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ABSTRACT

Anxiety disorders are characterized by a range of aberrations in the processing of and
response to threat, but there is little clarity what core pathogenesis might underlie these
symptoms. Here we propose that a particular set of unrealistically pessimistic
assumptions can distort an agent’s behavior and underlie a host of seemingly disparate
anxiety symptoms. We formalize this hypothesis in a decision theoretic analysis of
maladaptive avoidance and a reinforcement learning model, which shows how a localized
bias in beliefs can formally explain a range of phenomena related to anxiety. The core
observation, implicit in standard decision theoretic accounts of sequential evaluation, is
that the potential for avoidance should be protective: if danger can be avoided later, it
poses less threat now. We show how a violation of this assumption — via a pessimistic,
false belief that later avoidance will be unsuccessful — leads to a characteristic, excessive
propagation of fear and avoidance to situations far antecedent of threat. This single
deviation can explain a range of features of anxious behavior, including exaggerated threat
appraisals, fear generalization, and persistent avoidance. Simulations of the model
reproduce laboratory demonstrations of abnormal decision making in anxiety, including
in situations of approach-avoid conflict and planning to avoid losses. The model also ties
together a number of other seemingly disjoint phenomena in anxious disorders. For
instance, learning under the pessimistic bias captures a hypothesis about the role of
anxiety in the later development of depression. The bias itself offers a new formalization
of classic insights from the psychiatric literature about the central role of maladaptive
beliefs about control and self-efficacy in anxiety. This perspective also extends previous
computational accounts of beliefs about control in mood disorders, which neglected the
sequential aspects of choice.

INTRODUCTION

Though anxiety disorders differ in their particular symptomology, and in the content and
situations that elicit symptoms, they all are similarly characterized by aberrations in the
processing of and response to threat (American Psychiatric Association, 2013). In particu-
lar, at least three symptoms manifest across many of the anxiety disorders. First, anxiety is
associated with exaggerated threat appraisal, or a bias towards evaluating threat as dispro-
portionately greater in likelihood and severity than is warranted (Clark & Beck, 2011). Sec-
ond, anxiety is also associated with fear generalization, wherein the primary threat becomes
associated with increasingly distal locations, events, and thoughts (Dymond, Dunsmoor,
Vervliet, Roche, & Hermans, 2015). Finally, anxiety is associated with persistent avoidance
behavior, which often occurs well in advance of the materialization of actual threat (Ar-
naudova, Kindt, Fanselow, & Beckers, 2017). (Here we distinguish between avoidance and

a n o p e n a c c e s s j o u r n a l

Citation: Zorowitz, S., Momennejad, I.,
Daw, N. D. (2019). Anxiety, avoidance,
and sequential evaluation. XXXXXX

DOI:
http://dx.doi.org/10.1098/rsif.2013.0969

Supporting Information:
http://http://dx.doi.org/XXXXXX

Received: 4 August 2019
Accepted: 29 December 2019
Published: XXXXXX

Competing Interests: The
authors have declared that no
competing interests exist.

Corresponding Author:
Samuel Zorowitz
szorowi1@gmail.com

Copyright: © 2019
Massachusetts Institute of Technology
Published under a Creative Commons
Attribution 4.0 International
(CC BY 4.0) license

The MIT Press

http://dx.doi.org/10.1098/rsif.2013.0969
http://http://dx.doi.org/XXXXXX
mailto:szorowi1@gmail.com


Anxiety, avoidance, and sequential evaluation Author Names

escape, where the former describes actions taken to prevent the onset of threats whereas
the latter describes defensive responses to proximal threat.) Excessive avoidance behav-
iors are an especially harmful aspect of anxiety disorders, both because they interfere with
daily life and because they indirectly maintain anxiety by preventing learning from the
non-occurrence of perceived threats. Though laboratory studies of decision making and
learning in anxious populations have corroborated these clinical observations (Aylward et
al., 2019; Harlé, Guo, Zhang, Paulus, & Angela, 2017; Norbury, Robbins, & Seymour, 2018),
none offer an explanation as to the root of these symptoms.

These symptoms are particularly puzzling from a decision theoretic perspective (Huys,
Daw, & Dayan, 2015). In many circumstances, distant threat should not impinge upon de-
cision making in the present. Indeed, we argue that fear and avoidance of situations far in
the future violates the basic logic of evaluation over sequential trajectories of action. This is
because avoidance is by nature protective: the ability to successfully to avoid danger in the
future means an agent need not also do so now. For instance, cars endanger pedestrians but
can be reliably avoided by following traffic signals; given that, staying indoors offers little
or no additional protection from accidents. This is an instance of a fundamental property
of evaluation in sequential decision making: the value of present action turns fundamen-
tally on assumptions about subsequent events, which importantly include the agent’s own
subsequent choices. Typically, it is appropriate to assume that an agent will continue to
make good (i.e. reward-maximizing/harm-minimizing) choices down the line, and that
good choices at the current stage should therefore anticipate this.

