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Unique among areas of medicine, psychiatry has no labora-
tory diagnostic tests. This is largely due to a lack of under-
standing regarding how mental health symptoms arise from 

dysfunction in underlying brain mechanisms. Recent research has 
attempted to fill this gap by connecting these disorders to relatively 
well-characterized neuro-computational systems, notably those 
that support reinforcement learning (RL)1–5. In this respect, a key 
feature of RL in the brain is that it arises from a combination of 
at least two evaluative mechanisms, more deliberative versus auto-
matic, which have been formalized in terms of model-based and 
model-free learning6. Model-based learning evaluates actions by 
iteratively simulating their consequences using a learned represen-
tation, or ‘model’ of the task’s contingencies, such as a spatial map. 
Model-free learning skirts this computation by learning actions’ 
long-run values directly from experience when they are chosen; 
these values permit quick but inflexible decisions and are a potential 
substrate for habits. A line of research describes the biological sub-
strates for these functions, such as representations of future spatial 
trajectories in hippocampus that may support mental simulations 
of candidate routes for model-based evaluation7,8 and dopaminergic 
temporal-difference prediction error signals suited for model-free 
learning9. Although adaptive behaviour relies on the ability to flexi-
bly recruit both strategies, people also vary greatly in their tendency 
to do so. Accordingly, by comparing RL models with trial-by-trial 
choices in people learning sequential choice tasks (for example, 
two-step Markov decision processes (MDPs)10), the degree to which 
subjects utilize model-based RL has been shown to vary both situ-
ationally (for example, under dual-task interference11) and between 
individuals (for example, with genotypic variations that affect pre-
frontal dopamine12).

Abnormal imbalance between these mechanisms has also been 
the focus of persistent investigation regarding mental illness. In 
particular, it has long been suggested that symptoms related to 
compulsion (a dimension that cuts across illnesses including obses-
sive–compulsive disorder (OCD) and drug abuse) might arise from 
an imbalance that favours automaticity13–17. Indeed, for a variety 

of disorders involving compulsion, both patients’ diagnoses18 and 
self-reported symptoms in a large general-population sample16 are 
associated with deficient model-based learning in a two-step MDP.

More tentatively, theorists have suggested that some aspects of 
other disorders (notably, worry and overthinking in anxiety and 
also rumination in depression) might relate to a converse imbal-
ance, favouring excess deliberation3,19–21. In turn, such aberrant 
covert evaluation might drive other, more behavioural symptoms 
of these disorders, including avoidance in anxiety20,22. There is as 
yet less evidence relating symptoms of anxiety or depression to 
increased mental simulation in value-based learning (and a nega-
tive result in a small depression sample23). However, some analyses 
in ref. 16 revealed a small trend of increased model-based evaluation 
specifically for social anxiety, rather than other depressive and anx-
ious symptoms. Social anxiety is also an interesting test case for this 
hypothesis, both practically (because clinically significant levels of 
it are frequent in the population tested online24) and substantively, 
because it involves enhanced mentalizing and counterfactual think-
ing (see ref. 25 for a review), both of which are psychological con-
structs closely related to model-based evaluation.

We thus sought to investigate the hypothesis that social anxiety 
is associated with increased deliberation. To better probe their rela-
tionship, we turned to another well-studied type of learning task 
with a more social framing: a competitive economic game26–28, the 
patent race, in which subjects must learn to adjust their behaviour 
to their competitors’ moves. As with MDPs, choices on this sort 
of task are well characterized by a subject-specific combination of 
two strategies, paralleling model-free and model-based RL: direct 
(model-free) learning about which moves are successful versus 
deriving moves’ values indirectly based on which moves the oppo-
nent prefers (equivalent to a model of the opponent29). Moreover, 
the patterns of neuroimaging correlates and individual differences 
(for example, with dopaminergic genes) related to this dichotomy 
parallel those reported for MDPs27,28.

The patent race game also enables us to investigate anxiety’s 
effects not just on overall model usage but also on more granular 
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operations of planning. Although classic models have viewed plan-
ning as unitary (that is, evaluating all possible trajectories of action 
in the task at once), this is clearly unrealistic, since there are typically 
too many possibilities to consider practically. Accordingly, recent 
research aims to decompose model-based evaluation into a series of 
steps, such as simulating individual candidate actions or accessing 
memories for particular events8,23,30,31. These more granular mod-
els suggest a mechanism for overall variation in planning (resulting 
from fewer or more steps, overall) but also speak to the possibility of 
not just quantitative but qualitative variation across individuals: bias 
in which actions or events are likely to be simulated. If present, such 
bias predicts measurable patterns of effects on choices, for example, 
a stronger tendency to update values for some options than others. 
Again, anxiety provides an intriguing test case and application for 
these more process-level learning models, since bias in mental sim-
ulation has been hypothesized to connect covert symptoms (such as 
narrow preoccupation on certain events in rumination or worry) to 
behavioural ones such as avoidance20,22.

In social anxiety, studies of the content of rumination in 
post-event processing suggest it includes an excess of ‘upward coun-
terfactual’ thoughts about previous social interactions: that is, ‘if 
only’ thoughts about how the events could have gone better, which 
is thought to fuel anticipatory anxiety and avoidance of future social 
interactions32,33. This suggests a testable (albeit speculative, since 
we did not assess rumination or its content in the current study) 
hypothesis about behaviour in the patent race game. Model-based 
evaluation in such tasks can be decomposed into steps of computing 
the updated value of individual candidate actions, given individual 
outcomes. These steps each amount to counterfactual updates: 
computing the value of moves not taken, in light of the opponent’s 
move at each step29. A bias toward upward counterfactuals would 
predict a tendency toward model-based updating for a subset of 
the six moves available, differing from trial to trial depending on its 
outcome. If such a bias is observed in choices, this would connect 
a specific cognitive operation (biased processing of certain events) 
and a behavioural consequence (later choices) in anxiety.

