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Abstract

There is much evidence that humans and other animals utilize a combination of
model-based and model-free RL methods. Although it has been proposed that
these systems may dominate according to their relative statistical efficiency in
different circumstances, there is little specific evidence — especially in humans
— as to the details of this trade-off. Accordingly, we examine the relative perfor-
mance of different RL approaches under situations in which the statistics of reward
are differentially noisy and volatile. Using theory and simulation, we show that
model-free TD learning is relatively most disadvantaged in cases of high volatility
and low noise. We present data from a decision-making experiment manipulating
these parameters, showing that humans shift learning strategies in accord with
these predictions. The statistical circumstances favoring model-based RL are also
those that promote a high learning rate, which helps explain why, in psychology,
the distinction between these strategies is traditionally conceived in terms of rule-
based vs. incremental learning.

1 Introduction

There are many suggestions that humans and other animals employ multiple approaches to learned
decision making [1]. Precisely delineating these approaches is key to understanding human deci-
sion systems, especially since many problems of behavioral control such as addiction have been at-
tributed to partial failures of one component [2]. In particular, understanding the trade-offs between
approaches in order to bring them under experimental control is critical for isolating their unique
contributions and ultimately correcting maladaptive behavior. Psychologists primarily distinguish
between declarative rule learning and more incremental learning of stimulus-response (S–R) habits
across a broad range of tasks [3, 4]. They have shown that large problem spaces, probabilistic feed-
back (as in the weather prediction task), and difficult to verbalize rules (as in information integration
tasks from category learning) all seem to promote the use of a habit learning system [5, 6, 7, 8, 9].
The alternative strategies, which these same manipulations disfavor, are often described as imput-
ing (inherently deterministic) ‘rules’ or ‘maps’, and are potentially supported by dissociable neural
systems also involved in memory for one-shot episodes [10].

Neuroscientists studying rats have focused on more specific tasks that test whether animals are sen-
sitive to changes in the outcome contingency or value of actions. For instance, under different task
circumstances or following different brain lesions, rats are more or less willing to continue working
for a devalued food reward [11]. In terms of reinforcement learning (RL) theories, such evidence
has been proposed to reflect a distinction between parallel systems for model-based vs. model-free
RL [12, 13]: a world model permits updating a policy following a change in food value, while
model-free methods preclude this.
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Intuitively, S–R habits correspond well to the policies learned by TD methods such as actor/critic
[14, 15], and rule-based cognitive planning strategies seem to mirror model-based algorithms. How-
ever, the implication that this distinction fundamentally concerns the use or non-use of a world model
in representation and algorithm seems somewhat at odds with the conception in psychology. Specif-
ically, neither the gradation of update (i.e., incremental vs. abrupt) nor the nature of representation
(i.e., verbalizable rules) posited in the declarative system seem obviously related to the model-use
distinction. Although there have been some suggestions about how episodic memory may support
TD learning [16], a world model as conceived in RL is typically inherently probabilistic, so as to
support computing expected action values in stochastic environments, and thus must be learned by
incrementally composing multiple experiences. It has also been suggested that episodic memory
supports yet a third decision strategy distinct from both model-based and model-free [17], although
there is no experimental evidence for such a triple dissociation or in particular for a separation be-
tween the putative episodic and model-based controllers.

Here we suggest that an explanation for this mismatch may follow from the circumstances under
which each RL approach dominates. It has previously been proposed that model-free and model-
based reasoning should be traded off according to their relative statistical efficiency (proxied by
uncertainty) in different circumstances [13]. In fact, what ultimately matters to a decision-maker is
relative advantage in terms of reward [18]. Focusing specifically on task statistics, we extend the
uncertainty framework to investigate under what circumstances the performance of a model-based
system excels sufficiently to make it worthwhile.

