, in which it 
was possible to improve predictions by learning the 
underlying number-generating distribution, was rated as the 
least boring. This is consistent with previous theories on 
‘too much or too little information’ causing suboptimal 
levels of arousal (Schmidhuber, 1997; de Rijk, Schreurs & 
Bensing 1999), as well as with the notion of “desirable 
difficulty” – i.e., the notion that there is a certain amount of 
effortful information-processing that helps learning and is 
perceived as desirable (Bjork & Bjork, 2011). To our 
knowledge, this is the first direct empirical demonstration of 
a correlation between state boredom and a quantitative 
manipulation of information-content.  

Experiment 2 
This experiment examined the extent of task 

disengagement and exploratory behavior in response to 
information-content. Using the same three conditions that 
elicited differential boredom levels in participants in 
Experiment 1, we modified the number-prediction task to 
allow participants to decide, on their own, whether they 
wished to persist in the current game or quit and move on to 
another game.  This afforded a more direct examination of 
the relationship between information content and 
exploration, and how this traded off against present reward.  

Methods 
Participants Twenty Princeton University undergraduates 
(ages 18 to 22) performed the experiment. They were 
compensated with $12 for their time, plus a performance-
dependent bonus of up to $7.  
 
Task Participants played a variant of the number-prediction 
task used in Experiment 1.  However, in this version, games 
did not have a fixed length. Rather, participants were told 
that a game could go on for up to one hundred trials, but 
they could choose to end it earlier and move on to a new 
game at any time by pressing the “reset” button on the 
screen (figure 2A). If they pressed the “reset” button, they 
would see a brief inter-game screen, and then start a new 
game with a new number-generating process. Participants 
were told that the task would take approximately fifty 
minutes, regardless of how many games they went through 
in that time: the task finished at the end of the current game 
once the fifty-minute time period was up. There was no 
boredom slider in this design.  In all other respects, the tasks 
and conditions (Gaussian, Certain and Random) were the 
same as in Experiment 1. After each game ended (either 
because the participant pressed the “Reset” button, or after 
100 trials), the next game was drawn from one of the three 
conditions with equal probability. 
 

 
Figure 2: A. Variant of the Experiment 1 task. Participants 
could click a ‘Reset’ button to end current game and start a 
new one. B. Participants spent most time in the Gaussian 
games (where information content was most useful), despite 
the fact that the Certain games were the most rewarding. 

Results 
No participants chose to stay in any game for the entire 
duration of one hundred trials; all pressed the “reset” button 
to move on to a new game well before the total number of 
possible trials in the current game had elapsed. There was a 
significant difference, however, in the average number of 
trials spent in a game before choosing to switch (repeated 
measures ANOVA, F(2,69) = 7.04, p < 0.01; fig 2B), with 
most participants spending significantly longer on games in 
the Gaussian condition than in either of the other two 
conditions (F(2,69)=9.22, p<0.01). The difference between 
the Certain and Random conditions was not significant 
(paired t-test, t(23) = -1.29, p = 0.206). Furthermore, the 
probability of switching away after the first trial of a new 
game was significantly higher for the Certain games than 
either of the other two conditions; again, the values for the 
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Certain and Random and Certain conditions were 
statistically indistinguishable (t(23) = 0.11, p = 0.91). 

Discussion 
The results of this experiment suggest that the conditions 

with low information content, and associated with boredom 
in Experiment 1, carry a “penalty.” The three conditions 
elicited a U-shaped curve for quitting times that mirrored 
the curve for boredom in Experiment 1 (figure 2B). This 
behavior is particularly striking for the Certain condition, in 
which the potential for reward was highest (participants had 
access to the correct prediction on every trial). Despite this, 
none of the participants stayed in a Certain game until it 
terminated, choosing instead to switch away from these 
games more frequently than from the other two conditions. 
Thus, participants were willing to take a point loss in order 
to quit the Certain game early. 

This switching behavior resembles exploration – 
foregoing current reward-maximizing behavior in favor of  
options associated with a greater likelihood to gain 
information.  There are at least two ways in which such 
behavior could be viewed as adaptive.  First, it might help 
improve participants' representation of the task 
environment, and thus make better decisions about which 
tasks to perform:  Experiencing more games could lead to 
faster discrimination between the Gaussian and Random 
games, by reducing estimation uncertainty (Payzan-
LeNestour & Bossaerts, 2011). This could help participants 
determine the condition they were in earlier in the game 
which, in turn, would allow them to quit Random games 
earlier — a reward-maximizing strategy. Second, even if 
participants were not consciously trying to improve their 
representation of the task environment, but rather just aimed 
to terminate boring games earlier, it is possible that this 
drive to escape boring situations reflects an endogenous bias 
toward exploration, acquired over the course of evolution 
and/or development.  Such a bias may reflect the prevailing 
value of exploration in the real world which is complex and 
rich in opportunities to gain information.  This is consistent 
with previous work suggesting that humans and animals 
show an inherent aversion to low-stimulation, information-
poor tasks (Fowler, 1965). Experiment 3 was conducted to 
further explore this possibility and, in particular, the idea 
that boredom, exploration and the value of information are 
sensitive to the alternatives available in the environment. 