Accordingly, to examine the relationship between social anxiety 
and model-based deliberation, we conducted two large-scale, online 
experiments. In each experiment, 500 subjects were recruited to 
complete the Liebowitz Social Anxiety Scale (LSAS) and play 80 
rounds of a patent race game (Fig. 1) against a computerized oppo-
nent. Experiment 2 was conducted to replicate the first, and to 
extend it by assessing symptoms for a broader range of psychiat-
ric symptoms, allowing us to probe the specificity of our findings. 
Below, we report both experiments’ results in parallel, but broken 
out by experiment where applicable.

results
In line with recommendations for studies conducted using Amazon 
Mechanical Turk (AMT), a priori exclusion criteria were applied 
to ensure data quality by eliminating low-effort participants34. Of 
the 966 participants (experiment 1, N = 489; experiment 2, N = 477) 
who completed the task, we eliminated participants who shirked 
either the Raven’s matrix test (experiment 1, N = 36; experiment 2, 
N = 49) or the patent race task (experiment 1, N = 41; experiment 2, 
N = 97). (Thus, in total, 77 and 146 were removed from experiment 
1 and 2, respectively, where the larger number in the second study 
is likely due to the longer session.) Specifically, we removed from 
consideration subjects who got zero or one items correct on Raven’s 
matrices or who chose the same move on more than 95% of trials 
(that is >76/80 rounds) in the patent race27. The remaining analyses 
concern the data of 743 participants (experiment 1, N = 412, 58% 
male, age mean 35.2 years, s.d. 10.4 years; experiment 2, N = 331, 
55% male, age mean 35.8 years, s.d. 10.1 years).

Our primary covariate of interest was self-report anxiety symp-
toms, measured using the LSAS35 (Fig. 2). Consistent with previous 
reports for the AMT population24, LSAS scores were high (experi-
ment 1: mean 54.52; s.d. 29.29 out of 144; experiment 2: mean 
45.34; s.d. 29.38; Fig. 2). Indeed, although dimensional self-report 
symptom scores as studied here do not substitute for a formal clini-
cal diagnosis, the average participant (and 72% of all participants) 
scored above the threshold (30) previously shown to predict a 
diagnosis of social anxiety disorder36. We also measured fluid intel-
ligence using an abbreviated Raven’s matrix scale37. On average, sub-
jects answered 5.5 (experiment 1, s.d. 1.8) and 5.4 (experiment 2, 
s.d. 1.7) of the nine Raven’s matrix problems correctly, correspond-
ing to a predicted mean of 46 and 44 correct on the full 60-question 
set (using the weighted prediction from ref. 37; Fig. 2).

Although the patent race game in principle admits of a mixed 
strategy Nash equilibrium, our participants’ aggregate behaviour 
was off it (similar to previous studies; Supplementary Table 1 (ref. 
27)). Research in behavioural economics has instead emphasized 
the more dynamic question of how subjects adjust their choices 
from trial to trial in light of experience with opponents’ strate-
gies or outcomes26–28, parallel to other studies of reinforcement 
learning in single-player choice tasks10,16. Accordingly, we char-
acterized such learning by fitting trial-by-trial choice sequences 
to the experience-weighted attraction (EWA29) model, which is 
also algebraically equivalent to the hybrid reinforcement learn-
ing model10 that is widely used to study the trade-off between 
model-based and model-free learning in single-player tasks in 
psychology and neuroscience (Methods). The fitting procedure 
provides, for each participant, estimates of free parameters that 
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best characterize the observed choices. The group-level distribu-
tions of these are shown in Supplementary Table 2, and are similar 
across the two experiments.

Our main hypothesis was that higher self-reported LSAS scores 
would be associated with increased reliance on model-based, 
counterfactual updating, reflected in larger estimated values of the 
parameter w. Indeed, the two variables were positively related (Fig. 
3 and Supplementary Table 3), that is, higher self-reported social 
anxiety (LSAS) predicted greater use of counterfactual updating 
(w) in the patent race task in experiment 1 (t(409) = 2.59, P = 0.01, 
β = 0.026, 95% confidence interval 0.006 to 0.045) and experiment 
2 (t(328) = 2.5, P = 0.01, β = 0.034, 95% confidence interval 0.007 
to 0.060). These results also control for any effects of abstract rea-
soning as approximated by each participant’s Raven’s matrix score, 
which is included in the same regression as an additional explana-
tory variable. We also formally tested whether the effect of LSAS 
on w differed across experiments and found no significant effect 
(t(737) = 0.50, P = 0.62, β = 0.008, 95% confidence interval −0.024 
to 0.040; Supplementary Table 4). No correlations for other model 
parameters, with either LSAS or Raven’s score, were significant 
across both experiments, although a consistent trend was seen for a 
positive relationship between Raven’s score and inverse temperature 

β (Supplementary Table 3; experiment 1, t(409), P = 0.078, β = 0.039, 
95% confidence interval −0.004 to 0.083; experiment 2, P < 0.001, 
β = 0.12, 95% confidence interval 0.053 to 0.187). Since that param-
eter captures the overall noisiness of responses, this suggests that 
higher intelligence is accompanied by a generalized improvement 
in task performance, less specific than the shift towards higher w 
associated with LSAS.