When the environment is completely static, TD is well known to converge to the optimal policy
almost as quickly as model-based approaches [19], and so environmental change must be key to
understanding its computational disadvantages. Primarily, model-free Monte Carlo (MC) methods
such as TD are unable to propagate learned information around the state space efficiently, and in
particular to generalize to states not observed in the current trajectory. This is not the only way in
which MC methods learn slowly, however: they must also take samples of outcomes and average
over them. This process introduces additional noise to the sampling process which must be averaged
over, as observational deviations resulting from the learner’s own choice variability or transition
stochasticity in the environment are confounded with variability in immediate rewards. In effect, this
averaging imposes an upper bound on the learning rate needed to achieve reasonable performance,
and, correspondingly, on how well it can keep up with task volatility.

Conversely, the key benefit of model-based reasoning lies in its ability to react quickly to change,
applying single-trial experience flexibly in order to construct values. We provide a more formal
argument of this observation in MDPs with dynamic rewards and static transitions, and find that
the environments in which TD is most impaired are those with frequent changes and little noise.
This suggests a strategy by which these two approaches should optimally trade-off, which we test
empirically using a decision task in humans while manipulating reward statistics. The high-volatility
environments in which model-based learning dominates are also those in which a learning rate near
one optimally applies. This may explain why a model-based system is associated with or perhaps
specialized for rapid, declarative rule learning.

2 Theory

Model-free and model-based methods differ in their strategies for estimating action values from
samples. One key disadvantage of Monte Carlo sampling of long-run values in an MDP, relative to
model-based RL (in which immediate rewards are sampled and aggregated according to the sampled
transition dynamics), is the need to average samples over both reward and state transition stochas-
ticity. This impairs its ability to track changes in the underlying MDP, with the disadvantage most
pronounced in situations of high volatility and low noise.

Below, we develop the intuition for this disadvantage by applying Kalman filter analysis [20] to
examine uncertainties in the simplest possible MDP that exhibits the issue. Specifically, consider a
state with two actions, each associated with a pair of terminal states. Each action leads to one of the
two states with equal probability, and each of the four terminal states is associated with a reward. The
rewards are stochastic and diffusing, according to a Gaussian process, and the transitions are fixed.
We consider the uncertainty and reward achievable as a function of the volatility and observation
noise. We have here made some simplifications in order to make the intuition as clear as possible:
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that each trajectory has only a single state transition and reward; that in the steady state the static
transition matrix has been fully learned; and that all analyzed distributions are Gaussian. We test
some of these assumptions empirically in section 3 by showing that the same pattern holds in more
complex tasks.

2.1 Model

In general Xt(i) or just X will refer to an actual sample of the ith variable (e.g., reward or value) at
time t, X̄ refers to the (latent) true mean of X , and X̂ refers to estimates of X̄ made by the learning
process. Given i.i.d. Gaussian diffusion processes on each value, Xt(i), described by:

σ2 =
〈
(X̄t+1(i)− X̄t(i))

2
〉

diffusion or volatility, (1)

ε2 =
〈
(Xt(i)− X̄t(i))

2
〉

and observation noise, (2)

the optimal learning rate that achieves the minimal uncertainty (from the Kalman gain) is:

α∗ =
σ
√
σ2 + 4ε2 − σ2

2ε2
(3)

Note that this function is monotonically increasing with σ and decreasing with ε (and in particular,
α∗ → 1 as ε → 0). When using this learning rate the resulting asymptotic uncertainty (variance of
estimates) will be:

UX(α∗) =
〈

(X̂ − X̄)2
〉

=
σ
√
σ2 + 4ε2 + σ2

2
(4)

This, as expected, increases monotonically in both parameters.

What often matters, however, is identifying the highest of multiple values, e.g., X̄(i) and X̄(j). If
X̄(i) − X̄(j) = d, the marginal value of the choice will be ±d. Given some uncertainty, U , the
probability of this choice, i.e., X̂(i) > X̂(j), compared to chance is:

c(U) = 2

∫ ∞
−∞

φ

(
x− d√

U

)
Φ(x)dx− 1 (5)

(Where φ and Φ are the density and distribution functions for the standard normal.) The resulting
value of the choice is thus c(U)d. While c is flat at 1 as U → 0, it shrinks as Θ(1/

√
U) (since

φ′(0) = 0). Our goal is now to determine c(UQ) for each algorithm.

