
A vector reward prediction error model
explains dopaminergic heterogeneity

Rachel S. Lee1, Ben Engelhard1, Ilana B. Witten1,2 *, Nathaniel D. Daw1,2 *

Affiliations:

1Princeton Neuroscience Institute
2Department of Psychology

Princeton University, Princeton NJ USA 08544

​The hypothesis that midbrain dopamine (DA) neurons broadcast an error signal for the
prediction of reward (reward prediction error, RPE) is among the great successes of
computational neuroscience1–3. However, recent results contradict a core aspect of this theory:
that the neurons uniformly convey a scalar, global signal. Instead, when animals are placed in a
high-dimensional environment, DA neurons in the ventral tegmental area (VTA) display
substantial heterogeneity in the features to which they respond, while also having more
consistent RPE-like responses at the time of reward. Here we introduce a new “Vector RPE”
model that explains these findings, by positing that DA neurons report individual RPEs for a
subset of a population vector code for an animal’s state (moment-to-moment situation). To
investigate this claim, we train a deep reinforcement learning model on a navigation and
decision-making task, and compare the Vector RPE derived from the network to population
recordings from DA neurons during the same task. The Vector RPE model recapitulates the key
features of the neural data: specifically, heterogeneous coding of task variables during the
navigation and decision-making period, but uniform reward responses. The model also makes
new predictions about the nature of the responses, which we validate. Our work provides a path
to reconcile new observations of DA neuron heterogeneity with classic ideas about RPE coding,
while also providing a new perspective on how the brain performs reinforcement learning in high
dimensional environments.
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Introduction

Among the more prominent hypotheses in computational neuroscience is that phasic responses
from midbrain dopamine (DA) neurons report a reward prediction error (RPE) for learning to
predict rewards and choose actions1–3. While clearly stylized, this account has impressive range,
connecting neural substrates (the spiking of individual neurons and plasticity at target synapses,
e.g. in striatum4) to behavior (trial-by-trial adjustments in choice tendencies5), all via
interpretable computations over formally defined decision variables. The question of this article
is whether and how the strengths of this account can be reconciled with a growing body of
evidence challenging a core feature of the model, i.e. the identification of a scalar, globally
broadcast RPE signal in DA responses.

This scalar RPE is not a superficial claim of these theories, but instead one that connects a key
computational idea to a number of empirical observations. Computationally, scalar decision
variables reflect the ultimate role of any decision system in comparison: the decision-maker
must order different outcomes against one another to choose which to take. Thus, even though
value arises from multiple incentives (water, food, etc.), these must effectively be reduced to a
so-called “common currency” for comparison6. In turn, the error in these value predictions (e.g.
the difference between expected and obtained overall value) is then also scalar. Such scalar
comparisons have been argued to be apparent in features of Pavlovian conditioning such as
transreinforcer blocking7,8, by which different good or bad outcomes can substitute for one
another. Neurally, the scalar nature of RPE was also historically viewed as a good fit for a
number of features of the DA system. Anatomically, the ascending DA projection has an
organization more consistent with a “broadcast” than a labeled line code: a relatively small
number of individual neurons innervate a large area of the forebrain via diffuse projections9. For
instance, individual DA neurons branch extensively to innervate large areas (~1 mm3) of
striatum10, where volumetric propagation of released DA to extrasynaptic DA receptors further
blurs its effect11. Physiologically, early reports also stressed the homogeneity of responses of
midbrain DA neurons on simple conditioning tasks – e.g., a large majority of units respond to
unexpected reward12.

However, the physiological argument for a scalar RPE is increasingly untenable, as a mounting
body of recent work challenges the generality of this finding by demonstrating a range of
variation in dopamine responses. In particular, midbrain DA neurons can have heterogeneous
and specialized responses to task variables during complex behavior5,13–28, even while having
relatively homogenous responses to reward3,15,21,29,30. We investigate these phenomena by
focusing on a recent study from our labs which provides one of the most detailed and dramatic
examples of this pattern, at the level of single neurons. By performing 2-photon imaging across
a population of VTA DA neurons while mice performed an evidence accumulation task in a
virtual reality T-maze, we observed that while neurons respond relatively homogeneously to
reward during the outcome period, during the navigation and decision period, they respond
heterogeneously to kinematics, position, cues, and more15.

How can we reconcile such DAergic heterogeneity with the substantial evidence for the RPE
theory? Here, we show that these properties will emerge once we address two key
oversimplifications of the classic RPE model: one anatomical and one computational.
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Anatomically, although the ascending DAergic projection is relatively diffuse9,31, inputs to DA
neurons are not homogenous but instead arise from cortico-basal-ganglionic circuits that are
highly topographically organized32–34. Computationally, although RPE is a function of value
(which, as usually defined, is scalar), value is itself a function of a variable known in RL models
as “state”: a summary of the current situation in the task that is supposed to reflect all
information that is relevant to reward prediction and choice. Although theoretical simulations
have often employed simplified “grandmother cell” codes for state1–3, in a realistic environment
or a biological brain, these stand in for a high-dimensional group of sensory and internal
variables that are likely widely distributed throughout the brain. Here we propose that a
distributed code for state is carried by corticostriatal circuits, which transform it into
corresponding distributed codes for value and RPE that, in effect, decompose these scalar
variables over state features34. In this way, different striatal and DAergic neurons reflect the
contribution of different state features to value and RPE, but the ensemble collectively
represents canonical RL computations over the scalar variables.

