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Abstract 

In patch foraging tasks, animals must decide whether to remain with a depleting 

resource or to leave it in search of a potentially better source of reward. In such tasks, 

animals consistently follow the general predictions of optimal foraging theory (the 

Marginal Value Theorem; MVT): to leave a patch when the reward rate in the current 

patch depletes to the average reward rate across patches. Prior studies implicate an 

important role for the anterior cingulate cortex (ACC) in foraging decisions based on 

MVT: within single trials, ACC activity increases immediately preceding foraging 

decisions, and across trials, these dynamics are modulated as the value of staying in 

the patch depletes to the average reward rate. Here, we test whether these activity 

patterns reflect dynamic encoding of decision-variables and whether these signals are 

directly involved in decision-making or serve a more general function such as 

monitoring task performance or allocating cognitive control. We developed a leaky 

accumulator model based on the MVT that generates estimates of decision variables 

within and across trials, and tested model predictions against ACC activity recorded 

from rats performing a patch foraging task. Model predicted changes in MVT decision 

variables closely matched rat ACC activity. Next, we pharmacologically inactivated ACC 

to test the contribution of these signals to decision-making. Despite ACC inactivation, 

rats still followed the MVT decision rule, suggesting that foraging decision variables 

represented in the ACC are used for a more general function such as regulating 

cognitive control or motivation. 

Keywords: Foraging, Decision-Making, Anterior Cingulate Cortex 
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Significance 

The ability to make adaptive patch-foraging decisions – to remain with a 

depleting resource or search for better alternatives – is critical to animal well-being. 

Previous studies have found that anterior cingulate cortex (ACC) activity is modulated at 

different points in the foraging decision process, raising questions about whether the 

ACC guides ongoing decisions or serves a more general purpose of regulating cognitive 

control. To investigate the function of the ACC in foraging, the present study developed 

a dynamic model of behavior and neural activity, and tested model predictions using 

recordings and inactivation of ACC. Findings revealed that ACC continuously signals 

decision variables but that these signals are more likely used to regulate cognitive 

control than to guide ongoing decisions.  
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Introduction 

Animals frequently encounter patch-foraging decisions; that is, decisions about 

whether to persist in harvesting a depleting resource within a patch, or to leave the 

patch, incurring a cost of time and effort, in search of a potentially better resource. The 

ability to make adaptive foraging decisions – choosing the appropriate time to leave a 

patch in order to maximize rewards or resources over time – is a critical skill. The 

mathematically optimal behavior in patch foraging tasks, described by the Marginal 

Value Theorem (MVT: Charnov, 1976), is to leave a patch when the local reward rate 

(the reward rate offered by the current patch) depletes below the level of the global 

reward rate (the average reward rate across all patches visited in the environment). 

Although animals sometimes deviate quantitatively from the predictions of this theory 

(Nonacs, 2001; Wikenheiser et al., 2013; Kane et al., 2019), behavior is generally 

qualitatively consistent with the idea that decisions are based on maximizing overall 

rewards by comparing estimates of the local reward rate with estimates of the global 

reward rate (Hayden et al., 2011; Constantino and Daw, 2015; Hayden, 2018). 

Previous research into the neural mechanisms of foraging decisions has focused 

on the role of the anterior cingulate cortex (ACC). ACC activity is greater when the 

current offer of reward is more similar to the average of alternative options in foraging 

tasks (Hayden et al., 2011; Kolling et al., 2012; Shenhav et al., 2014). Single-unit 

recordings of ACC neurons in monkeys have also revealed that ACC neurons exhibit 

transient increases in activity around the time of foraging decisions (Hayden et al., 2011; 

Blanchard and Hayden, 2014), suggesting that the ACC plays a critical role in guiding 

foraging decisions. 
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The ACC has also been proposed to play an important role in cognitive control. 

Behaviors that require control (e.g. inhibition of an automatic response or choosing 

among strong competing inputs to achieve a goal) engage the ACC (Botvinick et al., 

2001; Shenhav et al., 2013). The engagement of ACC in control-demanding tasks has 

been used to explain its dynamics during foraging decisions: in foraging tasks, as the 

local reward rate depletes to the level of the global reward rate, more cognitive control is 

needed to either i) override the default (automatic) response of staying in the patch to 

choose the non-default option of leaving the patch in search of better future 

opportunities (Kolling et al., 2012, 2016), or ii) to choose between two options with 

increasingly similar values, which, according to the MVT, are the most similar at the 

optimal time to leave the patch (Shenhav et al., 2014, 2016a, 2016b). Consistent with 

this interpretation, trial-by-trial changes in ACC activity in foraging tasks correlates with 

choice difficulty, a metric that is important for allocating cognitive control (Shenhav et al., 

2014, 2016b). However, it is unclear whether encoding of metrics important cognitive 

control can explain within-trial dynamics of ACC activity. 

In the present study, we tested whether within trial dynamics of ACC activity (e.g., 

transient increases around the time of foraging decisions) reflected continuous encoding 

of variables that are important for cognitive control, such as choice difficulty, or whether 

these dynamics guided ongoing foraging decisions. We developed an evidence 

accumulation model of foraging decision making, similar to Davidson and El Hady 

(2019), to i) compare changes in ACC activity to moment-by-moment changes in MVT-

derived decision variables, such as the local reward rate, global reward rate, and choice 

difficulty, and ii) examine which components of the foraging decision process were 
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affected by ACC inactivation. We report two key findings: changes in ACC activity within 

and across trials closely matched moment-by-moment changes in MVT-derived decision 

variables, and despite inactivation of ACC, rats retained sensitivity to foraging-related 

information (i.e. rats still followed the MVT decision rule). 

 

Materials and Methods 

Animals 

Adult, male Long-Evans rats (Charles River, Kingston, NY; n = 22) were used. 

Rats were housed on a reverse 12 h/12 h light/dark cycle (lights off at 8 a.m.). All testing 

was conducted during the dark period. Throughout behavioral testing, rats were food 

restricted to maintain a weight of 85% to 90% ad- lib feeding weight and were given ad-

lib access to water. All procedures were approved by the Rutgers University Institutional 

Animal Care and Use Committee. 

Foraging Task 

The task was implemented using Med Associates operant conditioning 

chambers. Animals were trained and tested as in Kane et al. (2017) and Kane et al. 

(2019). Rats were first trained to lever press for 10% sucrose water on a fixed ratio 

(FR1) reinforcement schedule. Once exhibiting 100+ lever presses in a one-hour 

session, rats were trained on a sudden patch depletion paradigm — the lever stopped 

yielding reward after 4–12 lever presses — and rats learned to nose poke to reset the 

lever. Next rats were tested on the full foraging task. 
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A diagram of the foraging task is shown in Figure 1A. On a series of trials, rats 

had to repeatedly decide to lever press to harvest reward from the patch or to nose 

poke to travel to a new, full patch, incurring the cost of a time delay. At the start of each 

Figure 1. A) Operant chamber diagram of the foraging task. On trial n, the rat chose to 

press the lever to harvest from the patch, then received reward in the reward magazine 

in the center of the chamber. After an ITI (7 s), the rat chose to press the same lever on 

trial n+1 to harvest a smaller volume of reward. On trial n+2, the rat chose to nose poke 

in the back of the chamber, initiating a “travel time” delay (10 s), after which, the rat 

could continue to harvest in a replenished patch by pressing the lever on the other side 

of the chamber (trial n+3). B) Reward depletion curves for each of the 9 patch starting 

reward volumes. Colors indicate whether the patch was a subjective low, medium, or 

high reward patch, for consistency with further analyses. 
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trial, a cue light above the lever and inside the nose poke turned on, indicating rats 

could now make a decision. The time from cues turning on until rats pressed a lever or 

used the nose poke was recorded as the decision time (DT). A decision to harvest from 

the patch (lever press) yielded reward (10% sucrose water) as soon as the rat entered 

the reward magazine. The next trial began after a 7 s inter-trial interval (ITI). With each 

consecutive harvest, rats received a smaller (exponentially diminished) volume of 

reward to simulate depletion from the patch. A nose poke to leave the patch caused the 

lever to retract for a delay of 10 s simulating the time to travel to a new patch. After the 

delay, the other lever extended, and rats could harvest from that now replenished patch. 