This line of reasoning hints that a fundamental aberration in anxiety disorders may re-
late to this assumption, which otherwise should preclude the spread of threat to antecedent
situations and subsequent excessive avoidance. Indeed, anxiety disorders are associated
with pessimistic beliefs about the future (Clark & Beck, 2011). Clinically and subclinically
anxious individuals judge future threat as more likely than do non-anxious individuals
(Butler & Mathews, 1983, 1987; MacLeod & Byrne, 1996). Importantly, the development
and maintenance of clinical anxiety is strongly tied to diminished perceived control (Ban-
dura & Adams, 1977; Barlow, 2002; Gallagher, Bentley, & Barlow, 2014), such that anxious
individuals are more likely to endorse the belief that they are unlikely or unable to mitigate
future threat. Indeed, lack of belief in one’s ability to successfully navigate future danger
is associated with anxiety (Davey, Jubb, & Cameron, 1996; Dugas, Freeston, & Ladouceur,
1997), and an increased belief in perceived control over threat is correlated with symp-
tom reduction across the family of anxiety disorders (Gallagher, Naragon-Gainey, & Brown,
2014).

Here, we develop this idea, that symptoms of anxiety may arise from misbeliefs about
future avoidance, into a formal model of evaluation under pessimistic assumptions about
future choices. We show that a single, localized deviation from normative evaluation can
explain a surprising range of features of anxious behavior, including exaggerated threat
appraisal, fear generalization, and persistent avoidance. This account also offers a new for-
malization of classic insights from the psychiatric literature about the central role of beliefs
about control and self-efficacy in anxiety (Bandura & Adams, 1977; Barlow, 2002). Specif-
ically, we show through simulation that a model with a misbelief about the reliability of
future self-action gives rise to a number of characteristic symptoms and laboratory results
concerning anxiety. Our perspective also extends previous computational accounts of be-
liefs about control in mood disorders (e.g., Huys & Dayan, 2009), which neglected the se-
quential aspects of choice.
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MODEL DESCRIPTION

We model anxious decision making in the context of Markov decision processes (MDPs). A
standard normative assumption is that agents attempt to optimize the expected cumulative
discounted reward:

Qπ(s, a) = r(s, a) + γ ∑
s′

p(s′ | s, a)∑
a′

π(a′ | s′)Qπ(s′, a′) (1)

For any particular state-action (s, a), this is necessarily defined relative to a policy
π(a′ | s′) specifying the assumed distribution of future choices. (It is also defined relative to
a discount rate γ, controlling the present value of future outcomes.) The return can be opti-
mized self-consistently under the assumption that the agent makes the return-maximizing
choice at each step in the future, leading to the familiar expression for the optimal values,

Q∗(s, a) = r(s, a) + γ ∑
s′

p(s′ | s, a)max
a′

Q∗(s′, a′) (2)

The “max” operator in Eq. 2 yields a fundamental asymmetry between approach and
avoidance, as illustrated in Fig. 1. It formalizes the assumption that the agent makes the
return-maximizing choice at each step. Through this operation, opportunities for reward
(which maximize the argument) propagate recursively to earlier steps, but avoidable dan-
gers do not, because the return-maximizing action is to avoid. (To the extent obtaining re-
ward or avoiding harm are only imperfectly achievable, this propagation and attenuation
at each step are graded according to success probability, but the basic asymmetry remains.)
This principle is highlighted in a toy MDP (Fig. 1): a deterministic open gridworld with
two terminal states, a rewarding state and a punishing one (Fig. 1a). The optimal state
values V∗ = maxa Q∗(s, a) (Fig. 1b) reflect a “mountain” of opportunity propagating re-
cursively from the reward. Conversely, because harm is avoidable in this environment, its
negative value is contained: all states (even those adjacent to threat) represent the positive
opportunity for reward.

Figure 1. (A) A simple deterministic gridworld with two terminal states: one rewarding (blue) and one aversive (red). (B-D) States
colored by their value under different levels of pessimism, with arrows showing an optimal trajectory. (B) For an optimistic agent (w = 1),
all states (other than the harmful state) take on positive value. (C) For a pessimistic agent (w = 0.5), negative value spreads from the
source to antecedent states. (D) With increasing pessimism (w = 0), the extent of the spread grows worse, and the return-optimizing
trajectory becomes more distorted and avoidant. (Parameters: γ = 0.95)

Computational Psychiatry 3
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Although the return-maximizing assumption self-consistently defines optimal behav-
ior, an agent need not be restricted to it (Symmonds, Bossaerts, & Dolan, 2010), and might
in principle anticipate encountering danger under different (e.g., pathological) assumptions
about the future. For example, an agent may expect to fail to take the correct protective ac-
tions in later states (i.e., to use a suboptimal π(a | s)), or may believe the world’s future
dynamics do not guarantee reliable avoidance even so (i.e., under stochastic or adversarial
transition dynamics P(s′ | s, a)). Consider an agent who has such pessimistic expectations
about dangerous events at future steps. Note that assumptions of this sort, even if incor-
rect, can serve adaptive purposes. In general, pessimistic assumptions can help to ensure
robustness and safety under uncertain or even adversarial scenarios (Garcia & Fernandez,
2015). Related work in RL shows how computing returns with pessimistic predictions can
help to quantify variability in outcomes (i.e., to learn different points in the distribution of
possible returns; Bellemare, Dabney, & Munos, 2017), which is one way to explicitly and
tunably take account of risk tolerance. Indeed, it is common in machine learning theory to
optimize outcomes under worst-case assumptions.