2.2 Value estimation

Consider the value of one of the actions in our two-action MDP which leads to state A or B. Here,
the true expected value of the choice is Q̄ = R̄(A)+R̄(B)

2 . If each reward is changing according to
the Gaussian diffusion process described above, this will induce a change process on Q. A model-
based system that has fully learned the transition dynamics will be able to estimate R̂(A) and R̂(B)

separately, and thus take the expectation to produce Q̂. By assuming each reward is sampled equally
often and adopting the appropriate effective σ, the resulting uncertainty of this expectation, UMB,
follows Equation 4, with X = Q.

On the other hand, a Monte Carlo system that must take samples over transitions will observe Q =

R(A) or Q = R(B). If
∣∣R̄(A)− R̄(B)

∣∣ = d, it will observe an additional variance of d2

4 from the
mixture of the two reward distributions. Treating this noise as Gaussian and adding it to the noise of
the rewards, this decreases the optimal learning rate and increases the minimal uncertainty to:

UMC =
〈

(Q̂− Q̄)2
〉

=
σ
√
σ2 + d2 + 4ε2 + σ2

2
(6)

Other forms of stochasticity, whether from changing policies or more complex MDPs, will similarly
inflate the effective noise term, albeit with a different form.

Clearly UMC ≥ UMB. However, the more relevant measure is how these uncertainties translate into
values [18]. For this we want to compare their relative success rates, c(U) from Equation 5, which
scale directly to outcome. The relative advantage of the model-based (MB) approach, c(UMB) −
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Figure 1: Difference in theoretical success rate between MB and MC

c(UMC), is plotted in Figure 1 for an arbitrary reward deviation d = 1. As expected, as either
the volatility or noise parameter gets very large and the task gets harder, the uncertainty increases,
performance approaches chance, and the relative advantage vanishes. However, for reasonable sizes
of σ, the model-based advantage first increases to a peak as σ increases, which is largest for small
values of ε. No comparable increasing advantage is seen for model-based valuation for increasing
ε.

While these techniques may also be extended more generally to other MDPs (see Supplemental
Materials), the core observation presented above should illuminate the remainder of our discussion.

3 Simulation

To examine our qualitative predictions in a more realistic setting, we simulated randomly generated
MDPs with 8 states, 2 actions, and transition and reward functions following the assumptions given
in the previous section, with the addition of a contractive factor on rewards, ϕ, to prevent divergence:

R̄0(s, a) ∼ N (0, 1) stationary distribution

ϕ =
√

1− σ2 var R̄ = 1

R̄t(s, a) = ϕR̄t−1(s, a) + wt(s, a) wt(s, a) ∼ N (0, σ2)

Rt(s, a) = R̄t(s, a) + vt vt ∼ N (0, ε2)

Each transition had (at most) three possible outcome, with probabilities 0.6, 0.3, and 0.1, assigned
randomly with replacement from the 8 states. In order to avoid bias related to the exploration policy,
each learning algorithm observed the same set of 1000 choices (chosen according to the objectively
optimal policy, plus softmax decision noise), and the greedy policy resulting from its learned values
was assessed according to the true R̄ values at that point. The entire process was repeated 5000
times for each different setting of σ and ε parameters.

We compared the performance of a model-based approach using value iteration with a fixed, optimal
reward learning rate and transition counting (MB) against various model-free algorithms including
Q(0), SARSA(0), and SARSA(1) (with fixed optimal learning rates), all using a discount factor of
γ = 0.9. As expected, all learners showed a decrement in reward as σ increased. Figure 2 shows the
difference in mean reward obtained between MB and SARSA(0). Q(0) and SARSA(1) showed the
same pattern of results.

