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A model for learning based on the joint estimation
of stochasticity and volatility
Payam Piray 1✉ & Nathaniel D. Daw 1

Previous research has stressed the importance of uncertainty for controlling the speed of

learning, and how such control depends on the learner inferring the noise properties of the

environment, especially volatility: the speed of change. However, learning rates are jointly

determined by the comparison between volatility and a second factor, moment-to-moment

stochasticity. Yet much previous research has focused on simplified cases corresponding to

estimation of either factor alone. Here, we introduce a learning model, in which both factors

are learned simultaneously from experience, and use the model to simulate human and

animal data across many seemingly disparate neuroscientific and behavioral phenomena. By

considering the full problem of joint estimation, we highlight a set of previously unappreciated

issues, arising from the mutual interdependence of inference about volatility and stochasti-

city. This interdependence complicates and enriches the interpretation of previous results,

such as pathological learning in individuals with anxiety and following amygdala damage.
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Among the successes of computational neuroscience is a
level-spanning account of learning and conditioning,
which has grounded biological plasticity mechanisms

(specifically, error-driven updating) in terms of a normative
analysis of the problem faced by the organism1–5. These models
recast learning as statistical inference: using experience to esti-
mate the amount of some outcome (e.g., food) expected on
average following some cue or action. This is an important sub-
problem of reinforcement learning, which uses such value esti-
mates to guide choice. The statistical framing has motivated an
influential program of investigating the brain’s mechanisms for
tracking uncertainty about its beliefs, and how these impact
learning6–10.

Uncertainty, in turn, depends upon the noise properties of the
values being learned, including both the degree of stochasticity in
their measurement (observation noise, the variance of which we
call stochasticity) and how quickly or how often they change
(process noise, the variance of which is known as volatility). In
general, then, a statistically efficient learner must estimate not
only just the primary quantity of interest (e.g., the action value)
but also parameters describing its noise properties. This per-
spective has inspired a series of hierarchical Bayesian inference
models, which extend inference to either volatility or stochasti-
city, though typically while treating the other noise parameter as
fixed and known to the model.

For volatility, a particularly influential series of theories
extends a baseline model known as the Kalman filter to incor-
porate volatility estimation (but conditional on known
stochasticity)6,11,12. All else equal, when volatility is higher, the
organism is more uncertain about the cue’s value (because the
true value will on average have fluctuated more following each
observation), and so the learning rate (the reliance on each new
outcome) should be higher. A series of experiments have reported
behavioral and neural signatures of these effects of volatility
enhancing learning rate, and also their disruption in relation to
psychiatric symptoms6,8,10,13–23. Conversely, stochasticity also
affects the learning rate, but in the opposite direction: all else
equal, when individual outcomes are more stochastic (larger
stochasticity), they are less informative about the cue’s true value
and the learning rate, in turn, should be smaller. Here again,
experiments confirm that people adjust their learning rates in the
predicted direction24,25, and this behavior has been captured by a
model that estimates stochasticity (but treating the process noise
parameter, in this case a hazard rate, as known).

Altogether, this work has led to a strong argument that the
brain’s mechanisms for tracking uncertainty, and the inference of
the noise parameters that govern it, are crucial to healthy and
disordered learning26. Although these components seem indivi-
dually well understood, in this article we argue that important
insights are revealed by considering in greater detail the full
problem facing the learner: simultaneously estimating both
volatility and stochasticity during learning. By introducing a
model that performs such joint estimation, and studying its
behavior in reinforcement learning tasks, we show that because of
the interrelationship between these variables, a full account of any
of them interacts with the other in consequential ways.

The key issue is that although the learner’s estimates of
them play opposite roles on learning rates, from the learner’s
perspective, they both similarly manifest in noisier, less
reliably predictable outcomes. The observation that experienced
noise can, to a first approximation, be explained by either
volatility or stochasticity—and that these effects might be con-
fused, either by experimenters or by learners—has implications.
First, previous work apparently showing variation in volatility
processing in different groups, such as various psychiatric
patients14,16,17,19,21,22,27,28 (using a model and tasks that do not

vary stochasticity), might instead reflect misidentified abnorm-
alities in processing stochasticity. We suggest that future research
should test both the dimensions of learning explicitly. Further-
more, from the perspective of a learner inferring volatility and
stochasticity, these factors should compete or trade off against
one another to best explain experienced noise. This means that
any dysfunction or damage that impairs detection of stochasticity,
should lead to a compensatory increase in inferred volatility, and
vice versa: a classic pattern known in Bayesian inference as a
failure of “explaining away.”

We argue that such compensatory tradeoffs may be apparent
both in anxiety disorders and following damage to amygdala.
Intolerance of uncertainty is thought to be a critical component of
anxiety and a crucial risk factor for developing anxiety
disorders29,30. Although there has been recent interest in oper-
ationalizing this idea by connecting it to statistical learning
models and tasks26,31–38, we and others have focused on apparent
abnormalities in processing volatility13,20,26. The current model
suggests a different interpretation, in which anxiety primarily
disrupts inference about stochasticity, but with the additional
result that the learner misinterprets noise due to stochasticity as a
signal of change, i.e., volatility. We argue that the complementary
pattern of explaining away, in which a failure to detect volatility
leads to change misattributed to stochasticity, can be appreciated
in studies of the amygdala’s role in modulating learning rates. In
particular, our model suggests that a specific involvement of
amygdala in volatility (and the explaining away pattern) explains
effects of amygdala damage better than an involvement in
learning rates more generally. These sorts of reciprocal interac-
tions also give rise to a richer and subtler set of possible patterns
of dysfunction that may help to understand a wide range of other
neurological and psychiatric disorders, such as schizophrenia, in
which there has been a tendency to study altered processing of
uncertainty narrowly in the context of volatility.

The model also sheds light on experimental phenomena of
learning rates in conditioning, and on two classic descriptive
theories of conditioning in psychology that have been interpreted
as predecessors of the statistical accounts39,40. We suggest that
seemingly contradictory effects of noise in different experiments,
associated with these two theories, can be identified with effects
on learning rates of inferred stochasticity vs. volatility, respec-
tively. On this view, different effects will dominate in different
experiments depending on which parameter the pattern of the
noise suggests.

In the remainder of this article, we present i) a probabilistic
model for the joint estimation of volatility and stochasticity from
experience; and ii) volatility- and stochasticity-lesioned models in
which the corresponding module is damaged. These models
highlight the mutual interdependence of inference about volatility
and stochasticity and show how the interdependence leads the
model to predict paradoxical compensatory behaviors if inference
about either factor is damaged. We use these lesioned models in a
series of simulation experiments to explain aspects of pathological
behavior observed in anxiety disorders and following amygdala
damage.

Results
Model. We begin with the Kalman filter, which describes statis-
tically optimal learning from data produced according to a spe-
cific form of noisy generation process. The model assumes that
the agent must draw inferences (e.g., about true reward rates)
from observations (individual reward amounts) that are cor-
rupted by two distinct sources of noise: process noise or volatility
and outcome noise or stochasticity (Fig. 1a, b). Volatility captures
the speed by which the true value being estimated changes from
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trial to trial (modeled as Gaussian diffusion); stochasticity
describes additional measurement noise in the observation of
each outcome around its true value (modeled as Gaussian noise
on each trial).

For this data generating process, if the true values of volatility
and stochasticity, vt and st are known, then optimal inference
about the underlying reward rate is tractable using a specific
application of Bayes rule, here called the Kalman filter41. The
Kalman filter represents its beliefs about the reward rate at each
step as a Gaussian distribution with a mean, mt , and variance (i.e.,
uncertainty about the true value), wt . The update, on every trial, is
driven by a prediction error signal, δt , and learning rate, αt . This
leads to simple update rules following observation of outcome ot :

δt ¼ ot �mt ð1Þ

αt ¼
wt þ vt

wt þ vt þ st
ð2Þ

mtþ1 ¼ mt þ αtδt ð3Þ

wtþ1 ¼ ð1� αtÞðwt þ vtÞ ð4Þ
This derivation thus provides a rationale for the error-driven

update (Eq. 3) prominent in neuroscience and psychology42, and
adds to these a principled account of the learning rate, αt , which

on this view should depend (Eq. 2) on the agent’s uncertainty and
the noise characteristics of the environment. In particular, Eq. 2
shows that the learning rate is increasing and decreasing,
respectively, with volatility and stochasticity. This is because
higher volatility increases the chance that the true value will
have changed since last observed (increasing the need to rely on
the new observation), but higher stochasticity decreases the
informativeness of the new observation relative to previous beliefs.

This observation launched a line of research focused on
elucidating and testing the prediction that organisms adopt
higher learning rates when volatility is higher6. But the very
premise of these experiments violates the simplifying assumption
of the Kalman filter—that volatility is fixed and known to the
agent. To handle this situation, new models were developed11,12

that generalize the Kalman filter to incorporate learning the
volatility vt as well, arising from Bayesian inference in a
hierarchical generative model in which the true vt is also
changing. In this case, exact inference is no longer tractable, but
approximate inference is possible and typically incorporates
Eqs. 1–4 as a subprocess.

This line of work on volatility estimation inherited from the
Kalman filter the view of stochasticity as fixed and known. Of
course, in general, all the same considerations apply to
stochasticity as well: it must be learned from experience, may
be changing, and its value impacts learning rate. Indeed,

Fig. 1 Statistical difference between volatility and stochasticity. a–b Examples of generated time-series based on a small and large constant volatility
parameter given a small (a) or a large (b) constant stochasticity parameter are plotted. c Given a surprising observation (e.g., a negative outcome), one
should compute how likely the outcome is due to the stochasticity (left balloon) or due to the volatility (right balloon). Dissociating these two terms is
important for learning, because they have opposite influences on learning rate. d–e It is possible to infer both volatility and stochasticity based on observed
outcomes, because these parameters have dissociable statistical signatures. In particular, although both of them increase variance (d), but they have
opposite effects on autocorrelation (e). In particular, whereas volatility increases autocorrelation, stochasticity tends to reduce it. Here, 1-step
autocorrelation (i.e., correlation between trial t and t� 1) was computed for 100 time-series generated with parameters defined in b and c. Small and large
parameters for volatility were 0.5 and 1.5 and for stochasticity were 1 and 3, respectively. f Structure of the (generative) model: outcomes were
stochastically generated based on a probabilistic model depending on reward rate, stochasticity and volatility. Only outcomes were observable (the gray
circle), and value of all other parameters should be inferred based on outcomes. The observed outcome is given by the true reward rate, xt , plus some noise
whose variance is given by the stochasticity, st . The reward rate itself depends on its value on the previous trial plus some noise whose variance is given by
the volatility, vt . Both volatility and stochasticity are dynamic and probabilistic Markovian variables generated noisily based on their value on the previous
trial. Thus, the model has two modules, volatility and stochasticity, which compete to explain experienced noise in outcomes. See Methods for formal
treatment of the model. Errorbars in (d–e) are standard error of the mean calculated across 10000 simulations and are too small to be visible. Source data
are provided as Source Data file.
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estimating both parameters is critical for efficient learning,
because they have opposite effects on learning rate: whereas
volatility increases the learning rate, stochasticity reduces it
(Fig. 1c). Although some algorithms have been explored for
learning when both noise parameters are unknown43–45, the main
other application of this type of model in neuroscience has relied
on a different simplification25, which estimates the stochasticity
while treating the hazard rate (the analogue of volatility for
changepoint problems) as fixed and known to the model.