We next sought to unpack the intuition behind the main find-
ing using a simpler, more theory-agnostic analysis10. The forego-
ing model characterizes the choices as determined by expected 
values that are learned incrementally by an error-driven running 
average over the outcomes (real versus counterfactual) of the series 
of earlier trials. By omitting the long-run dependencies over mul-
tiple trials so as to focus only on how each choice is affected by the 
single most recent trial’s outcomes (real versus counterfactual), 
we can produce a more concrete, simplified approximation to the 
model10. Specifically, we performed a multinomial logit regres-
sion that explains each trial’s move in terms only of the vector of 
payoffs possible given the opponent’s move on the previous trial, 
comprising the payoff actually received and the counterfactual 
payoffs that would have been received had the played made other 
choices (Methods). Such a regression corresponds to a parametric 
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limit of the full model (where the learning rate α = 1). Then, the free 
parameters are the overall inverse temperature β̂ and the fractional 
weight of counterfactual to actual payoffs, ŵ. For ŵ of 0, a choice is 
determined only by the (model-free, actually received) payoff for 
the previously chosen move; as ŵ approaches 1, it becomes equally 
dependent on the (model-based, counterfactual) payoffs that would 
have been received for the other moves, given the opponent’s previ-
ous move (Methods). Using this simplified approach, we found that 
LSAS was associated with the same direction of change in the coun-
terfactual sensitivity ŵ. However, (as expected because the simpli-
fied analysis omits the effects of trials preceding the most recent 
one) the effect was not statistically significant in either dataset con-
sidered alone (experiment 1, t(409) = 1.31, P = 0.19, β = 0.009, 95% 
confidence interval −0.004 to 0.022; experiment 2, t(328) = 1.18, 
P = 0.24, β = 0.007, 95% confidence interval −0.004 to 0.018). The 
same effect was trending with both datasets pooled (t(740) = 1.95, 
P = 0.052, β = 0.007, 95% confidence interval −8 × 10−4 to 0.015; 
Supplementary Table 5).

Returning to the full EWA model, we next used an elaborated 
variant of the model to investigate the hypothesis that the effects 
of social anxiety would be driven by counterfactual updating about 
a subset of options. This model subdivides the parameter w into 
two, w+ and w−, which govern counterfactual updating separately 
for options that would have been better or worse, respectively, than 
the one taken. We first verified that the elaborated model fitted 
choices better than the original one, using the Bayesian information 
criterion to correct for overfitting from the additional free param-
eters. Indeed, the integrated Bayesian information criterion (iBIC) 
score3 for the extended variant was lower (indicating a better fit, 
correcting for overfitting due to additional free parameters) than 
that of the standard EWA model for each experiment (experiment 
1, iBICw = 30,656, iBICw± = 30,126; experiment 2, iBICw = 26,409, 
iBICw± = 26,159).

If increased deliberation in social anxiety is driven by rumina-
tion about the events in the task, then the behavioural effects should 
reflect the biases of that rumination. In particular, post-event pro-
cessing in people with high social anxiety involves an excess of 
upward counterfactual thoughts (‘if only’ thoughts about how the 
situation could have gone better33,38). Although we did not explic-
itly assess the content of counterfactual thought in this study, in 
the context of the value learning model hypothesized here, such a 
bias predicts a specific consequence for choices: the link between 

social anxiety and w should be due, more strongly, to a relationship 
between social anxiety and w+ (upwards counterfactual updating) 
more so than w−. Indeed, social anxiety predicted a robust increase 
in upwards counterfactual updating, indexed by w+ (experiment 1: 
t(409) = 2.66, P = 0.008, β = 0.031, 95% confidence interval 0.008 
to 0.053; experiment 2: t(328) = 3.44, P < 0.001, β = 0.047, 95% 
confidence interval 0.020 to 0.074), and had no significant rela-
tionship with w− (Fig. 4 and Supplementary Table 6). To formally 
compare these effects, we tested whether the association between 
social anxiety and w+ was significantly greater than that for w−; this 
difference was significant for experiment 2 (Supplementary Table 
7; t(163.64) = 2.36, P = 0.019, β = 0.040, 95% confidence interval 
0.007 to 0.074) and estimated in the same direction but not signifi-
cant for experiment 1 (t(362.17) = 1.54, P = 0.124, β = 0.022, 95% 
confidence interval −0.006 to 0.050). Even at baseline (that is, at 
an average level of social anxiety), upwards counterfactual updating 
(indexed by w+) was significantly higher than downwards (w−) in 
both experiments (Supplementary Table 7; experiment 1: t(397) = 
13.2, P < 0.001, β = 0.187, 95% confidence interval 0.159 to 0.214; 
experiment 2: t(310) = 5.92, P < 0.001, β = 0.099, 95% confidence 
interval 0.066 to 0.132).

We next examined whether our results were specific to social 
anxiety by controlling for additional psychopathological symptoms. 
In general, there are complex patterns of comorbidity among differ-
ent mental illnesses, and the effects we observed might in principle 
be subserved by other factors. Notably, many of the symptoms we 
assess are common in other disorders, including depression and 
generalized anxiety. Moreover, a number of studies have linked 
deficits in goal-directed choice to compulsivity16,18. We used partici-
pants’ responses to a larger battery of self-report symptom question-
naires included only in experiment 2 to examine how counterfactual 
reasoning in the patent race task related to symptoms of psychiatric 
conditions other than social anxiety. We summarized these using the 
transdiagnostic dimensions identified in ref. 16 using factor analysis 
on the same battery studied there. Using this method, we computed 
scores for each subject along three dimensions: ‘anxious–depres-
sion’, ‘compulsive behaviour and intrusive thought’ and ‘social with-
drawal’ (the last corresponding largely to LSAS; see Supplementary 
Figs. 1 and 2 for factor loadings).

Even controlling for these other factors, upwards counterfac-
tual learning predicted social anxiety (now captured by the ‘social 
withdrawal’ factor; Fig. 5 and Supplementary Table 8; t(326) = 3.23, 
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P = 0.001, β = 0.049, 95% confidence interval 0.019 to 0.078). The 
other psychiatric factors did not correlate significantly with any 
model parameters in this task (P values >0.1). Again, the relation-
ship between ‘social withdrawal’ and counterfactual updating was 
significantly greater for upwards counterfactual updating w+ ver-
sus downwards counterfactual updating w− (Supplementary Table 
9; t(138.37) = 3.32, P = 0.0012, β = 0.061, 95% confidence interval 
0.025 to 0.097).