The correspondence between the theoretical results and the simulation confirms that the theoretical
findings do hold more generally, and we claim that the same underlying effects drive these results.
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Figure 2: Difference in reward obtained between MB and SARSA(0)

4 Human behavior

Human subjects performed a decision task that represented an MDP with 4 states and 2 actions.
The rewards followed the same contractive Gaussian diffusion process used in section 3, with σ
and ε parameters varied across subjects. We sought changes in the reliance on model-based and
model-free strategies via regressions of past events onto current choices [21]. We hypothesized that
model-based RL would be uniquely favored for large σ and small ε.

4.1 Methods

4.1.1 Participants

55 individuals from the undergraduate subject pool and the surrounding community participated in
the experiment. Twelve received monetary compensation based on performance, and the remainder
received credit fulfilling course requirements. All participants gave informed consent and the study
was approved by the human subjects ethics board of the institute.

4.1.2 Task

Subjects viewed a graphical representation of a rotating disc with four pairs of colored squares
equally spaced around the edge. Each pair of squares constituted a state (s ∈ S = {N,E,S,W})
and had a unique distinguishable color and icon indicating direction (an arrow of some type). Each
of the two squares in a state represented an action (a ∈ A = {L,R}), and had a left- or right-directed
icon. During the task, only the top quadrant of the disc was visible at any time, and at decision time
subjects could select the left or right action by pressing the left or right arrow button on a keyboard.
Immediately after selecting an action, between zero and five coins (including a pie-fraction of a
coin) appeared under the selected action square, representing a reward (R ∈ [0, 5]). After 600 ms,
the disc began rotating and the reward became slowly obscured over the next 1150 ms until a new
pair of squares was at the top of the disc and the next decision could be entered, as seen in Figure 3.

The state dynamics were determined by a fixed transition function (T : S × A → A) such that
each action was most likely to lead to the next adjacent state along the edge of the disc (e.g.,
T (N, L) = W). To this, additional uniform outcome noise was added with probability 0.4. The re-
ward distribution followed the same Gaussian process given in the previous sections, except shifted
and trimmed. The parameters σ and ε were varied by condition.

T : S ×A× S → [0, 1] T (s, a, s′) =

{
0.7 if s′ = T (s, a)

0.1 otherwise

Rt : S ×A → [0, 5] Rt(s, a) = min(max(R̄t(s, a) + vt + 2.5, 0), 5)
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Figure 3: Abstract task layout and screen shot shortly after a choice is made (yellow box indicates
visible display): Each state has two actions, right (red) and left (blue), which lead to the indicated
state with 70% probability, and otherwise to another state at random. Each action also results in a
reward of 0–5 coins.

Each subject was first trained on the transition and reward dynamics of the task, including 16 ob-
servations of reward samples where the latent value R̄ was shown so as to get a feeling for both
the change and noise processes. They then performed 500 choice trials in a single condition. Each
subject was randomly assigned to one of 12 conditions, made up of σ ∈ {0.03, 0.0462, 0.0635,
0.0882, 0.1225, 0.1452} partially crossed with ε ∈ {0, 0.126, 0.158, 0.316, 0.474, 0.506}.

4.1.3 Analysis

Because they use different sampling strategies to estimate action values, TD and model-based RL
differ in their predictions of how experience with states and rewards should affect subsequent
choices. Here, we use a regression analysis to measure the extent to which choices at a state are
influenced by recent previous events characteristic of either approach [21]. This approach has
the advantage of making only very coarse assumptions about the learning process, as opposed to
likelihood-based model-fits which may be biased by the specific learning equations assumed. By
confining our analyses to the most recent samples we remain agnostic about free parameters with
non-linear effects such as learning rates and discount factors, but rather measure the relative strength
of reliance on either sort of evidence directly using a general linear model. Regardless of the actual
learning process, the most recent sample should have the strongest effect [22]. Accordingly, below
we define explanatory variables that capture the most recently experienced reward sample that would
be relevant to a choice under either Q(1) TD or model-based planning.