Replenished patches started with varying amounts of reward, depleting via the same 

exponential decay function (e.g., if the rat received 90 uL on one trial, they would 

receive 80 uL on the next trial regardless of the patch starting reward; Figure 1B). Rats 

were trained until they exhibited stable behavior across at least 3 days before testing 

sessions. 

 

Leaky Competing Accumulator Model 

The model of the foraging task had two layers. The first layer, termed the value 

layer, consisted of two leaky accumulator units: one encoded the value of staying in the 

patch as the local reward rate and the other encoded the value of leaving the patch as 

the global reward rate. Importantly, these units were not in competition with one another 

(no mutual inhibition between them). The second layer, termed the decision layer, was a 

two-unit leaky competing accumulator layer (LCA; Usher and McClelland, 2001). The 

two units in this layer accumulated input from the value of staying and value of leaving 
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units in the value layer, respectively. Additionally, there was mutual inhibition between 

these units. Decisions to stay vs. leave the patch on each trial were made when the 

activity of one of the decision units crossed a pre-defined threshold. 

The value layer estimated the local reward rate (𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒) and the global reward 

rate unit (𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒) by integrating reward input,  𝑟, at different timescales: 𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒 

integrated rewards quickly but decayed quickly, and 𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒 integrated rewards 

slowly but decayed slowly. The change in 𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒 and 𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒 over time were: 

𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒ሶ = −𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒 + 𝑤𝑟,𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒 ∗ 𝑟 + 𝑤𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒,𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒 ∗ 𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒 + ϵ𝑟𝑎𝑡𝑒  

𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒ሶ = −𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒 + 𝑤𝑟,𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒 ∗ 𝑟 + 𝑤𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒,𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒 ∗ 𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒 + ϵ𝑟𝑎𝑡𝑒, 

where 𝑤𝑥1 ,𝑥2
indicates the weight between units 𝑥1 and 𝑥2 and 𝜖𝑟𝑎𝑡𝑒~𝒩ሺ0, 𝜎𝑟𝑎𝑡𝑒

2 ሻ. 

𝑤ሼ𝑟,𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒ሻ = 1 for all simulations. 𝑤𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒,𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒 , 𝑤𝑟,𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒 , 𝑤𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒,𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒, 

and 𝜎𝑟𝑎𝑡𝑒 were all free parameters (the noise terms for both value layer units had the 

same variance). 

The 𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒 and 𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒 units in the value layer units were inputs to 

respective units in the the decision layer, 𝑠𝑡𝑎𝑦𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑙𝑒𝑎𝑣𝑒𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛. During the 

decision period –– between the start of the trial and the execution of the lever press or 

nose poke –– decision layer units integrated input from the value layer. The activity of 

the decision units was: 

𝑠𝑡𝑎𝑦𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛ሶ = −𝑠𝑡𝑎𝑦𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠 ∗ 𝑤𝑑−𝑖𝑛𝑝𝑢𝑡 ∗ 𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒 + 𝑤𝑑−𝑟𝑒𝑐 ∗ 𝑠𝑡𝑎𝑦𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+ 𝑤𝑑−𝑐𝑜𝑚𝑝 ∗ 𝑙𝑒𝑎𝑣𝑒𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + ϵ𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛  

𝑙𝑒𝑎𝑣𝑒𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛ሶ

= −𝑙𝑒𝑎𝑣𝑒𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠 ∗ 𝑤𝑑−𝑖𝑛𝑝𝑢𝑡 ∗ 𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒 + 𝑤𝑑−𝑟𝑒𝑐 ∗ 𝑙𝑒𝑎𝑣𝑒𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+ 𝑤𝑑−𝑐𝑜𝑚𝑝 ∗ 𝑠𝑡𝑎𝑦𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + ϵ𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛  
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where 𝑠 = 1 during the decision period and 𝑠 = 0 otherwise, 𝑤𝑑−𝑖𝑛𝑝𝑢𝑡 is the weight 

between the value layer units and their respective decision layer unit (𝑤𝑑−𝑖𝑛𝑝𝑢𝑡 > 0), 

𝑤𝑑−𝑟𝑒𝑐 is the weight of the recurrent connections in the decision layer (0 < 𝑤𝑑−𝑟𝑒𝑐 < 1), 

and 𝑤𝑑−𝑐𝑜𝑚𝑝 represents the competition between the decision units (𝑤𝑑−𝑐𝑜𝑚𝑝 < 0), and 

𝜖𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∼ 𝑁ሺ0, 𝜎𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛
2 ሻ. A sigmoidal activation function was used to normalize the 

activity of the decision units, instead of the ReLU function often used with LCA models 

(Usher and McClelland, 2001): 

𝑠𝑡𝑎𝑦𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
1

1 + 𝑒𝑥𝑝൫−𝑔ሺ𝑠𝑡𝑎𝑦𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 − 𝑏ሻ൯
 

𝑙𝑒𝑎𝑣𝑒𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
1

1 + 𝑒𝑥𝑝൫−𝑔ሺ𝑙𝑒𝑎𝑣𝑒𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 − 𝑏ሻ൯
. 

A decision to stay vs. leave was made when the activity of one of the decision units, 

𝑠𝑡𝑎𝑦𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 or 𝑙𝑒𝑎𝑣𝑒𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦, crossed a threshold 𝑧, where 0 < 𝑧 < 1. 

Response times (RTs) were recorded as the time from the start of a trial until threshold 

crossing, plus some non-decision time. Rats’ RTs were highly variable, with many very 

short (< 0.1 s) responses, as well as very long responses (> 5 s). To accommodate this 

variability, the non-decision time was drawn from a long-tailed Weibull distribution, 

characterized by a mean 𝜂 and coefficient of variation 𝛾. Thus, the accumulation to 

bound process consisted of 9 free parameters: 𝑤𝑑−𝑖𝑛𝑝𝑢𝑡, 𝑤𝑑−𝑟𝑒𝑐, 𝑤𝑑−𝑐𝑜𝑚𝑝, 𝜎𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑧, 𝑔, 

𝑏, 𝜂, and 𝛾. 

Following decisions to stay in the patch, an additional delay (0.4 s) was added to 

the model to simulate the time it took rats to enter the reward port after a lever press. To 

model slow delivery of reward (sucrose water) from a syringe pump and the extra time 

rats spend consuming the reward, reward input was switched from an off state (𝑟 = 0) to 
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an on state (𝑟 = 1) for double the duration that the syringe pump was turned on. As in 

the rat foraging task, the model experienced a 7 s ITI starting at the beginning of reward 

delivery, after which, the next trial began. Following decisions to leave the patch, the 

model experienced a 10 s travel time delay with no input, after which, the next trial 

began. The model was simulated at time steps of 0.1 s (10 steps/second). 

Next, the model was fit rats’ choices and RTs. As there was no closed-form 

solution for the likelihood of choices and RTs, we devised a method to approximate the 

likelihood of choices and RTs as a function of the number of trials spent in patches and 

the patch starting reward volume. This method is outlined below: 

1. For a given set of parameters, simulate a session of the foraging task and 

record choices and RTs. For each simulation, we ran the equivalent of a 6 hr 

simulation to a large sample of simulated trials. Because the global reward 

rate was initialized to a value of zero, the first 1 hr of the simulated choices 

and RTs were discarded to allow the model sufficient time to “learn” the global 

reward rate through experience. 

2. Measure the likelihood of choices to stay vs. leave as a function of the patch 

starting reward and the number of trials spent in the patch. Simulated choices 

were fit with a logistic regression model using the glm function in R. The 

probability of observed choices as a function of the simulated choices was 

calculated using the coefficients from this logistic regression (i.e. using the 

predict function). In pseudocode: 

𝑐ℎ𝑜𝑖𝑐𝑒𝐺𝐿𝑀 = 𝑔𝑙𝑚ሺ𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝐶ℎ𝑜𝑖𝑐𝑒𝑠 ~ 𝑝𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑 ∗ 𝑡𝑟𝑖𝑎𝑙𝐼𝑛𝑃𝑎𝑡𝑐ℎሻ 

𝑐ℎ𝑜𝑖𝑐𝑒𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡ሺ𝑐ℎ𝑜𝑖𝑐𝑒𝐺𝐿𝑀, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝐶ℎ𝑜𝑖𝑐𝑒𝑠ሻ 
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3. Measure the likelihood of RTs as a function of the choice (stay vs. leave), 

patch starting reward, and number of trials spent in the patch. Simulated RTs 

were fit with a linear regression model using the lm function in R. Coefficients 

from this regression model were used to predict the observed (i.e. rats’) RTs. 