Our new model offers a number of key insights. First, it explains the striking contrast observed in
dopamine neurons: heterogeneous responses to task variables alongside much more uniform
outcome-period responses15,21. This is a key empirical signature of the distributed value code we
posit, because responses in the navigation and decision period arise from value predictions
(and hence ultimately from diverse state features) whereas the outcome-period response is
driven by common reward information. Second, the model retains an algebraic mapping to the
standard theory1–3, preserving its successes while improving its match to anatomical and
physiological evidence; it also lays a foundation for further elaborations that take advantage of
the distributed code to improve learning. Finally, the theory exposes an unexpected connection
between the puzzling empirical phenomena of DAergic heterogeneity and a major theoretical
question in RL models in neuroscience: the nature of state. While there has been substantial
theoretical interest in the principles by which the brain represents task state35–38, there is
relatively little empirical evidence to constrain these ideas. The new model suggests that the DA
population representation itself can provide a window into this hitherto elusive concept of the
neural representation of state.

Results

The Vector RPE model

Here, we propose a Vector RPE model as an extension of the classic scalar RPE model (Fig.
1). RL models typically assume that the goal of the learner is to learn the value function
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reduces the problem of value learning (for some feature set) to learning the error-minimizing

weights , and more importantly for us, formalizes the state representation itself as a vector of𝑤
→

time-varying features . (The linearity assumption is less restrictive than it seems, since theϕ
→

𝑡

features may be arbitrarily complex and nonlinear in their inputs. For instance, this scheme is
standard in AI, including at the final layer in deep-RL models, which first derive features from a
video input by multilayer convolutional networks, then finally estimate value linearly from
them40,41.)

In a standard temporal-difference (TD) learning model, weights are learned by a delta rule using
the RPE . A typical cartoon of how these are mapped onto brainδ
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circuitry is shown in Fig. 1a, with a cortical input population vector for state features projected to
scalar value and RPE stages, corresponding, respectively, to presumed uniform populations of
striatal and midbrain DA neurons1–3. The RPE then drives weight learning at the corticostriatal
synapses via ascending DA projections.

We propose to relax the unrealistic assumption that the corticostriatal stage of this circuit
involves complete, uniform convergence from vector state to scalar value (Fig. 1b). In fact,
projections are substantially topographic at each level of the corticostriatal circuit31,32,42. Thus, if
different striatal units preferentially receive input from particular cortical features , then value𝑖 ϕ
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(where is a scale factor equaling the number of channels). Importantly, due to linearity, the𝑁
aggregate response (summed over channels ) at the value stage reflects the original scalar𝑖
value, and the aggregate response at the RPE stage corresponds to the original scalar RPE.

Thus (assuming the ascending dopaminergic projection is sufficiently diffuse as to mix the
channels prior to the weight update) the model corresponds algebraically to the classic one, just
mapped onto the brain circuitry in a more realistic way. Note that our basic insight that
nonuniform projections will result in value and RPE stages that reflect input feature variation, but
preserve the model’s function due to linearity, holds under still more realistic models in which
channels partially mix at each step due to anatomically delimited convergence, or in which
linearity is only approximate, etc. Also, the assumption of perfect mixing on the ascending DA
stage is needed only to recover the classic model exactly. The current framework also admits
variants which maintain separation on the ascending signal. They function similarly, but allow for
more efficient, “divide and conquer” learning in some situations44(see Discussion).

Anatomically, this account (while still exceptionally stylized) represents a more realistic picture
compared to the traditional scalar story of both value and RPE. Overall, there is clearly
topography preserved in each stage of projection, from cortical inputs to MSNs, from MSNs to
dopaminergic units, and indeed from dopaminergic units back to forebrain32–34. Each of these

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.02.28.482379doi: bioRxiv preprint 



stages does involve convergence or dimensionality reduction (and the model could
accommodate any degree of summation at each stage), but it seems plausible that the most
drastic such convergence is the projection from dopamine back to striatum. Indeed each
dopamine axon entering striatum branches into an extensive, dense arborization which
synapses on many MSNs over a sizable territory of striatum10. Moreover, dopamine is also
released at nonsynaptic release sites and propagates volumetrically to nonsynaptic receptors11.

Physiologically, this model is constructed so that (even without specifying a particular feature
basis) it captures several aspects of the heterogeneous dopamine response. Consider times
when primary reward is not present, such as during the navigation and decision-making period
as in15. Here, and Equation 1 reduces to : that is, each DA unit𝑟

𝑡
= 0 δ
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presence of the other features), and its derivative will correlate with a subset of neurons. Even a
DA neuron that is driven by an objectively task-irrelevant feature is likely to respond to it, due to
incidental or transient correlations between the feature and value producing nonzero .𝑤

𝑖

Conversely, at outcome time, all modeled RPE units are likely to respond differentially for
reward than nonreward (due to being shared across all channels in Equation 1) as in15. This𝑟
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reward response may also be modulated by its predictability, due to each channel’s share of the
temporal difference component, , but is unlikely to be completely predicted𝑤
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away by most individual features. Finally, since the standard RPE is equal to the sum over allδ
𝑡

channels by construction, the model explains why neuron-averaged data (or bulk signals
𝑖

∑ δ
𝑖,𝑡

as in fiber photometry or BOLD), as often reported, resemble TD model predictions even
potentially in the presence of much inter-neuron variation.

Deep RL network to simulate the Vector RPE model

Although our Vector RPE model is fully general, in order to simulate the model in the context of
a specific task, we need to specify an appropriate set of basis functions for the task state. We
consider our previously reported experiment in which mice performed an evidence accumulation
task in a virtual reality environment while VTA DA neurons were imaged 15 (Fig. 2a). In this task,
mice navigated in a virtual T-maze while viewing towers that appeared transiently to left and
right, and were rewarded for turning to the side where there had been more towers.