Learning these two parameters simultaneously is more difficult
because, from the perspective of the agent, larger values of either
volatility or stochasticity result in more surprising observations:
i.e., larger outcome variance (Fig. 1e). However, there is a subtle
and critical difference between the effects of these parameters on
generated outcomes, whereas larger volatility increases the
autocorrelation between outcomes (i.e., covariation between
the outcomes on consecutive trials), stochasticity reduces the
autocorrelation (Fig. 1f). This is the key point that makes it
possible to dissociate and infer these two terms while only
observing outcomes.

We developed a probabilistic model for learning under these
circumstances. The data generation process arises from a further
hierarchical generalization of these models (specifically the
generative model used in our recent work12), in which
the true value of stochasticity is unknown and changing, as are
the true reward rate and volatility (Fig. 1d). The goal of the
learner is to estimate the true reward rate from observations,
which necessitates inferring volatility and stochasticity as well.

As with models of volatility, exact inference for this generative
process is intractable. Furthermore, in our experience this
problem is also relatively challenging to handle with variational
inference, the family of approximate inference techniques used
previously (see Discussion). Thus, we have instead used a
different standard approximation approach that has also been
popular in psychology and neuroscience, Monte Carlo
sampling3,46–48. In particular, we use particle filtering to track
vt and st based on data49,50. Our method exploits the fact that
given a sample of volatility and stochasticity, inference for the
reward rate is tractable and is given by Eqs. 1–4, in which st and
vt are replaced by their corresponding samples (see Methods; this
combination of sequential sampling with exact inference for a
subproblem is known as Rao-Blackwellized particle filtering).

Learning under volatility and stochasticity. We now consider
the implications of this model for learning under volatility and
stochasticity.

A series of studies has used two-level manipulations (high vs.
low volatility blockwise) to investigate the prediction that learning
rates should increase under high volatility6,13,38,51. Here volatility
has been operationalized by frequent or infrequent reversals
(Fig. 2a), rather than the smoother Gaussian diffusion that the
volatility-augmented Kalman filter models formally assume.
Nevertheless, applied to this type of task, these models detect
higher volatility in the frequent-reversal blocks, and increase their
learning rates accordingly6,11,12. The current model (which
effectively incorporates the others as a special case) achieves the
same blockwise result when stochasticity is held fixed across both
blocks (Supplementary Fig. 1).

In the preceding line of studies, stochasticity was not
manipulated. (Indeed, it was not even independently manipulable
because rewards were binary, and the variance of binomial
outcomes is determined only by the mean.) However, analogous
effects of stochasticity have been seen in another line of
studies7,9,25,52. In these studies, Nassar and colleagues studied
learning rates in a task in which subjects had to predict a value,

from observations in which the true value was corrupted,
blockwise, by different levels of additive Gaussian noise (i.e.,
stochasticity) and occasionally “jumping” with a constant hazard
rate, analogous to volatility. The main feature of these results
relevant to the current model is that these studies have shown
that participants’ learning rate decreases with increases in the
noise level (see also24). This effect cannot be explained by models
that only consider volatility, and in fact, those models make
opposite predictions because they take increased noise as evidence
of volatility increase. The current model, however, produces the
same blockwise effect as humans: because it correctly infers the
change in stochasticity, its learning rate is lower, on average, for
higher levels of noise (Supplementary Fig. 2). Although we do not
intend the current model as a detailed account of how people
solve this class of tasks (which is based on a somewhat different
generative dynamics), the model can also reproduce other more
fine-grained aspects of human behavior in this task, particularly
increases in learning rate following switches and scaling of
learning rate with the magnitude of error (Supplementary Fig. 2).

Note that while considered together, these two lines of studies
separately demonstrate the two types of effects on learning rates
we stress, neither of these lines of work has manipulated
stochasticity alongside volatility (though see also24). Furthermore,
learning of the noise hyperparameters in these studies has largely
been explicitly modeled only for either parameter conditional on
the other being known. We next consider a variant of this type of
task, elaborated to include a 2 × 2 factorial manipulation of both
the stochasticity alongside volatility (Fig. 2; we also substitute
smooth diffusion for reversals). Here, both parameters are
constant within the task, but they are unknown to the model.
A series of outcomes was generated based on a Markov random
walk in which the hidden reward rate is changing according to a
random walk and the learner observes outcomes that are noisily
generated according to the reward rate.

Figure 2 shows the model’s learning rates and how these follow
from its inferences of volatility and stochasticity. As above, the
model increases its learning rate in the higher volatility conditions
but as expected it also decreases it in the higher stochasticity
conditions (Fig. 2a). These effects on learning rate arise, in turn
(via Eq. 2) because the model is able to correctly estimate the
various combinations of volatility and stochasticity from the data
(Fig. 2b, c).

Our model thus suggests a general program of augmenting the
standard 2-level volatility manipulation by crossing it with a
second manipulation, of stochasticity, and predicts that higher
stochasticity should decrease learning rate, separate from
volatility effects.

Interactions between volatility and stochasticity. The previous
results highlight an important implication of the current model:
that inferences about volatility and stochasticity are mutually
interdependent. These interrelationships immediately imply a
general interpretational issue for experiments that manipulate
only one of these noise parameters, and analyze data using a
model that attributes all dynamic learning rate effects to one of
them. But the details of the interdependence are themselves
informative. From the learner’s perspective, a challenging pro-
blem (simplified away in many of the previous models) is to
distinguish volatility from stochasticity when both are unknown,
because both of them increase the noisiness of observations.
Disentangling their respective contributions requires trading off
two opposing explanations for the pattern of observations, a
process known in Bayesian probability theory as explaining away.
Thus, models that neglect stochasticity tend to misidentify sto-
chasticity as volatility and inappropriately modulate learning.
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Intriguingly, this situation might in principle arise in
neurological damage and psychiatric disorders, if they selectively
impact inference about volatility or stochasticity. In that case, the
model predicts a characteristic pattern of compensation, whereby
learning rate modulation is not merely impaired but reversed,
reflecting the substitution of volatility for stochasticity or vice
versa: a failure of explaining away. Fig. 3 shows this phenomenon
in the 2 × 2 design of Fig. 2, with two characteristic lesion models.
The key point here is that a lesioned model that does not consider
one factor (e.g., stochasticity), inevitably makes systematically
incorrect inferences about the other factor too. Importantly,
previous models that only consider volatility are analogous to the
stochasticity lesion model (Fig. 3b) and, therefore, make system-
atically erroneous inference about volatility (Fig. 3g) and
misadjust learning rate if stochasticity is changing (Fig. 3e). This
set of lesioned models provide a rich potential framework for
understanding pathological learning in psychiatric and neurologic
disorders. Later we show that stochasticity lesion and volatility
lesion models explain deficits in learning observed in anxiety and
following amygdala damage, respectively. But first, we apply the
healthy model to reinterpret some long-standing issues about
learning rates in animal conditioning.

Stochasticity vs. volatility in Pavlovian learning. Learning rates
and their dependence upon previous experience have also been
extensively studied in Pavlovian conditioning. In this respect, a
distinction emerges between two seemingly contradictory lines of
theory and experiment, those of Mackintosh39 vs. Pearce and
Hall40. Both of these theories concern how the history of experi-
ences with some cue drives animals to devote more or less
“attention” to it. Attention is envisioned to affect several phe-
nomena including not only just rates of learning about the cue but
also other aspects of their processing, such as competition between
the multiple stimuli presented in compound. Here, to most clearly
examine the relationship with the research and models discussed
above, we focus specifically on learning rates for a single cue.

The two lines of models start with opposing core intuitions.
Mackintosh39 argues that animals should pay more attention to
(e.g., learn faster about) cues that have in the past been more
reliable predictors of outcomes. Pearce and Hall40 argue for the
opposite: faster learning about cues that have previously been
accompanied by surprising outcomes, i.e., those that have been
less reliably predictive.

Indeed, different experiments—as discussed below—support
either view. For our purposes, we can view these experiments as

Fig. 2 Performance of the model in task with constant but unknown volatility and stochasticity parameters. Outcomes were generated according to the
same procedure and parameters as those used in Fig. 1 (see Fig. 1a, b, e.g., outcome time-series seen by the model). a Learning rate in the model varies by
changes in both the true volatility and stochasticity. Furthermore, these parameters have opposite effects on learning rate. In contrast to volatility, higher
stochasticity reduces the learning rate. b Estimated volatility captures variations in true volatility. c Estimated stochasticity captures variations in the true
stochasticity. In a–c, average learning rate, estimated volatility and stochasticity in the last 20 trials were plotted over all simulations. d–f Learning rate,
volatility and stochasticity estimates by the model for small true volatility. g–i The three signals are plotted for the larger true volatility. Estimated volatility
and stochasticity by the model capture their corresponding true values. Errorbars are standard error of the mean computed over 10,000 simulations and
are too small to be visible. See also Supplementary Fig. 3 for further simulation analysis. Source data are provided as Source Data file.
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involving two phases: a pretraining phase that manipulates
stochasticity or surprise, followed by a retraining phase to test
how this affects the speed of subsequent (re)learning. In terms of
our model, we can interpret the pretraining phase as establishing
inferences about stochasticity and volatility, which then (depend-
ing on their balance) govern learning rate during retraining. On
this view, noisier pretraining might, depending on the pattern of
noise, lead to either higher volatility and higher learning rates
(consistent with Pearce-Hall) or higher stochasticity and lower
learning rates (consistent with Mackintosh).