The probability of an observed response time was assumed to be normally 

distributed, where the mean was equal to the predicted RT and the variance 

was the residual variance from the regression model. In pseudocode: 

𝑟𝑡𝑀𝑜𝑑𝑒𝑙 = 𝑙𝑚ሺ𝑙𝑜𝑔𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑅𝑇𝑠 ~ 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝐶ℎ𝑜𝑖𝑐𝑒𝑠 ∗ 𝑝𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑

∗ 𝑡𝑟𝑖𝑎𝑙𝐼𝑛𝑃𝑎𝑡𝑐ℎሻ 

𝑙𝑜𝑔𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑅𝑇𝑠 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡ሺ𝑟𝑡𝑀𝑜𝑑𝑒𝑙, 𝑙𝑜𝑔𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑅𝑇𝑠ሻ 

𝑟𝑡𝑀𝑜𝑑𝑒𝑙𝑆𝑡𝐷𝑒𝑣 = 𝑠𝑢𝑚𝑚𝑎𝑟𝑦ሺ𝑟𝑡𝑀𝑜𝑑𝑒𝑙ሻ$𝑠𝑖𝑔𝑚𝑎 

𝑟𝑡𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = 𝑑𝑛𝑜𝑟𝑚ሺ𝑙𝑜𝑔𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑅𝑇𝑠, 𝑙𝑜𝑔𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑅𝑇𝑠, 𝑟𝑡𝑀𝑜𝑑𝑒𝑙𝑆𝑡𝐷𝑒𝑣) 

4. Calculate negative log likelihood of the joint likelihood of choices and RTs: 

𝑛𝑒𝑔𝐿𝑜𝑔𝐿𝑖𝑘 =  −𝑠𝑢𝑚ሺlogሺ𝑐ℎ𝑖𝑜𝑐𝑒𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑟𝑡𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑ሻሻ  

We found that this method produced a better fit to rat behavior than other 

approaches to fit parameters to simulated response time distributions, such as 

minimizing chi-square between simulated and observed response time distributions 

often used with diffusion models of decision-making (Ratcliff and Tuerlinckx, 2002). The 

maximum likelihood estimate (i.e. the parameters that minimized the negative log 

likelihood) was found using a genetic algorithm (the GA package in R; Scrucca, 2013). 
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Electrophysiology 

Prior to behavioral training, 11 rats underwent surgery to implant electrode arrays 

consisting of 32, 50 µm diameter single stainless-steel wires or 8 tetrodes, each 

consisting of 4, 25 µm diameter stainless steel wires. Wires were connected to a 32-

channel Omnetics connector, serving as the interface between microwires and the 

headstage. First, two 0-80 machine screws were inserted into the skull over the 

posterior parietal cortex (approx. -4 mm AP, +/- 3 mm ML from bregma). A ground wire 

(125 µm stainless steel with insulation removed from 3 mm of the tip of the wire) was 

fixed to one of the skull screws. Next, a 4 x 2 mm craniometry was made above the 

anterior cingulate (Cg1), from +4 mm to 0 mm anterior-posterior from bregma and 0 mm 

to +/- 2 mm medial-lateral from bregma. Arrays (approximately 2 x 1 mm) were centered 

at approximately +2 mm anterior-posterior and positioned such that the most medial 

wires were just lateral to the sagittal sinus (centered at approximately 0.6 mm ML), then 

lowered slowly (0.1 mm / minute) down to 1.25 mm below brain surface. Once arrays 

were in their final position, craniotomies were filled with kwik-cast (WPI; 

https://www.wpiinc.com/kwik-cast-kwik-cast-sealant), then arrays were cemented to the 

skull using metabond (Parkell; http://www.parkell.com/c-b-metabond_3). Additional Jet 

Denture Repair Acrylic (Lang; https://www.langdental.com/products-Jet-Denture-Repair-

Package-44) was applied over the entire surface of exposed skull and over the 

metabond to provide further stability to the headcap, to secure the 32-channel Omnetics 

connector to the skull, and this dental acrylic was shaped to provide a protective barrier 

in front of the microwire array and connector. After the dental cement dried, sutures 

were placed at the front and back of the incision as needed, and rats were returned to 
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their home cage to recover. Rats were given meloxicam (1 mg/kg, s.c.) at the start of 

the surgery for analgesia and again once every 24 hr for 3 days after surgery. Rats were 

left to recover for one week before beginning testing. 

After recovery, rats were trained 5 days per week for 3-6 weeks on the foraging 

task prior to recordings. One recording session was taken per rat. Prior to the recording 

session, a 32-channel digitizing headstage (Plexon) was plugged into the Omnetics 

connector on the rats ’head. From the headstage, signals were passed via a flexible 

cable, through a commutator, then to a Plexon Omniplex recording system. Wideband 

signals were sampled at 40,000 Hz. Further processing was performed in Plexon Offline 

Sorter software. The wideband signal for each channel was first bandpass filtered 

between 600-6,000 Hz and spikes were detected using a threshold of 5 times the 

median absolute deviation of the signal. Spike waveforms, from 1 ms before threshold 

crossing to 2 ms after threshold crossing, were extracted and clusters were manually 

identified using a combination of principal components, waveform energy, and 

waveform amplitude. Only clusters that exhibited consistent firing throughout the entire 

session were included for analysis. Clusters were characterized as single units if less 

than 2% of spikes within the cluster exhibited an inter-spike interval of less than 2 ms, 

and the cluster had an L-ratio (Schmitzer-Torbert et al., 2005) of less than 0.1. All other 

clusters were characterized as multi-units. Altogether, this resulted in a total of 42 

single-units and 106 multi-units. All units were combined together for all further 

analyses. 

After the completion of recordings, small electrolytic lesions were made by 

passing current (25 uA for 15 s) through wires at the front and back of the array. 24 hr 
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later, rats were perfused with 4% paraformaldehyde (PFA) and their brains were 

extracted. Brains were post-fixed in 4% PFA for 24 hr, then cryoprotected in 30% 

sucrose in phosphate buffered saline for 72 hrs. Finally, brains were flash frozen and 

sectioned into 40 µm sections on a cryostat. Electrode locations were confirmed by 

locating lesions. 

 

Pharmacological Inactivation of ACC 

Prior to behavioral training,11 rats underwent surgery to implant a bilateral 

cannula targeting the ACC (Cg1). Similar to electrode array implant surgeries, two 0-80 

machine screws were inserted into the skull above the posterior parietal cortex. Next, a 

large craniotomy was drilled, spanning the ACC bilaterally (from approx. -1 to +1 mm 

ML and +1 to +3 mm AP from bregma). The bilateral cannula (PlasticsOne) was 

positioned to target Cg1 at +/- 0.5 ML and +2 mm AP from bregma. The cannula was 

lowered slowly (0.1 mm/minute) to a depth of 0.75 mm below the brain surface. The 

implant was secured to the skull using metabond, and the Jet Denture acrylic was used 

to further secure the implant to the skull and skull screws, and it was shaped to create a 

protective barrier in front of the cannula. Following completion of the surgery, sutures 

were applied as needed to secure the front and back of the incision and was then 

placed in its home cage to recover. Rats followed the same analgesia protocol and post-

operative recovery as with electrode array implants. 

After full recovery, rats were trained 5 days/week for 4 weeks on the foraging task 

before testing. On test days, 15 minutes prior to the start of the session, rats underwent 

a microinjection of either a cocktail of the GABA agonists baclofen and muscimol (Bac-
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Mus; 1 mM and 0.1 mM, respectively; 0.5 μL/side), or artificial cerebro-spinal fluid 

(aCSF, 0.5 μL/side) as a control. A bilateral injector (33 G, PlasticsOne) that protruded 

0.5 mm below the bottom of the cannula (to a depth of 1.25 mm) was inserted through 

the cannula, and Bac-Mus or aCSF was injected at a rate of 100 nL/min. The injector 

was left in place for 2 minutes after completion of the injection to allow the drug cocktail 

to diffuse into the tissue and to avoid backflow of the drug cocktail up the cannula track. 