Last, we verified the robustness of our modelling approach by 
demonstrating the recoverability of the EWA parameters in simu-

lated data for both the base and valenced model (Methods). Here, 
we simulated a dataset with known parameters and refit the model 
to the simulated dataset. We found that the ensemble of per-subject 
parameter values recovered from the simulated data tracked the 
true parameters for both models, with relatively small standard 
deviations in the per-subject errors around the parameters of inter-
est (relative to ground truth) and little confusability across param-
eters (the latter quantified by correlation coefficients between the 
errors) (Supplementary Figs. 3–5).

Discussion
We investigated the relationship between social anxiety and 
model-based learning in two large-scale behavioural experiments. 
By fitting the parameters of the EWA model to subjects’ choices 
in a patent race task, we derived indices reflecting the extent to 
which each participant’s behaviour reflected valuation of actions 
via direct, model-free reinforcement versus model-based learning 
about other, counterfactual moves (and which ones). In line with 
our hypothesis, self-report social anxiety (LSAS) predicted a signifi-
cant increase in overall model usage, as indexed by the EWA param-
eter w. Decomposed further, in one experiment, this effect was 
driven principally by increased updating of upwards counterfactual 
actions, suggesting a bias in the content of planning. The results 
were robust to the inclusion of additional dimensions of psychiatric 
symptoms as well as control for a measure of fluid intelligence. The 
latter was associated with overall choice consistency (parameter), 
perhaps reflecting a more generic contribution of motivation or task 
engagement.

Our results are consistent with longstanding suggestions that 
anxiety and other mental illnesses might be associated with exces-
sive and/or biased deliberative (model-based) processing, such as 
uncontrolled forward search for action valuation3,19–22. For instance, 
theoretical work on value-based computation in depression has 
analogized rumination to mental simulation, for computing the 
value of potential actions given their anticipated consequences. 
Although in principle this would be expected to give rise to other, 
behavioural effects, there has so far been limited evidence connect-
ing these hypothesized computations to actual choices or learning 
behaviour in illness3,23. Results of this sort are tantalizing in part 
because they point the way toward grounding the symptoms of men-
tal illness, here potentially including overthinking in and avoidance 
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of social situations, in the dysfunction of well-characterized, more 
basic neuro-computational mechanisms of evaluation and learning. 
Such a mechanistic understanding of these illnesses, known in med-
icine as an aetiology, is currently lacking, a situation that hampers 
both diagnosis and treatment, and ultimately contributes to poor 
patient outcomes.

Indeed, computational modelling proposes that many seemingly 
disparate aspects of anxiety disorders, including both cognitive 
symptoms such as worry and behavioural ones such as avoidance, 
may reflect a common deficit in action evaluation, which in turn 
may be due to dysregulated or biased mental simulation20,22. Thus, 
though operating at a different level of analysis, these theories are 
similar in spirit to the classic cognitive programme in psychiatry, 
which aims to identify misbeliefs or schemas39,40 that mediate symp-
toms, including behavioural and somatic ones41. Although we do 
not directly assess many of the real-world symptoms that these pro-
cesses hypothetically underlie in social anxiety – an important ques-
tion for future work – a strength of the theories’ formal grounding 
is that it allows us rigorously to test an abstracted laboratory opera-
tionalization of the core hypothesized cognitive–behavioural rela-
tionship: that in anxiety, altered choice behaviour reflects enhanced 
processing of certain events (counterfactual action outcomes).

While these considerations have been argued to relate to anxi-
ety disorders broadly (and aspects of them even to depression as 
well), the present study concerns social anxiety as assessed with 
the LSAS questionnaire (which primarily measures avoidance of 
social situations). Which aspects of our results, if any, bear on social 
anxiety specifically? Some evidence that the effects might be spe-
cific to social anxiety comes from our finding, in experiment 2, of 
no similar associations of task behaviour with a factor comprising 
other depression and anxiety symptoms. This is not determinative, 
because we chose a socially framed RL task to highlight any effect 
of social anxiety specifically. Social anxiety is also enriched in the 
sampled population (giving us relatively better power to observe 
its effects), and simpler and more homogeneous as a disorder com-
pared with more complex syndromes such as depression. All that 
said, substantively differential results for social anxiety versus other 
disorders might also arise insofar as overthinking in social con-
texts is, in some sense, goal directed and task focused, as opposed 
to worry and repetitive thought in other disorders which may be 
more idle and distracting (M. Paulus & M. Stein, personal commu-
nication42). Future work comparing multiple tasks within the same 
cohort, and manipulating task framing while holding task structure 
fixed, will be required to fully address these issues.

Our finding also complements previous reports (albeit using a 
different, single-player MDP task) that symptoms of compulsive 
disorders are associated with the opposite imbalance: declines in 
model-based learning16,18. However, in the current task we found no 
evidence that compulsivity is associated with reduced model-based 
learning, in contrast to Gillan’s setting. The negative finding regard-
ing compulsion is surprising given that OCD in particular has 
been associated with reduced model-based or goal-directed learn-
ing across a range of other tasks, beyond two-step Markov deci-
sion tasks.14,15 Presumably, something about how decision-making 
is operationalized in the current task accounts for the difference. 
Other than the social framing, differences from the two-step task 
include that the task is nonsequential and differences in the param-
eterization of the model, such that the parameter w here isolates the 
strength of model-based updating, whereas the analogous param-
eter most strongly affected in two-step tasks, βMB, also incorporates 
an element of choice consistency, like β in the current model.