Here we propose unrealistically pessimistic assumptions as a root cause of many anx-
ious symptoms. Such pessimism can be encoded either in the policy, π(a | s), or transition
probabilities, P(s′ | s, a). These, respectively, correspond to misbeliefs about either one’s
own avoidance actions or the environment’s responses to them, a point we return to in
discussion. Here for concreteness we focus on distortions in the policy. In particular, we
adopt the β-pessimistic value function from Gaskett (2003), to define state-action value in
expectation over a mixture of the best and worst action:

Qw(s, a) = r(s, a) + γ ∑
s′

p(s′ | s, a)
(

w max
a′

Qw(s′, a′) + (1− w)min
a′

Qw(s′, a′)
)

(3)

The weight parameter w controls the degree of pessimism. An optimistic agent (w =

1) expects in the future to act fully in accordance with its preferences, whereas a pessimistic
agent (w = 0) expects to act contrary to its preferences. Importantly, this belief is false
under the model: that is, we assume, at each step, that the agent actually chooses by max-
imizing the values given by Equation 3. But these values are always computed under the
assumption that the agent will then not maximize at all later steps. (Another way to say
this is that we assume choices at each step are optimal, but only under the assumption that
later choices will not be.) Fig. 1c,d illustrates the the consequences of different levels of
pessimism for valuation in an example gridworld. The value of threat propagates, with
increasing distance across the state space, due to an increasing expectation that the agent
may fail to avoid threat in the future.

This simple simulation reflects a localized violation of the core decision theoretic
assumption of future return-optimizing action. Therefore, the model’s behavior already
echoes several core symptoms of anxiety disorders. Namely, the pessimistic agents in
Fig 1c,d exhibit exaggerated threat appraisals (otherwise neutral states unrealistically sig-
nal danger); generalization of fear (threat value spreads across the gridworld); and persis-
tent avoidance (early on, the agent takes paths which maintain increasing distances from
threat). Importantly, as we will elaborate below, this deviation from the usual assumptions
is supported by prominent clinical theories of anxiety.

Computational Psychiatry 4
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SIMULATIONS

In what follows, we will demonstrate through simulation how our simple model can ac-
count for anxious behavior in laboratory-based studies of sequential learning and decision
making. (Because in our model anxiety arises through biased sequential evaluation, we will
not address one-step bandit tasks where others have reported learning deficits associated
with anxiety, e.g., Aylward et al., 2019; Harlé et al., 2017.) We will also show that our model
is consistent with clinical theory describing the transition from clinical anxiety to depres-
sion. Unless otherwise noted, state and action values under varying degrees of pessimism
were solved for using the value iteration dynamic programming method (Sutton & Barto,
2018). All simulations were implemented in the Python programming language and the
code is publicly available at https://github.com/ndawlab/seqanx.

Approach-avoidance conflict

One behavioral finding characteristic of anxiety disorders is unbalanced processing of approach-
avoidance conflict (Aupperle & Martin, 2010). Anxious individuals are more likely to forgo
potential gains in order to avoid potential danger. Many of the disruptions anxiety causes
to everyday functioning (e.g., avoiding social obligations for fear of possible social humili-
ation) can be understood in these terms. As such, many have sought to probe and measure
this behavior in the laboratory. For instance, in the balloon analog risk task (BART; Lejuez
et al., 2002), participants attempt to earn money by pumping virtual balloons. With each
pump, the balloon inflates and money is earned, but so too does the chance that the bal-
loon pops and the accumulated earnings are lost. At any point in a trial, a participant
may cash out, banking the money earned and ending the trial. Anxiety is correlated with
fewer pumps of the balloon and earlier cash-outs in the BART (Maner et al., 2007; Ramı́rez,
Ortega, & Del Paso, 2015).

As shown in Fig. 2, our model easily accommodates this result. Whereas optimistic
agents pump until the marginal gain of a pump no longer offsets the chance of the balloon
bursting, optimal choice under increasingly pessimistic (i.e., anxious) assumptions cashes
out progressively earlier – similar to empirical findings (Maner et al., 2007; Ramı́rez et al.,
2015). This is because it anticipates and avoids future errors in choice, which would oth-
erwise result in the balloon popping. Our model can analogously explain other manifesta-
tions of biased approach-avoid conflict in anxiety, such as in the predator avoidance task
(Fung, Qi, Hassabis, Daw, & Mobbs, 2019).

