
Context-sensitive valuation and learning
Lindsay E Hunter and Nathaniel D Daw

Available online at www.sciencedirect.com

ScienceDirect
A variety of behavioral and neural phenomena suggest that

organisms evaluate outcomes not on an absolute utility scale,

but relative to some dynamic and context-sensitive reference

or scale. Sometimes, as in foraging tasks, this results in

sensible choices; in other situations, like choosing between

options learned in different contexts, irrational choices can

result. We argue that what unites and demystifies these various

phenomena is that the brain’s goal is not assessing utility as an

end in itself, but rather comparing different options to choose

the better one. In the presence of uncertainty, noise, or costly

computation, adjusting options to the context can produce

more accurate choices.
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Introduction
A standard starting point for theories of decision-mak-

ing — whether in biology, psychology, economics, or

computer science — is that the agent chooses options

that maximize some objective function, such as expected

utility or discounted future reward. However, a range of

phenomena, both behavioral and neural, highlight a

feature of choice that can seem paradoxical from this

decision-theoretic perspective: Options appear to be eval-

uated not in absolute terms but instead relative to some

shifting and context-dependent baseline. This can lead to

inconsistent and even irrational choices in some situa-

tions. Here we review a range of such phenomena of

reference-dependent evaluation, choice, and learning,

which have not always been seen as connected. We argue

that a common theme underlying and demystifying them

is that the organism’s goal is not to compute values, as an

end in itself, but instead to compare them so as to choose

the action that has the highest value [1��]. The goal of

ultimately producing choices motivates an emphasis on
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learning, storing, and computing comparative decision

variables.

Foraging and marginal value
Ironically, one scenario in which the comparative nature

of the decision variable is most widely recognized is when

the alternatives for comparison are not known at choice

time. Classic foraging theory [2], which has recently been

revisited in neuroscience [3–6], considers tasks in which

options are encountered serially and must be processed or

rejected before discovering the next. This holds, for

instance, for a predator deciding whether to chase some

prey or forego it to seek another, or a foraging animal

deciding when to leave a deplenished food patch to

search for a replenished one. In these cases, it can be

shown that optimal choice implies assessing options not in

terms of their absolute value, but by their marginal value
relative to the expectation over other possible options

[7,2]. In particular, although specific alternatives are not

known at choice time, their average value corresponds to

the long-run or steady-state reward in the environment,

which can then be compared to the current option to

decide whether to accept it. This leads to many predic-

tions about the context-sensitivity of choices in foraging:

in essence, that organisms should be pickier in rich

environments and more promiscuous when rewards are

sparse [8,2] (Figure 1a). Moreover, at a computational and

neural level, these considerations emphasize tracking the

long-run average reward, r, as a key decision variable, and

in turn directly learning and representing the value of

foreground options not in absolute terms, r, but in the

relative terms that ultimately matter for choice, for exam-

ple, as r � r [3,4].

Here, the average reward r can also be understood as the

opportunity cost of the time that would be spent processing

or consuming some available option — that is, the

expected potential reward that would be foregone — so

that the option’s marginal value (r � r, net of opportunity

cost) determines whether this is worthwhile [7]. Interest-

ingly, this same logic of opportunity cost, and the same

contextual average reward variable r for assessing it,

reappears in theoretical accounts of many other situations

in decision neuroscience involving speed-accuracy trade-

offs or cost of time. For instance, r has been argued to

govern action vigor [9–12], intertemporal choice [13–15],

planning versus acting [16,17��], chunking of sequential

actions [18], cognitive effort [19–21], and the evidence

threshold for perceptual decisions [22,21].