The injector was then removed, and rats were placed in the operant chamber awaiting 

testing. The day before the first injection, rats underwent one sham injection to 

acclimate to the procedure. Rats were tested with Bac-Mus and aCSF for one session 

with each drug, counterbalanced (4 rats received aCSF followed by Bac-Mus, 4 vice-

versa). Rats were given one recovery day, in which they were tested without an 

injection, between the two testing sessions. 

 

Experimental Design and Statistical Analysis 

Rat foraging behavior.  

All statistical analyses and computational modeling were conducted in R (R Core 

Team, 2020). Mixed effects (ME) models were fit using the lme4 package (Bates et al., 

2015), and significance tests for linear mixed effects models were performed using the 

lmerTest package (Kuznetsova et al., 2017). Unless otherwise specified, all continuous 

predictors in mixed effects models were z-scored. 

To investigate the behavioral performance of rats that participated in the ACC 

recording experiment, we analyzed rats’ foraging decisions (the number of trials spent in 

each patch) and response times (the time from the start of the trial until the lever press 
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or nose poke) during the final three training sessions prior to the recording session. 

Looking at their training data allowed us to pool behavior across multiple sessions. In 

this experiment, two main hypotheses were tested: i) that rats would spend more trials 

in patches that offered greater rewards (a standard prediction of the MVT); and ii) as 

patches depleted, response times to decide to stay vs. leave would increase (reflecting 

greater decision difficulty). The first hypothesis was tested using a linear mixed effects 

model of the number of trials spent in each patch, with a fixed effect of the starting 

reward volume of the patch and random intercept for each rat (lme4 syntax: 

𝑇𝑟𝑖𝑎𝑙𝑠𝐼𝑛𝑃𝑎𝑡𝑐ℎ ∼ 𝑃𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑 + ሺ𝑃𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑ȁ𝑅𝑎𝑡ሻ). To test 

whether rats adopted the same reward rate leaving threshold across patches, a mixed 

effects model of the reward rate at the time rats left patches, with a fixed effect of the 

patch starting volume and random intercept for each rat. In this model, to directly 

compare the leaving threshold at each of the 9 patch starting reward volumes, patch 

starting reward was treated as a categorical variable (dummy coded) and we conducted 

pairwise comparisons of the reward rate when rats left the patch across all patch 

starting reward volumes. 

The second hypothesis, that response times would increase as patches 

depleted, was initially tested using a linear mixed effects model of the log of response 

times with fixed effects of the patch starting reward volume, the number of trials spent in 

the patch, and the starting reward x trials in patch interaction, and a random intercept 

for each rat (𝑙𝑜𝑔𝑅𝑇 ∼ 𝑃𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑 ∗ 𝑇𝑟𝑖𝑎𝑙𝑠𝐼𝑛𝑃𝑎𝑡𝑐ℎ +

ሺ𝑃𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑 ∗ 𝑇𝑟𝑖𝑎𝑙𝑠𝐼𝑛𝑃𝑎𝑡𝑐ℎȁ𝑅𝑎𝑡ሻ). The log of response times was used as 

the raw response times were positively skewed. However, if rats exhibit longer response 
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times as patches deplete, then it is likely that they will exhibit longer response times, on 

average, in patches that start with smaller rewards because a greater proportion of trials 

spent in these patches will be at lower reward volumes. To better examine whether 

there were differences in response times across patches, another linear mixed effects 

model was used to examine the effect of the number of trials remaining in the patch and 

patch starting reward on the log of response times (𝑙𝑜𝑔𝑅𝑇 ∼ 𝑃𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑 ∗

𝑒𝑥𝑝ሺ𝑇𝑟𝑖𝑎𝑙𝑠𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔ሻ + ሺ𝑃𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑 ∗ 𝑒𝑥𝑝ሺ𝑇𝑟𝑖𝑎𝑙𝑠𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔ሻȁ𝑅𝑎𝑡ሻ). An 

exponential function of 𝑇𝑟𝑖𝑎𝑙𝑠𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 was used, as it proved to be a better fit to data 

than a linear function (Figure 1E). In this model, if the response times around the trial at 

which rats chose to leave the patch were similar across different patch types, there 

would be no main effect of 𝑃𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑. 

Leaky Accumulator Model Predictions.  

Simulated behavioral data and the time course of activity of each of the LCA units 

were obtained via simulations as described above. To generate peri-event time 

histograms (PETHs) of LCA unit activity around the time of decisions, first, the time of 

decisions was obtained from the simulated behavioral data. Next, for each trial, the 

activity of each LCA unit was extracted for 8 simulated seconds (80 time steps) before 

the decision and 4 s (40 time steps) after. In addition, PETHs were created for the 

relative value of leaving the patch, decision difficulty, and decision conflict. The relative 

value of leaving the patch was the moment-by-moment difference between the local and 

global reward rate units: 𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒 − 𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒; decision difficulty or the similarity in 

the value of staying vs. leaving was defined as: −𝑎𝑏𝑠ሺ𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒 − 𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒ሻ; and 

decision conflict was the product of the activity of the decision units: 
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𝑠𝑡𝑎𝑦𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑙𝑒𝑎𝑣𝑒𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦. Each of these variables were first 

normalized (z-scored), then PETHs were created the same as for the 4 LCA model 

units. 

Analysis of ACC activity 

To analyze the correlation between average ACC activity and foraging decisions 

and response times, first, the firing rate of each unit was calculated for each trial. A 

linear mixed effects model were used to test the effect of trials until leaving and starting 

patch reward, with random effects for all parameters for each unit:  

𝐹𝑖𝑟𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∼ 𝑒𝑥𝑝ሺ𝑇𝑟𝑖𝑎𝑙𝑠𝑈𝑛𝑡𝑖𝑙𝐿𝑒𝑎𝑣𝑒ሻ ∗ 𝑃𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑

+ ሺ𝑒𝑥𝑝ሺ𝑇𝑟𝑖𝑎𝑙𝑠𝑈𝑛𝑡𝑖𝑙𝐿𝑒𝑎𝑣𝑒ሻ ∗ 𝑃𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑ȁ𝑈𝑛𝑖𝑡ሻ 

A second linear mixed effects model was used to test the effect of the log of response 

times, with random intercepts and slopes for each unit: 

𝐹𝑖𝑟𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∼ 𝑙𝑜𝑔𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒 + ሺ𝑙𝑜𝑔𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝐼𝑚𝑒ȁ𝑈𝑛𝑖𝑡ሻ 

To examine i) at what point in the decision process ACC activity was influenced 

by foraging decisions and response times and ii) which units encoded these two 

variables over the course of the entire trial, PETHs were created for each unit, from 8 s 

before the lever press to stay in the patch to 4 s after the lever press, in time bins of 0.1 

s (120 total time points). Next, 3 generalized linear models (GLMs) with a quasi-poisson 

link function (poisson regression with an overdispersion parameter) were fit to the spike 

counts in each bin of the PETH for each unit. The first model included an intercept, 

effect of trials until leaving, and effect of the log of response times for each time point (a 

total of 360 parameters). Coefficients of the effect of trials until leaving and effect of log 

of response times were used to determine the strength of encoding of these variables at 
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that specific point within the trial. To determine whether these variables significantly 

contributed to the variance in each unit’s activity, separate GLMs that excluded one of 

the effect of trials until leaving or the effect of log of response times were fit to each unit, 

and likelihood ratio tests were conducted between the full model and the models 

excluding one of these variables. If the full model provided a better fit to a specific unit’s 

PETH, assessed via likelihood ratio test against a model with one predictor removed, 

that would indicate significant encoding of the variable excluded from the reduced 

model. Based on this analysis, units were characterized as encoding the number of 

trials until leaving, the log of response times, or both. 

Finally, the dynamics of ACC activity within trials, and the modulation of these 

dynamics was qualitatively compared to moment-by-moment changes in decision 

variables derived from the LCA model. To compare the dynamics of the average ACC 

neuron, an average PETH was constructed by taking the PETH for each unit described 

above, normalizing the activity of each unit – taking the z-score of activity across all bins 

for that unit – and taking the average normalized activity within each bin across units. To 

examine the diversity in encoding across units, the average, normalized PETH was 

calculated for each unit on a subset of trials leading up to the decision to leave the 

patch: on 5, 3, 1, or 0 trials until leaving the patch. For each unit, these 4 PETHs were 

concatenated into a vector with 480 features (120 timepoints for each of the 4 PETHs), 

and principal components analysis (PCA) was performed on these 480 features across 

all 148 units to extract the dimensions that capture the most variance across all units at 

each time point for each of these 4 trials until leaving the patch. Principal components, 
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representing the dimensions which captured the most variance across units on these 

trials, were qualitatively compared to LCA model units. 