One advantage of the current task, relative to others such as 
two-step MDPs, is that it allows us to compare the strength of 
model-based learning for different actions and outcomes. This 
allows us more finely to investigate individual steps of model-based 
planning, with implications both for testing process-level theo-

ries of planning and for characterizing in more detail how these 
operations change with illness. Much earlier research has viewed 
‘model-based’ learning as all-or-nothing, exhaustive recomputation 
of action values over a tree of future states6 and characterized indi-
vidual differences in the overall tendency to deploy it16. But recently, 
more realistic process-level accounts are emerging that decompose 
planning into component steps that update individual actions in 
the light of individual outcomes8,30,31,43. Such theories emphasize 
that, even for healthy choice, since each step takes time and occu-
pies resources such as working memory, they must be judiciously 
prioritized. One such prediction is that ‘upwards counterfactual’ 
information should be prioritized for learning, for example because 
it signals actionable choice policy improvements8,44,45. Our results 
here support this prediction, in that, even at baseline levels of social 
anxiety, planning is stronger for upwards than downwards counter-
factuals (that is, w+ is greater than w−; see also refs. 46–48 for related 
results in different settings).

Finally, this type of process-level decomposition of planning may 
provide a useful and mechanistic level of description for differenti-
ating patterns of biased event processing that are characteristic of 
different illnesses. Our finding that, in one experiment, social anxi-
ety is associated more strongly with increased processing of upwards 
counterfactuals (over and above the baseline difference) seems the 
most likely of our results to be a feature of social versus other anxi-
ety: for instance, it echoes the tendency for post-event rumination 
in social anxiety to also focus on such events33. That (in one of the 
experiments) the social anxiety effect more strongly enhances the 
bias also seen at baseline (which is in turn arguably rational), rather 
than being more sloppily associated with both types of counterfac-
tuals, may also suggest that it reflects an extreme case along an oth-
erwise adaptive spectrum. Although we do not assess rumination or 
worry directly (and this is an important direction for future work), 
its narrow focus makes it an appealing counterpart to theories of 
selective or biased model-based simulation. If these two constructs 
do coincide, then rumination would also lead to behavioural effects 
(such as avoidance); and the patterns of both could vary across 
illnesses. For instance, it seems likely that (a different pattern) of 
biased contemplation of negative events occurs in post-traumatic 
stress disorder, and in turn that that, if this were in fact planning, 
it would result in other symptoms such as overgeneralization of 
fear and avoidance20,22. This line of investigation points toward the 
promise of a better basic understanding of the microstructure of 
planning (which events are contemplated, when and why) and its 
relevance for understanding in a new computational and functional 
context many psychiatric phenomena, including not just compul-
sivity and rumination but also craving, obsession and hallucination.

Methods
Participants and procedures. Overall, 1,000 participants (500 per experiment) 
were recruited online using Amazon Mechanical Turk (AMT) in two successive 
experiments, of whom 966 (N1 = 489, N2 = 477) provided a complete dataset. No 
statistical methods were used to pre-determine sample sizes, but sample size was 
chosen to be similar to previous studies, specifically Gillan et al.’s16 experiment 
1, which used a similar online design, and Set et al.’s28, which used the same task. 
Subjects were required to meet the following conditions: 18 years or older, based 
in the United States (that is, had a US billing address with an associated US credit 
card, debit card or bank account), and had successfully completed most previous 
tasks on the Amazon platform (95% of previous tasks approved). All participants 
provided informed consent and were paid a base rate in addition to a bonus 
proportional to their (nominal) earnings during the reinforcement learning task. 
All procedures were pre-approved by Princeton University’s Institutional Review 
Board and were in compliance with all relevant ethical regulations.

Via their web browser, all participants completed the LSAS (Liebowitz, 1987), 
an abbreviated nine-item version of the Raven’s Standard Progressive Matrices 
(RSPM) test to capture fluid intelligence37,49, and 80 rounds of a patent race game27. 
Procedures for the two experiments differed only in that subjects in experiment 2 
completed a more comprehensive psychopathological assessment (in addition to 
LSAS) before proceeding to the Raven’s test and patent race game. In particular, 
experiment 2 included a battery of 209 multiple-choice questions which gauged 
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symptom severity across a range of disorders and constructs (the same battery used 
by ref. 16): alcoholism (Alcohol Use Disorders Identification Test), apathy (Apathy 
Evaluation Scale), impulsivity (Barratt Impulsiveness Scale 11), eating disorders 
(Eating Attitudes Test), social anxiety (LSAS), obsessive–compulsive disorder 
(OCD) (Obsessive-Compulsive Inventory-Revised (OCI-R)), schizotypy (Short 
Scales for Measuring Schizotypy), depression (Self-Rating Depression Scale) and 
generalized anxiety (State Trait Anxiety Inventory). Item 13 on the Self-Rating 
Depression Scale was administered following the erroneous wording also used in 
ref. 16 where participants rated “I am restless and can’t sleep” instead of the original 
item, “I am restless and can’t keep still”.

Patent race game. Subjects played 80 rounds of an asymmetric patent race task, 
a competitive, simultaneous move game in which a ‘strong’ player with more 
resources competes with a ‘weak’ player with fewer resources26–28. In each round 
of the game, subjects (who played the ‘weak’ role) were endowed with $4 and 
chose how much to invest (in integer dollars, $0–4) to obtain a $10 prize. The 
computerized opponent was endowed with $5 and thus held a stronger position. 
The rules of the game, including each player’s endowments and the payoffs 
conditional on different moves, were common knowledge and remained fixed 
throughout the game. When a player invested strictly more than their opponent, 
they won the $10 prize on that round. (In case of a tie, no one received the 
prize.) Regardless of the outcome, players kept the uninvested portion of their 
endowment.

Subjects were advised that the computerized opponent’s choices on each round 
were drawn randomly from a pool of choices made by previous human participants 
at that round of the game. Thus, although opponents were anonymous and unlikely 
to be encountered more than once in a row, they represented people at the same 
stage of progression through the task as the subject. Importantly, participants were 
not instructed as to the strategy mixture played by the opponents but could only 
discover it by trial and error.