First consider volatility. It has been argued that the Pearce-
Hall40 logic is formalized by volatility-learning models2,3,12. In
these models, surprising outcomes during pretraining increase
inferred volatility and thus speed subsequent relearning. Hall and
Pearce40,53 pretrained rats with a tone stimulus predicting a
moderate shock. In the retraining phase, the intensity of the
shock was increased. Critically, one group of rats experienced a
few surprising “omission” trials at the end of the pretraining
phase, in which the tone stimulus was presented with no shock.
The speed of learning was substantially increased following the
omission trials compared with a control group that experienced

no omission in pretraining. Figure 4a–d shows a simulation of
this experiment from the current model, showing that the
omission trials lead to increased volatility and faster learning.
Note that the history-dependence of learning rates in this type of
experiment also rejects simpler models like the Kalman filter, in
which volatility (and stochasticity) are taken as fixed; for the
Kalman filter, learning rate depends only on the number of
pretraining trials but not the particular pattern of observed
outcomes. The response probability of the model thus shows the
same pattern as response rate for rats (Supplementary Fig. 4).

Next, consider stochasticity. Perhaps the best example of
Mackintosh’s39 principle in terms of learning rates for a single cue
is the “partial reinforcement extinction effect”54–56. Here, for
pretraining, a cue is reinforced either on every trial or instead
(“partial reinforcement”) on only a fraction of trials (Fig. 4e). The
number of times that the learner encounters the stimulus is
the same for both conditions, but the outcome is noisier for the
partially reinforced stimulus. The retraining phase consists of
extinction (i.e., fully unreinforced presentations of the cue), which
occurs faster for fully reinforced cues even though they had been
paired with more reinforcers initially. Our model explains this

Fig. 3 Behavior of the lesioned model. a Stochasticity and volatility module inside the model compete to explain experienced noise. b–c Two characteristic
lesioned models produce seemingly contradictory behaviors, because if the stochasticity module is lesioned, noise due to stochasticity is misattributed to
volatility (b), and vice versa (c). d–f Mean learning rate is plotted for the 2 × 2 design of Fig. 2 for the healthy and lesioned models. For both the lesion
models, lesioning does not merely abolish the corresponding effects on learning rate, but reverses them. Thus, the stochasticity lesion model shows
elevated learning rate with increases in stochasticity (e), and the volatility lesion model shows reduced learning rate with increases in volatility (f). This is
due to misattribution of the noise due to the lesioned factor to the existing module. g The stochasticity lesion model makes erroneous inference about
volatility and increases its volatility estimate in higher stochastic environments. h The volatility lesion model makes erroneous inference about stochasticity
and increases its stochasticity estimate for higher volatile environments. In fact, both the lesion models are not able to distinguish between the volatility
and stochasticity and therefore show similar pattern for the remaining module. For the healthy model, volatility and stochasticity estimates are the same as
Figs. 2b and 2c, respectively. Simulation and model parameters were the same as those used in Fig. 2. Errorbars reflect standard error of the mean
computed over 10,000 simulations and are too small to be visible. Source data are provided as Source Data file.
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finding (Fig. 4f), because it infers larger stochasticity in the
partially reinforced condition, leading to slower learning
(Fig. 4g, h). Notably, this type of finding cannot be explained
by models, which learn only about volatility6,11,12. In general, this
class of models mistake partial reinforcement for increased
volatility (rather than increased stochasticity), and incorrectly
predict faster learning.

Note the subtle difference between the two experiments of
Fig. 4. The surprising omission experiment involves stable
pretraining prior to omission, then an abrupt shift, whereas
pretraining in the partial reinforcement experiment is stochastic,
but uniformly so. Accordingly, though both pretraining phases
involve increased noise (relative to their controls) the model
interprets the pattern of this noise as more likely reflecting either
volatility or stochasticity, respectively, with opposite effects on
learning rate. Overall, then, these experiments support the current
model’s suggestion that organisms learn about stochasticity in
addition to volatility. Conversely, the models help to clarify and
reconcile the seemingly opposing theory and experiments of
Mackintosh and Pearce-Hall, at least with respect to learning
rates for individual cues. Indeed, although previous work has
noted the relationship between Pearce-Hall surprise, uncertainty,
and learning rates2,3,6,12,20,57, the current modeling significantly
clarifies this mapping by identifying it more specifically with
volatility, as contrasted against simultaneous inference about
stochasticity. Meanwhile, while our basic statistical interpretation
of the partial reversal extinction effect has been noted before (e.g.,
by Gallistel and Gibbon58), to our knowledge these previous
explanations have not reconciled it with the volatility/Pearce-Hall
phenomena. Instead, previous work attempting to map
Mackintosh’s39 principle onto statistical models (and distinguish
it from Pearce-Hall-like effects) has focused on attention and
uncertainty affecting cue combination rather than learning rates2,
which is a complementary but separate idea.

Anxiety and inference about stochasticity vs. volatility.
Lesioned models like the ones in Fig. 3 are potentially useful for
understanding learning deficits in psychiatric disorders, for
example anxiety disorders, which have recently been studied in

the context of volatility and its effects on learning rate13,20. These
studies have shown that people with anxiety are less sensitive to
volatility manipulations in probabilistic learning tasks similar to
Fig. 2. Besides learning rates, an analogous insensitivity to vola-
tility has been observed in pupil dilation13 and in neural activity
in the dorsal anterior cingulate cortex, a region that covaried with
learning rate in controls20.

These results have been interpreted in relation to the more
general idea that intolerance of uncertainty is a key foundation of
anxiety; accordingly, fully understanding them requires taking
account of multiple sources of uncertainty26, including both the
volatility and stochasticity. Nevertheless, the primary interpreta-
tion of these types of results has been that observed abnormalities
are rooted in volatility estimation per se13,20,26. Our current
model suggests an alternative explanation: that the core under-
lying deficit is actually with stochasticity, and apparent
disturbances in volatility processing are secondary to this, due
to their interrelationship.

In particular, these effects and a number of others are well
explained by the stochasticity lesion model of Fig. 3b, i.e., by
assuming that people with anxiety have a core deficit in
estimating stochasticity, and instead treat it as small and constant.
As shown in Fig. 5b, this model shows insensitivity to volatility
manipulation, but in the model that is actually because volatility
is misestimated nearer ceiling due to underestimation of
stochasticity. This, in turn, substantially dampens further
adaptation of learning rate in blocks when volatility actually
increases. The elevated learning rate across all blocks leads to
hypersensitivity to noise, which prevents individuals with anxiety
from benefitting from stability, as has been observed
empirically20. In particular, Piray et al.20 have studied learning
in individuals with low- or high- in trait social anxiety using a
switching probabilistic task (Supplementary Fig. 6) in which each
trial started with a social threatening cue (angry face image). It
was found that individuals with high trait anxiety perform
particularly worse than controls in stable trials, whereas their
performance is generally matched with controls in volatile trials20

(Fig. 5e). The model shows similar behavior (Fig. 5f).
One key prediction of our model, which differs from a

volatility-specific account, is that the learning rate is generally

Fig. 4 The model explains puzzling issues in Pavlovian learning. a–d Pearce and Hall’s conditioned suppression experiment. The design of experiment51,
in which they found that the omission group show higher speed of learning than the control group (a). b Median learning rate over the first trial of the
retraining. The learning rate is larger for the omission group due to increases of volatility (c), while stochasticity is similar for both groups (d). The model
explains partial reinforcement extinction effects (e–h). e The partial reinforcement experiment consists of a partial condition in which a light cue if followed
by reward on 50% of trials and a full condition in which the cue is always followed by the reward. f Learning rate over the first trial of retraining has been
plotted. Similar to empirical data, the model predicts that the learning rate is larger in the full condition, because partial reinforcements have relatively small
effects on volatility (g), but it considerably increases stochasticity (h). Errorbars reflect standard error of the mean over 40,000 simulations and are too
small to be visible. See Supplementary Figs. 4 and 5 for empirical data and corresponding response probability by the model. Source data are provided as
Source Data file.
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higher in people with anxiety regardless of volatility manipulation
or even in tasks that do not manipulate volatility. In fact,
Browning et al.13 do not find evidence to support this prediction,
they do not find a significant overall effect of anxiety on learning
rate. Of course, it is important not to interpret null results as
evidence in favor of the null hypothesis, since a failure to reject
the null hypothesis may reflect insufficient power to detect a true
effect. Indeed, in Browning’s13 data, while the effect of anxiety on
learning rate was not significant overall or in either condition,
the point estimate was largest (r(28)= 0.26, p= 0.16) in the
stable condition, which is also the block that the model predicts
the effect should be statistically strongest (because baseline
learning rates, absent any effect of anxiety, are lower).

Importantly, other, larger studies provide positive statistical
support for the prediction of elevated learning rate with
anxiety31,33,34. Note that in delta-rule models, behavior under

higher learning rates is closer to win-stay/lose-shift (since higher
learning rates weight the most recent outcome more heavily, with
full win-stay/lose-shift—dependence only on the most recent
outcome—equivalent to a learning rate of 1). Such a strategy has
itself been linked to anxiety33,34. A notable observation was made
in a large (n= 122) study by Huang et al.34, who found people
with anxiety show higher win-stay/lose-shift and this effect is
driven by higher lose-shift. Figure 5g, h shows results of
simulating the proposed model in a task similar to Huang
et al.34 (Supplementary Fig. 6). The model shows the same
pattern of behavior, with the additional modulation by win vs.
loss captured because any loss is seen as an evidence for volatility
and that results in higher learning rate and a contingency switch.
The effect is much less salient for win trials because prediction
errors are relatively small in those trials, which substantially
dampen any effect of learning rate. Across all trials, the

Fig. 5 The stochasticity lesion model shows a pattern of learning deficits associated with anxiety. Behavior of the lesioned model as the model of
anxiety, in which stochasticity is assumed to be small and constant, is shown along the control model. a–d Behavior of the models in the switching task of
Fig. 2 is shown. An example of estimated reward by the models shows that the model with anxiety (i.e., the stochasticity lesion model) is more sensitive to
noisy outcomes (a), which dramatically reduces sensitivity of the learning rate to volatility manipulation in this task (b). This, however, is primarily related
to inability to make inference about stochasticity, which leads to misestimation of volatility (c–d). e–f The model explains the data reported by Piray et al.20,
in which the high (social) anxiety group did not benefit from stability as much as the low anxiety group (e). The model shows the same behavior (f). g–h
The model explains the data by Huang et al.32, in which the anxious group showed higher lose-shift behavior compared to the control group (g). The model
shows the same behavior (g), which is due to higher learning rate in the anxious group (inset). Errorbars in (b), (f), and (h) reflect standard error of the
mean over 1000 simulations and are too small to be visible. Data in (e) are adapted from Piray et al. 20 in which median and standard error of the median
are plotted (obtained over n= 44 samples). Data in (g) are adapted from Huang et al.32, in which mean and standard error of the mean are plotted
(obtained over n= 122 independent samples.) Source data are provided as Source Data file.
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stochasticity lesion model shows higher learning rate, similar to
what Huang et al.34 found by fitting reinforcement learning
models to choice data.