A unique prediction of the model (because we assume optimal choice under the as-
sumption of future suboptimality) is that bias should arise only when beliefs about future
avoidance are involved, rather than direct conflict between immediate impulses. Recent
data (Fung et al., 2019) using a predator avoidance task, analogous to the BART, support
this view. In this task, increasing trait anxiety predicted earlier escape (analogous to cash-
out in the BART) for slow predators (for whom future decisions to escape were a relevant
consideration) but not for fast ones (who would attack immediately, mooting consideration
of future steps).

Relatedly, the model can also capture findings of increased behavioral inhibition,
measured as prolonged response times, in anxious individuals under threat (Bach, 2015).
In the behavioral inhibition task, participants seek tokens adjacent to a virtual ”sleeping
predator”, which are all lost if the predator awakes. Though in this variant the risk of pre-
dation is constant throughout a trial (rather than increasing, as in the BART) the potential
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Figure 2. (A) The Balloon Analog Risk Task (BART; Lejuez et al., 2002). The risk of balloon burst (point loss) increases with each pump
and does so earlier for the high risk (red) than low risk (blue) balloons. (For full rules of the task, see Methods.) The optimal policy
(number of pumps) under increasingly pessimistic valuation is presented for low (B) and high risk (C) balloons. The optimistic agent
(w = 1) prefers a policy reflecting the true environmental risk. The moderate (w = 0.6) and strongly (w = 0.2) pessimistic agents cash-out
earlier, as is observed in anxious individuals. (D,E) In the sleeping predator task, the risk of loss is constant but the cost of loss still
increases as more rewards are gathered. The value of reward pursuit under increasingly pessimistic valuation is presented for scenarios
with low (D) and high risk (E) of predator awakening. The relative value of approach (vs. avoid) decreases with loss amount and threat
level, and moreso under pessimistic assumptions. (Parameters: γ = 1.0)

loss from capture still increases with each token collected. Bach finds that participants are
slower to collect tokens as this potential loss increases, and that this slowing is enhanced by
subclinical anxiety. We can capture this effect in our model by noting that the relative value
of approach compared to avoidance is reduced as potential loss and the risk that the preda-
tor awakes increase (Fig. 2d/e). These effects are amplified under more pessimistic (i.e., in
our model, more anxious) assumptions about future actions. Thus, as before, anxious pes-
simism in our model produces greater and earlier choice of avoidance, analogous to earlier
cash-out in the BART. To extend this effect to reaction times, we adopt the further, standard
assumption that actions (here, approach) are slower when their relative value compared to
alternatives is lower (Oud et al., 2016). In this case, the model captures behavioral inhibi-
tion (slower responses as threat increases), and its enhancement by anxiety, as measured
by Bach. (Note that we need not assume the coupling of reaction times to action value
spread is due to difficulty in decision formation per se, which Bach argues against: it may,
for instance, reflect Pavlovian initiation biases; Niv, Daw, Joel, & Dayan, 2007.)

Aversive pruning

Computational Psychiatry 6
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Another laboratory phenomenon associated with anxiety is “aversive pruning” in planning
(Huys et al., 2012; Lally et al., 2017). This refers to the idea that when evaluating future ac-
tion trajectories in a sequential task like chess, people are resource-limited, cannot evaluate
all possible options, and must selectively consider certain paths and neglect others. One
proposal for how people accomplish this is aversive pruning (Huys et al., 2012), wherein
choice sequences involving large losses are discarded from further evaluation. An example
of aversive pruning is shown in Fig. 3a. Although the optimal choice in the decision tree
from is to weather an initial large loss (e.g., -70) in order to reap the large gain that follows,
people tend to disfavor this path suggesting they prune it and consequently neglect the
later gain. The degree of such pruning correlates, depending on the study, with subclinical
depressive (Huys et al., 2012) or anxiety (Lally et al., 2017) symptoms.

Our model predicts this result (Fig. 3b) as specifically linked to our model of anx-
ious pessimism, though for a somewhat different reason than in Huys’ original modeling.
In our model, pessimistic (anxious) agents neglect large gains deeper in the tree, not be-
cause they fail to consider them (here we assume full evaluation of the Bellman equation),
but because with increasing anxiety they increasingly expect the potential of choosing in-
correctly afterward, thus failing to recoup the loss (and, mathematically, probabilistically
pruning the better branches). Future research could use slight variants in the decision trees
to tease apart these different interpretations, for example, by comparing decision trees that
differ only in what follows the large initial loss. Under a model of aversive pruning, such a
change should not impact the proportion of agents selecting the left branch; in contrast, our
model predicts choice should parametrically increase with the extent of the amelioration.

The anxiety-depression transition

So far, we have considered only the asymptotic preferences implied by our pessimistic
value function, which we computed directly through value iteration. But we can also con-

Figure 3. (A) The decision tree environment (Huys et al., 2012; Lally et al., 2017). An optimistic agent (w = 1) prefers the optimal
loss-minimizing policy through the initial large loss (left branch). (B) A pessimistic agent (w = 0.5) comes to prefer the branch without
the large loss so as to avoid being unable to recoup the large initial loss. One-step rewards (or costs) are presented in each state; the net
value Q on each path is shown numerically. (Parameters: γ = 1.0)

Computational Psychiatry 7
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sider the process of learning under this value function (e.g., by variants of Q-learning (Sut-
ton & Barto, 2018) or DYNA (Russek, Momennejad, Botvinick, Gershman, & Daw, 2017;
Sutton, 1991) using the β-pessimistic return). The dynamics of such learning may speak to
the progression of symptoms.