Learning models. Since the distribution of opponents’ moves was unknown to the 
subjects (and potentially non-stationary), the game presents a learning problem: 
finding which moves are most effective. Two leading models for this process in 
behavioural game theory correspond to model-free and model-based RL (though 
model-free RL is known in this literature simply as ‘reinforcement learning’ while 
model-based RL is referred to as ‘belief learning’); a third model, known as EWA29 
characterizes behaviour by a weighted combination of these two strategies and has 
previously been used in a series of studies with this task27,28,50.

The model-free rule is simple Q-learning. It maintains an expected value 
for each possible move, updated whenever a move is chosen according to the 
received payoff51. In its original formulation52,53, belief learning turns on learning 
the opponent’s move distribution (a model about the opponent’s preferences or 
‘beliefs’, updated each time their move is observed). With this and the payoff 
matrix, the expected payoffs for each of the players’ responses can be computed. 
In fact, marginalizing the beliefs, the same payoff estimates for the player’s moves 
can be updated in place at each time step, by updating each of them according to 
the reward that would have been received had the player chosen that move, given 
the opponent’s move29. This approach can be viewed either as an algebraic trick 
for conveniently implementing the predictions of the model-based rule, or as a 
substantive hypothesis for how these computations might actually be implemented 
in the brain using counterfactual updates in place of the belief model. Similar 
approaches, which substitute replayed experience for a world model, have also been 
examined for other RL tasks such as spatial navigation8,54.

In the context of this game, model-free and model-based learning make 
different predictions about how the subjective value of each strategy (that is, each 
possible investment amount) is updated with experience at each round. Consider 
a round in which the subject invests $4 and the opponent invests $2. Here, the 
subject’s choice to invest $4 results in a total return of $10. Model-free learning 
would update the expected value of investing $4 by moving it closer to $10. In 
belief learning (implemented via counterfactual updating), the subject further 
updates the value of each other move by calculating the return it would have 
yielded on the previous trial given the observed investment made by the opponent. 
For example, in this case, the subject will update the value of investing $2 toward 
$2 and the value of $3 toward $11, since these are the amounts the subject would 
have won given that the opponent invested $2.

Computational modelling. Following previous work26,27,55, we modelled subjects’ 
learning on this task using Camerer and Ho’s29 EWA learning model. This 
constitutes a weighted combination of the two learning strategies discussed above, 
analogous to hybrid model-based/free models previously used for human choices 
in MDPs10.

To highlight this relationship, we re-derive the EWA model here starting 
from the hybrid model10 and using that model’s notation. At each round t, we 
assume that participants estimate the action value Qt(a) for each of the five moves 
(a ∈ invest $0–4). They then choose their move softmax in these estimates, 
P (at = a) ∝ exp (βQt (a)), with inverse temperature β.

The core assumption of the hybrid model is that these net action values 
themselves arise from the combination of two estimators, model-based and 

model-free: Qt (a) = wQMB
t (a) + (1 − w)QMF

t (a), weighted by a weighting 
parameter w.

Model-free learning is accomplished by error-driven updating of the chosen 
action at’s value according to its obtained payoff rt, with learning rate parameter α: 
QMF

t+1 (at) = QMF
t+1 (at) + α

(

rt − QMF
t (at)

)

. Rearranging, and incorporating decay 
for the unchosen options16,56, we have for all moves a,

QMF
t+1 (a) = (1 − α)QMF

t+1 (a) + Ia,at αrt (1)

The indicator Ia,at is 1 for a = at; 0 otherwise.
Instead of learning actions’ payoffs directly, model-based methods learn 

the distribution of the actions’ more proximal consequences. Here, these are 
the opponent’s moves aopp, played with probability π (aopp), and the associated 
rewards, that is the matrix R (a, aopp) of the participant’s payoffs for each move 
pair. Action values are then computed in expectation over these quantities. Here, 
for each for each a,

QMB
t (a) =

∑

aopp
πt

(

aopp
)

R
(

a, aopp
)

(2)

The opponent move distribution is also learned by error-driven update, 
πt+1 (aopp) = (1 − α) πt (aopp) + αIaopp ,aoppt

, for all aopp. (R is taken as given, since 
it is instructed.)

As written, equation (3) implies full recomputation of each model-based 
action value QMB (a) by exhaustive enumeration at every round, which seems 
unrealistically cumbersome (for example, if computing a value requires time 
or working memory resources57). Recent attempts to produce a more plausible 
process-level theory with a clearer neural implementation have noted that QMB can 
equivalently be carried over between rounds, by maintaining the single set of net 
values Q and incorporating updates to them in-place from (potentially limited) 
steps of model-based evaluation, also mixed in-place with direct experiential 
updates from model-free learning8,54.

In this task, substituting the update for π into the 
expression for QMB, the net update on each round for each a is 
QMB

t+1 (a) = QMB
t (a) + α

(

R
(

a, aoppt
)

− QMB
t (a)

)

 (Camerer and Ho, 1999). The 
rule is thus an error-driven update on each move’s value, but according to the 
reward R

(

a, aoppt
)

 that would have been obtained had that move been selected. For 
the move that was actually selected, at, this equals the obtained reward rt and the 
update is the same as for QMF; for the others, it is the same learning rule but using 
the ‘counterfactual reward’. Further substituting both MF and MB updates into Q,

Qt+1 (a) = (1 − α)Qt (a) + αθR
(

a, aoppt
)

(3)

with

θ = 1, a = at

θ = w, a ̸= at
for all a. Here θ = 1 for the chosen move, and θ = w for all other moves. Thus, 
the hybrid model is equivalent to model-free error-driven experiential learning 
(equation (1)) augmented with additional counterfactual updates weighted by w.