Finally, the lesion model is an extreme case in which a
hypothetical stochasticity module is completely eliminated. But
this general approach can be extended to less extreme cases in
which one module of the model (e.g., stochasticity) has some
relative disadvantage in explaining noise. In terms of our model,
this can be achieved by having higher update rate parameters for
volatility relative to that of stochasticity. These are two main
parameters of the model that one can use to explain individual
differences across people. For example, the ratio of volatility to
stochasticity update rate can be used to capture continuous
individual variation in trait anxiety. In this case, the stochasticity
lesion model of Fig. 3b is an extreme case of this approach in
which the stochasticity update rate is zero (thus the ratio of
volatility to stochasticity is infinitely large). We have exploited
this approach to simulate a result from Browning et al.13

concerning graded individual differences in anxiety’s effect
on learning rate adjustment. In particular, they report (and
the model captures; Fig. 6) negative correlation between relative
learning rate (volatile minus stable) and trait anxiety in the
probabilistic switching task with stable and volatile blocks.

Amygdala damage and inference about volatility vs. stochas-
ticity. The opposite pattern of compensatory effects on inference
is evidently visible in the effects of amygdala damage on learning.
The amygdala plays an important role in associative learning59,60.
Although some researchers have emphasized a role of the
amygdala as a site of association between conditioned- and
unconditioned-stimulus in conditioning per se, other authors
(drawing on evidence from human neuroimaging work, single-
cell recordings, and lesion studies) have proposed that the
amygdala is involved in a circuit for controlling or adjusting
learning rates57,60–64. Most informative from the perspective of
our model are lesion studies in rats61,65,66,which we interpret as
supportive an involvement specifically in processing of volatility,

rather than learning rates or uncertainty more generally. These
experiments examine a surprise-induced upshift in learning
rate similar to the Pearce-Hall experiment from Fig. 4. Lesions to
the central nucleus of the amygdala attenuate this effect, sug-
gesting a role in volatility processing. But an important detail of
these results with respect to our model’s predictions is that the
effect is not merely attenuated but reversed. This reciprocal effect
supports perhaps the most central feature and prediction of our
model that volatility trades off against a (presumably anatomi-
cally separate) system for stochasticity estimation.

Figure 7 shows their serial prediction task and results in more
detail. Rats performed a prediction task in two phases. A group of
rats in the “consistent” condition performed the same prediction
task in both phases. The “shift” group, in contrast, experienced a
sudden change in the contingency in the second phase. Whereas
the control rats showed elevation of learning rate in the shift
condition manifested by elevation of food seeking behavior in the
very first trial of the test, the amygdala lesioned rats showed the
opposite pattern. Lesioned rats showed significantly smaller
learning rate in the shift condition compared with the consistent
one, a reversal of the surprise-induced upshift.

We simulated the model in this experiment. To model a
hypothetical effect of amygdala lesion on volatility inference, we
assumed that lesioned rats treat volatility as small and constant.
As shown in Fig. 7, the model shows an elevated learning rate in
the shift condition for the control rats, which is again due to
increases in inferred volatility after the contingency shift. For the
lesioned model, however, surprise is misattributed to the
stochasticity term as an increase in inferred volatility cannot
explain away surprising observations (because it was held fixed).
Therefore, the contingency shift inevitably increases stochasticity
and thereby decreases the learning rate. Notably, the compensa-
tory reversal in this experiment cannot be explained using models
that do not consider both the volatility and stochasticity terms.

A similar pattern of effects of amygdala lesions, consistent with
our theory, is seen in an experiment on nonhuman primates. In a
recent report by Costa et al.63, it has been found that amygdala
lesions in monkeys disrupt reversal learning with deterministic

Fig. 6 The model explains effects of trait anxiety as a continuous index on learning. a Data by Browning et al.13 show a significant negative correlation
between relative log learning rate and trait anxiety in a probabilistic switching task with stable and volatile blocks. b The model shows a similar pattern. The
inset shows the median rank correlation between the trait anxiety and the relative learning rate. Model trait anxiety is defined as the ratio of volatility to
stochasticity update rates (thus higher if the stochasticity update rate is small). The lesion model of anxiety (Fig. 5) is a special case in which the
stochasticity update rate is zero. Errorbars reflect standard error of the median over 1000 simulations and are too small to be visible. Source data are
provided as Source Data file.
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contingencies, moreso than a reversal task with stochastic
contingencies. This is striking since deterministic reversal
learning tasks are much easier. Similar to the previous
experiment, our model explains this finding because large
surprises caused by the contingency reversal are misattributed
to the stochasticity in lesioned animals (because volatility was
held fixed), while control animals correctly attribute them to the
volatility term (Fig. 8; see Supplementary Fig. 7 for performance
of the model and Supplementary Fig. 8 for simulation of
the model in all probabilistic schedules tested by Costa et al.63).
This effect is particularly large in the deterministic case because

the environment is very predictable before the reversal and
therefore the reversal causes larger surprises than those for the
stochastic one. Similar findings have been found in a study in
human subjects with focal bilateral amygdala lesions67, in which
patients tend to show more deficits in deterministic reversal
learning than stochastic one. Again, these experimental findings
are not explained by a Kalman filter or models that only consider
the volatility term.

Overall, then, these experiments support the current model’s
picture of dueling influences of stochasticity and volatility.
Furthermore, the current model helps to clarify the precise role

Fig. 7 The model displays the behavior of amygdala lesioned rats in associative learning. a The task used for studying the role of amygdala in learning by
Holland and Gallagher59,63,64. Rats in the “consistent” condition received extensive exposure to a consistent light-tone in a partial reinforcement schedule
(i.e., only half of trials led to reward). In the “shift” condition, however, rats were trained on the same light-tone partial reinforcement schedule in the first
phase, but the schedule shifted to a different one in the shorter second phase, in which rats received light-tone-reward on half of trials and light-nothing on
the other half. b Empirical data showed that while the contingency shift facilitates learning in the control rats, it disrupts performance in lesioned rats. c
learning rate in the last trial of second phase shows the same pattern. This is because the shift increases volatility for the control rats (d) but not for the
lesioned rats (e). In contrast, the contingency shift increases the stochasticity for the lesioned rats substantially more than that for the control rats, which
results in reduced learning rate for the lesioned animals (f–g). The gray line shows the starting trial of the second phase. Data in (b) was originally reported
in63 and reproduced here from64. Errorbars in other (c–g) reflect standard error of the mean over 40,000 simulations and are too small to be visible. See
also Supplementary Table 1. Source data are provided as Source Data file.
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of amygdala in this type of learning, relating it specifically to
volatility-mediated adjustments.

Discussion
A central question in decision neuroscience is how the brain
learns from the consequences of choices given that these can be
highly noisy. To do so effectively requires simultaneously learning
about the characteristics of the noise, as has been emphasized
most strongly in a prominent line of work on how the brain
tracks the volatility of the environment. Here we revisit this
problem for the more realistic case when both volatility and a
second noise parameter, stochasticity, must be simultaneously
estimated.

While various experiments have, mostly separately, shown that
humans can adjust learning rates in response to manipulations of
either type of noise, models of how they do so have focused
primarily on estimating either parameter while taking the other as
known. This skirts the more difficult problem of distinguishing
types of noise. To solve this problem and investigating its

consequences for learning, we built a probabilistic model for
learning in uncertain environments that tracks volatility and
stochasticity simultaneously. Using this model to simulate a
number of experiments across conditioning, psychiatry and lesion
studies, we show a consistent theme whereby the interdependence
of inference about these two noise parameters gives rise to pat-
terns of effects that could not be appreciated in previous models
that considered estimating either type of noise separately.

The importance of dissociating these forms of noise, and some
aspects of their interaction, have been noted previously. For
instance, Pulcu and Browning26 emphasize the inadequacy of
existing experiments for dissociating volatility vs. stochasticity
learning, and raise the possibility that in principle, people might
confuse them. In Nassar et al.’s study25, the volatility-like hazard
rate parameter (though viewed from the model’s perspective as
fixed and known) is fit as a per-subject free parameter construed
as an individual difference. The empirical and model-fitting
results showcase a dependence of the (inferred) stochasticity
parameter upon the (fit/known) hazard rate, consistent with the
bidirectional pattern of interdependence we posit. Building on all

Fig. 8 The model displays the behavior of amygdala lesioned monkeys in probabilistic reversal learning. a The probabilistic reversal learning task by
Costa et al.61. The task consists of 80 trials, in which animals chose one of the two presented shape cues by making a saccade to it and fixating on the
chosen cue. A probabilistic reward was given following a correct choice. The stimulus-reward contingency was reversed in the middle of the task (on a
random trial between trials 30-50). The task consists of different schedules, but we focus here on 60%/40% (stochastic) and 100%/0% (deterministic),
which show the clearest difference in empirical data. b Performance of animals in this task. In addition to the general reduced performance by the lesioned
animals, their performance was substantially more disrupted in the deterministic- than stochastic-reversal. c Performance of the model in this task shows
the same pattern. d–i Learning rate, volatility and stochasticity signals for the deterministic (d–f), and stochastic task (g–i). Solid and dashed line are related
to acquisition and reversal phase, respectively. Deterministic reversal increases the learning rate in the control animals due to increases in volatility, but not
in the lesioned monkeys, in which it reduces the learning rate due to the increase of the stochasticity. The reversal in the stochastic task has very small
effects on these signals, because stochasticity is relatively large during both acquisition and reversal. Data in (b) are adapted from Costa et al.61, in which
mean and standard error of the mean are plotted. Errorbars in other panels reflect standard error of the mean over 1000 simulations and are too small to be
visible. See also Supplementary Fig. 7 for choice time-series and Supplementary Fig. 8 for simulation of the model in all four probabilistic schedules tested
by Costa et al.61 and corresponding empirical data. Source data are provided as Source Data file.
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these ideas, we build and simulate a model to showcase
the potential interdependence between these two types of infer-
ence across a range of situations. One important caveat, given the
range of applications we consider, is that we abstract away details
of the many individual studies to emphasize their parallelism with
respect to our main point of interest. Thus, for instance, we
neglect valence-dependent modulation of learning which is likely
an additional dimension important both in anxiety20,26,31,38 and
in studies of amygdala63. Relatedly, as our goal is to showcase the
range of situations in which parallel issues may arise, we
acknowledge that different explanations may exist for many
individual results.