The data for each subject were considered to be the sequence of states visited, St, actions taken,
At, and rewards received, Rt. We define additional vector time sequences a, j, r, q, and p, each
indexed by time and state and referred to generally as xt(s), with all x0 initially undefined. For each
observation we perform the following updates:

wt = [At = at(St)] ‘stay’ vs. ‘switch’ (boolean indicator)
at+1(St) = At last action
jt+1(St) = [St+1 6= T (St, At)] ‘jump’ unexpected transition
rt+1(St) = Rt immediate reward

qt+1(St−1) = Rt subsequent reward
pt+1(St) = rt+1(T (St, At)) expected reward
xt+1(s) = xt(s)∀s 6= St for x = a, j, r, q, and p
dt+1 = |Rt − rt| change

For convenience, we use xt to mean xt(St). Note that these vectors are step functions, such that
each value is updated (xt 6= xt−1) only when a relevant observation is made. They thus always
represent the most recent relevant sample.
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Given the task dynamics, we can consider how a TD-based Q-learning system and a model-based
planning system would compute values. Both take into account the last sample of the immediate
reward, rt. They differ in how they account for the reward from the “next state”: either, for Q(1), as
qt (the last reward received from the state visited after the last visit to St) or, for model-based RL, as
pt (the last sample of the reward at the true successor state). That is, while TD(1) will incorporate the
reward observed following Rt, regardless of the state, a model-based system will instead consider
the expected successor state [21]. While the latter two reward observations will be the same in some
cases, they can disagree either after a jump trial (j, where the model-based and sample successor
states differ), or when the successor state has more recently been visited from a different predecessor
state (providing a reward sample known to model-based but not to TD).

Given this, we can separate the effects of model-based and model-free learning by defining addi-
tional explanatory variables:

r′t =

{
qt if qt = pt
0 otherwise (after mean correction)

common

q∗t = qt − r′t unique

p∗t = pt − r′t
While r′ represents the cases where the two systems use the same reward observation, q∗ and p∗ are
the residual rewards unique to each learning system.

We applied a mixed-effects logistic regression model using glmer [23] to predict ‘stay’ (wt = 0)
trials. Any regressors of interest were mean-corrected before being entered into the design. Any
trial in which one of the variables was undefined (e.g., the first visit to a state) was omitted. Also,
we required that subjects have at least 50 (10%) switch trials to be included.

First we examined the main effects with a regression including fixed effects of interest for r, r′, q∗,
p∗, and random effects of no interest for r, q, and p (without covariances). Next, we ran a regression
adding all the interactions between the condition variables (σ, ε) and the specific reward effects (q∗,
p∗). Finally, we additionally included the interaction between change in reward on the previous trial
(d) and the specific reward effects.

4.2 Results

A total of 5 subjects failed to meet the inclusion criterion of 50 switch trials (in each case because
they pressed the same button on almost all trials), leaving 500 decision trials from each of 50 sub-
jects. Subjects were observed to switch on 143± 55 trials (mean ± 1 SD). As designed, there were
an average of 151±17 ‘jump’ trials per subject. The number of trials in which TD and model-based
disagreed as to the most recent relevant sample of the next-state reward (r′ = 0) was 243± 26, and
for 181±19 of these, it was due to a more recent visit to the next state. The results of the regressions
are shown in Table 1.

Beyond the trivial effects of perseveration and reward, subjects showed a substantial amount of TD-
type learning (q∗ > 0), and a smaller but significant amount of model-based lookahead (p∗ > 0).
The interactions of these effects by condition demonstrated that subjects in higher drift conditions
showed significantly less TD (σ×q∗ < 0) but unreduced model-based learning (σ×p∗), possibly due
to the relative disadvantage of TD with increased drift. Similarly, higher noise conditions showed
decreased model-based effects (ε × p∗ < 0) and no change in TD, which may be driven by the
decreasing advantage of MB. Note that, since the (nonsignificant) trend on the unaffected variable is
positive, it is unlikely that either interaction effect results from a nonspecific change in performance
or the “noisiness” of choices. Both of these effects are consistent with the pattern of differential
reliance predicted by the theoretical analysis. The effect of change on the previous trial (d) provides
one hint as to how subjects may adjust their reliance on either system dynamically: higher changes
are indicative of noisier environments which are thus expected to promote TD learning.