To simulate the vector of RPEs in this task (which we will simply refer to as the “vector RPE”),
we took advantage of the fact that this task was based in virtual reality, and therefore we could
train a deep RL agent on the same task that the mice performed to derive a vector of features,
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and in turn, a corresponding distributed code for values and RPEs (Fig. 2b). In particular, we
used a deep neural network to map the visual images from the virtual reality task to 64 feature
units (via three convolutional layers for vision, then a layer of LSTM recurrent units for evidence
accumulation; see Methods). These features were then used as common input for an actor-critic
RL agent: a linear value-predicting critic (as above, producing the vector RPE that sums to the
traditional scalar RPE) and a softmax policy learner responsible for choosing an action (left,
right, forward) at each step. We trained the network to perform the task using the A2C
algorithm41.

After training, the agent accumulated evidence along the central stem of the maze to ultimately
choose the correct side with accuracy similar to mice (shown as a psychometric curve in Fig.
2c). A minimal abstract state space underlying the task is 2D, consisting of the position along
the maze and the number of towers seen (on left minus right) so far. When examining average
responses of the trained state features from the network in this space, we find that units are
tuned to different combinations of these features, implying that they collectively span a relevant
state representation for the task (Extended Data Fig 1). Further, the scalar value function
output by the trained agent while traversing the maze, derived by summing the value vector, is
modulated by trial difficulty (operationalized, following the mouse study, as the absolute value of
the difference in the number of cues presented on either side), meaning that the trained agent
can predict the likelihood of reward on each trial (Fig. 2d).

Vector RPE has heterogeneous selectivity during the cue period

The key finding from our prior cellular resolution imaging of DA neurons during the virtual
T-maze task was heterogenous coding of task and behavioral variables during the navigation
and decision period, such as view angle, position, and cue side (contralateral versus
ipsilateral)15. This heterogeneity was followed by relatively homogeneous responses to reward
during the outcome period.

We first sought to determine if the vector RPEs from our agent had heterogenous tuning to
various behavioral and task variables during the cue period, similar to our neural data. We first
considered the view angle during the central stem of the maze, which had no effect on reward
delivery in the simulated task, but which the agent could nonetheless rotate by choosing left or
right actions while in the stem of the maze. The vector RPE displayed idiosyncratic selectivity
across units for the range of possible view angles (Fig. 3a), which qualitatively resembled our
previous results from DA neuron recordings (Fig. 3d). We next considered position tuning along
the central stem of the maze. A subset of RPE units showed position selectivity, including both
downward and upward ramps towards the end of the maze (Fig. 3b), again qualitatively
resembling our neural recordings (Fig. 3e). Finally, units also had idiosyncratic and
heterogeneous cue selectivity, including preference for right vs left cues and diversity in the
timing of the response (Fig. 3c). This was reminiscent of the side-selectivity of the in vivo cue
responses, although the time courses of the artificial agent RPEs and in vivo calcium indicator
data differed (Fig. 3f), presumably due to temporal filtering in the latter.
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Reward-irrelevant features are present in the Vector RPE

A feature of the neural data is the encoding of task features that appear to be
reward-irrelevant15. In the model, the requirement of the network to extract relevant task state
from the high-dimensional video input implies the possibility that reward-irrelevant aspects of the
input may “leak” into the state features, and ultimately into the vector RPE – even if they
average out in the scalar RPE. Although we of course do not intend backpropagation as a
mechanistic account of how the brain learns features, its use here exemplifies the more general
problem that a low-dimensional output objective (choosing actions and predicting scalar reward)
imposes few constraints on higher-dimensional upstream feature representations.

To test the validity of this idea, we sought to examine whether there may be coding of
reward-irrelevant visual information in the Vector RPE of the agent. We focused on
unambiguously reward-irrelevant visual structure in the task, namely incidental background
patterns that appear on the wall in the stem of the maze (Fig. 4a). This background pattern
repeats every 43 cm, a structure which is clearly visible as off-diagonal banding in the matrix of
similarity between pairs of video frames across all combinations of locations. The structure is
also visible as peaks in the 1D function (similar to an autocorrelation) showing the average
similarity as a function of the distance between frames (Fig. 4b). To investigate whether the
same irrelevant feature dimensions are present at the level of the vector RPEs, we repeat the
same analysis on them. (To ensure the network inputs actually reflect such repeating similarity
structure, for this analysis we exposed the trained network to a maze traversal with a fixed view
angle and no cue towers.) The resulting vector RPEs show the same pattern of enhanced
similarity at the characteristic 43 cm lag, supporting the expectation that task-irrelevant features
do propagate through the network (Fig. 4c-d). This particular effect remains a prediction for
future neural experiments: because the fixed view-angle condition was not run in the mouse
studies, we cannot repeat this test in existing empirical data.

Cue responses are consistent with feature-specific RPEs

While our Vector RPE model implies idiosyncratic and even task-irrelevant tuning in individual
DA neurons, it also makes a fundamental prediction about the nature of these responses. In
particular, responses to individual features represent not generic sensory or motor responses
but feature-specific components of RPE. What in practice this means for a given unit depends

both on what is its input feature , and also what other features are represented. But in generalϕ
→

𝑡

we would expect that units that appear to respond to some feature (such as contralateral cues)
do not reflect simple sensory responses (the presence of the cue) but rather should be further
modulated by the component of RPE elicited by the feature. This could be particularly evident
when considering the response averaged over units selective for a feature.

To test this hypothesis, we performed a new analysis, by subdividing cue-related responses
(which are largely side-selective in both the model and neural data, Fig. 5) to determine if they
were, in fact, additionally sensitive to the prediction error associated with a cue on the preferred
side. For this, we distinguished these cues as confirmatory – those that appear when their side
has already had more cues than the other and therefore (due to the monotonic psychometric
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curve, Fig. 2c) are associated with an increase in the probability that the final choice will be
correct and rewarded, i.e. positive RPE – vs disconfirmatory – cues whose side has had fewer
towers so far and therefore imply a decreased probability of reward (Fig. 5a). As expected,
when we considered the population of cue-onset responding vector RPE units from the deep RL
agent, these responses were stronger, on average, for confirmatory than disconfirmatory cues
(Fig. 5b), reflecting the component of RPE associated with the cue. We next reanalyzed our
previous DA recordings based on this same insight. Consistent with the hypothesis that these
cue responses reflect partial RPEs for those cues, the responses of cue-selective DA neurons
were much stronger for confirmatory than disconfirmatory cues (Fig. 5c). This implies that the
heterogenous cue selectivity in DA neurons is indeed consistent with a cue-specific RPE.
Importantly, the fact that these cue-responsive neurons are overwhelmingly selective for
contralateral cues implies that these responses, combined across hemispheres, simultaneously
represent separate components of a 2-D vector RPE.