To obtain the full EWA model, we first omit the learning rate α from the second 
term of equation (3). (This rescales the values Q by a factor of 1/α, which does not 
change the model’s behavioural predictions since the free softmax temperature β 
can rescale to cancel it; this change of variables improves model identifiability by 
reducing collinearity between β and α.) Next we introduce an experience counter 
N, incremented and decayed at each step as Nt+1 = ρNt + 1. This is used to scale 
the learning updates dynamically:

Qt+1 (a) =
(1 − α)NtQt (a) + θR

(

a, aoppt
)

Nt+1
(4)

Note that, for ρ = 0, N(t) = 1 for all t, and the new term has no effect. For ρ > 0, N 
accumulates and drives a type of learning rate decay. For simplicity, and following 
previous work28, we took the two decay parameters as equal, that is ρ = (1 − α). 
Finally, we introduce free parameters for the initial values Q0(a) (for a = 0–4), 
capturing any a priori preferences for the actions.

A second advantage of the counterfactual updating approach, viewed as a 
realizable process-level account of model-based learning, is that it provides a 
plausible process-level grounding for the parameter w: if counterfactual updates 
are limited, such that only a subset occur on any particular trial with some overall 
fractional update rate w, then equation (3) produces the expected amount of 
updating. In turn, this approach extends to the possibility that updates for some 
options are prioritized, resulting in different effective w (refs. 8,31). Here, we 
considered the possibility that ‘upward’ and ‘downward’ counterfactual learning 
might be differentially prioritized, by using an elaboration of the EWA model 
in which, w, the degree of model-based updating, is valence dependent. This 
parameterization splits the free parameter w into w+ and w−, which control 
upwards and downwards counterfactual learning, respectively. The reward received 
on a given round, R

(

at, aoppt
)

, serves as the reference point. Moves that would have 
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resulted in more reward than what was won in reality (based on the opponents’ 
move on that round) are updated in proportion to w+, whereas actions that would 
have resulted in less reward are weighted instead by w−. Accordingly, the update 
rule for values is the same as before, but with

θ = 1, a = at

θ = w+, a ̸= at and R
(

a, aoppt
)

> R
(

at, aoppt
)

θ = w−, a ̸= at and R
(

a, aoppt
)

< R
(

at, aoppt
)

(5)

Note that we recover the original model when w+ = w−. In total, the original model 
contains eight free parameters and the valence-dependent model contains nine free 
parameters, summarized in Supplementary Table 10.

We estimated the free parameters of the model (equation (4), using the 
two different definitions of θ) per-subject using an expectation-maximization 
optimization algorithm3 implemented in the Julia language58. This procedure 
maximizes the likelihood of each individual’s sequence of choices, where each 
individual’s parameter estimates are random effects drawn from group-level 
Gaussian parameter distributions, whose means and variances are also estimated 
jointly with the individual estimates. (For w and α, which range between 0 and 1, 
the model assumed that the Gaussian-distributed variable was transformed using 
a sigmoidal function, the unit normal cumulative distribution function, to obtain 
a parameter in the appropriate range.) We estimated the full hierarchical model 
separately for each experiment.

We next subjected the per-subject parameter estimates from these analyses to 
a set of multiple linear regressions, one for each parameter, to test whether LSAS 
or symptom factor scores (see below) predicted each of the free parameters from 
the EWA models. All tests are two-sided with an alpha value of 0.05. These models 
included an additional covariate to control for Raven’s matrices scores, using 
the score predicted for the full 60-item set based on the nine problems given37. 
All predictors were standardized (z scored) for interpretability of coefficients. 
(Auxiliary analyses also considered age as an additional nuisance predictor, but 
this had no appreciable effects on the results.) To test whether the effects were 
different between parameters w+ and w−, we repeated the regression with both 
parameters as dependent variables (one each per participant, with an indicator 
variable for parameter type), and tested whether the slope on LSAS (or factor 3: 
social withdrawal) interacted with parameter type (valence). Here, we used a linear 
mixed-effects model (with random effects per participant on all of the parameters 
excluding the main effects of LSAS and Raven’s) to capture the repeated-measure 
structure. We estimated this model using MATLAB’s ‘fitlme’ function and the 
Satterthwaite approximation to the degrees of freedom.

To assess the relative fit of the elaborated versus standard variant of the EWA 
model while correcting for overfitting due to both group- and subject-level 
parameters, we computed iBIC scores3. This was defined as the marginal 
likelihood of the data given either model, aggregated across subjects, marginalizing 
per-subject parameters with the Laplace approximation, and penalizing for the 
group-level parameters using BIC.

One-trial-back EWA. We specified a simplified variant of the EWA model to 
complement the main findings with a more theory-agnostic analysis. Following 
prior work10, we also considered a simpler, reduced model explaining the move 
on each trial based on the events on just the preceding trial. By eliminating the 
learning rate α (which otherwise enters non-linearly), the reduced model takes the 
form of a generalized linear model, here a multinomial logit regression onto the 
(five-valued multinomial) move. Moreover, the predictor variables of the simplified 
model have a more concrete, intuitive interpretation. In the one-trial-back version 
of the EWA model (taking α = 1 and omitting initial Q values for the options, 
which here affect only the first trial), the only free parameters are the inverse 
temperature β̂ and the rate of counterfactual updating ŵ. The predictors for choice 
at are β̂θR

(

a, aoppt−1
)

, where θ = 1 for at = at−1 and θ = ŵ otherwise. In other words, 
the choice is logistic in the actual reward for the previous trial’s choice and the 
vector of counterfactual rewards for the other choices, given the previous trial’s 
choice, where ŵ controls the relative regression weight for the counterfactual 
predictors. Thus, as ŵ approaches 0, choice is based on the (model-free) received 
reward on the previous trial; as it approaches 1, the estimated value of each 
alternative investment amount is also given by the amount of reward the learner 
would have received on the previous trial given the opponent’s observed strategy 
on the previous trial.