Pharmacological inactivation of ACC 

Foraging behavior in the inactivation experiment was analyzed in a similar 

manner as the described above. Linear mixed effects models were used to test the 

effect of ACC inactivation (aCSF injection vs. Bac-Mus injection) on the number of trials 

spent in the patch (lme4 syntax: 𝑇𝑟𝑖𝑎𝑙𝑠𝐼𝑛𝑃𝑎𝑡𝑐ℎ ∼ 𝑃𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑 ∗

𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 + ሺ𝑃𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑 ∗ 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛ȁ𝑅𝑎𝑡ሻ) and response times (lme4 

syntax: 𝑙𝑜𝑔𝑅𝑇 ∼ 𝑒𝑥𝑝ሺ𝑇𝑟𝑖𝑎𝑙𝑠𝑈𝑛𝑖𝑡𝐿𝑒𝑎𝑣𝑖𝑛𝑔ሻ ∗ 𝑃𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑 ∗ 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 +

ሺ𝑒𝑥𝑝ሺ𝑇𝑟𝑖𝑎𝑙𝑠𝑈𝑛𝑖𝑡𝐿𝑒𝑎𝑣𝑖𝑛𝑔ሻ ∗ 𝑃𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑 ∗ 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛ȁ𝑅𝑎𝑡ሻ). An additional 

mixed effects model was used to test the relative value of leaving the patch (the 

difference in the global and local reward rate) at the time that rats chose to leave the 

patch, termed the 𝑣𝑎𝑙𝑢𝑒𝐴𝑡𝐿𝑒𝑎𝑣𝑖𝑛𝑔. This analysis was designed to measure whether 

ACC inactivation caused rats to overharvest to a greater degree than observed in 

control sessions. 𝑣𝑎𝑙𝑢𝑒𝐴𝑡𝐿𝑒𝑎𝑣𝑖𝑛𝑔 was calculated as follows: 

𝑣𝑎𝑙𝑢𝑒𝑂𝑓𝐿𝑒𝑎𝑣𝑖𝑛𝑔 =  
∑𝑟𝑒𝑤𝑎𝑟𝑑

∑𝑡𝑖𝑚𝑒
 

𝑣𝑎𝑙𝑢𝑒𝑂𝑓𝑆𝑡𝑎𝑦𝑖𝑛𝑔 =  
𝑟𝑒𝑤𝑎𝑟𝑑𝑖

𝑡𝑖𝑚𝑒𝑖
 

𝑣𝑎𝑙𝑢𝑒𝐴𝑡𝐿𝑒𝑎𝑣𝑖𝑛𝑔 =  𝑣𝑎𝑙𝑢𝑒𝑂𝑓𝐿𝑒𝑎𝑣𝑖𝑛𝑔 − 𝑣𝑎𝑙𝑢𝑒𝑂𝑓𝑆𝑡𝑎𝑦𝑖𝑛𝑔 

The value of leaving across the three patch types was tested as a function of the patch 

starting reward and drug treatment (ACC inactivation vs. control; lme4 syntax: 

𝑣𝑎𝑙𝑢𝑒𝐴𝑡𝐿𝑒𝑎𝑣𝑖𝑛𝑔 ∼ 𝑃𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑 ∗ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 +

ሺ𝑃𝑎𝑡𝑐ℎ𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑅𝑒𝑤𝑎𝑟𝑑 ∗ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡ȁ𝑅𝑎𝑡ሻ). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2021. ; https://doi.org/10.1101/2021.06.07.447464doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447464
http://creativecommons.org/licenses/by-nc-nd/4.0/


ACC CONTINUOUSLY SIGNALS DECISION VARIABLES  22 

 

Finally, the LCA model was fit to each drug treatment as described above. Paired 

t-tests were run on each of the 13 parameters, and holm-corrected p-values (Holm, 

1979) are reported. 

 

Results 

Rats spend more time in patches that offer greater rewards 

Rats (n = 11) were trained to perform a patch foraging task in which they 

randomly encountered patches with starting rewards that ranged from 30–150 μL 

(Figure 1B). This wide range in reward offered by different patches tested whether rats ’

followed a central prediction of MVT: when offered greater levels of reward, rats should 

harvest for more trials until these patches deplete to the leaving threshold (the global 

reward rate or average reward rate across all patches). To test this prediction, rat 

behavior during their final three training sessions was analyzed. Rats participated in 

553-1162 trials, visiting 99-202 patches each. As in a previous study (Kane et al., 2017), 

rats harvested for more trials in patches that started with greater rewards (main effect of 

patch starting reward: β = 2.294, SE = 0.079, F(1, 11.332) = 837.14, p < .001; Figure 

2A). Among patches that started with greater rewards (75-150 μL), there was no 

difference in the reward rate at which rats chose to leave patches. However, rats left 

patches that started with smaller rewards (30-60 μL) at a lower reward rate than 

patches that started with greater rewards (Figure 2B, pairwise chi-square tests 

presented in Figure 2-1). As predicted by MVT, rats adopted a constant reward rate 

threshold at which to leave patches when in patches that yielded larger rewards, but 
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contrary to MVT, they exhibited a bias to harvest reward beyond this threshold in 

patches that yielded smaller amounts of reward. 

 

Rats’ response times increase as patches deplete 

As patches depleted, animals may have experienced either an increased need to 

override the default response of choosing to stay in the patch in favor of leaving the 

patch or increased difficulty to decide to stay vs. leave as the value of staying vs. 

leaving became more similar.  If rats experienced an increased need to override the 

default response or increased decision difficulty as patches depleted, their response 

times (RTs) should have increased. As rats spent more time in patches, their response 

times increased (main effect of trials in patch: β = 0.512, SE = 0.056, F(1, 9.791) = 

85.203, p < .001; Figure 2C). Furthermore, their response times were, on average, 

greater in lower rewarding patches (β = -0.398, SE = 0.046, F(1, 9.830) = 75.67, p < 

.001). Slower average response times in lower starting reward patches is likely due to a 

greater proportion of trials spent with lower reward volumes – as lower starting reward 

patches start out in a depleted state, there are few to no trials in which rats should 

exhibit faster response times to stay in the patch. To test this hypothesis, response 

times were also analyzed as a function of the number of trials remaining in the patch. If 

rats experienced a reduced (or increased) need to override a default response or 

decision difficulty in patches that started with smaller rewards, then response times 

should have become faster (or slower) as rats approached the point to leave these 

patches. Across all patch types, rats’ response times increased as they approached the 

point at which they left patches (main effect of trials remaining in the patch: β = 0.555, 
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SE = 0.058, F(1, 10.751) = 92.662, p < .001; Figure 2D), but there was no difference in 

the average response times (main effect of patch starting reward: β = 0.691, SE = 

0.118, F(1, 9.963) = 0.002, p = 0.968) or in the rate at which response times increased 

among different patch types (trials remaining x patch starting reward interaction: β = 

0.010, SE = 0.018, F(1, 9.663) = 0.290, p = .602; Figure 2D). Despite leaving smaller 

starting reward patches at a lower threshold than higher starting reward patches, rats 

Figure 2. Rat behavior in the patch foraging task. In all panels, points, dark lines, 

and error bars represent the mean and standard error across rats, and lighter lines 

represent behavior of each individual rat. A) The average number of trials spent in 

each patch as a function of the starting reward volume of the patch. B) The average 

reward rate (reward volume / trial time) rats received on the trial before rats chose to 

nose poke to leave the patch. C) The average of the median response times for 

each rat over the course of trials in the patch, split by patches that started with low 

(30-60 μL), medium (75-105 μL), or high (120-150 μL) starting reward volumes. D) 

The average of the median response times for each rat as rats became closer to 

leaving patches. 0 trials remaining in the patch indicated the trial in which they nose 

poked to leave the patch, -1 trial remaining is the last lever press to stay in the 

patch, -2 is the second to last lever press before leaving the patch, etc. 
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exhibited similar response times in these patches as they became closer to leaving, 

suggesting that they experienced the same need to override the default response to 

stay in the patch or the same decision difficulty when deciding to leave patches that 

started with greater rewards. Alternatively, this increase in response time as patches 

depleted could be interpreted as a reduction in motivation or response vigor in 

anticipation of smaller rewards. 