Our work builds most directly on a rich line of theoretical and
experimental work on the relationship between the volatility and
learning rates6,8,13,15,27,68,69. There have been numerous reports
of volatility effects on healthy and disordered behavioral and
neural responses, often using a two-level manipulation of vola-
tility like that from Fig. 5a6,8,10,13–23,38. Our modeling suggests
that it will be informative to drill deeper into these effects by
augmenting this task to cross this manipulation with stochasticity
so as more clearly to differentiate these two potential
contributors24. For example, in tasks that manipulate (and
models that consider) only volatility, it can be seen from Eqs.
(1–4) that the timeseries of several quantities all covary together,
including the estimated volatility vt , the posterior uncertainty wt ,
and the learning rate αt . It can therefore be difficult in general to
distinguish which of these variables is really driving tantalizing
neural correlates related to these processes, for instance in
amygdala and dorsal anterior cingulate cortex6,57. The inclusion
of stochasticity (which increases uncertainty but decreases
learning rate) would help to drive these apart.

Indeed, another related set of learning tasks considered pre-
diction of continuous outcomes corrupted by stochasticity, i.e.,
additive Gaussian noise7,9,25,45,52, which could provide another
foundation for factorial manipulations of the sort we propose.
Indeed, a number of these studies (complementary to the vola-
tility studies) included multiple levels of stochasticity and showed
learning rate effects7,9,25,52,70. The models used in these studies
have largely used a complementary simplification to the volatility
one: they estimate stochasticity, but conditional on a known value
for the hazard rate (equivalent to volatility). Interestingly, rather
than overall adjustment to noise statistics, these studies more
explicitly emphasized the detection of discrete changes in the
environment and the resulting local adjustments of the learning
rate. From a modeling perspective, inference under change at
discrete changepoints (occurring at some hazard rate) raises
issues quite analogous to change due to more gradual diffusion
(with some volatility). Thus, in practice it has been common and
effective to apply models for one sort of change to tasks actually
involving the other6,11,12, a substitution also in part licensed by
approximate models of changepoint detection that (as with the
volatility models and the Kalman filter for continuous change)
also reduce learning to error-driven updates with a time-varying
learning rate25,71. Thus, although we build the current work on a
generative model with continuous rather than abrupt change-
points, we do not mean this as a substantive claim, as we expect
our main substantive points (concerning the inference about
noise vs. change hyperparameters) would play out analogously in
other variants. In any case, research into the neural substrates of
changepoint detection is highly relevant to the change problem
conceived in terms of volatility as well (see10 for a recent review).

The current framework’s tendency to elide the distinction
between discrete and continuous change (but distinguish both
from stochasticity) is also the basis of an important, but
subtle, distinction from another prominent dichotomy previously
proposed that between “expected” and “unexpected” types of

uncertainty72,73. While it might appear that these categories
correspond, respectively, to stochasticity and volatility as we
define them, that is not actually the case. Formally, this is because
the Dayan and Yu model (in its most detailed form, Dayan and
Yu72) arises from a Kalman filter augmented with additional
discrete changepoints: i.e., both the diffusion and jumps. The
focus of that work was distinguishing the special effects of
surprising jumps (“unexpected uncertainty”), which were hypo-
thesized to recruit a specialized neural interrupt system. Mean-
while, all other uncertainty arising in the baseline Kalman filter
(i.e., that from both stochasticity and volatility; the posterior
variance wt in Eq. 4) is lumped together under “expected
uncertainty.” That said (although we see this as a misreading of
the earlier work) our impression is that later authors’ use of these
terms actually tends to comport more with our distinction than
the original definition26, i.e., to take unexpected and expected
uncertainty as synonymous with volatility and stochasticity as we
define them. In any case, Yu and Dayan did not consider the
problem considered here, of estimating the noise hyperpara-
meters for learning under uncertainty.

The most important feature of our model is the competition it
induces between the volatility and stochasticity to “explain away”
surprising observations. This leads to a predicted signature of the
model in cases of lesion or damage affecting inference about
either type of noise: disruption causing neglect of one of the terms
leads to overestimation of the other term. For example, if a
module responsible for volatility learning were disrupted, the
model would overestimate stochasticity, because surprising
observations that are due to volatility would be misattributed to
the stochasticity. This allowed us to revisit the role of amygdala in
associative learning and explain some puzzling findings about its
contributions to reversal learning.

Similar explanations grounded in the current model may
also be relevant to a number of psychiatric disorders. Abnorm-
alities in uncertainty and inference, broadly, have been hypo-
thesized to play a role in numerous disorders, including especially
anxiety and schizophrenia. More specifically, abnormalities in
volatility-related learning adjustments have been reported in
patients or people reporting symptoms of several mental
illnesses13,14,16–23,38. The current model provides a more detailed
potential framework for better dissecting these effects, though this
will ideally require a new generation of experiments manipulating
both factors.

In the present work, we have developed these ideas mostly in
terms of pathological decision making in anxiety, which is one of
the areas where earlier work on volatility estimation has been
strongest and where further refinement using our theory seems
most promising32,35,37,74. We considered an account by which
individuals with anxiety systematically misidentify outcomes
occurring due to chance (stochasticity) as instead a signal of
change (volatility)34. This account offers a contrary interpretation
of a pattern of effects that had been taken to indicate that vola-
tility sensitivity is instead deficient in anxiety26. Although some
null effects in the study of Browning et al.13 do not support this
account, we view it as an overall better account of the pattern of
data across several studies20,31,33,34. Our account is also broadly
consistent with studies suggesting that individuals with anxiety
might feel overwhelmed when faced with uncertainty36 and fail to
make use of long-term statistical regularities34. These are also
hypothesized to be related to symptoms of excessive worry29,30.
Misestimating stochasticity—moreso than volatility—also seems
consonant with the idea that individuals with anxiety tend to fail
to discount negative outcomes occurring by chance (i.e., sto-
chasticity) and instead favor alternative explanations like self-
blame75. This hypothesis is also consistent with the observation
that acquisition of fear conditioning tends to be enhanced in
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individuals with anxiety76,77. Finally, although a simple increase
in learning rate seems harder to reconcile with generally slower
extinction of Pavlovian fear learning in anxiety76, this probably
reflects the well-known fact that extinction is not simply
unlearning of the original associations, but instead is dominated
by additional processes78,79. This includes in particular statistical
inference about latent contexts5, which is likely to be affected by
both stochasticity and volatility in ways that should be explored
in future work.

More generally, this modeling approach, which quantifies
misattribution of stochasticity to volatility and vice versa, might
be useful for understanding various other brain disorders that are
thought to influence processing of uncertainty and have largely
been studied in the context of volatility in the past
decade14,16,17,19,21,22,27,28. As another example, positive symp-
toms in schizophrenia have been argued to result from some
alterations in prior vs likelihood processing, perhaps driven by
abnormal attribution of uncertainty (or precision) to top-down
expectations80. But different such symptoms (e.g., hallucinations
vs. delusions) manifest in different patients. One reason may
be that these relate to disruption at different levels of a
perceptual-inferential hierarchy, i.e., with hallucination vs. delu-
sion reflecting involvement of more or less abstract inferential
levels, respectively81–83. In this respect, the current model may
provide a simple and direct comparative test, since stochasticity
enters at the perceptual, or outcome, level (potentially associated
with hallucination) but volatility acts at the more abstract level of
the latent reward (and may be associated with delusion;
see Fig. 1).

Our work also touches upon a historical debate in the asso-
ciative learning literature about the role of outcome stochasticity
(i.e., in our terms, noise) in learning. One class of theories, most
prominently represented by Mackintosh39, proposes that atten-
tion is preferentially allocated to cues that are most reliably
predictive of outcomes, whereas Pearce and Hall62 suggest the
opposite that attention is attracted to surprising misprediction.
We address only a subset of the experimental phenomena
involved in this debate (those involving learning rates for cues
presented alone), but for this subset we offer a very clear reso-
lution of the apparent conflict. Our approach and goals also differ
from classic work in this area. A number of important models of
attention in psychology also attempt to reconcile these theories by
providing more phenomenological models that hybridize the two
theories to account for various and often paradoxical experi-
mental work84–87. Our goal is different and is more descended
from a tradition of normative theories that provide a computa-
tional understanding of psychological phenomena from first
principles by first addressing what is the computational problem
that the corresponding neural system is evolved to solve2,88.

Any probabilistic model relies on a set of explicit assumptions
about how observations have been generated, i.e., a generative
model, and also an inference procedure to estimate the hidden
parameters that are not directly observable. Such inference
algorithms typically reflect some approximation strategy because
exact inference is not possible for most important problems,
including our generative model (Fig. 1). In previous work in this
area, we and others have relied on variational approaches to
approximate inference, which factors difficult inference problems
into smaller tractable ones, and approximates the answer as
though they were independent11,12. Interestingly, although one of
the most promising successes of this approach in neuroscience
has been in hierarchical Kalman filters with volatility inference,
we found it difficult to develop an effective variational filter for
the current problem, when stochasticity is unknown. The core
problem, in our hands, was that effective explaining away
between the two noise types was difficult to achieve using

simplified variational posteriors that omitted aspects of their
mutual dependency.