These parallels in turn suggest a potential shared decision

variable r and shared neural mechanism for opportunity
www.sciencedirect.com
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Figure 1

(a) (b) (c)
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Context-sensitive effects. (a) A foraging owl might reject relatively scrawny prey (squirrel) in a rich environment where rabbits are often available,

but accept the same option in a poorer one. (b) People learn by trial and error to choose between options rewarded noisily with different expected

value (EV, not shown to participants). People who learn that option C (a small loss in expectation) is preferred in its training context will sometimes

choose it, in later probes, over an objectively better option (B, a small expected gain) which had been the worse option in its respective training

context. (c) Because nominal gains have diminishing marginal utility and nominal losses have diminishing marginal dysutility, preference can shift

between risk averse and risk seeking when the same outcomes are framed (relative to a different reference) as gains versus losses.
cost tracking and contextual comparison across these

different settings. One hypothesis is that r may be

tracked by the average (e.g. tonic) level of the neuromo-

dulator dopamine [9]. This turns out to be implied ‘for

free’ by standard computational models that famously

associate phasic dopamine spiking with the temporal-

difference reward prediction error [23,24]. Mathemati-

cally, the long-term average of the prediction error signal

equals r; thus if phasic dopamine signals prediction error,

a slow time-average of this signal (e.g. net extracellular

concentrations in striatum due to overflow and gradual

reuptake) would carry r [25]. Because the speed of

movement should be determined by the opportunity cost

r, this observation may explain dopamine’s involvement

in movement invigoration [9,11]. Recent work has also

tested the suggestion that this same mechanism supports

contextual evaluation and choice in patch foraging tasks;

indeed, dopaminergic depletion and replacement in

Parkinson’s disease [5], and dopaminergic drugs in

healthy participants [26], all modulate people’s willing-

ness to leave deplenished patches.

Relative value in simultaneous choice
Context-relative effects on valuation may seem more

puzzling in more traditional decision tasks in which all

options are available simultaneously, for example, select-

ing from a menu or trial-and-error learning about which of

several options is most rewarding in ‘bandit’ problems. A

standard theoretical view is that subjects should choose

the action a that maximizes the expected value (over

outcomes o), Q(a) =
P

oP(o j a)r(o). In experiential
www.sciencedirect.com 
learning tasks, Q(a) can, in turn, be estimated incremen-

tally from received outcomes, by error-driven updates as

in temporal-difference learning.

A key implication of this approach is that the expected

value Q(a) for each option a is independent of the other

options in the choice set, so this model predicts that,

following learning, it should be possible to correctly

choose between novel pairs of options first encountered

in separate contexts, by comparing their Q. Instead, a

series of elegant studies by Palminteri and colleagues has

shown that people sometimes are biased to evaluate

options relative to their training context [27]. For

instance, they may choose an option that was better than

its alternatives during training, over one that was the

worst in its own training set, even if the latter option

dominates in absolute terms (Figure 1b). A similar depen-

dence of later choices on the initial training contexts has

been reported in animals such as starlings [28,29].

Results of this sort suggest that the decision variable, Q, is

learned in context-relative rather than absolute units.

Suggestively, Palminteri et al.’s original results can be

explained by Q learning, but over relativized outcome

values, for example, r � r, where r is again a context-

dependent average [27]. In addition to explaining irratio-

nal choices on later probes, the dynamics by which r is

estimated (and Q learned relative to it) over the course of

initial training has further, subtler effects. For instance,

small monetary losses may look disappointing at first

(driving lose-shift behavior), but better than average
Current Opinion in Behavioral Sciences 2021, 41:122–127
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(win-stay) later. In this way, a dynamic reference can

drive changing engagement of approach and avoidance

behaviors and associated neural circuits [30,31], affecting

overall tendencies to perseverate or switch in choices [32],

and even driving changes in response times due to

Pavlovian ‘congruency’ biases between action versus

inaction and reward versus punishment [33,34].

Although this baseline-relative coding leads to irrational

choice on some transfer problems, it can be harmless or

even advantageous in the original bandit setting, because

the scale of value is underdetermined. Although AI

applications and associated algorithms typically start with

a well-defined objective function (e.g. points in a video

game [35]), fitness for a biological organism is harder to

quantify, even, presumably, for the organism itself [1��].
It is true that weighing different outcomes on a ‘common

currency’ scale facilitates comparing between them, and

indeed this is deeply related to core features of rational

choice such as transitivity [36]. The notion of common

currency or cardinal utility has also been linked to value-

related signals in the brain, which scale with preference

across many different types of appetitive outcomes [37].

However, preference is ordinal: it has no objective units,

so any monotonic transformation of the decision variable

Q (like subtracting r or indeed any constant) will preserve

the same optimizing action. For a number of reasons,

which we discuss next, dynamically adjusting this scale

may facilitate efficient choice locally, at the expense of

producing decision variables that are incommenserable

with those learned in other contexts (Figure 1b).