Of note in this respect, anxiety and depression are highly comorbid, with almost half
of individuals with a lifetime depression diagnosis also diagnosed with an anxiety disor-
der (Kessler et al., 2015). One notable proposal is that this association often (though by no
means exclusively) arises longitudinally: in particular, that clinical anxiety precedes certain
types of depression (Alloy, Kelly, Mineka, & Clements, 1990; Jacobson & Newman, 2014).
The idea, in brief, is that uncertainty in one’s ability in the face of future threat results in
anxiety and avoidance behaviors. Persistent avoidance, in turn, begets foregone reward,
and ultimately to a belief that reward is unobtainable and subsequently depression. This
informal story can be captured by simulations of learning in our model (Fig. 4) in envi-
ronments like that of Fig. 1. Over the course of learning, the penumbra of negative value
under pessimistic assumptions spreads gradually throughout the environment. This can in
turn lead the agent to expect no reward and, also echoing the anergic symptoms of depres-
sion, forego action altogether. This last point in particular dovetails nicely with theoretical

Figure 4. (A) A simple deterministic gridworld with two terminal states: one rewarding (blue) and one aversive (red). (B, c) The
development of value expectancies over three steps of learning, for two levels of pessimism. States are colored by their value under
different levels of pessimism, with arrows showing an optimal trajectory. (B) For an optimistic agent (w = 1), all states (other than the
harmful state) take on positive value with learning. (C) For a pessimistic agent (w = 0.6), negative value spreads from the source to
antecedent states. As a result of avoidance, the agent learns reward is unobtainable and develops anergic symptoms (i.e. foregoes action).
(Parameters: γ = 0.95)
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accounts of the anergic aspects of depression (Huys et al., 2015), which point out that low
experienced reward rates should in decision theoretic accounts lead to reduced response
vigor (Niv et al., 2007) leading to a potentially self-reinforcing downward spiral.

In addition to suggesting one explanation for the comorbidity of anxiety and depres-
sion, our model also hints at a reason for the longevity and recurrence of anxiety disorders
even with treatment. Because pessimistic expectations allow for threat value to spread to
states and actions far antecedent of the primary danger (e.g., Fig. 1d), it would accordingly
also take a great many steps of iterative learning to correct all these exaggerated appraisals
of threat. Frustratingly, these biased estimates of value may still remain even after a misbe-
lief in the efficacy of future action is corrected for in a course of therapy. This phenomenon
(similar to failures of model-free RL algorithms to adjust to reward revaluation without
extensive relearning; Daw, Niv, & Dayan, 2005) may offer at least a partial answer to a clas-
sic puzzle in pathological avoidance, i.e. why it is so resistant to extinction (Moutoussis,
Shahar, Hauser, & Dolan, 2018), and to the unfortunately high rates of anxiety recurrence
following treatment (Pittig, Treanor, LeBeau, & Craske, 2018).

Free choice premium

Finally, the model also offers a novel prediction tying anxious beliefs to a classic, but hith-
erto separate, phenomenon known as the free choice premium. This refers to the finding
that, all else being equal, people tend to treat choice as itself valuable: i.e., choices which
lead to more choice opportunities in the future are preferred to those that lead to fewer
future choice opportunities. A free choice premium has been observed in multiple behav-
ioral experiments (Leotti, Iyengar, & Ochsner, 2010; Ly, Wang, Bhanji, & Delgado, 2019). A
variant of a free choice premium paradigm from two previous studies (Leotti & Delgado,
2011, 2014) is presented in Fig. 5a. In the task, participants repeatedly choose between
a free choice option, allowing for an additional future choice, and a fixed choice option.
Importantly, both choices lead to identical, stochastic outcomes (e.g., 50/50 chance of [1, -
1]). Empirical studies have found that human subjects (from a general, healthy population)
prefer the free choice option despite it conferring no additional benefits relative to the fixed
choice option.

On one account (Ly et al., 2019), this free choice preference directly and specifically
reflects the assumption about sequential choice whose violation we argue is core to anxiety:
i.e. that the agent will make reward-maximizing choices in the future. Under such an
optimistic assumption (and given noisy and imperfect knowledge about the value of each
option, due to learning), additional options are valuable in the sense that free choice can be
expected to exploit the best among them. Namely, the maximum over several noisy values
is, in general, larger than a single option from the same distribution. Our proposal makes
the novel prediction that, if as we hypothesize anxiety reflects a violation of this optimistic
assumption, then anxious individuals will exhibit a diminished or reversed free choice bias,
as shown in simulation in Fig. 5b. Future empirical research will be required to test this
prediction.