Experiment 3 
This experiment examined whether boredom and 

exploration are dependent not only on the information 
content of the current task, but also on the (perceived) 
alternatives in the task environment.  This builds on prior 
suggestions that engagement in a current task engagement is 
sensitive to global properties of the environment (Fowler 
1967; Csikzentymihalyi 1997), and that motivation and 
boredom are associated with the opportunity cost of current 
behavior compared to alternative possible behaviors 
(Eastwood et al. 2012; Kurzban et al. 2013). However, to 

our knowledge, these ideas have not yet been tested in 
controlled laboratory experiments.. 

Here, we tested whether it was possible to change 
people’s perceptions of boredom by manipulating the 
availability of other more or less attractive options in the 
task environment, and the extent to which this impacted 
exploratory behavior.  

Methods 
Participants Forty participants recruited from the Princeton 
University undergraduate community received course credit 
for participating in this experiment. 
Task Participants played a task that consisted of two parts 
(referred to as part A and part B, figure 3A), played in order. 
They were told at the beginning of the experiment about 
both parts, and what each part would entail. They were also 
regularly reminded about part B while playing part A (they 
received three reminders, every five minutes, for the twenty-
minute duration of part A).  
    Part A involved a two-armed bandit horizon task used in 
previous work to quantify exploratory behavior (Wilson et 
al., 2014). Participants had to choose between an ambiguous 
bandit (from which they had seen only one reward sample), 
and an unambiguous bandit (from which they had seen three 
reward samples). The decision horizon of the task was 
manipulated to be either short (a total of five trials: four 
forced-choice trials during which participants received three 
samples from one bandit, and one sample from the other, 
and one free-choice trial in which they could choose 
whichever bandit they wished), or long (a total of ten trials: 
four force-choice, six free-choice trials).  This task can be 
used to quantify exploratory behavior (defined as the 
frequency with which the ambiguous option is chosen when 
its estimated value falls below that of the unambiguous 
option), and has shown that such behavior increases with 
task horizon.  Every seven games, participants received a 
query screen that asked them to assess task-related factors 
such as difficulty, the average number of points they earned, 
or how many games they have played so far. Among these 
questions, there were regular queries about their level of 
interest in the game, which they were asked to rate a total of 
six times over the course of the task. Part A was the same 
for all participants, and lasted for a total of seventy-two 
games and approximately twenty minutes.    
    Part B differed between participants. There were four 
conditions, each involving one of a set of tasks that had 
been previously rated by a different sample of participants 
in a brief interest-rating study. As noted above, participants 
were instructed from the start that they would be performing 
Part B after Part A was finished, and they were reminded 
about it three times during part A. Each participant was 
randomly assigned to one of the four conditions, as follows: 
10 participants watched a “CrashCourse” YouTube video 
(previously rated as a highly interesting task); 10 
participants counted the number of words in a two-page 
mathematical typography article (a task previously rated as 
highly boring); 11 participants played a simple color-
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matching game (previously rated at medium levels of 
interestingness), and 9 participants played another round of 
a bandit task very similar to the one played in part A.  

 

Figure 3. A. Participants played 20 minutes of the two-
armed bandit horizon task (Wilson et al., 2014), followed by 
a break, and 20 minutes of Task B. B. Choice curves for the 
short horizon (black) and long horizon games (red)show 
more exploration in long horizon. C. People’s ratings of 
how boring Task A was differed depending on which Task 
B they had to perform. D. Higher boredom ratings led to 
more exploratory behavior in the long horizon.  