First, in the foraging scenario discussed in the previous

section, r is a proxy for the value of alternatives that have

not yet been encountered. Even in a nominally simulta-

neous choice scenario like choice among bandits or

selecting from a menu, it may also proxy for other

options — for example, those whose values have not

yet been computed. Subjects may covertly approach even

such tasks by contemplating options serially rather than

by direct comparison. In this case, a default option (e.g.

sticking with the same option you chose on the previous

trial) may be accepted or rejected by comparing it to a

reference value, like r, rather than, or before, considering

the actual alternatives [38]. Especially when there are

many possibilities, it can save computation to stage choice

in this way (as has been pointed out also in other tasks like

serial hypothesis testing [39,40]). Eye-tracking data from

humans [41] and unit recording data from primates [42]

hint at this type of serial contemplation of options, as do

correlates in fMRI of value relative to a default option

[38].

Considerations about efficient learning also motivate rel-

ativized evaluation. If the goal is choosing the best option

(at least within a fixed choice set/context), then learning

individual action values is, strictly speaking, overkill:
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when there are two alternatives, for instance, it suffices

to estimate the difference Q(a1) � Q(a2), or even just its

sign [43]. Considerations like this motivate a different

approach to the reinforcement learning problem in AI,

known as policy gradient methods. Methods like Q-

learning learn to minimize the difference between each

predicted Q and the observed cardinal rs, and then

compare the learned predictions in a subsequent choice

step. Policy gradient methods instead take learning steps

to tune unitless choice preference variables to direct

choices toward options maximizing expected reward

without representing their absolute values directly. This

in effect combines the learning and comparison steps, and

can be accomplished using sampled outcomes to estimate

the gradient of obtained reward. Such algorithms include

the actor-critic [23,44] and its special case for bandit tasks,

called REINFORCE [45]. The stochastic gradient esti-

mate, like the Q values, allows for an arbitrary additive

constant. Here again (because each option’s outcomes are

typically sampled separately but the direction of improve-

ment depends on comparing them), the efficiency (i.e.

variance) of the estimated gradient is improved by mean-

correcting obtained rewards to r � r. A disadvantage of

this approach, of course, is that the learned policies are not

directly transferable to other tasks.

Efficient coding of decision variables
Another, related, reason that decision variables may be

context-dependent is efficient neural coding. A standard

information-theoretic analysis implies that the neural

code, treated as a capacity-limited channel (quantized

by spikes), should be adapted to the distribution of the

variable being represented [46].

This classic idea is well-studied for perceptual variables

(e.g. luminance or motion speed [47], motion aftereffects

and the like), but in principle should apply equally to

more abstract quantities like action values Q [48]. Here

again, if the goal is to find the action a maximizing Q
(a) — but using a noisy spike code — then this may be

accomplished with better accuracy over an adapted trans-

formation of Q(a) that preserves the ordering over actions

while reducing error or noise from quantization

[49��,50��]. Accordingly, much research on neural corre-

lates of action value (e.g. in eye control regions such as

lateral intraparietal area LIP) has shown that the response

for some option a is modulated not only by Q(a) but also

affected by the values of rewards concurrently offered at

other options a0 [51].

Furthermore, if the neural code for some decision variable

is noisy, then its readout for the purpose of guiding choice

should (by standard Bayesian considerations) be adjusted

toward its a priori distribution. This implies an additional

reason why choices should be biased by the statistics of

decision variables in the current context: these, in effect,

determine the prior. A series of models and experiments
www.sciencedirect.com
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shows that these corrections, when applied to predecessor

quantities of Q (e.g. reward magnitudes and probabilities)

lead to nonlinear subjective distortions in these quanti-

ties, which ultimately can explain a number of classic

behavioral economic choice anomalies, including a fur-

ther set of effects (such as ‘framing effects’; Figure 1c)

involving reference sensitivity of attitudes toward risk,

gain, and loss [50��,52,53].

There are some differences in emphasis between the

literature on foraging and learning discussed previously,

and that on efficient neural coding of decision variables.