DISCUSSION

Central to anxiety disorders are symptoms including exaggerated threat appraisal, threat
generalization, and excessive avoidance (Arnaudova et al., 2017; Clark & Beck, 2011; Dy-
mond et al., 2015). We have presented a simple computational account suggesting how a

Computational Psychiatry 9
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Figure 5. (A) The free choice premium task (Leotti & Delgado, 2011, 2014) with equal chance of outcome R ∈ [1,−1]. Non-anxious
participants exhibit a preference for the free choice option (blue) despite it conferring no benefit over the fixed choice option (grey). (B)
Pessimistic agents show an attenuated free choice bias. The fractional preference for the free choice option over the simulated experiment
is shown for three populations of subjects with levels of pessimism w (y-axis; each dot represents an individual simulated agent, and
the smoothed density of free choice bias for each pessimism level is also shown.) (Parameters: Q-learning with γ = 1.0, and inverse
temperature, β, increased from 1 to 15 over 100 episodes.)

single underlying pessimistic misbelief can give rise to these aberrations in learning and
choice. We use a reinforcement learning approach in which undue pessimism results in
maladaptive policy. Specifically, we showed how a failure to believe in the reliability of
one’s future actions can effectively backpropagate negative value across states of the en-
vironment. This process results in a range of inferences and behaviors resembling those
observed in clinical anxiety. Though it is by no means a complete account of anxiety, our
account ties together a surprisingly wide range of symptoms of anxiety disorders.

We are not the first to propose a formal theory of control in psychiatry using MDPs.
Huys and Dayan (2009) also provided a computational account of learned helplessness
through simple models of one-step action-outcome contingencies. Our accounts differ par-
ticularly in our exclusive focus on control in the sequential setting, which Huys and Dayan
did not address. Indeed, we propose that ultimately key to anxiety is precisely the way
in which evaluation in sequential tasks is necessarily reliant on expectations about future
choice and events. Similarly, research and modeling by Bishop and colleagues (Brown-
ing, Behrens, Jocham, O’reilly, & Bishop, 2015; Gagne, Dayan, & Bishop, 2018) also taking
a decision theoretic approach has stressed the importance of uncertainty as a core feature
of anxiety. Specifically, they have described uncertainty as inherently aversive in anxiety,
and have presented models of how uncertainty may be increased in anxiety (e.g., aberrant
processing of environmental volatility). The present work is compatible with deficits in
processing uncertainty, and might instead be viewed as an attempt to unpack why uncer-
tainty is aversive: because, in our view, it is resolved (i.e. marginalized) under pessimistic
distributional assumptions. As for control, we extend this view to focus on how uncer-
tainty is resolved in the sequential setting, and also to zero in on particular instances of
uncertainty (about future actions, and some other options discussed next) and misbeliefs
about them that, we argue, are particularly consequential.

Computational Psychiatry 10
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For concreteness, we formalized pessimistic assumptions in terms of only one of sev-
eral variants of a more general family of models, but we do not mean this restriction as a
substantive claim. In particular, we focused on the agent’s beliefs about their own future
actions: expecting failure in handling or avoiding future threat. However, this is just one of
several different pessimistic misbeliefs that could satisfy the basic logic of our model and
produce similar symptoms. These other beliefs need not be mutually exclusive, though
they might reflect different cognitive routes to symptoms that would, in turn, imply differ-
ent psychotherapeutic strategies.

For instance, one variant of the model is suggested by the observation that Eq. 1 is also
computed in expectation over the anticipated future environmental dynamics p(s′ | s, a).
Thus, pessimism can alternatively be encoded in this distribution: e.g., a false belief that
the world’s response to one’s choices is unpredictable or adversarial. Because the Bellman
equation for the return averages over this distribution in addition to the choice policy at
each step, and because an unpredictable environment also reduces the efficacy of avoid-
ance, either formulation can produce ultimately similar results in our simulations here. A
third variant of our model arises from uncertainty about the current state s of the envi-
ronment. Although we have taken it as fully observed, if the world state is only partly
known, then this distribution too must be averaged out in evaluating each action (Kael-
bling, Littman, & Cassandra, 1998), and here also a pessimistic skew will propagate the
expectation of danger and result in exaggerated avoidance (Paulus & Yu, 2012). In sum-
mary, pessimistic resolution of several different varieties of uncertainty (e.g., about future
action, environmental dynamics, or environmental state) could each produce similar symp-
toms for analogous reasons. However, from the perspective of cognitive theories of anxiety,
these represent quite different maladaptive beliefs: a key difference that may be relevant in
guiding treatment (especially cognitive psychotherapies aimed at ameliorating the false be-
liefs) of a host of anxiety disorders.

Particularly due to the way it encompasses several such variants, our account for-
malizes a longstanding range of theory on the role of control in anxiety. Central to many
prominent cognitive theories of anxiety in the psychiatric literature is a perceived lack of
control. For example, self-efficacy theory (Bandura & Adams, 1977) and the triple vulner-
abilities model (Barlow, 2002) both posit that a reduced belief in the ability to effectively
respond to future threat is involved in the genesis and maintenance of clinical anxiety. In
contrast, and focused less on the self, the learned helplessness theories of anxiety (Alloy
et al., 1990) claims clinical anxiety results from an uncertain belief in the controllability of
the environment, such that future threat cannot be effectively mitigated or avoided. As
we note above, the present model and analysis (though simulated above in terms of self-
efficacy) can accommodate either variant, and shows how they relate to one another as
members of a more general family of accounts.