Interestingly, there are other algorithms that, in principle,
address similar learning problems. These include using an
explicitly variational approach extending the HGF (code is pub-
licly available as hgf_jget in the TAPAS toolbox89, but has not
been documented or tested in published articles), augmenting the
variational HGF with mixture models43, an analogous simplified
learning rule based more on neural considerations44, and an exact
model for tracking hazard rates under a particular case of
changepoint detection45. While these have not yet been applied to
the full range of problems we investigate here, we suspect that
future work investigating the approximate approaches will find
challenges in explaining away. In any case, in the current mod-
eling, we have adopted a different estimation method based on
Monte Carlo sampling, in particular a variant of particle filtering
that preserves many of the advantages of variational methods by
incorporating exact conditional inference for a subset of
variables49. The inference model employed here combines Kal-
man filtering for estimation of reward rate41 conditional on the
volatility and stochasticity, with particle filtering for inference
about these50. One drawback of the particle filter, however, is that
it requires tracking a number of samples on every trial. In
practice, we found that a handful (e.g., 100) of particles results in
a sufficiently good approximation.

Finally, in this study, we only modeled the effects of volatility
and stochasticity on learning rate. However, uncertainty affects
many different problems beyond learning rate, and a full account
of how subjects infer volatility and stochasticity (and how these,
in turn, affect uncertainty) may have ramifications for many other
behaviors. Thus, there have been important statistical accounts of
a number of such problems, but most of them have neglected
either stochasticity or volatility, and none of them have explicitly
considered the effects of learning the levels of these types of noise.
These problems include cue- or feature-selective attention2; the
explore-exploit dilemma90,91; and the partition of experience into
latent states, causes or contexts5,79,92. The current model, or
variants of it, is more or less directly applicable to all these
problems and should imply predictions about the effects of
manipulating either type of noise across many different
behaviors.

Methods
Description of the model. Recall that outcome on trial t, ot , in our model depends
on three latent variables, the reward rate, stochasticity and volatility. The reward
rate on trial t, xt , has Markov-structure dynamics:

xt ¼ xt�1 þ et ; ð5Þ
where et is a (zero-mean) Gaussian noise with variance given by volatility.
Therefore, we have:

p xt jxt�1; vt
� � ¼ N xt jxt�1; vt

� �
; ð6Þ

where vt is volatility. We define the inverse volatility, zt ¼ v�1
t , which is the pre-

ferred formulation here as it has been used in previous studies for its analytical
plausibility12. Outcomes were generated based on the reward rate and stochasticity
according to a Gaussian distribution:

p ot jxt ; st
� � ¼ N ot jxt ; st

� �
; ð7Þ

where st is the stochasticity with yt ¼ s�1
t .

For volatility and stochasticity, we assumed a multiplicative noise on their
inverse, which is an approach that has been shown to give rise to analytical
inference when considered in isolation (but not here)93,94. Specifically, the
dynamics over these variables are given by zt ¼ ηv

�1zt�1ϵt ; where 0< ηv < 1 is a
constant and ϵt is a random variable in the unit range with a Beta-distribution
p ϵt
� � ¼ B ϵt ; j; 0:5ηvð1� ηvÞ�1; 0:5

� �
: Note that the conditional expectation of zt is

given by zt�1, because E ϵt
� � ¼ ηv . We assume a similar and independent dynamics

for yt parametrized by the constant ηs : yt ¼ ηs
�1yt�1εt , in which εt has a similar

distribution to ϵt parametrized by ηs.
In our implementation, we parametrized the model with λv ¼ 1� ηv and

λs ¼ 1� ηs , respectively. This is because these parameters can be interpreted as the
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update rate for volatility and stochasticity, respectively. In other words, larger
values of λv and λs result in faster update of volatility and stochasticity, respectively.
Intuitively, this is because a smaller λv increases the mean of ϵt and results in a
larger update of zt . Since volatility is the inverse of zt , therefore, smaller λv results
in slower update of volatility. This has been formally shown in our recent work12.
In addition to these two parameters, this generative process depends on initial
value of volatility and stochasticity, v0 and s0.

For inference, we employed a Rao-Blackwellised Particle Filtering approach49,
in which the inference about vt and st were made by a particle filter50 and,
conditional on these, the inference over xt was given by the Kalman filter (i.e.,
Equations (1–4)). The particle filter is a Monte Carlo sequential importance
sampling method, which keeps track of a set of particles (i.e., samples). The
algorithm performs three steps on each trial. First, in a prediction step, each
particle is transitioned to the next step based on the generative process. Second,
weights of each particle are updated based on the probability of observed outcome:

blt / Nðot jml
t�1;w

l
t�1 þ vlt þ sltÞ; ð8Þ

where blt is the weight of particle l on trial t, ml
t�1 and wl

t�1 are estimated mean and
variance by the Kalman filter on the previous trial (Eqs. 1–4), and vlt and slt are
volatility and stochasticity samples (i.e., the inverse of zlt and ylt). In this step,
particles were also resampled using the systematic resampling procedure if the ratio
of effective to total particles falls below 0.5. In the third step, the Kalman filter was
used to update the mean and variance. In particular, for every particle, Eqs. 1–4
were used to define αlt and update ml

t and wl
t for every particle. Learning rate and

estimated reward rate on trial t was then defined as the weighted average of all
particles, in which the weights were given by blt . We have used particle filter
routines implemented in MATLAB.

Finally, we should note that our results are not dependent on the specific
generative process that we have assumed here. In particular, it is possible to define
a generative process that diffuses according to Gaussian noise. In such a generative
model, random variables related to volatility and stochasticity diffuse according to
independent Gaussian random walks:

p zt jzt�1

� � ¼ N zt jzt�1; σ
2
v

� �
; ð9Þ

p yt jyt�1

� � ¼ N yt jyt�1; σ
2
s

� �
; ð10Þ

where volatility and stochasticity are respectively defined as vt ¼ exp zt
� �

and
st ¼ expðytÞ, and σv and σs are model parameters that play analogous role as λv and
λs above, respectively. The reward rate and outcomes are then generated based on
the same process as the previous generative model (Eqs. 5–7). Inference about
reward rate also remains the same (Eqs. 1–4). Our simulations show that, as long as
the particle filter was used for inference about volatility and stochasticity, such a
process can successfully recover true unknown volatility and stochasticity
(Supplementary Fig. 3).

Simulation details. In simulations related to Figs. 1–3, timeseries were generated
according to the Markov random walk with constant volatility and stochasticity.
For these simulations, we assumed λv ¼ 0:1 and λs ¼ 0:1; v0 ¼ 1 (average over
small and large true volatility) and s0 ¼ 2 (average over small and large true
stochasticity). For lesioned models in Fig. 3, the corresponding lesion variable was
assumed to be fixed at its initial value throughout the task.

For the conditioned suppression experiment presented in Fig. 4, the weak and
strong shock was 0.3 and 1, respectively, plus a small noise with variance of 10-2.
The noise for the partial reinforcement experiment was assumed to be 10-4. 100
trials were used for training. We assumed 5 omission trials for the omission
condition of conditioned suppression experiment. Model parameters in Fig. 4 were
λv ¼ λs ¼ 0:2, and v0 ¼ s0 ¼ 0:1. For corresponding Supplementary Figs. 4–5, the
response probability of the model was calculated based on a softmax with a
decision noise parameter of 5.

Reward rate in Fig. 5a was 0.8 in the stable block and switching between 0.25
and 0.75 in the volatile block with the outcome variance of 0.01. For simulations
presented in Fig. 5a-d, model parameters were similar to those used for simulations
in Fig. 4 and the stochasticity for the lesioned models was assumed to be
0.001 (note that outcomes were not binary in this simulation). Volatile condition in
Fig. 5e, f was defined as trials with no contingency switch in their preceding 10
trials, similar to Piray et al.20. For the simulation presented in Fig. 5h, we followed
Huang et al.34 who fitted a number of reinforcement learning models to choice
data, in which they simplified the task to its core features that are directly related to
reinforcement learning. Furthermore, we made a further simplification here by
considering only two choices. Probability of reward in tasks by Piray et al. and
Huang et al. presented in Fig. 5 are plotted in Supplementary Fig. 6. Outcome
variance was assumed to be 0.01. Model parameters were similar to those used for
simulations in Fig. 4. The stochasticity for the lesioned models in these two
simulations were assumed to be 0.05. For simulating choice, we used the softmax
with a decision noise of 3.

In Fig. 6, the task was a probabilistic switching task with stable and volatile
blocks similar to the task of Browning et al.13. Outcome variance was assumed to
be 0.01. The median correlation presented in the inset of Fig. 6b is the Spearman
rank correlation across 1000 sets of simulations. For each set, 30 artificial subjects

were generated, which only differed in their volatility- and stochasticity-update rate
parameters. To have a relatively uniform model trait anxiety (i.e., volatility to
stochasticity update rate), every set was further divided to 3 subsets (each
containing 10 artificial subjects), in which the mean of model trait anxiety was 0.5,
1, 3, respectively. We further ensured that the model trait anxiety is greater than
0.26 and smaller than 4. These values were chosen to relatively reflect the
distribution of trait anxiety in Browning et al.’s13 data (Fig. 6a). Furthermore, the
volatility update rate was drawn randomly between 0 and 0.2 and the stochasticity
update rate was calculated according to the model trait anxiety. A fixed and small
initial volatility and stochasticity was used for all artificial subjects
(v0 ¼ s0 ¼ 0:001).

For simulating the experiment in Fig. 7, reward timeseries was generated with a
very small outcome variance, 10-6. Here, the model was trained to predict both the
tone (given the light) and the reward (given the light) on every trial. Model
parameters were λv ¼ λs ¼ 0:2, and v0 ¼ s0 ¼ 0:5. Volatility was assumed for the
lesioned model to be small and fixed (0.25e-6). Figure 7b shows the average
learning rate on the last trial of phase 2 (i.e., the first trial of the test) for the first
cue across all simulations. Figure 7c–f shows volatility and stochasticity signals for
the first cue. For simulation of the reversal task in Fig. 8, a small outcome variance
similar, 10-6, was used for generating outcomes. Model parameters were the same
as those used in Fig. 7. Volatility for the lesioned model was assumed to be small
and fixed at 0.01. We have used softmax with a decision noise parameter as the
choice model. We assumed that the decision noise parameter is 3 and 1 for the
control and lesioned animals, respectively. These parameters were used to
reproduce the general reduction of performance in lesioned animals, which is
independent of the difference between the deterministic vs stochastic task in the
two groups explained by our learning model.

