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Dopamine (DA) responses are
synonymous with the ‘reward
prediction error’ of reinforcement
learning (RL), and are thought to
update neural estimates of ex-
pected value. A recent study by
Dabney et al. enriches this picture,
demonstrating that DA neurons
track variability in rewards,
providing a readout of risk in the
brain.

Imagine that you want to track the average
temperature in July. Each day you might
take a measurement and average it with
the readings of the previous days. You
can maintain this running average and
update it each day according to the
'prediction error' — the difference between
your current estimate and the measured
temperature that day. This approach,
however, gives you no measure of the
variability of the temperature — your esti-
mate will be the same for a month with
the same temperature every day and one
in which the temperature fluctuates wildly
around the same mean. Instead, imagine
that a group of your friends performs the
same learning procedure, but some of
them are particularly influenced by days
that are hotter than expected, others by
surprisingly cold days. These idiosyncra-
sies in relative learning from positive versus
negative prediction errors would produce
either optimistic (warm) or pessimistic
(cold) biases in their estimate of the mean,
depending on how much the temperature
varies from day to day. Collectively, the en-
semble of biased temperature expecta-
tions across this group of friends would
characterize the full temperature distribu-
tion for July.

Midbrain DA neurons have long been hy-
pothesized to support a similar averaging
process, called temporal difference (TD)
learning, by conveying a prediction error
for reward (RPE in place of temperature.
This RPE is thought to allow the brain to
learn to predict ‘value’ — the expected
(i.e., mean) aggregate future reward —
from trial-by-trial experience, and thereby
guide choice. However, this classic
model, according to which many neurons
broadcast a common signal for learning a
single quantity, has increasingly struggled
with mounting evidence for all sorts of puz-
Zling variation in DA responses. In a recent
study, Dabney et al. [1] detail one such
dimension of systematic variation: in the
same way as your friends, different DA
neurons reliably differ in their relative sensi-
tivity to negative versus positive prediction
errors. Dabney et al. reasoned that such
unbalanced sensitivity should make the
value estimates of the neurons, like those
of your friends, span a range of variability-
dependent biases from optimistic to
pessimistic [2]. If so, the response of the
population would implicitly represent not
merely the mean reward but a set of
‘expectiles’ (an asymmetric generalization
of the mean in the same way that a
quantile is an asymmetric generalization
of the median [3]), thus reflecting the entire
distribution of outcomes used in the ex-
periment (Figure 1). Indeed, after showing
that the neurons complied with many
specific predictions of this account,
Dabney et al. [1] were ultimately able to
reconstruct that distribution from the pop-
ulation responses. The success of this
decoding shows that the spread of learn-
ing asymmetry across neurons is relatively
broad, allowing representation of biased
estimates that are far from the mean.

Would this information also be useful
to the brain? And for what purpose?
Classically, approaches to RL in artificial
intelligence focus on predicting only
the mean reward because this is all one
needs to choose the action expected to
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be best on average. Dabney et al. relate
the DA responses to a newer class of dis-
tributional RL algorithms [4] that work in
the same way as your ensemble of friends
to predict a large range of possible value
estimates. Even if you still use only the
mean for choice, the mere presence of
such variation, in practice, seems to help
deep neural networks to learn challenging
tasks faster. However, it also raises the
intriguing possibility of actually using pes-
simistic or optimistic estimates to guide
choice — and even dynamically switching
among them. The strategy of down- or
up-weighting better or worse outcomes
closely mirrors the classic formalism of
risk sensitivity in economics, in which a
chooser is more willing to gamble for a
larger outcome if they overweight its
value. Accordingly, distributional RL allows
an engineer training a network to fly a
drone to take risks in simulation, but then
pilot more carefully when actually flying ex-
pensive equipment. There is also some in-
triguing  evidence that biological
organisms can modulate their risk sensitiv-
ity to circumstance: for instance, animals
forage more desperately when in danger
of starvation [5]. In human neuroimaging,
links have also been demonstrated be-
tween asymmetric scaling of prediction
errors and risk-sensitive choices, although
so far only using a single prediction error
instead of an ensemble [6]. Risk adjust-
ment may also go wrong in mental illness:
many diverse symptoms of anxiety disor-
ders can be understood as reflecting
pathologically pessimistic evaluation [7].
An exciting future direction for this work
will be to examine whether the distribu-
tional response of DA neurons, shown
here in the context of classical conditioning,
might also relate to risk-sensitive choice
behavior in the context of decision-
making tasks.

Neurobiologically, the results also bring
new data and a new formal perspective
to bear on longstanding questions about
the nature and degree of heterogeneity in
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Figure 1. Distributional Temporal Difference (TD) Learning Is an Ensemble of Biased TD Learning Agents. Typically, TD learning assumes a single learning rate
(here, n), thus the influence of positive and negative prediction errors is balanced, ensuring convergence of the value estimate to the mean return. (A) Asymmetric TD
learning produces biased value estimates through different learning rates for positive and negative prediction errors. Divergence between optimistic (red) and
pessimistic (blue) learners may be sufficient to produce prediction errors in opposite directions to the same outcome (for e.g., trial 138; outcomes in grey). Opposite phasic
responses to identical reward amounts was one of the striking features of DA responses predicted by Dabney et al. according to distributional reinforcement learning (RL).
(B) Classic TD learning (black) balances the influence of positive and negative prediction errors, and the value estimate will converge to the true mean of the distribution of
outcomes (marked by a star). Asymmetric TD learning will converge to an expectile, the value at which positive and negative reward prediction errors (RPEs) are biased in

.
proportion to the asymmetry of i7" and 17”. (C) Distributional TD learning uses an ensemble of asymmetric TD leamers that cover a range of leaming rate biases (T = #) ,

tracking many expectiles of the outcome distribution. (D) Distributed value estimates learned via distributional TD learning [here, 101 expectiles uniformly covering the
range 1=[0,1)], compared with the observed distribution of outcomes (grey). A subset of biased value estimates corresponding to (C) are highlighted.