The possibility of multiple anxious phenotypes, each characterized by unique but
not mutually exclusive beliefs, suggests the need for behavioral assays designed to isolate
and interrogate such biases. One such task is the free choice premium paradigm described
above, which captures pessimism (or optimism) about one’s own choices. An analogous
task might measure pessimistic expectations about environmental state transition proba-
bilities. For instance, this could be accomplished in a variant of sequential decision mak-
ing tasks that require subjects to learn the transition structure of a multi-step decision tree
(Gläscher, Daw, Dayan, & O’Doherty, 2010; Lee, Shimojo, & ODoherty, 2014) and make
choices to gather rewards in it. Pessimistic expectations about environmental state transi-
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tions would bias choices in this type of task. Individually, these tasks could test our hy-
pothesis that either sort of misbelief is associated with symptoms of anxiety; they could
also be compared to one another (and to more detailed self-report assessments of beliefs
about control or self-efficacy) to investigate potential heterogeneity across patients in the
antecedent of anxiety.

Importantly, although we have considered the most pathological cases of pessimism,
these may reflect the exaggerative extremes of an otherwise adaptive evaluation strategy.
Traditionally, the goal of reinforcement learning algorithms is to a find reward-maximizing
policy with respect to the expectation (average) of returns. However, depending on one’s
risk attitude and uncertainty about the environment (e.g., if there is potential for catas-
trophic loss), it may be instead preferable to learn a policy with respect to an alternative
and more pessimistic objective function, similar to the one considered here. Accordingly,
returns and agent behaviors similar to ours arise in previous research on learning risk-
sensitive and robust policies (Bellemare et al., 2017; Chow, Tamar, Mannor, & Pavone, 2015;
Morimura, Sugiyama, Kashima, Hachiya, & Tanaka, 2012).

We have centered our discussion at Marr’s (1982) computational level: on beliefs and
their consequences in terms of action values. We have so far remained agnostic as to how,
algorithmically or mechanistically, these misbeliefs are implemented in the brain (Friston,
Stephan, Montague, & Dolan, 2014). Importantly, the brain is believed to contain multiple
distinct mechanisms for evaluating actions (e.g, model-based and model-free learning; Daw
et al., 2005; Huys et al., 2015), and pessimistic beliefs might play out either differentially or
similarly through each of these mechanisms. One promising possibility is that these symp-
toms mainly reflect aberrations in model-based planning (Huys et al., 2015), i.e. explic-
itly evaluating actions by mentally simulating possible trajectories. Recent work suggests
this process may be accomplished by mentally “replaying” individual potential trajectories
(Mattar & Daw, 2018; Momennejad, Otto, Daw, & Norman, 2018). In this setting, the biases
we suggest would amount to over-contemplating, or over-weighting, certain pessimistic
trajectories (Hunter, Meer, Gillan, Hsu, & Daw, 2019). Such a bias might be detectable us-
ing neuroimaging, as a change in which types of events that tend to be replayed (Ambrose,
Pfeiffer, & Foster, 2016; Momennejad et al., 2018). Such a biased replay process, in turn, may
also correspond to worry and rumination. Indeed, in line with the present results, chronic
worry is associated with reduced perceived control, diminished belief in self-efficacy in re-
sponse to threat, and exaggerated threat appraisal (Berenbaum, 2010). This suggests that
clinical anxiety may in part result from planning processes gone awry.

It is important to note that the present model may not describe all anxiety disorders
with equal accuracy. Indeed, our analysis of pessimistic sequential evaluation is, by defi-
nition, a model of prospective cognition. Thus, the present results are more likely to accu-
rately describe the anxiety disorders which primarily involve aberrations in future-oriented
cognitive processes, such as generalized and social anxiety disorders. Naturally, the present
model can account neither for the compulsive behaviors of obsessive-compulsive disorder
(OCD) nor the memory disturbances of post-traumatic stress disorder (PTSD). That said,
recent clinical studies suggest that diminished perceived control is a vulnerability factor
common to all anxiety disorders, including OCD and PTSD (Gallagher, Bentley, & Barlow,
2014; Gallagher, Naragon-Gainey, & Brown, 2014). Importantly, aspects of other psychiatric
disorders that involve future-oriented misbeliefs, worry, and avoidance behaviors (e.g., eat-
ing disorders; Konstantellou, Campbell, Eisler, Simic, & Treasure, 2011) may similarly be
well-described by the current account. Indeed, and much more speculatively, the model
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may also have implications for bipolar disorders. The onset of manic symptoms is associ-
ated with overoptimistic perceived control (Alloy, Abramson, Walshaw, & Neeren, 2006),
and our same model and basic reasoning (though now envisioning excessively optimistic
rather than excessively pessimistic beliefs) may help to explain how this bias may translate
into risk-seeking behavior and dysreguated goal pursuit. As such, the present results are
transdiagnostic and not limited to one particular diagnosis.