Parameter recovery. To assess the recoverability of the EWA model parameters, we 
use the model fitting procedure described above to recover the model parameters 
of artificial datasets for which the generative, ground-truth parameters are known.

To generate these artificial data, we simulated the process of collecting a new 
dataset corresponding as closely as possible in size and distribution to our existing 
dataset (comprising experiments 1 and 2 pooled). To determine the distribution 
of ground-truth per-subject parameters, we first estimated the group-level 
multivariate Gaussian parameter distributions for the pooled dataset (N = 743) 
using the model fitting procedure described above. We then drew parameters 
for each of a population (N = 743) of new subjects from this distribution and, for 

each, simulated 80 rounds of patent race investments. Next, we repeated the same 
model fitting technique that was applied to the real data to estimate the group- and 
subject-level parameter values for the synthetic dataset.

Finally, we compared ground truth versus recovered parameters per simulated 
subject, using Pearson’s correlations and the variance and covariance of the 
recovery errors (ground truth – recovered).

Because our fits to the actual experimental dataset found that the 
parameter w− in the valenced model was, on average, small, we repeated the 
simulation-and-recover analysis to verify that larger w− would have been detectable 
if present. For this, we simulated another population of participants, the same as 
before but with the distribution of w− modified to be uniform in (0, 1). The results 
(Supplementary Fig. 5) verify adequate recovery of larger w− values in this case.

Factor analysis. For experiment 2, we used the factors identified in ref. 16 to 
reduce responses on the 209 items from the nine psychiatric symptom scales to 
scores on three dimensions that capture much of the intersubject variance. These 
were labelled by Gillan et al.16 as ‘anxious–depression’, ‘compulsive behaviour and 
intrusive thought’ and ‘social withdrawal’ based on the items with the strongest 
loadings for each factor (Supplementary Fig. 1). We verified that the factor analysis 
procedure described in ref. 16, when applied to our data, produced substantially 
the same factor structure (correlations between factor loadings: factor 1: R = 0.94, 
P < 0.001; factor 2: R = 0.91, P < 0.001; factor 3: R = 0.91, P < 0.001). Because Gillan 
et al.’s study analysed the same battery of questionnaires using a larger sample 
(N = 1,413), we used the factor loadings estimated in that study to construct factor 
scores for each subject.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Processed data (per-participant estimated model parameters and covariates) 
supporting all of the statistical results of the study, and the raw choice data from 
which the model parameters were estimated, are available at https://github.
com/ndawlab/patentrace. Raw psychometric data (questionnaire responses) are 
available from the corresponding authors upon request.

Code availability
Custom MATLAB code to reproduce all statistical results and tables is available at 
https://github.com/ndawlab/patentrace. Custom Julia code for estimating learning 
model parameters from raw choice data is available at https://github.com/ndawlab/
em. Additional code (for figures and analyses of psychometric data) is available 
from the corresponding authors upon request.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Participants were recruited via Amazon Mechanical Turk, filled out self-report psychiatric questionnaires via web forms, and played an 
economic game (implemented in JavaScript) in their browser. 

Data analysis Self-report data were analyzed using standard factor analysis libraries in R; game choices were fit with a learning model using expectation 
maximization code available at https://github.com/ndawlab/em implemented in Julia; fit parameters were regressed on self-report data using 
standard regression libraries in Matlab

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Both raw choice data and processed data (estimated subject parameters and covariates, sufficient to reproduce the statistical results and tables in the paper) are 
available at https://github.com/ndawlab/patentrace 
 
Matlab code for reproducing the statistical analyses is included in the same repository. 
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Julia code for the EM model-estimation package used to estimate the subject parameters is available at https://github.com/ndawlab/em 
 
Additional code and data are available from the authors upon request.
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Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This is a study comparing self report psychiatric symptom data to choice behavior in an economic game.

Research sample Two general population samples (N=500 each) were recruited from Amazon Mechanical Turk. Subjects were required to be 18 years 
or older, based in the USA (i.e. had a US billing address with an associated US credit card, debit card or bank account), and to have 
successfully completed most previous tasks on the Amazon platform (95% of previous tasks approved). Expt. 1, 58% male, age 
mean=35.2 SD=10.4; Expt. 2, 55% male, age mean 35.8 SD=10.1.

Sampling strategy A convenience sample was recruited via Amazon Mechanical Turk according to the above requirements. No formal power analyses 
were used to pre-determine sample sizes, but sample size was pre-chosen to be similar to previous studies, specifically Gillan et al's 
(2016) Expt. 1 which used a similar online design and Set et al. (2014) which used the same task. 

Data collection Data were obtained via forms and interactive games running in the participants' web browsers. 

Timing Experiment 1 was collected in July 2016. 
Experiment 2 was collected in April 2017.

Data exclusions In line with recommendations for studies conducted using Amazon’s Mechanical Turk (AMT), a priori exclusion criteria were applied 
to ensure data quality by eliminating low-effort participants. Of the 966 participants (Expt. 1, N = 489; Expt. 2, N = 477) who 
completed the task, we eliminated participants who shirked either the Ravens matrix test (Expt. 1, N = 36; Expt. 2,  N = 49) or the 
patent race task (Expt. 1, N = 41; Expt. 2,  N = 97). (Thus in total, 77 and 146 were removed from experiment 1 and experiment 2 
respectively, where the larger number in the second study is likely due to the longer session). Specifically, we removed from 
consideration subjects who got 0 or 1 items correct on Raven’s matrices or who chose the same move on more than 95% of trials (i.e. 
>76/80 rounds) in the patent race.

Non-participation Of the 500 subjects recruited for each study, most completed (Expt. 1, N = 489; Expt. 2, N = 477). The remainder did not complete 
the web-browser tasks and return the "hit".

Randomization n/a

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Human research participants
Policy information about studies involving human research participants

Population characteristics See above.

Recruitment See above.

Ethics oversight The study was approved by the Princeton University IRB.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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