 

A leaky competing accumulator (LCA) model of rat foraging behavior 

Evidence accumulation models have proven successful in describing not only 

perceptual decisions requiring moment-to-moment sampling of sensory information, but 

also value-based decisions (Polanía et al., 2014; Tajima et al., 2016; Pisauro et al., 

2017; Frömer et al., 2019; Lin et al., 2020; Peters and D’Esposito, 2020; Callaway et al., 

2021). Recent theoretical work has applied the evidence accumulation framework to 

foraging decisions (Davidson and El Hady, 2019). To describe rats’ foraging decisions 

as a function of their moment-by-moment estimate of the local vs. global reward rates, 

we developed an evidence accumulation model that implemented the MVT decision rule 

– to leave a patch when the local reward rate in the current patch depletes to the level 

of the global reward rate – using leaky accumulators. The model consisted of two 

layers, the value and decision layer. The value layer units estimated the local and global 

reward rate by integrating rewards at different timescales: the local reward rate unit 

integrated rewards quickly but decayed quickly, whereas the global reward rate unit 

integrated rewards slowly but decayed slowly. These units were not in competition with 

one another – there was no reciprocal inhibition between them. The decision layer was 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2021. ; https://doi.org/10.1101/2021.06.07.447464doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447464
http://creativecommons.org/licenses/by-nc-nd/4.0/


ACC CONTINUOUSLY SIGNALS DECISION VARIABLES  26 

 

an LCA (Usher and McClelland, 2001) that implemented an accumulation to bound 

process. At the start of the trial, decision layer units integrated the activity of the value 

layer units until one of the decision units crossed a threshold, at which point, the model 

chose the corresponding option (Figure 3A). A demonstration of the activity of the value 

layer and decision layer units during a simulation is shown in Figure 3B-C. The model 

was fit to rats’ choices and response times (see Materials and Methods for details, fit 

parameter estimates in Figure 3-1). This LCA model, fit to rat behavioral data, captured 

important features of rats’ behavior: the model predicted spending more trials in patches 

that yielded larger rewards and predicted longer response times as patches depleted, 

with longer response times for patches that started with smaller rewards (Figure 3D-E). 

The LCA model was then used to generate predictions regarding ACC activity in 

the foraging task. As the model estimates important MVT decision variables – the local 

and global reward rates – on a moment-by-moment basis, the activity of LCA model 

units was used to calculate specific decision variables that the ACC has been 

hypothesized to encode. Three particular hypotheses were tested: i) ACC encodes the 

relative value of leaving a patch as the difference between the global reward rate and 

local reward rate (Kolling et al., 2012), ii) ACC encodes decision difficulty or the 

similarity in the value of staying and the value of leaving a patch (Shenhav et al., 2014), 

and iii) ACC encodes the conflict between choosing to stay vs. choosing to leave a 

patch, defined as the product of the decision units (Botvinick et al., 2001). The relative 

value of leaving the patch and decision difficulty hypotheses are equivalent while the rat 

is in the patch, however, they differ during the travel time. Peri-event time histograms 

(PETHs) of the activity of each model unit, as well as the relative value of leaving the 
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patch, decision difficulty, and decision conflict, were created from simulation data by 

Figure 3. The leaky accumulator model of the foraging task. A) Diagram of the model, 

consisting of two layers of leaky accumulators. The bottom layer, the value layer (“local 

rate” and “global rate” units), estimated the local reward rate and global reward rate by 

integrating over rewards on different timescales. The top layer, the decision layer, was a 

leaky competing accumulator model that made decisions to stay vs. leave via an 

accumulation to bound process at the start of the trial, with input from the local and 

global rate units. B-C) Example activity of the value layer and decision layer units during 

a 10 min (600 s) sample of a model simulation. The solid black lines represent the local 

reward rate and decision stay unit activity, and the solid red lines represent the global 

reward rate and decision leave unit activity. The dotted blue and green vertical lines 

indicate the start of a trial in which the model decided to stay in the patch or to leave the 

patch, respectively. The horizontal dashed line in C represents the decision threshold. 

D-E) The leaky accumulator model-predicted number of trials spent in each patch type 

(D) and predicted response times as by the number of trials spent in patches (E) plotted 

against observed rat behavior. Points and error bars represent the mean +/- standard 

error across rats, lines and ribbon represents the mean +/- standard error of model 

predicted behavior for each rat. 
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averaging the value of these variables over trials, locked to the time of the decision 

(time of execution of the lever press or nose poke in the simulation; Figure 3-2). These 

PETHs were later compared to recorded ACC activity.  

 

ACC activity correlates with foraging decisions and response times 

First, we examined whether changes in ACC activity (n = 148 units, Figure 4-1) 

correlated with rats’ foraging decisions and response times. Consistent with the 

hypothesis that ACC activity should increase with the increased need for to override a 

default response or with increased decision difficulty as patches deplete, average ACC 

activity over the course of trials (the number of spikes during trial / time of trial, 

averaged across units) increased as rats became closer to leaving a patch (main effect 

of trials until leave: 𝛽 = 0.287, SE = 0.061, F(1, 147) = 22.028, p < .001). Similar to the 

relationship between trials until leaving the patch and response times, average ACC 

activity as rats became closer to leaving a patch was not influenced by the patch 

starting reward (main effect of patch starting reward: 𝛽 = 0.008, SE = 0.043, F(1, 138) = 

0.032, p = 0.858). And the rate at which ACC activity increased as rats became closer to 

leaving a patch did not depend on the patch starting reward (patch starting reward x 

trials until leave interaction: 𝛽 = 0.013, SE = 0.019, F(1, 145) = 0.509, p = 0.477; Figure 

4A). Accordingly, average ACC activity over the course of trials increased linearly with 

response times (main effect of response times: 𝛽 = 0.175, SE = 0.038, F(1, 148) = 

20.883, p < .001; Figure 4B). No differences were noted between single- and multi-units 

(Figure 4-2A, 4-2B). 
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To investigate the effect of rats’ foraging decisions and response times on ACC 

activity in more detail, PETHs of activity around the time of the lever press to stay in the 

patch were created for each unit, and a series of generalized linear models (GLMs) was 

used to examine i) at which point in the decision process ACC encoded the number of 

trials until leaving the patch vs. the response time on a given trial, and ii) which units 

significantly encoded either variable over the entire course of the trial (see Methods for 

full details). Encoding of the number of trials until leaving the patch was weakest during 

the time period before decisions and grew stronger after decisions (through the reward 

Figure 4. ACC activity correlates with foraging decisions and response times. A-B) 
Average ACC activity over the course of entire trials, normalized and averaged across 
units, as a function of A) trials until leaving the patch and the patch starting reward and 
B) the log of response times. Points and lines represent the mean normalized (z-
scored) activity across units and error bars represent the standard error across units. C) 
The average effect of trials until leaving and response times at each time point within a 
trial, locked to the time of the lever press to stay in the patch. D) The proportion of units 
with significant effects of trials until leaving, response times or both (p < .05, z-test on 
regression coefficient), at each time point within the trial. 
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and inter-trial interval periods), evidenced by increasing average regression coefficients 

and an increase in the number of units with a statistically significant regression 

coefficient for the number of trials until leaving (with p < .05, z-test; Figure 4C-D). At the 

same time, encoding of response times was strongest preceding decisions, with the 

strongest regression coefficients occurring during a window of ~6 s to 2 s preceding the 

decision, and a greater number of units encoding response times preceding the 

decision vs. after the decision (Figure 4C-D). Lastly, we found that a large number of 

units (69 of 148) encoded both response times and trials until leaving – excluding one of 

these variables resulted in a worse model fit according to likelihood ratio tests (p < .05 

with holm correction for multiple comparisons across 148 units) – with additional units 

encoding either response times only (36 / 148) or trials until leaving only (6 / 148). 

Again, no differences in encoding were observed between single- and multi-units 

(Figure 4-2C, 4-2D).  

