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HIPPOCAMPAL REPLAY

Spoiled for choice, pressed for time
A new theory derives the sequential nature of hippocampal replay from first principles and, moreover,  
predicts the specific patterns of replay that are actually observed in multiple different experiments.

John Widloski and David J. Foster

Hippocampal place cells, the subject of 
the 2014 Nobel Prize in Physiology, 
live a secret life. Originally thought to 

fire action potentials dutifully only within 
their place fields, they revel in periods 
of promiscuous propagation. When a rat 
pauses during exploration of a maze, its 
place cells, initially paused in their labor 
as faithful reporters of the animal's current 
location, suddenly come alive in bursts of 
activity, which zip sequentially from cell 
to cell up to 20 times faster than normal. 
One moment, a sequence depicts a series 
of places the animal is about to visit, as if 
rehearsing the journey. The next moment, 
a sequence travels just as swiftly backwards 
through the animal's past, as if ruminating 
over the choices it has made. These activity 
patterns in the rat's brain are commonly 
referred to as awake replay, and in this issue 
of Nature Neuroscience, Mattar and Daw 
present the first theoretical account of why 
replay patterns take the forms that they do1.

For behavioral neurophysiologists, 
stumbling onto the phenomenology of 
awake replay has been like falling into a box 
of chocolates. After first discovering that 
awake replay goes backwards2, and then 
that it can go forward as well as backwards3, 
it was discovered that it can go both ways 
at a choice-point in a maze4,5, and it can 
also join together different experiences to 
find shortcuts4. Awake replay contributes 
to decisions6,7 and can depict the precise 
trajectory that the animal is about to take 
all the way to a remembered goal location8. 
It is also exquisitely sensitive to the learned 
shape of the maze the rat is running on9, and 
when a rat discovers unexpected changes in 
reward, there are corresponding changes in 
the numbers of awake replays that  
get produced10,11.

Can you have too much of a good thing? 
This assortment of results has exposed 
the absence of a theoretical framework to 
make sense of all the data. For example, 
the distinction between forward and 
backwards replay has been confusing, with 
some researchers ascribing them different 
roles and others preferring to ignore 
backwards replay altogether. Now, in work 

of extraordinary elegance, Mattar and 
Daw provide exactly the sort of theoretical 
framework that the field has been looking 
for. There are two major accomplishments. 
First, they derive replay from first 
principles, giving what is sometimes called 
a ‘normative’ account. That is, they start 
from the Darwinian injunction–eat and 
don't get eaten–and from there derive replay 
sequences as the optimal order in which 
to sample and learn from place memories 
to maximize future rewards and minimize 
future costs. Second, they demonstrate that 
their framework can account for almost 
all of the results discovered about replay in 
the last decade. Taken altogether, it is an 
astonishing achievement.

So how do they do it? They begin by 
defining the fundamental unit of experience 
as a movement between two neighboring 
locations, given an action choice at the 
first location and with a resulting outcome. 
Animals use such experiences to learn to 
improve the action choices they make, to 
increase the amounts of reward they will 
obtain in an environment. By using an 
algorithm called Q learning12, they model 
the outcomes not just as immediate rewards 
or costs, but also including the long-term 
expectations about what returns will accrue 
in the future. Every time a unit of experience 
is used by the Q learning algorithm to 
make an incremental improvement in 
action choices, this is called a ‘backup’. 
During behavior, the backups can be made 
from the actual moves the animal makes 
through the world. But backups can also 
be made offline, that is, when the animal is 
not actively experiencing the movements 
but rather replaying them while being 
paused somewhere else. Mattar and Daw 
are agnostic about whether offline backups 
are specific previous experiences recalled 
from memory or simulated experiences 
using an internal model of the world. The 
key question they ask is: given the short 
period of time that an animal pauses in a 
maze and the very large number of possible 
backups from all over the maze, which 
backups should be performed and in what 
order? Mattar and Daw construct a new 

quantity, the expected value of a backup 
(EVB), which is the increase in returns that a 
backup yields. Their premise is that backups 
with the highest EVBs should be made first. 
They then show that EVB factors into two 
components: gain and need. Gain depends 
on how much the backup changes actions in 
the backup location. Need is the probability 
that the backup location will ever actually be 
visited. Both factors are important: a backup 
that doesn't change actions is not worth 
doing, but neither is a backup relating to a 
situation that will never occur. Need spreads 
out in front of the animal (Fig. 1a), the 
influence of gain spreads out behind (Fig. 
1b), and they lead to the performance of 
backups in sequences moving either ahead 
of or behind the animal, respectively.