For Supplementary Fig. 2, we followed the design of the prediction task by
Nassar et al.25. The timeseries were generated according to a hidden reward rate
plus a noise term, in which the variance of noise was either one (small) or nine
(large). The reward rate was subject to a random jump in the range of 0–10.
Change points occurred after at least five trials plus a random draw according to an
exponential distribution with a rate of 0.05 (i.e., mean 20). The initial volatility and
stochasticity were both assumed to be five (average over small and large true
stochasticity). We further assumed that λv ¼ 0:4 and λs ¼ 0:2, which reflects the
instructions given to subjects about possible jumps in the underlying reward rate.
Simulation and model parameters in Supplementary Figure 1 were the same as
those in Fig. 5a. For all simulations, we have assumed initial reward rate prior to be
a Gaussian with mean 0 and variance 100 (Figs. 2–3 and Supplementary Figure 3)
or 1 (all other simulations). Simulations were repeated sufficiently to have
negligible sampling error (i.e. invisible standard error of the mean). Thus,
simulations presented in Figs. 1, 2, 3 and Supplementary Fig. 3 were repeated
10,000 times; conditioning simulations presented in Figs. 4 and 7 were repeated
40000 times; and all other simulations were repeated 1000 times. All simulations
were conducted with 100 particles.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Simulation data are publicly available at https://doi.org/10.5281/zenodo.552666895. Data
by Piray et al.20 presented in Fig. 5e are publicly available at https://github.com/
payampiray/piray_etal_2019_JNeurosci. Data by Browning et al.13 plotted in Fig. 6a are
publicly available as a Source Data file to the corresponding paper. Source data are
provided with this paper.

Code availability
All simulations were conducted using custom code written in MATLAB (2018a). Codes
are available at https://doi.org/10.5281/zenodo.552666895.

Received: 23 January 2021; Accepted: 8 October 2021;

References
1. Dayan, P. & Long, T. Statistical Models of Conditioning. In Advances in

Neural Information Processing Systems 10 (eds, Jordan, M., Kearns, M. &
Solla, S.) 117–123 (MIT Press, 1998).

2. Dayan, P., Kakade, S. & Montague, P. R. Learning and selective attention. Nat.
Neurosci. 3, 1218–1223 (2000).

3. Courville, A. C., Daw, N. D. & Touretzky, D. S. Bayesian theories of
conditioning in a changing world. Trends Cogn. Sci. (Regul. Ed.) 10, 294–300
(2006).

4. Daunizeau, J. et al. Observing the observer (I): meta-bayesian models of
learning and decision-making. PLoS ONE 5, e15554 (2010).

5. Gershman, S. J., Blei, D. M. & Niv, Y. Context, learning, and extinction.
Psychol. Rev. 117, 197–209 (2010).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26731-9

14 NATURE COMMUNICATIONS |         (2021) 12:6587 | https://doi.org/10.1038/s41467-021-26731-9 | www.nature.com/naturecommunications

https://doi.org/10.5281/zenodo.5526668
https://github.com/payampiray/piray_etal_2019_JNeurosci
https://github.com/payampiray/piray_etal_2019_JNeurosci
https://doi.org/10.5281/zenodo.5526668
www.nature.com/naturecommunications


6. Behrens, T. E. J., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. S.
Learning the value of information in an uncertain world. Nat. Neurosci. 10,
1214–1221 (2007).

7. Nassar, M. R. et al. Rational regulation of learning dynamics by pupil-linked
arousal systems. Nat. Neurosci. 15, 1040–1046 (2012).

8. Iglesias, S. et al. Hierarchical prediction errors in midbrain and basal forebrain
during sensory learning. Neuron 80, 519–530 (2013).

9. McGuire, J. T., Nassar, M. R., Gold, J. I. & Kable, J. W. Functionally dissociable
influences on learning rate in a dynamic environment. Neuron 84, 870–881
(2014).

10. Soltani, A. & Izquierdo, A. Adaptive learning under expected and unexpected
uncertainty. Nat. Rev. Neurosci. 20, 635–644 (2019).

11. Mathys, C., Daunizeau, J., Friston, K. J. & Stephan, K. E. A bayesian
foundation for individual learning under uncertainty. Front Hum. Neurosci. 5,
39 (2011).

12. Piray, P. & Daw, N. D. A simple model for learning in volatile environments.
PLoS Comput. Biol. 16, e1007963 (2020).

13. Browning, M., Behrens, T. E., Jocham, G., O’Reilly, J. X. & Bishop, S. J.
Anxious individuals have difficulty learning the causal statistics of aversive
environments. Nat. Neurosci. 18, 590–596 (2015).

14. Brazil, I. A., Mathys, C. D., Popma, A., Hoppenbrouwers, S. S. & Cohn, M. D.
Representational uncertainty in the brain during threat conditioning and the
link with psychopathic traits. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2,
689–695 (2017).

15. Farashahi, S. et al. Metaplasticity as a neural substrate for adaptive learning
and choice under uncertainty. Neuron 94, 401–414.e6 (2017).

16. Lawson, R. P., Mathys, C. & Rees, G. Adults with autism overestimate the
volatility of the sensory environment. Nat. Neurosci. 20, 1293–1299 (2017).

17. Powers, A. R., Mathys, C. & Corlett, P. R. Pavlovian conditioning-induced
hallucinations result from overweighting of perceptual priors. Science 357,
596–600 (2017).

18. Katthagen, T. et al. Modeling subjective relevance in schizophrenia and its
relation to aberrant salience. PLoS Comput. Biol. 14, e1006319 (2018).

19. Paliwal, S. et al. Subjective estimates of uncertainty during gambling and
impulsivity after subthalamic deep brain stimulation for Parkinson’s disease.
Sci. Rep. 9, 14795 (2019).

20. Piray, P., Ly, V., Roelofs, K., Cools, R. & Toni, I. Emotionally aversive cues
suppress neural systems underlying optimal learning in socially anxious
individuals. J. Neurosci. 39, 1445–1456 (2019).

21. Cole, D. M. et al. Atypical processing of uncertainty in individuals at risk for
psychosis. NeuroImage: Clin. 26, 102239 (2020).

22. Deserno, L. et al. Volatility estimates increase choice switching and relate to
prefrontal activity in Schizophrenia. Biol. Psychiatry.: Cogn. Neurosci.
Neuroimaging 5, 173–183 (2020).

23. Diaconescu, A. O., Wellstein, K. V., Kasper, L., Mathys, C. & Stephan, K. E.
Hierarchical Bayesian models of social inference for probing persecutory
delusional ideation. J. Abnorm. Psychol. 129, 556–569 (2020).

24. Lee, S., Gold, J. I. & Kable, J. W. The human as delta-rule learner. - PsycNET.
Decision 7, 55–66 (2020).

25. Nassar, M. R., Wilson, R. C., Heasly, B. & Gold, J. I. An approximately
Bayesian delta-rule model explains the dynamics of belief updating in a
changing environment. J. Neurosci. 30, 12366–12378 (2010).

26. Pulcu, E. & Browning, M. The Misestimation of Uncertainty in Affective
Disorders. Trends Cogn. Sci. 23, 865–875 (2019).

27. Diaconescu, A. O. et al. Inferring on the Intentions of Others by Hierarchical
Bayesian Learning. PLoS Comput. Biol. 10, e1003810 (2014).

28. Reed, E. J. et al. Paranoia as a deficit in non-social belief updating. eLife 9,
(2020).

29. Dugas, M. J., Gagnon, F., Ladouceur, R. & Freeston, M. H. Generalized anxiety
disorder: a preliminary test of a conceptual model. Behav. Res Ther. 36,
215–226 (1998).

30. Ladouceur, R., Gosselin, P. & Dugas, M. J. Experimental manipulation of
intolerance of uncertainty: a study of a theoretical model of worry. Behav. Res
Ther. 38, 933–941 (2000).

31. Aylward, J. et al. Altered learning under uncertainty in unmedicated mood
and anxiety disorders. Nat. Hum. Behav. 3, 1116–1123 (2019).

32. Gagne, C., Dayan, P. & Bishop, S. J. When planning to survive goes wrong:
predicting the future and replaying the past in anxiety and PTSD. Curr. Opin.
Behav. Sci. 24, 89–95 (2018).

33. Harlé, K. M., Guo, D., Zhang, S., Paulus, M. P. & Yu, A. J. Anhedonia and
anxiety underlying depressive symptomatology have distinct effects on
reward-based decision-making. PLOS ONE 12, e0186473 (2017).

34. Huang, H., Thompson, W. & Paulus, M. P. Computational dysfunctions in
anxiety: failure to differentiate signal from noise. Biol. Psychiatry 82, 440–446
(2017).

35. Huys, Q. J. M., Daw, N. D. & Dayan, P. Depression: a decision-theoretic
analysis. Annu. Rev. Neurosci. 38, 1–23 (2015).

36. Luhmann, C. C., Ishida, K. & Hajcak, G. Intolerance of uncertainty and
decisions about delayed, probabilistic rewards. Behav. Ther. 42, 378–386
(2011).

37. Paulus, M. P. & Yu, A. J. Emotion and decision-making: affect-driven belief
systems in anxiety and depression. Trends Cogn. Sci. 16, 476–483 (2012).

38. Pulcu, E. & Browning, M. Affective bias as a rational response to the statistics
of rewards and punishments. eLife 6, e27879 (2017).

39. Mackintosh, N. J. A theory of attention: Variations in the associability of
stimuli with reinforcement. Psychological Rev. 82, 276–298 (1975).

40. Pearce, J. M. & Hall, G. A model for Pavlovian learning: variations in the
effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87,
532–552 (1980).

41. Kalman, R. E. A New Approach to Linear Filtering and Prediction Problems.
Trans. ASME–J. Basic Eng. 82, 35–45 (1960).

42. Kakade, S. & Dayan, P. Acquisition and extinction in autoshaping. Psychol.
Rev. 109, 533–544 (2002).

43. Moens, V. & Zénon, A. Learning and forgetting using reinforced Bayesian
change detection. PLoS Comput. Biol. 15, e1006713 (2019).

44. Silvetti, M., Vassena, E., Abrahamse, E. & Verguts, T. Dorsal anterior
cingulate-brainstem ensemble as a reinforcement meta-learner. PLOS
Computational Biol. 14, e1006370 (2018).

45. Wilson, R. C., Nassar, M. R. & Gold, J. I. Bayesian on-line learning of the
hazard rate in change-point problems. Neural Comput 22, 2452–2476 (2010).

46. Griffiths, T. L., Navarro, D. J. & Sanborn, A. N. A More Rational Model of
Categorization. Proceedings of the Annual Meeting of the Cognitive Science
Society 28, (2006).