 

ACC activity continuously tracks decision variables 

To further examine what was driving encoding of response times prior to the 

decision and decisions later in the trial, PETHs of recorded ACC activity were compared 

to decision variables derived from the LCA model. First, we discovered that average 

normalized ACC activity – the average PETH across neurons, split by the number of 

trials until leaving the patch – closely tracked decision difficulty or the similarity in the 

value of staying in the patch vs. leaving the patch (the relative difference between the 

𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒 and 𝑔𝑙𝑜𝑏𝑎𝑙𝑅𝑎𝑡𝑒 units; Figure 5A). Importantly, both decision difficulty and 

average normalized ACC activity i) increased leading up to decisions, ii) was inhibited 
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during reward delivery following a decision to stay in the patch (5, 3, or 1 trial until 

leaving), and iii) following decisions to leave (0 trials until leaving), maintained elevated 

activity. This finding indicates that the dynamics of ACC activity within and across trials 

are consistent with the hypothesis that they encode decision difficulty. 

Figure 5. ACC activity next to decision variables derived from the leaky accumulator 
model. A) Average, normalized PETH across units for 5, 3, 1, or 0 trials until leaving 
next to decision difficulty (relative difference between the local and global reward rate). 
B-C) PCA was performed across the PETH for all units on these trials (5, 3, 1, and 0 
trials until leaving). B) The first PC next to the local reward rate unit activity. C) The 
second PC next to the leave decision unit activity. For leaky accumulator model unit 
activity, PETHs of decision variables were created from simulations using parameters fit 
to each rat, Lines and ribbon represent the average across these simulations. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2021. ; https://doi.org/10.1101/2021.06.07.447464doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447464
http://creativecommons.org/licenses/by-nc-nd/4.0/


ACC CONTINUOUSLY SIGNALS DECISION VARIABLES  32 

 

To better understand the heterogeneity in the modulation of ACC firing across 

different units, we created PETHs for each unit (both single- and multi-units) at 5, 3, 1, 

and 0 trials until leaving the patch, and performed principal components analysis (PCA) 

on these PETHs for each unit (including 120 time points x 4 trials = 480 features and 

148 units or observations). Next, we compared the principal components (PCs) – the 

dimensions which explained the most variance in ACC activity (Figure 5-1) – to decision 

variables derived from the LCA model. Whereas the average PETH across all units 

closely tracked decision difficulty, the first two PCs closely tracked different LCA model 

units. The first PC exhibited activity similar to the local reward rate, 𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒, with i) 

decreasing activity leading up to decisions, ii) a sharp increase in when receiving 

reward (immediately after the decisions to stay), and iii) consistently reduced activity on 

decisions to leave. The second PC was similar to the leave decision unit, 

𝑙𝑒𝑎𝑣𝑒𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦, with activity that i) decreases leading up to decisions to stay and 

ii) increases leading up to decisions to leave. These findings suggest that while on 

average, ACC signals decision difficulty, this signal is made up of units that signal lower-

level decision variables, including reward rate and decision accumulators. 

 

ACC inactivation does not alter the foraging decision process 

Continuous encoding of decision variables in ACC could play a central role in 

decision-making or indicate a more general role such as monitoring ongoing 

performance for the purpose of allocating cognitive control to decisions. To test the 

contribution of the ACC to foraging decisions, ACC was pharmacologically inactivated 

via microinjection of a cocktail of the GABA receptor agonists baclofen and muscimol 
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(Bac-Mus) immediately prior to testing rats in the foraging task. In this experiment, rats 

were tested on a simplified version of the foraging task, with only three starting patch 

reward volumes (60, 90, and 120 μL). Compared to control sessions in which rats were 

injected with artificial cerebrospinal fluid (aCSF), ACC inactivation caused rats to stay in 

patches for more trials (main effect of aCSF vs. Bac-Mus: 𝛽 = 2.397, SE = 0.227, F(1, 

870) = 111.913, p < .001; Figure 6A), and increased response times as rats came closer 

to leaving the patch (main effect of aCSF vs. Bac-Mus: 𝛽 = 0.669, SE = 0.054, F(1, 

7876) = 149.849, p < .001; Figure 6B). However, despite ACC inactivation, rats still 

stayed longer in patches that started with greater rewards (main effect of patch starting 

reward: 𝛽 = 1.635, SE = 0.144, F(1, 869) = 202.462, p < .001; no patch starting reward 

x treatment interaction; 𝛽 = 0.056, SE = 0.226, F(1, 869) = 0.062, p = 0.803), and rats 

still exhibited longer response times as they became closer to leaving the patch (main 

effect of trials until leaving: 𝛽 = 0.287, SE = 0.022, F(1, 7876) = 277.213, p < .001; no 

trials until leaving x treatment interaction; 𝛽 = 0.043, SE = 0.032, F(1, 7877) = 1.876, p = 

.171). 

That rats stay longer in patches and exhibit longer response times due to ACC 

inactivation suggests that ACC is involved in the foraging decision process. However, 

MVT predicts that foraging decisions are based on estimates of reward rate – not 

reward value – and animals that exhibit longer response times experience lower reward 

rates. Thus, staying longer in patches could be a compensatory mechanism for lower 

reward rates experienced as a consequence of longer response times. The relative 

value of leaving, the difference between the global and local reward rate, over the 

course of trials in patches was lower during sessions in which rats were injected with 
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Bac-Mus compared to aCSF (Figure 6D). Furthermore, there was little to no difference 

in the value of leaving on the last decision to stay in patches between Bac-Mus and 

aCSF sessions (main effect of Bac-Mus vs. aCSF: 𝛽 = 0.245, SE = 0.128, F(1, 887) = 

3.690, p = .055; Figure 6C). Finally, to determine whether ACC inactivation may have 

caused rats to move slower, we examined the time it took rats to move from the lever to 

the reward magazine, a period of time that reflects only movement as no decision needs 

to be made. Rats were slower to move from the lever to the reward port during Bac-Mus 

Figure 6. Effects of Inactivation of ACC on foraging behavior. A) The number of trials 
spent in each of the three patch types. B) Response times as rats became closer to 
leaving patches, where 0 trials until leaving is the nose poke to leave the patch, -1 is the 
last lever press in the patch, and so on. C) The value of leaving (global reward rate – 
local reward rate) the rat experienced on the last trial in which they harvested reward 
from the patch (-1 trials until leaving). D) The value of leaving over the course of trials in 
the patch for each of the three patch starting rewards. The horizontal dashed line 
represents the average value of leaving at which rats chose to leave the patch. The 
intersection of the plotted value of leaving (red and blue lines) and average value of 
leaving is where rats would be expected to leave the patch. In all plots, points and lines 
represent the mean of means for each rat, and error bars represent the standard error 
of the mean across rats. 
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sessions compared to aCSF sessions (t(10) = 5.649, p < .001, paired t-test; Figure 6-

1A). These findings support the notion that ACC inactivation may have slowed response 

times unrelated to decision deliberation, causing rats to stay longer in patches to 

compensate for lower reward rates. 

To better understand how ACC contributes to the foraging decision process, the 

LCA model was fit to rat behavior on aCSF and Bac-Mus sessions, and we compared 

the difference in the best fit parameters from these different sessions. Model predictions 

for aCSF and Bac-Mus sessions, and all parameter estimates are shown in Figure 6-1. 

The only parameter that was significantly different across sessions (paired t-tests, p < 

.05, holm correction for multiple comparisons across 13 parameters; Figure 6-2) was 

the non-decision time, 𝜂. This finding further supports the hypothesis that changes in 

foraging decisions and response times due to ACC inactivation were not related to 

altered encoding of the value of staying vs. leaving, nor to changes in the accumulation 

to bound decision process. ACC is more likely serving a more general function such as 

performance monitoring and regulation of cognitive control. Alternatively, longer 

response times may reflect a reduction in motivation or response vigor. Although ACC is 

not directly involved in a value comparison process, the ACC may play an important role 

in regulating vigor as a function of the global and/or local reward rates.  