Armed with this deceptively simple 
framework, Mattar and Daw take a 
victory march through a decade of replay 
results, demonstrating one by one that the 
particular pattern of backups in the optimal 
order matches the empirical data. Their 
approach also resolves several apparent 
inconsistencies in the empirical record. 
For example, when rats happen upon an 
unexpected reduction in reward, there is 
a decrease in the number of replays11 (Fig. 
1c). From the classic perspective on replay 
as a memory process, this is very surprising: 
why should an unexpected negative event 
be less memorable than an unexpected 
positive event? However, Mattar and Daw 
reach into the experimental details to find 
that in this experiment, the actions required 
of the animal did not change, even when the 
reward was removed, because the rat was 
required to keep visiting the unrewarded 
location in order to obtain chocolate later, 
at the opposite end of the track. Under 
these conditions, their model produces the 
reduction in replays as observed, but also 
makes a prediction: if the rat is allowed to 
change its actions in response to a negative 
event so as to avoid it, then there should be 
a large increase in gain associated with the 
new actions and therefore an increase in the 
numbers of replays. An experiment with this 
logic was recently performed, with exactly 
the predicted result13 (Fig. 1d).
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This pioneering study raises several 
questions for both theoretical and 
experimental future work. First, while 
the need term is easy to compute as 
learned predictions about future location 
occupancies, the gain term can only be 
computed by actually performing all the 
backups and picking the one that is best.  
So the utility of the model lies in identifying 
the optimality of the replay sequences 
that are observed experimentally; the 
actual implementation could be based 
on different mechanisms entirely. Many 
models have considered how to generate 
replay sequences14. The interesting question 
is whether these models, or others to 
be developed, can provide principled 
approximations to the optimal scheduling 
of Mattar and Daw that would, for example, 
generalize to as-yet-untested situations. 
Likewise, it remains to be seen whether 
replay itself will continue to behave in the 
way predicted by Mattar and Daw, since the 
phenomenon has so far been characterized 
only in a few simple tasks and in typically 
small experimental spaces. Second, the 
rollout of forward replays is a little different 
in the model than that of backwards replays. 

For example, forward replays appear to 
occur only after predictions of future returns 
have converged on near final values. This 
matches the experimental data quite well, 
but it does mean that from the perspective 
of learning, forward replay remains 
enigmatic. Third, long sequences, which the 
authors call “depth-first” backup sequences, 
as opposed to shorter “breadth-first” 
sequences, may not be quite as robust in the 
model as experimentally observed. They 
depend critically on establishing well-worn 
pathways of need, which in more open areas 
may be harder to establish, due to the greater 
number of possible trajectories.

Replay is a growing area of experimental 
study and there are still lots of chocolates in 
the box. Now we have something else: a key 
card to tell us which chocolates are which. 
Further experiments will tell whether the 
key card generalizes to new chocolates yet to 
be discovered. In the meantime, Mattar and 
Daw have provided an important conceptual 
link between replay and offline learning. 
These chocolates are actually good for you!❐
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Fig. 1 | Model components; and predicted responses to a negative outcome in two contrasting scenarios. a, Blue wave depicts need, which peaks just in front 
of the rat and falls off along predicted future locations. b, Orange wave depicts the influence of gain, which peaks immediately behind the animal and moves 
sequentially with successive backups back along the past trajectory. c, When a rat encounters an unexpectedly negative outcome (shown by the hazard sign), 
but needs to keep its behavior the same (green path), the result is fewer replays, as shown by the empty thought bubble. This matches the experimental 
results of Ambrose et al.11. d, By contrast, when a rat encounters an unexpectedly negative outcome, but is able to change its actions to stop moving forward 
(red path) and instead turn around earlier (green path), the result is an increase in replays. This matches the experimental results of Wu et al.13.
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