5 Discussion

We have shown that humans systematically adjust their reliance on learning approaches according
to the statistics of the task, in a way qualitatively consistent with the theoretical considerations
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Table 1: Behavioral effects from nested regressions (each including preceding groups)

variable effects z p description
constant mixed 11.61 ⇑ 10−29 perseveration

r mixed 14.99 ⇑ 10−49 last immediate r
r′ mixed 5.55 ⇑ 10−7 common next r
q∗ mixed 6.40 ⇑ 10−9 TD(1) next-step r
p∗ mixed 2.51 ↑ 0.012 model predicted r

σ × q∗ fixed -4.07 ⇓ 0.00005 TD with change
σ × p∗ fixed 0.67 0.50 model with change
ε× q∗ fixed 0.99 0.32 TD with noise
ε× p∗ fixed -2.11 ↓ 0.035 model with noise
d× q∗ mixed 1.63 0.10 TD after change
d× p∗ mixed -3.06 ↓ 0.0022 model after change

presented. Model-based methods, while always superior to TD in terms of performance, have the
largest advantage in the presence of change paired with low environmental noise, because the Monte
Carlo sampling strategy of TD interferes with tracking fast change. If the additional costs of model-
based computation are fixed, this would motivate employing the system only in the regime where
its advantage was most pronounced [18]. Consistent with this, human behavior exhibited relatively
larger use of model-based RL with increased reward volatility and lesser use of it with increased
observation noise.

Of course, increasing either the volatility or noise parameters makes the task harder, and a decline in
the marker for either sort of learning, as we observed, implies an overall decrement in performance.
However, as the decrement was specific to one or the other explanatory variable, this may also be
interpreted as a relative increase in use of the unaffected strategy. It is also worth noting that the
linearized regression analysis examines only the effect of the most recent rewards, and the weighting
of those relative to earlier samples will depend on the learning rate [22]. Thus a decrease in learning
rate for either system may be confounded with a decrease in the strength of its effect in our analysis.
However, while the optimal learning rates are also predicted to differ between conditions, these
predictions are common to both systems, and it seems unlikely that each would differentially adjust
its learning rate in response to a different manipulation.

The characteristics associated with these learning systems in psychology can be seen as conse-
quences of the relative strengths of model-based and model-free learning. If the model-based system
is most useful in conditions of low noise and high volatility, then the appropriate learning rates for
such a system are large: there is less need and utility to take multiple samples for the purpose of
averaging. In this case of a high learning rate, model-based learning is closely aligned with single-
shot episodic encoding, possibly subsuming such a system [17], as well as with learning categorical,
verbalizable rules in the psychological sense, rather than averages. This may also explain the selec-
tive engagement of putatively model-based brain regions such as the dorsolateral prefrontal cortex
in tasks with less stochastic outcomes [24]. Finally, this relates indirectly to the well known phe-
nomenon whereby dominance shifts from the model-based to the model-free controller with over-
training: a model-based system dominates early not simply because it learns faster, but because it is
capable of better learning with fewer trials.

The specific advantage of high learning rates may well motivate the brain to use a restricted model-
based system, such as one with learning rate fixed to 1. Indeed (see Supplemental materials), this
restriction has little detriment on the system’s advantage over TD in the circumstances where it
would be expected to be used, but causes drastic performance problems as observation noise in-
creases, since averaging over samples is then required. Such a limitation might have useful compu-
tational advantages. Transition matrices learned this way, for instance, will be sparse: just records
of trajectories. Such matrices admit both compressed representations and more efficient planning al-
gorithms (e.g., tree search) as, in the fully deterministic case, only one trajectory must be examined.
Conversely, evaluations in a model based system are extremely costly when transitions are highly
stochastic, since averages must be computed over exponentially many paths, while they add no cost
to model-free learning.
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