Uniform responses to reward at outcome period

In addition to explaining heterogeneity during the navigation and decision-making period, the
Vector RPE model also explained the contrasting homogeneity of the neural responses to
reward during the outcome period. Reflecting the standard properties of an RPE, the simulated
scalar RPE (averaged over units) responded more for rewarded than unrewarded trials (Fig.
6a). Since this aspect of the response ultimately arises (in Equation 1) from a scalar reward
input, it is highly consistent across the units (Fig. 6b), matching the neural data from our
experiment (Fig. 6c) and the widely reported reward sensitivity of DAergic units (N = 303).

Equation 1 also implies a subtler prediction about the vector RPE, which is that although the
modulation by reward is largely uniform across units, the simultaneous modulation of this
outcome response by the reward’s predictability should be much more variable. This is because
this latter modulation arises from the value terms in Equation 1, which are distributed across
features (i.e., value is a vector). In this task, reward expectation can be operationalized based
on the absolute difference in tower counts, which is a measure of trial difficulty (predicting the
actual chance of success as shown in Fig. 2c), That is, when a reward occurs following a more
difficult discrimination, the agent will have expected that reward with lower probability (Fig. 2d).
Accordingly, the simulated scalar RPE was larger for rewards on hard than easy trials (Fig. 6d;
Extended Data Fig. 2). However, when broken down unit-by-unit, although the median of
individual units in the Vector RPE was consistent with the scalar RPE (P < 0.05 two-sided
Wilcoxon signed rank test for N=64), the size and direction of this effect varied widely across
units (Fig. 6e). A similar finding emerged from the neural data: while on average the reward
response across reward-responsive population was modulated as expected by expectation (P <
3e-5 two sided Wilcoxon signed rank test for N = 303), there was high variability in the direction
and extent of modulation across units (Fig. 6f).

Discussion

Here we propose a new theory which helps to reconcile recent empirical reports of DA response
heterogeneity to the classic idea of DA neurons as encoding RPEs. Our model posits that DA
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heterogeneity is in part a reflection of a high-dimensional state representation, and thus the DA
responses form a distributed RPE code with respect to features from the state input. We show
how this model produces heterogeneous responses to task variables, but relatively uniform
responses to reward, recapitulating recent empirical work15. We also test the model’s prediction
that heterogeneous DA responses are not simply responses to sensory and behavioral features
of the task, but instead reflect components of the RPE with respect to a subset of the features.

Aspects of DAergic heterogeneity that can and cannot be explained by our model

The question arises of which aspects of the many experimentally reported instances of DAergic
variation our model can explain, versus which may reflect additional (not necessarily mutually
exclusive) mechanisms. It can be helpful to categorize empirical studies of DA into those
describing heterogeneous responses at outcome (to rewards, omissions, or
punishments16,18,22,25,45–52) versus heterogeneous responses to other task events, including
stimuli and movements5,13,15,21,22,24,26,28,51–56.

Regarding the latter, the basic insight of our model is that an arbitrary population code for state,
if not fully convergent onto a population of DA neurons, can give rise to diverse patterns of
simultaneous, multiplexed responses to different nonreward task events. Collectively, these
responses constitute a population code over feature-specific RPEs in an otherwise standard TD
learning setting aiming to predict a single, scalar reward input. In principle (given corresponding
feature inputs) this architecture could explain a wide range of reports of multiplexed and
idiosyncratic DA responses to different features, including both stimuli and movements and
responses with different temporal patterns (including both ramping and waves)26,57. Although the
model is extremely general in this respect, since different DA response patterns can arise from
different feature inputs, it does make specific and testable predictions. For instance, the model
predicts that DA encoding of task features, in general, actually reflects components of RPE with
respect to each feature, rather than strictly the main effect of the feature itself. For instance, in
the current dataset DA neurons distinguish confirmatory from disconfirmatory cues (Fig 5b,c),
which differ in their reward consequences. This can be quite subtle to test, and most existing
reports of apparently heterogeneous DAergic sensitivity have not addressed it.

Regarding outcomes, a hallmark of our model is that the heterogeneous responses to task
variables coexist with a classic and more uniform main effect of reward versus omission (Fig
6b,c). The current theory can accommodate some other types of heterogeneity at outcome: for
instance, differences between neurons in expectancy effects as in Fig 6e,f, including responses
to consumption-related sensory or motor features like licking. But our account, by itself, does
not explain other reports of variation across neurons or regions in the overall sensitivity to
reward and punishment, or “salience”-like outcome responses. Such variation has also been
clearly demonstrated16,25,46–50,58, but most often arises when comparing responses across more
spatially distant regions.