Results 
Participants rated the interestingness of the bandit task 
(played by all participants during part A) differently, 
depending on the task they were told they would play during 
part B:   the YouTube video (rated as highly interesting), the 
word-counting task (highly boring ), or one of the control 
tasks (intermediate ratings). A one-way ANOVA showed a 
significant main effect of condition (F(2,26) = 9.07 , p < 
0.01 ), with participants who expected to watch the video (in 
part B) rating the bandit task (while performing it during 
part A) as more boring than those participants who expected 
to perform the word-counting task (paired t-test, t(1,15) = 
5.21, p < 0.01). The ratings for the two controls fell in an 
intermediate range (fig 3C).  
    Exploration in the bandit task was defined as choosing 
the ambiguous bandit. Participants replicated the results 
from previous studies (Wilson et al., 2014) regarding the 
impact of decision horizon on exploration: the decision 
curve for the long horizon (fig. 3B, red) is flatter and shifted 
to the right compared to the curve for the short horizon 
(black), suggesting higher exploration for long horizons, 
both in the form of decision noise and of information bonus.  
    Average exploration within each correlated significantly 
with participants’ ratings of the task: the higher the boredom 
rating, the more likely participants were to explore (figure 
3D). This pattern was only observed in the long decision 
horizon, and not in the short horizon (F (1,33) = 6.01, p = 
0.02 for Horizon 6, F(1,33) = 1.88, p = 0.17 for Horizon 1), 
and it was observed for estimates of both exploration-related 
parameters: decision noise and information bonus (which 

were both significantly higher in the long horizon with high 
boredom ratings). 

Discussion 
Experiment 3 showed that it was possible to manipulate 
participants’ perceptions of boredom and bias toward 
exploration within a given task, based on a manipulation of 
the task environment (in this case, the next task to be 
performed). All participants played the same bandit task for 
the same period of time, but those participants who had been 
told they would perform an interesting task (watch a 
YouTube video) after finishing the bandit task, rated the 
bandit task as significantly more boring than those who had 
been told that they would have to perform a boring task  
(word-counting; figure 3C). This is consistent with previous 
findings regarding the effect of increased available 
stimulation on relative motivation (Fowler, 1967), as well as 
the theoretical framework proposed recently by Kurzban et 
al (2013) that relates boredom to perceived opportunity cost.  

A second result was the strong correlation between 
participants’ boredom and their exploratory behavior in the 
two-armed bandit horizon task: participants who rated the 
bandit task as more boring also showed significantly higher 
exploration (fig 3E). Increased exploration in response to a 
boring situation has previously been suggested in the 
literature (Cohen, McClure & Yu 2007), but this is the first 
report of an empiricaclly measured correlation between self-
reported boredom and a quantitative measure of exploration.  

Interestingly, Task B’s identity is, by design, irrelevant to 
the value of exploration within the bandit task (since Task B 
only occurs after it is over), but nevertheless affected it. 
This suggests the perceived value of alternatives is a 
globally estimated quantity that generalizes freely and 
potentially inappropriately to particular, more constrained 
choices, much as has been suggested for opportunity costs 
in other domains (Niv et al., 2007).  

General Discussion: An Information-Sampling 
Account of Boredom and Exploration 

    The results of the three experiments described above 
provide convergent support for a relationship between   
information context, boredom, and exploration.  We showed 
that levels of reported boredom correlate with the amount of 
useful information that participants can extract from the 
environment, such that when there is too much or too little 
available information, they become more bored (Experiment 
1). We also showed that perceptions of boredom can be 
modulated based on the environment in which the task is 
performed (Experiment 3). This strongly suggests that when 
people compute the value of staying with the current 
behavior, they take into account some measure of relative 
value between the local and global environments. Lastly, we 
showed that when boredom levels are high (due to low 
information content), people show a greater propensity to 
switch away from the current task – both in situations when 
that may be useful (Experiment 3), and even when it would 
appear to be suboptimal (Experiment 2).  
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These findings suggest two factors contribute to boredom 
and the tendency to switch behavior: a lack of useful 
information in the current task, and the availability of more 
(valuable) information outside the current task. This is 
consistent with both previous theoretical work linking 
boredom to too much or too little available information 
(Schmidhuber, 1997; Csikszentmihalyi, 2000), and with 
more recent accounts that suggest that boredom might signal 
an increased opportunity cost of performing the current task 
(Kurzban et al, 2013). Our results are also consistent with 
the idea that humans need constant access to a certain 
amount of information in order to maintain a satisfactory 
level of adaptive behavior (Zakay 2014), and that that 
information comes in the form of optimal levels of 
variability in the environment (Kidd et al., 2012). 

The work presented here provides an important first step 
toward formalizing the link between information, boredom 
and exploration. Our treatment of exploration — as the 
decision to switch away from a current task with the specific 
goal of acquiring more information — parallels the formal 
theoretical treatment of foraging behavior, in the marginal 
value theorem (MVT; Charnov, 1976), as the decision to 
switch away from a current task with the specific goal of 
acquiring greater reward.  In related work, we have sought 
to formalize this definition of exploration in a model that 
relates it to information acquisition in a way that parallels 
the definition of foraging for reward in MVT, and to test 
this model in  an empirical study.  In aggregate, this line of 
work promises to offer a normative understanding of human 
exploratory behavior and, within this framework, to cast 
boredom as an adaptive response to situations that should 
favor exploration in the service of learning, and the 
maximization of long-term reward.  
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