First, motivated especially by foraging, we have stressed

how reference sensitivity is justified by comparison and

choice. This ultimate objective is less routinely stressed

in applications of efficient coding to decision variables

(though see, e.g. [54,49��,50��]), since broadly similar

adaptation is already justified by the more proximal

objective of coding even a single action’s value accu-

rately. Even in this simplified case, efficient coding

implies adjusting the distribution of responses to the

distribution of decision variables in the context. In gen-

eral, this involves both shifting (e.g. mean correction, as

discussed before) and also scaling (e.g. adjusting the gain

of neural responses to the range of the represented

variable). Research in neural coding has mostly empha-

sized rescaling, for example, divisive normalization and

range adaptation, whereas work on foraging and learning

has stressed subtractive shifts. In fact, rescaling extends to

the learning case as well: parallel effects of the range (in

addition to the mean) of outcomes during training have

recently been shown on transfer pairings in a version of

the Palminteri task, and are captured by a more general

scale-shift adaptation model [55��].

Also, whereas the behavioral signatures of relativized

values we discussed previously concerned effects, via

learning, on subsequent transfer choices, divisive normal-

ization models connect these phenomena to a further

class of context-dependent anomalies in choices them-

selves [56,57]. In addition to framing, these include

phenomena like decoy effects, in which preference

between two options can change depending which other

options are also offered. Many effects of this sort can be

explained by gain control [58]. Further, as in the cases of

foraging and learning, where the reference point is

dynamically learned for an environment or context, neu-

ral adaptation and many of the associated behavioral

anomalies can depend not just on the immediate choice

set (the ‘spatial context’), but also or instead on the

temporal context, for example, the recent history of

options encountered [59–61].

Conclusion
We have reviewed a range of phenomena that suggest

that the brain represents and learns decision variables

not in absolute units, but instead relative to the context.
www.sciencedirect.com 
While this can produce irrational choices in some situa-

tions, especially when switching between contexts, we

have argued that it is nevertheless well motivated by a

number of considerations related to efficient choice and

learning within a context. Many of these considerations

relate to the fact that choice ultimately depends not on

an option’s absolute reward, but instead on its reward

relative to other available alternatives, and this set of

alternatives is context-dependent. Learning options’

values relative to one another can be seen as a computa-

tional short cut, facilitating later choice by pre-comput-

ing the comparisons. Such a strategy (and the errors it

can cause) can then be seen as analogous to other

phenomena of habits, which have been argued to result

from storing the endpoints of decision computations,

leading to context-inappropriate slips of action in later

probes [62,16].

Indeed, like habits, reference-relative learning and choice

is neither universal nor complete. The brain may also

employ absolute values, at least some of the time. In the

case of habits, but less so as yet for context-relative

learning, this interpretation has led to further work on

rational cost-benefit control of when to employ these

approximations, versus more accurate goal-directed or

model-based choice [62,16]. For neural adaptation, there

has been a similar recent interest in rational control of the

degree of noise in neural coding — if spikes are metabol-

ically costly, for instance, how many should be used to

code decisions in a particular context [54,52,49��]? A

further question left open by this work, which would also

admit of rational analysis, is what constitutes a ‘context.’

These methods can work well to the extent the brain

manages to carve the space of tasks and situations up into

discrete units and choose efficiently within them, while

avoiding mistakes resulting from choosing between

options from different contexts. Accordingly, these choice

anomalies and reference dependencies are deeply tied up

with a seemingly different set of theoretical and experi-

mental issues, concerning how the brain partitions the

world into distinct states or ‘latent causes’ for the purpose

of learning and generalization [63–66].

Finally, while we have stressed learning a context’s

value mainly so as to adjust for and ignore it when

choosing within that context, the analogy with states

also points to an equally important (and actually more

widely appreciated) flipside to this logic. At another

hierarchical level of analysis, states (i.e. contexts) are

encountered sequentially, and much work in both AI and

biological decisions ultimately turns on choosing over

these multi-step trajectories — choosing, in part, over

future states — so as to maximize long-term reward.

Here, in algorithms such as the actor-critic, state values

also appear, but no longer as a nuisance. Instead, they

play a more positive role in guiding the organism toward

richer contexts [23,24,62].
Current Opinion in Behavioral Sciences 2021, 41:122–127
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