47. Daw, N. D. & Courville, A. C. The rat as particle filter. in Advances in Neural
Information Processing Systems 20 (eds. Platt, J. C., Koller, D., Singer, Y. &
Roweis, S. T.) 369–376 (Curran Associates, Inc., 2008).

48. Brown, S. D. & Steyvers, M. Detecting and predicting changes. Cogn. Psychol.
58, 49–67 (2009).

49. Doucet, A., Freitas, N. de, Murphy, K. P. & Russell, S. J. Rao-Blackwellised
Particle Filtering for Dynamic Bayesian Networks. in Proceedings of the 16th
Conference on Uncertainty in Artificial Intelligence 176–183 (Morgan
Kaufmann Publishers Inc., 2000).

50. Doucet, A. & Johansen, A. M. A tutorial on particle filtering and smoothing:
fifteen years later (Oxford University Press, 2011).

51. Behrens, T. E. J., Hunt, L. T., Woolrich, M. W. & Rushworth, M. F. S.
Associative learning of social value. Nature 456, 245–249 (2008).

52. Nassar, M. R. et al. Age differences in learning emerge from an insufficient
representation of uncertainty in older adults. Nat Commun 7, 11609 (2016).

53. Hall, G. & Pearce, J. M. Restoring the associability of a pre-exposed CS by a
surprising event. Q. J. Exp. Psychol. Sect. B 34, 127–140 (1982).

54. Gibbon, J., Farrell, L., Locurto, C. M., Duncan, H. J. & Terrace, H. S. Partial
reinforcement in autoshaping with pigeons. Anim. Learn. Behav. 8, 45–59
(1980).

55. Rescorla, R. A. Within-subject partial reinforcement extinction effect in
autoshaping. Q. J. Exp. Psychol. B: Comp. Physiological Psychol. 52B, 75–87
(1999).

56. Haselgrove, M., Aydin, A. & Pearce, J. M. A partial reinforcement extinction
effect despite equal rates of reinforcement during Pavlovian conditioning. J.
Exp. Psychol. Anim. Behav. Process 30, 240–250 (2004).

57. Li, J., Schiller, D., Schoenbaum, G., Phelps, E. A. & Daw, N. D. Differential
roles of human striatum and amygdala in associative learning. Nat. Neurosci.
14, 1250–1252 (2011).

58. Gallistel, C. R. & Gibbon, J. Time, rate, and conditioning. Psychol. Rev. 107,
289–344 (2000).

59. Phelps, E. A., Lempert, K. M. & Sokol-Hessner, P. Emotion and decision
making: multiple modulatory neural circuits. Annu. Rev. Neurosci. 37,
263–287 (2014).

60. Averbeck, B. B. & Costa, V. D. Motivational neural circuits underlying
reinforcement learning. Nat. Neurosci. 20, 505–512 (2017).

61. Holland, P. C. & Gallagher, M. Amygdala circuitry in attentional and
representational processes. Trends Cogn. Sci. (Regul. Ed.) 3, 65–73 (1999).

62. Roesch, M. R., Esber, G. R., Li, J., Daw, N. D. & Schoenbaum, G. Surprise!
neural correlates of Pearce-Hall and Rescorla-Wagner Coexist within the
Brain. Eur. J. Neurosci. 35, 1190–1200 (2012).

63. Costa, V. D., Dal Monte, O., Lucas, D. R., Murray, E. A. & Averbeck, B. B.
Amygdala and Ventral Striatum Make Distinct Contributions to
Reinforcement Learning. Neuron 92, 505–517 (2016).

64. Homan, P. et al. Neural computations of threat in the aftermath of combat
trauma. Nat. Neurosci. 22, 470–476 (2019).

65. Holland, P. C. & Gallagher, M. Amygdala central nucleus lesions disrupt
increments, but not decrements, in conditioned stimulus processing. Behav.
Neurosci. 107, 246–253 (1993).

66. Holland, P. C. & Schiffino, F. L. Mini-review: prediction errors, attention and
associative learning. Neurobiol. Learn Mem. 131, 207–215 (2016).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26731-9 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6587 | https://doi.org/10.1038/s41467-021-26731-9 | www.nature.com/naturecommunications 15

www.nature.com/naturecommunications
www.nature.com/naturecommunications


67. Hampton, A. N., Adolphs, R., Tyszka, M. J. & O’Doherty, J. P. Contributions
of the amygdala to reward expectancy and choice signals in human prefrontal
cortex. Neuron 55, 545–555 (2007).

68. de Berker, A. O. et al. Computations of uncertainty mediate acute stress
responses in humans. Nat. Commun. 7, 10996 (2016).

69. Khorsand, P. & Soltani, A. Optimal structure of metaplasticity for adaptive
learning. PLoS Comput. Biol. 13, e1005630 (2017).

70. Diederen, K. M. J. & Schultz, W. Scaling prediction errors to reward variability
benefits error-driven learning in humans. J. Neurophysiol. 114, 1628–1640 (2015).

71. Wilson, R. C., Nassar, M. R. & Gold, J. I. A Mixture of Delta-Rules
Approximation to Bayesian Inference in Change-Point Problems. PLOS
Computational Biol. 9, e1003150 (2013).

72. Dayan, P. & Yu, A. Uncertainty and Learning. IETE J. Res. 49, 171–181 (2003).
73. Yu, A. J. & Dayan, P. Uncertainty, neuromodulation, and attention. Neuron

46, 681–692 (2005).
74. Hartley, C. A. & Phelps, E. A. Anxiety and decision-making. Biol. Psychiatry

72, 113–118 (2012).
75. Beck, A. T. Depression: Causes and Treatment. (University of Pennsylvania

Press, 1970).
76. Duits, P. et al. Updated meta-analysis of classical fear conditioning in the

anxiety disorders. Depress Anxiety 32, 239–253 (2015).
77. Lissek, S. et al. Classical fear conditioning in the anxiety disorders: a meta-

analysis. Behav. Res Ther. 43, 1391–1424 (2005).
78. Bouton, M. E. Context and behavioral processes in extinction. Learn Mem. 11,

485–494 (2004).
79. Redish, A. D., Jensen, S., Johnson, A. & Kurth-Nelson, Z. Reconciling

reinforcement learning models with behavioral extinction and renewal:
implications for addiction, relapse, and problem gambling. Psychol. Rev. 114,
784–805 (2007).

80. Stephan, K. E., Baldeweg, T. & Friston, K. J. Synaptic plasticity and
dysconnection in schizophrenia. Biol. Psychiatry 59, 929–939 (2006).

81. Baker, S. C., Konova, A. B., Daw, N. D. & Horga, G. A distinct inferential
mechanism for delusions in schizophrenia. Brain 142, 1797–1812 (2019).

82. Horga, G. & Abi-Dargham, A. An integrative framework for perceptual
disturbances in psychosis. Nat. Rev. Neurosci. 20, 763–778 (2019).

83. Wengler, K., Goldberg, A., Chahine, G. & Horga, G. Hallucinations and
Delusions Relate to Distinct Hierarchical Alterations in Intrinsic Neural
Timescales. Biol. Psychiatry 87, S179–S180 (2020).

84. Le Pelley, M. E. The role of associative history in models of associative
learning: a selective review and a hybrid model. Q J. Exp. Psychol. B 57,
193–243 (2004).

85. Haselgrove, M., Esber, G. R., Pearce, J. M. & Jones, P. M. Two kinds of
attention in Pavlovian conditioning: evidence for a hybrid model of learning. J.
Exp. Psychol. Anim. Behav. Process 36, 456–470 (2010).

86. Pearce, J. M. & Mackintosh, N. J. Two theories of attention: a review and a
possible integration. in Attention and Associative Learning: From Brain to
Behaviour (eds. Mitchell, C. & Le Pelley, M. E.) 11–39 (Oxford University
Press, 2010).

87. Le Pelley, M. E., Mitchell, C. J., Beesley, T., George, D. N. & Wills, A. J.
Attention and associative learning in humans: An integrative review. Psychol.
Bull. 142, 1111–1140 (2016).

88. Marr, D. Vision: A Computational Investigation into the Human
Representation and Processing of Visual Information. (W. H. Freeman and
Company, 1982).

89. Aponte, E. et al. TAPAS - Translational Algorithms for Psychiatry-Advancing
Science. Front. Psychiatry. https://doi.org/10.3389/fpsyt.2021.680811 (2020).

90. Gittins, J. C. Bandit Processes and Dynamic Allocation Indices. J. R. Stat. Soc.
Ser. B (Methodol.) 41, 148–177 (1979).

91. Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J.
Cortical substrates for exploratory decisions in humans. Nature 441, 876–879
(2006).

92. Wilson, R. C., Takahashi, Y. K., Schoenbaum, G. & Niv, Y. Orbitofrontal
cortex as a cognitive map of task space. Neuron 81, 267–279 (2014).

93. West, M. On Scale Mixtures of Normal Distributions. Biometrika 74, 646–648
(1987).

94. Gamerman, D., dos Santos, T. R. & Franco, G. C. A Non-Gaussian Family of
State-Space Models with Exact Marginal Likelihood. J. Time Ser. Anal. 34,
625–645 (2013).

95. Piray, P. & Daw, N. D. A model for learning based on the joint estimation of
stochasticity and volatility. Zenodo, https://doi.org/10.5281/zenodo.5526668
(2021).

Acknowledgements
We thank Sam Zorowitz, Peter Dayan, Yoel Sanchez Araujo, and Guillermo Horga for
helpful discussions. This work was supported by grants IIS-1822571 from the National
Science Foundation, part of the CRNCS program, and 61454 from the John Templeton
Foundation.

Author contributions
P.P. and N.D.D. designed the study and wrote the manuscript. P.P. performed analyses.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-26731-9.

Correspondence and requests for materials should be addressed to Payam Piray.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26731-9

16 NATURE COMMUNICATIONS |         (2021) 12:6587 | https://doi.org/10.1038/s41467-021-26731-9 | www.nature.com/naturecommunications

https://doi.org/10.3389/fpsyt.2021.680811
https://doi.org/10.5281/zenodo.5526668
https://doi.org/10.1038/s41467-021-26731-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	A model for learning based on the joint estimation of stochasticity and volatility
	Results
	Model
	Learning under volatility and stochasticity
	Interactions between volatility and stochasticity
	Stochasticity vs. volatility in Pavlovian learning
	Anxiety and inference about stochasticity vs. volatility
	Amygdala damage and inference about volatility vs. stochasticity

	Discussion
	Methods
	Description of the model
	Simulation details

	Reporting Summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