Indeed, reports of DAergic heterogeneity differ not just to the nature of the responses, but also
as to the spatial scale. For instance, while some studies concern neuron-to-neuron variation
within the VTA15,21,45, others consider larger-scale variation5,16,20,22,25–27,47–50,52,53,59, often using fiber
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photometry or voltammetry. Our theory might, in principle, explain some variation in both scales,
since inhomogeneous state feature input to DA neurons might vary over small and large scales.
However, larger scale, inter-area variation seems more likely, at least in part, to reflect additional
functional or anatomical differences beyond those contemplated by our model. For instance,
different neurons in a putative VTA-NAc critic circuit might constitute a population code over
state features (as in our model), but DA input to more dorsal areas of striatum might,
hypothetically, support a distinct functional role (e.g., in RL terms an “actor”) in controlling
movement. In fact, contralateral movement sensitivity in the DMS DA signals appears to reflect
the movement direction per se, and is not (as would be predicted by our model) further
modulated by the RPE with respect to the movement13. A second point is that, since our model
predicts that averaging over features will recover the original scalar RPE, the types of variation it
envisions will tend to be washed out by methods like photometry that involve averaging over
many neurons. Thus, in all, we view our model primarily as addressing interneuron variation at a
relatively small spatial scale (e.g., within VTA or even a part of it), while not ruling out additional
sources of variation, especially across regions.

Alternative computational accounts for dopaminergic heterogeneity

Most previous theories have taken a substantially different approach to explaining DAergic
heterogeneity, by positing multiple distinct error signals, each specialized for learning a different
target function44,45,60–70.

For instance, a family of error signals could be used to learn to predict different outcomes such
as rewards versus punishments47,48,66,71, to learn the rewards associated with different actions or
effectors44, to predict rewards at different temporal scales27,61, or to track different goals and
subgoals in a hierarchical task68,69,72. What these examples have in common is that they each
posit a handful of error signals, which are each associated with DA activity in spatially separate
DA nuclei or target regions. This commonality is likely no accident, since the relatively diffuse
ascending DAergic anatomy seems poorly suited for supporting a larger number of finer-grained
closed circuits, with many different error signals training many distinct predictions at nearby
targets. For the same reason, while such large-scale functional variation may represent an
additional source of heterogeneity over and above the finer-scale variation our model discusses,
it seems less plausible that this type of scheme can explain the diverse VTA responses we
discuss here.

A related point is that many (though not all) of these previous vector-valued RPE proposals
ground the different error signals in different reward or outcome signals: i.e., different RPEs are
defined, each for predicting different outcomes. Apart from reward vs. punishment, examples of
this approach include predicting different scaled functions of reward amount (which enables
learning different quantiles of the distribution over stochastic rewards45,67; and, in the most
extreme case, treating each possible sensory observation or state as its own separate
prediction target, thus learning a very high-dimensional set of value functions for predicting
many different future events (the “successor representation”)60. A key difference from our
approach is that this last model predicts that the heterogeneous navigation and decision period
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responses should follow from corresponding heterogeneous outcome responses, but this
contradicts the striking homogeneity of outcome responses in15.

In some respects, our model’s explanation of heterogeneity is more similar to another recent
theory70 in which heterogeneity also emerges from nonuniform anatomical connectivity rather
than being imposed by top-down normative considerations. A main difference is that we frame
our vector RPE model in terms of classic RL algorithms, building more closely on the TD
literature and showing how it can be extended to accommodate this type of heterogeneity.

Variations, computational benefits, and additional predictions of our Vector RPE model

For simplicity, we have presented our Vector RPE model, as schematized in Fig. 1b, with
stylized anatomical assumptions: perfect one-to-one connectivity in the descending projections
between cortical state, striatal value, and midbrain RPE neurons, versus complete convergence
in the ascending DA projections to striatum. However, our results do not depend on these
assumptions. First, the model can accommodate any degree of convergence in the descending
stages. In this case, heterogeneous cue-period responses (though blended to some degree) will
still be observed at the DA layer, and the model will still implement standard TD learning in the
sense that the averages over RPE and value units will recover the same scalar functions.

A more interesting variant arises from relaxing the assumption that the ascending DA
projections mix perfectly. This produces a model in which different DA target regions receive
different error signals, reflecting information about different state features – e.g., sensory
modalities such as vision vs. audition. While this approach no longer corresponds algebraically
to the standard scalar RPE model, models of this sort have a long history in animal
conditioning73,74 and can perform appropriately in many situations75. A main behavioral
prediction of this variant is that, in conditioning experiments, cues that share an error signal will
compete with one another in predicting reward and thereby show blocking effects76,77, whereas
cues processed in distinct RPE channels will not block each other. Thus, particular behavioral
effects (patterns of blocking) are predicted depending on the distribution of DA cue responses
and their patterns of connectivity, overlapping or separate.

This example speaks to a different question, which is whether the proposed vector RPE
architecture has computational advantages relative to the classic scalar broadcast model. To be
clear, a primary contribution of our model is the demonstration that heterogeneity can arise even
in the classic model under more realistic anatomical assumptions. But decomposing values and
RPEs according to stimuli or state features, and organizing these modules spatially, offers a
number of advantages for both value prediction and learning. For prediction, this can enable
individualized gain control, such as feature-selective attention78, and other divide-and-conquer
schemes to focus learning on context-relevant dimensions44, Litwin-Kumar, personal
communication). For learning, a key feature of backpropagation in artificial deep network
models is per-synapse specialized training signals. While this remains biologically implausible,
the decomposition of feature channels in the current model offers a biologically realizable
substrate for more limited targeting.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.02.28.482379doi: bioRxiv preprint 



Population codes for state

Although much RL modeling in neuroscience assumes a simple state representation that is
hand-constructed by the modeler2,3; in general, an effective state representation depends on the
task, and the brain must learn or construct it autonomously as part of solving the full RL
problem. How it does this is arguably the major open question in these models. Indeed, in AI,
recent progress on this problem (notably using deep neural networks) has been the main
innovation fueling impressive advances scaling up otherwise standard RL algorithms to solve
realistic, high-dimensional tasks like video games40,79. In psychology and neuroscience also,
there have been a number of recent theoretical hypotheses addressing how the brain might
build states, such as the successor representation and latent-state inference models36,80–84. But
there exist relatively few experimental results to assess or constrain these ideas, for instance
because learning behavior alone is relatively uninformative about state, whereas in the brain it is
unclear which neural representations directly play this role for RL (e.g., grid cells vs. place cells
for spatial tasks83,85;).