DA neuron responses, and the corre-
sponding patterns of precision versus dif-
fusion in their inputs and outputs [8]. In
addition to recent reports of heterogeneity
in the environmental and behavioral di-
mensions to which DA neurons respond
[9], the current results establish variability
in DA responses that relate to the single
dimension of value. Perhaps surprisingly,
the current data also indicate a notable de-
gree of separation in the ensemble of feed-
back loops between these distinct value
estimates and the prediction errors that

train them. That is, there cannot be sub-
stantial crosstalk between value estimates
learned from each pool of RPE-signaling
DA neurons with a particular learning
asymmetry, or the entire ensemble would
collapse to the mean estimate predicted
by classic TD learning. However, this im-
plied separation actually raises a further
computational puzzle because the full
goal of TD learning is to predict not just a
single number — such as the temperature
or the single water bolus given the animals
in each trial of these experiments — but is

500 Trends in Cognitive Sciences, July 2020, Vol. 24, No. 7

instead to chain these together in sequen-
tial steps to predict the long-run sum of
future rewards.

Chaining together sequential predictions is
what allows these algorithms (and, it is
believed, the brain) to solve difficult real-
world tasks such as mazes that involve
multiple steps of choice. However, ex-
tending distributional RL from estimating
a single outcome, as in this study, to the
full problem of tracking variation over a se-
quence of outcomes actually does require


Image of Figure 1

bringing together information across all the
channels of the learning ensemble at each
step of value update. It is as yet unclear
how (or indeed whether) the DA system
is wired up to square this circle. Perhaps
one additional piece of the puzzle is that
DA efflux in striatal target regions (thought
to mediate learning-related plasticity)
bears a complex relationship to spiking in
DA neurons and features volumetric diffu-
sion of released DA through the intracellu-
lar fluid [10]. All this provides another locus
in the learning circuit in which functional
asymmetry in prediction error-driven
value updates, and anatomical crosstalk
across channels, might arise. Whether a
spectrum of biased value estimates arises
through cellular or circuit mechanisms
local to the ventral tegmental area, or is
mediated through striatal, and perhaps
even cortical, loops, the detailed results
of Dabney et al. make it clear that DA re-
sponses are indeed able to maintain rich in-
formation about the experienced distribution
of outcomes. Ultimately, whether and how
this distributional information in DA might
be used to guide decisions involving risk is
the next test of the algorithm —to go beyond
the average course of action and into the
complex calculus of choice.
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Seeing Visual Gamma
Oscillations in a New
Light
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Gamma oscillations have been ar-
gued to support visual perception
by synchronizing the processing
and transfer of information within
and across areas of visual cortex.
Here, we highlight recent findings
implicating the influence of color
on visual gamma oscillations
and how these observations may
relate to local cortical tuning and
organization.

Visually induced gamma oscillations are
high-frequency (>30 Hz) fluctuations in
electrical brain activity that have been pro-
posed to support perception by synchro-
nizing neural firing [1]. Here, we highlight
recent explorations into the influence
of stimulus color on gamma oscillations.
Together with a novel discovery of visual
circuit organization, they advance our
understanding of the neural processes
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underlying visual gamma oscillations and
their role in perception.

Historically, gamma oscillations have been
studied by recording local field potentials
(LFP) in early visual cortex in response to
simple grating stimuli. Over the years, the
properties of induced gamma oscillations
have been shown to be dependent on
low-level stimulus attributes. For example,
large diameter and high-contrast grating
stimuli increase the amplitude and peak
frequency of induced gamma oscillations
[2]. Prior work has linked the influence of
grating size to surround-suppression phe-
nomena, such that large-scale gamma
oscillations occur under conditions where
local inhibition is strong [3]. Indeed, com-
putational models of gamma genesis are
based on the interplay between excitation
and inhibition [1], for which specific inter-
neurons are critical in generating oscilla-
tory population dynamics. Therefore, it
is important to understand how these
stimulus—response properties are en-
gaged during natural vision, particularly
because evidence for visual gamma oscil-
lations in response to more complex
image stimuli differs between studies and
has been an area of debate [4,5].

Why are grating stimuli particularly effec-
tive at inducing gamma oscillations? Intui-
tively, this could be related to the well-
known orientation tuning of cells in primary
visual cortex (V1). However, effects seen
at the single-cell level do not necessarily
capture the full range of responses
observed at the population LFP level. Re-
cently, Hermes and colleagues [6] used a
simple model to demonstrate that low
variability of oriented edges falling within
the receptive field predicts the occurrence
of gamma oscillations in visual cortex to
both gratings and natural images. These
findings highlight the sensitivity of gamma
oscillations to the spatial structure of visual
stimuli, in particular spatially homogenous
oriented edges, such as gratings, which
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