 

Discussion 

Previous studies have shown that ACC activity is modulated during foraging 

decisions (Hayden et al., 2011; Kolling et al., 2012, 2014; Blanchard and Hayden, 2014; 

Shenhav et al., 2014, 2016b), but what this modulation of ACC activity represents, or 
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how the ACC contributes to foraging decisions, is not fully understood. In the present 

study, we found that rat ACC neurons separately correlate with both foraging decisions 

and response times. Using a LCA model that estimates MVT-derived decision variables 

within and across trials, we found that individual ACC neurons encode lower-level task 

variables such as the reward rate and decision accumulators, and that as a population, 

the average ACC activity reflects decision difficulty as indexed by the similarity in the 

value of staying in the patch vs. leaving. Finally, inactivation of ACC neurons altered 

foraging behavior, but this change was best explained not by changes to the decision 

process, but by altering non-decision time, a latent variable meant to represent the time 

for non-decisional sensory processing and motor execution, which may include 

motivation or response vigor. 

The findings that ACC neurons continuously signal important foraging decision 

variables, but that the ACC is not necessary to follow the MVT decision rule, may 

provide important information about its function. Despite encoding value signals that 

could be used for decisions, results from the ACC inactivation experiment indicate that 

the ACC is not necessary for comparing the values of options for the decision at hand in 

the task we employed. The lack of involvement of ACC in the primary decision strategy 

is consistent with a recent study that performed optogenetic silencing of ACC in mice 

performing a foraging-style task (Vertechi et al., 2020). In this study, mice chose to stay 

vs. leave a patch for which the probability of receiving a reward was reduced with every 

decision to stay, and decisions to stay vs. leave were equally guided by failures to 

receive reward despite ACC inactivation. Ultimately, these results support a more 

general role for the ACC in monitoring peformance and regulating cognitive control 
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during foraging tasks, a function long associated with the ACC (Botvinick et al., 2001), 

and a role that ACC has been previously hypothesized to perform in foraging tasks 

(Blanchard and Hayden, 2014; Shenhav et al., 2014, 2016b). Another possible 

interpretation of the effect of ACC inactivation on non-decision times is that the ACC 

may play a role in setting response vigor, or the speed at which animals choose to 

perform a task. Response vigor is thought to be an integral aspect of foraging decisions 

– when the global reward rate is higher, it is beneficial for animals to exhibit greater 

vigor in order to reap the benefits of a more rewarding environment (Niv et al., 2007). 

While the ACC may not contribute to setting the patch leaving threshold, it may play a 

critical role in setting response vigor based on the estimated patch-leaving threshold. 

One critique of the hypothesis that ACC serves as a monitor of performance is 

that although performance monitoring signals are often seen in average ACC activity 

measured using fMRI in humans, performance monitoring variables such as decision 

difficulty or response competition have not been found in ACC in many single unit 

studies (Heilbronner and Hayden, 2016; Kolling et al., 2016). A model to illustrate this 

concept has been proposed previously by Kolling et al., 2016. In this report, PCA 

analyses revealed that although a performance monitoring variable, decision difficulty, is 

evident in average ACC activity, the components of that average ACC signal (single- 

and multi-units) vary more closely with lower-level decision variables. This analysis, 

combined with results from inactivation studies, illustrates that encoding of lower-level 

decision variables, such as reward rates and decision accumulators, are components of 

a more general system that regulates cognitive control or motivation. 
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Furthermore, it is possible that ACC does not play a critical role in foraging 

decisions that do not involve model updates, but that the ACC will become critical if 

there is a change in the foraging environment (e.g. a change in the possible patch types 

that animals may encounter. Previous studies have found that perturbation of ACC 

activity affects animals’ ability to perform task or strategy switching or to update internal 

models of the environment (Kennerley et al., 2006; Tervo et al., 2014; Sarafyazd and 

Jazayeri, 2019; Akam et al., 2020). This kind of model updating does not apply to 

traditional foraging tasks, such as the one used here. In foraging tasks, even if there is 

some uncertainty about the exact reward to be received in future patches (e.g. if there 

are multiple patch types), animals have learned the average expected future reward. 

Thus, an animal can learn the appropriate time to leave different patch types without 

updating internal models of the environment.  

These findings suggest that rat ACC activity correlates closely with decision 

difficulty in a foraging task, similar to foraging-related ACC activity that has been 

reported in humans and non-human primates (Hayden et al., 2011; Shenhav et al., 

2014, 2016b). Although the degree of homology between rodent and primate cingulate 

cortex has not been entirely clear (Seamans et al., 2008; Heilbronner and Hayden, 

2016; Heilbronner et al., 2016; van Heukelum et al., 2020), these findings contribute to 

a growing body of literature suggesting that rodent ACC exhibits similar activity to 

human and non-human primate ACC. Recent studies that have found that rodent ACC 

neurons exhibit signals that have long been associated with human ACC, including 

feedback-related negativity (Warren et al., 2015), error monitoring (Narayanan et al., 

2013), and increased activity during response competition (Bryden et al., 2018). 
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Furthermore, a recent lesion study found that the ACC is necessary to resolve response 

competition (Brockett et al., 2020). Together, these studies present a case that rodents 

can serve as a model to understand the function of the ACC and the behavioral 

consequences of ACC dysfunction. 
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Extended Data 

 

  

Figure 2-1. Pairwise comparisons of the patch leaving threshold (the 
local reward rate when rats decided to leave the patch), for all patch 
types. Colors indicate the difference in the reward rate threshold at 
which rats decided to leave the patches (i.e., y-axis leaving threshold – 
x-axis leaving threshold). Asterisks indicate statistically significant 
comparisons (pairwise chi-square tests with holm correction). 
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Figure 3-1. Parameter estimates for LCA fits to animal behavior during recording 
sessions. Each panel shows the distribution of parameter estimates across animals for 
a given parameter. The box represents the first and third quartile, whiskers represent 
1.5 times the interquartile range, with all individuals plotted transparently. 
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Figure 3-2. PETHs of LCA model units and hypotheses for ACC activity in the foraging 
task. Each panel represents the PETH of activity of LCA model units (localRate, 
globalRate, stayDecisionActivity, leaveDecisionActivity) or hypotheses for ACC activity 
measured from LCA model units (value similarity, value of leaving, and decision conflict) 
during a simulation of the foraging task. For each PETH, time = 0 represents the time of 
the lever press to harvest reward or nose poke to leave the patch, and colors represent 
the number of trials until leaving the patch. 
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Figure 4-1. A) Diagram of identified recording locations localized in the Cg1 region. B) 
An example trace of a bandpass filtered signal (300-3000 Hz) of a single channel for the 
duration of one trial. The solid black line indicates the start of the trial, and the dashed 
black line indicates the time of the lever press. The colored portion of the trace indicates 
spikes assigned to one of two units on this channel. C) The waveforms of the units in B. 
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Figure 4-2. Comparison of activity and encoding of single- vs. multi-units. A) The 
average normalized firing rate (z-scored) as a function of the log of the response time 
(as in Figure 4B). B) Average normalized firing rate as a function of the trials until 
leaving the patch. Colors indicate patches ACC activity in patches start with low, 
medium, and high reward. C) The average effect of trials until leaving and response 
times at each time point within a trial, locked to the time of the lever press to saty in the 
patch. D) The proportion of untis with significant effects of trials until leaving, response 
times, or both (P < .05, z-test on regression coefficient) at each time point within the 
trial. 
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Figure 5-1. The first 10 principal components across all individual units for 5, 3, 1, and 0 
trials until leaving the patch. 
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Figure 6-1. LCA model predictions for the ACC inactivation experiment. A) Diagram of 
identified cannula placements for the ACC inactivation experiment. Numbers above 
diagrams indicate the distance from bregma. B) The handling time (HT) or time from 
lever press to entering the reward port on aCSF and Bac-Mus (B-M) sessions. Grey 
lines indicate data for each individual animal and black, horizontal dash indicates the 
mean for each treatment. C) Predicted number of trials spent in patches plotted against 
observed rat behavior. D) Predicted response times against observed rat behavior. 
Points and error bars represent the mean and standard error of rat behavior, and lines 
and ribbon represent the mean and standard error of model predicted behavior. E) LCA 
model parameters fit to aCSF and Bac-Mus (B-M) sessions. The box represents the first 
and third quartile, whiskers represent 1.5 times the interquartile range, with all 
individuals plotted transparently. 
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Figure 6-2. Pairwise t-tests on LCA model parameters fit to aCSF sessions vs. 
parameters fit to Bac-Mus sessions. 
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