A main consequence of the new model is that, if our hypothesis is correct, then the
heterogeneous DAergic population itself gives a new experimental window, from the RL
system’s perspective, into the brain’s population code over state features. While the model itself
is agnostic to the feature set used, the various DA responses should in any case reflect it. This
builds on previous work showing that even a scalar DAergic TD error signal can be revealing
about the upstream state that drives it35,37,38, but on the new theory, the vector DA code much
more directly reflects the upstream distributed code for state. Thus, the theory offers a general
framework to reason quantitatively about population codes for state. This should enable new
experiments and data analyses to infer the brain’s specific state representation from neural
recordings and in particular to test ideas about how it is built: how it changes across different
tasks and as tasks are acquired.
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Figures

Fig. 1: Vector RPE Model updates classic TD learning to produce heterogeneous DA
signals that reflect the state representation. (a) Classic mapping between equations of TD
learning model and brain circuitry1–3. (b) Our proposed Vector RPE model, which remaps the
same algorithm onto brain circuitry such that value and RPE are vectors but the overall
computations are preserved.
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Fig. 2: Deep reinforcement learning network trained on VR evidence accumulation task
from Engelhard et al.15 (a) Task schematic of the VR task in which mice accumulated visual
evidence (cues) as they ran down the stem of a T-maze and were rewarded when they turned to
the side with more towers at the end. Video frames of the maze are shown below each maze
schematic. (b) Deep reinforcement learning (RL) network took in video frames from the VR task,
processed them with 3 convolution layers, a fully connected layer (orange), and an LSTM layer
(green), and outputted an action policy (gray), which inputted the chosen action back into the
VR system (blue arrow). The second to last layer of the deep RL network (the LSTM layer) and
the weights for the critic served as the inputs to form the Vector RPE (purple). (c) Psychometric
curve showing the mice’s performance (left) and agent’s performance (right) after training. The
fraction of right choices is plotted as a function of the difference of the right and left towers
presented on the trial. For the mice, gray lines denote the average psychometric curves for
individual sessions and the black line denotes a logistic fit to the grand mean with bars denoting
the s.e.m. (N = 23 sessions). For the model, black bars indicate the s.e.m. (d) Deep RL model’s
scalar value (sum over units in Vector value) during the cue period decreased as trial difficulty
(measured by absolute value tower difference, blue gradient) increased.
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Fig. 3: Vector RPE derived from the trained deep RL model is heterogeneously modulated
by behavioral variables during the navigation and decision period, similar to DA neurons.
(a) Average activity of Vector RPE units plotted with respect to the view angle of the agent. Top
panels show an example of a Vector RPE unit’s response modulated by each variable and
averaged across all trials or cue occurrences; Bottom panels include all Vector RPE units’ peak
normalized (min-max normalization) activity modulated by the variable, with each row showing a
unit’s average response and the gray arrow pointing to the example panel’s row in the heatmap.
(b-c) Same as (a) but for position of the agent in the final 25 cm of the maze, and left (red) and
right (blue) cues. (d-f) Same as (a-c) but for the subset of neurons from 15 tuned to (d) view
angle of the mice, (e) position, and (f) contralateral (red) and ipsilateral (blue) cues. Fringes
represent ±1 s.e.m. of averaged signals. In (d-e) peak normalized ΔF/F signals are plotted while
in (f) cue kernels are plotted from an encoding model used to quantify the relationship between
the behavioral variables and each neuron.
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Fig. 4: Vector RPEs reflected incidental high-dimensional visual inputs (a) Similarity
matrices of the video frames, which measure the similarity between pairs of video frames
(quantified by the cosine of the angle between them when flattened to vectors) across different
position combinations. The off-diagonal bands correspond to the wall-pattern repetitions (see
video frames for position 0cm and 43cm at insets above). (b) Average similarity as a function of
distance between frames, indicating that the average similarity peaked at the same position lag
(43 cm) for video frames. (c-d) same as (a-b), but with vector RPE.
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Fig. 5: Cue responses in model and DAergic neurons reflected RPEs with respect to
cues, rather than simply their presence. (a) Example trial illustrating confirmatory cues
(purple), defined as cues that appear on the side with more evidence shown so far, and
disconfirmatory cues (gray), which are cues appearing on the side with less evidence shown so
far. Neutral cues (white) occur when there has been the same amount of evidence shown on
both sides. (b) Average response of to confirmatory (purple) and disconfirmatory cues (gray) for
Vector RPE units modulated by cue onset. (c) Average responses of the contralateral cue onset
DA neurons for confirmatory and disconfirmatory cues. Colored fringes represent ±1 s.e.m. for
kernel amplitudes (n = 62 neurons, subset of cue responsive neurons from Fig. 3f that were
modulated by contralateral cue onset only).

​​
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Fig. 6: Vector RPE units and DAergic neurons consistently respond to reward, but show
heterogeneous modulation by reward expectation. (a) Average Scalar RPE (sum of units in
Vector RPE) time-locked at reward time for rewarded (magenta) minus unrewarded trials (gray).
(b) Histogram of Vector RPE units’ response to reward minus omission at reward time (P <
5e-12 for two sided Wilcoxon signed rank test, N = 64). Yellow line indicates median. (c) Same
as (b), but with all imaged DA neurons (N = 303), using averaged activity for the first 2 seconds
after reward delivery, baseline corrected by subtracting the average activity 1 second before
reward delivery (P < 1e-48 for two sided Wilcoxon signed rank test, N = 303). (d-f) as in (a-c)
but for rewarded trials only plotted with respect to trial difficulty (P < 0.05 for two sided Wilcoxon
signed rank test, N = 64 in e and P < 3e-5 for two sided Wilcoxon signed rank test, N = 303 in f).
Only reward-responsive neurons are plotted for f. Hard (light blue) and easy (dark blue) trials
are defined, respectively, as trials in the  bottom or top tercile of trial difficulty (measured by the
absolute value of the difference between towers presented on either side). In (e), there is an
outlier datapoint at 0.29 for a Vector RPE unit showing strong reward expectation modulation.
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Extended Data Fig. 1: Tuning of 64 LSTM feature units to position and evidence (a) Each
panel shows an individual feature unit and how it tunes to the agent’s position in the maze and
the cumulative tower difference at that position.

Extended Data Fig. 2: Scalar RPE response modulated by the difficulty of the task, defined as
the absolute value of the final tower difference (blue gradient) of the trial.
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Methods

Behavioral Task

Simulations: At every trial, the agent was placed at the start of a virtual T-maze, with cues
randomly appearing on either side of the stem of the T-maze as the agent moved down the
maze. On each trial, one side was randomly determined to be correct, and the number of cues
on each side was then sampled from a truncated Poisson distribution, with a mean of 2.29 cues
on the correct side and 0.69 cues on the incorrect side. In order to prevent the agent from
forming a side bias, we used a debiasing algorithm to ensure that the identity of the high
probability side changed if the agent kept choosing one side86. To match the procedure from the
mouse experiment, we also oversampled easy trials (trials in which only one side had 6 total
cues) by ensuring that they were 5% of the trials. The agent moved down the maze at a
constant speed of 0.638 cm per timestep, and could also modulate its view angle with two
discrete actions corresponding to left and right rotation. (A third discrete action moved forward
without changing the view angle.) The cue region was 85 cm, and the cues were placed
randomly along the cue region with uniform distribution, but with the restriction that cues on
either side were constrained to have a minimal spatial distance of 14 cm between them. Each
cue first appeared when the agent was 10 cm from the cue location and disappeared once the
agent passed the cue by 4cm. After the cue region, there was a short, 5 cm delay region before
the agent’s final left or right action determined their choice of entering either arm in the T-maze.
If the agent turned to the arm on the side where more cues appeared, they received a reward.
The agent was also given a sensory input in the model indicating whether it made the correct or
wrong turn.

Neural data: The task simulated above was a streamlined version of that used in the mouse
recordings in Engelhard 2019. In particular, the rules for spacing and visual appearance of cues
were the same, but the simulated controls were simplified (to discrete actions) and the maze
was shorter (to facilitate neural network training). Thus the mice could control their speed and
direction of movement more continuously by running on a trackball, and in this way traversed a
maze that had a 30 cm start region (with no cues), a 220 cm cue region, and an 80cm delay
region before the T maze arms. The mean numbers of cues were correspondingly larger: 6.4
on the correct side and 1.3 on the incorrect side. At reward time, the mice received a water
reward if they made the correct choice; if a mouse made an incorrect choice, it was given a
pulsing 6-12 kHz tone for 1 second. Before the next trial, the virtual reality screen froze for 1
second during reward delivery, and blacked out for 2 seconds if the mouse was rewarded or 5
seconds if the mouse failed.

Virtual Reality System and Deep Reinforcement Learning Model

A deep reinforcement learning network was trained on the evidence accumulation task. As
input, the network took in 68 by 120 pixel video frames in grayscale. The model had 3
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convolution layers to analyze the visual input, an LSTM layer to allow for memory, and output to
3 action units and 1 value unit. The first convolutional layer had 64 filters, a filter size of 8 pixels,
and a stride of 2 pixels; the second convolutional layer had 32 filters, a filter size of 2 pixels, and
a stride of 1 pixel; the third convolutional layer had 64 filters, a filter size of 3 pixels, and a stride
of 2 pixels. The convolution layers fed into a fully connected layer, which fed into the LSTM layer
with 64 units along with a second input, a one-hot vector of length 2 which flagged whether or
not the agent was rewarded the end of the trial. The reward input into the LSTM was meant to
replicate the sensory input that the mouse experienced when it was rewarded with water or
received a tone for failing the trial. The hyperparameters for the convolutional layers were
optimized with a grid search of various filter numbers and sizes trained on supervised learning
for recognizing towers.

We use the same MATLAB virtual reality program (ViRMEn software engine87) from the original
neural recordings15, which we altered to accommodate the agent’s movement choices of
forward, left, and right. While in the stem of the T-maze, the agent always moved forward at a
constant rate per timestep. The constant speed ensured that at every trial, the agent always
took the same number of timesteps to traverse the stem of the T-maze. The agent could choose
to rotate left or right, which would alter the view angle 0.05 rads up to the limit of -π/6 and π/6
rads. The agent could also choose to move forward without changing their view angle. After the
delay region in the T-maze, the agent’s left and right movement would no longer alter its view
angle, but instead determined which arm the agent chose.

In order for the deep RL agent to interact with the ViRMEn software, we created a custom gym
environment using OpenAIGym’s gym interface88. Our custom VR gym environment defined the
forward, left, and right movements the agent could make, and sent in the movement choices to
the ViRMEn software which in turn returned updated video frames.

We trained the network to maximize obtained reward using the Stable Baselines89 (version
2.10.1) implementation of the Advantage Actor Critic (A2C) algorithm41. All hyperparameters
used for the deep RL agent can be found in Table 1. We trained the model until it reached a
performance of 80% or higher correct choices, which took 20.8 million timesteps or
approximately 130,000 trials.

After training, we froze the weights and took the final output layer of the network before the
action and value units (i.e., the LSTM output) as the features for vector value and vector RPE
(equation 1, Fig. 2b). (Note that this just corresponds to decomposing the scalar value and RPE
units in the original A2C network into vectors, with one value component for every
LSTM-to-value weight, and a corresponding RPE component: i.e. the Vector RPE model, being
algebraically equivalent to TD, is just a more detailed view of the A2C critic). In this way, we
calculated the vector RPE at every point in the trial. We defined the outcome period to be the 5
timesteps before and after the reward. We defined the cue period as the first 140 timesteps of
the maze, which occurred at the same positions on every trial since the agent always moved
forward the same amount at each timestep.

Table 1: Hyperparameters for A2C Algorithm
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Parameter (Variable Name in Stable Baselines)

Number of Parallel Environments (n_env) 8

Number of steps until each environment updates (n_steps) 140

Discount Factor (gamma) 0.99

Learning Rate 0.0025

Value function coefficient for loss calculation (vf_coef) 0.25

Entropy coefficient for loss calculation (ent_coef) 0.01

Maximum value for gradient clipping (max_grad_norm) 0.5

RMSProp decay parameter (alpha) 0.99

RMSProp momentum parameter (momentum) 0.0

RMSProp epsilon (epsilon) 1e-5

Neural Data

This article analyzes data originally reported in Engelhard et al. 2019, the methods of which we
briefly summarize here and below15. We primarily re-analyzed the the neural recordings during
the virtual-reality experiments, in which we used male DAT::cre mice (n=14, Jackson Laboratory
strain 006660) and male mice that are the cross of DAT::cre mice and GCaMP6f reporter line
Ai148 (n=6 Ai148xDAT::cre Jackson Laboratory strain 030328).

VTA DA neurons were imaged at 30 Hz using a custom built, virtual-reality compatible two
photon microscope equipped with pulsed Ti:sapphire laser (Chameleon Vision, Coherent) that
was tuned to 920 nm. After imaging, we removed trials in which mice were not engaged in the
task, primarily those found close to the end of the session when animal performance typically
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decreased. Average performance across sessions on all trials was 77.6 +/- 0.9% after removing
trials (compared to 73.3 +/- 1.1% including all trials). Ultimately, we used 23 sessions from 20
mice (one session per imaging field, each session with at least 100 trials and minimal
performance of 65%).

After preprocessing the imaging data, we performed motion correction procedures to eliminate
spatially uniform motion and spatially non-uniform, slow drifts. The dF/F was derived by
subtracting the scaled version of the annulus fluorescence from the raw trace (correction factor
of 0.58) and smoothed using a zero-phased filter with 25 point center Gaussian with 1.5 sample
points standard deviation. We then divided dF/F by the eighth percentile of the smoothed and
neuropil-corrected trace based on the preceding 60s of recording. After examining the dF/F, we
only included neurons that were stable for at least 50 trials. The full dataset we used for
renalaysis has 303 neurons spread across 23 sessions from 20 mice.

Cue Period Responses

For the heatmaps in Fig. 3, each row represents a vector RPE unit or neuron’s average
response to the behavioral variable rescaled so that their maximum value is at 1 and minimum
value is at 0. For the neural data, we used the same encoding model from our previous work15

to predict neural activity with a linear regression based on predictors such as cues, accuracy,
previous reward, position, and kinematics, to isolate temporal kernels that reflect the response
to each cue. The code for this encoding model can be found at
https://github.com/benengx/encodingmodel. To determine which neurons are displayed for the
heatmaps in Fig. 3d-f, we used the same criterion as in15, which was to include neurons with a
statistically significant contribution of that behavioral variable in the full encoding model relative
to a reduced model, based on an F-test (P = 0.01), with comparison to null distributions
produced by randomly shifted data to account for slow drift in the data .

Wall-Texture Analysis

In Fig. 4, we identified a repeating wall-texture pattern in the maze by analyzing video frames of
a maze without cues with the view angle fixed at 0 degrees. We calculated the similarity matrix
for the video frames; specifically, given the video frames, we flattened the video frame at each
timepoint into vectors, mean-corrected and normalized the vectors, and measured similarity for
all pairs of frames as the the cosine of the angle between these vectors (concretely, the i-jth
entry of the similarity matrix gives the cosine of angle between the video frames at times i and j).
We also visualized the average, over positions, of each frame’s similarity to those ahead and
behind it, as a function of distance. We repeated the same analyses on the Vector RPEs,
calculating the similarity in the vector RPEs at each timepoint. The Vector RPEs here were
derived by running the agent with the trained weights from the normal maze described above on
an empty maze without cues, and not allowing the agent to change its view angle in the stem of
the maze (always fixed at 0 degrees).

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.02.28.482379doi: bioRxiv preprint 



Confirmatory versus disconfirmatory cue responses

We defined confirmatory cues as cues that appeared on the side with more evidence so far, and
disconfirmatory cues as cues that appeared on the side with less evidence so far. If the agent or
mouse had seen an equal number of cues on both sides, the next cue was defined as a neutral
cue. For the neural data, we isolated cue kernels as in Engelhard et al, 2019, with some
modifications: instead of using contralateral and ipsilateral cues, we used predictors including
contralateral and ipsilateral cues with contralateral evidence, neutral evidence, and ipsilateral
evidence so far. For Fig. 5b, we selected those vector RPE units that were immediately
modulated by cue onset (as opposed to units with a delayed response), regardless of left or
right cues. For Fig. 5c, we selected among the neurons modulated by cues from the encoding
model (N = 77/303), plotting only the units modulated by contralateral cues (N = 62/303).

Outcome Period Responses

In Fig. 6a,d, the scalar RPE was calculated by summing the Vector RPE units. For the model
responses at outcome time for Fig. 6b,e, we took the response at reward time. For the neural
responses at outcome time for Fig. 6c, f, we matched the original empirical paper15 and
calculated the average activity in the first 2 seconds after the onset of the outcome period,
baseline corrected by subtracting the average activity from the 1 second period preceding the
outcome. For the histograms in Fig. 6b-c, e-f, a two-sided Wilcoxon signed rank test was
performed to determine the p value for the median (yellow line).
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