Finally, the relationship between evaluation, planning, and neural replay discussed
above suggests potential future work that might help to bring this model into contact with
the more memory-related aspects of PTSD. For instance, the same replay processes that can
be used to evaluate actions can also, in theory, update predictive representations, cognitive
maps, or models of the environment (Russek et al., 2017), such as the successor representa-
tion (Dayan, 1993; Momennejad et al., 2017). If so, similar biases in replay could result in
not just aberrant avoidance behavior, but also progressive, aberrant remodeling of world
models or cognitive maps, an observation which may connect to the rich and complex set
of issues on memory involvement in PTSD.

METHODS

We model anxious decision making in the context of Markov decision processes (MDPs).
Tasks were modeled as deterministic, infinite horizon, discrete time environments. Some
(detailed below) were modeled with discounted returns γ < 1. All simulations were
implemented in the Python programming language and the code is publicly available at
https://github.com/ndawlab/seqanx.

For all but the free choice premium task, we defined state-action values, Q(s, a), in
accordance with our modified, pessimistic Bellman equation Eq. 3, reproduced below for
convenience:

Qw(s, a) = r(s, a) + γ ∑
s′

p(s′ | s, a)
(

w max
a′

Qw(s′, a′) + (1− w)min
a′

Qw(s′, a′)
)

Here, Q-values were solved for directly through value iteration (Sutton & Barto,
2018). By contrast, Q-values in the free choice task were computed using the β-pessimism
temporal-difference learning algorithm (Gaskett, 2003), where the reward prediction error
is defined as:

δw = r(s, a) + γ

(
w max

a′
Qw(s′, a′) + (1− w)min

a′
Qw(s′, a′)

)
−Qw(s, a),

and the update rule is defined as:

Qw(s, a)← Qw(s, a) + η · δw

where η is a learning rate. The parameterizations of the MDP environments and
learning algorithms are next specified in turn.
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Toy MDP / Anxiety-to-Depression Transition

Both the Toy MDP and anxiety-to-depression transition simulations were performed using
simple gridworlds. Both environments involved only two non-zero states, one rewarding
(r = 10) and one aversive (r = −10). In both environments, we solved for the discounted,
asymptomatic Q-values using value iteration with γ = 0.95. In the toy gridworld, we
performed simulations under pessimistic assumptions, w ∈ [1.0, 0.5, 0.0]. In the transition
gridworld, we performed simulations under pessimistic assumptions, w ∈ [1.0, 0.6]. To
highlight the effects of learned, we took ”snapshots” of Q-values prior to asymptote, three
and five steps into value iteration.

Balloon Analog Risk Task / Predator Avoidance Task

The balloon analog risk task (Lejuez et al., 2002) has participants inflate a virtual balloon for
points. Earnings rise with each pump, but so too does the risk of the balloon popping and
subsequent point loss. Unbeknownst to participants, the number of pumps before balloon
pop is predefined and drawn randomly from some distribution (e.g., uniform, normal, ex-
ponential), where the mean controls the risk (i.e. average number of pumps before point
loss).

Here, we modeled the BART as an undiscounted MDP with 20 states, where transi-
tioning to each successive state yielded r = 1. The only available actions were to transition
to the next state (e.g., S1 → S2, S2 → S3) or end the episode (i.e. cash-out). With each
act to move to the next state, there was some probability of transitioning to a bad terminal
state (i.e. balloon pop) with reward equal to the negative equivalent of accumulated gain
thus far. The probability of this bad transition was modeled using normal density func-
tion, with parameters N (16, 0.5) for low risk and N (8, 0.5) high risk. The asymptomatic
Q-values were solved for using value iteration for both the low and high risk conditions
under pessimistic assumptions, w ∈ [1.0, 0.6, 0.2].

The predator avoidance task (Fung et al., 2019) can be analogously modeled. There,
a virtual predator approaches participants over discrete time steps while participants ”for-
age”. For every time step the participant remained (i.e. does not flee), points were accumu-
lated. However, if the participant is caught all earnings were lost and an additional penalty
was received. Thus, the predator avoidance task bears striking resemblance to the BART;
foraging is equivalent to virtual pumps, and fleeing is equivalent to cashing-out.

Behavioral Inhibition Task

In the behavioral inhibition task (Bach, 2015) (or sleeping predator task), participants collect
virtual tokens while evading capture from a virtual predator. Unlike the BART, the risk in
the behavioral inhibition task (i.e. predator ”waking up”) is constant. However, the cost of
capture increases as sequential tokens are collected.

True to the original, we model the task as an undiscounted MDP with 6 states where
transitioning to each successive state yielded r = 1. Identical to the BART, the only available
actions were to transition to the next state or end the episode (i.e. avoid predator). With
each act to move to the next state, there was a constant probability of transitioning to a bad
terminal state (i.e. capture by predator) with reward equal to the negative equivalent of
accumulated gain thus far. The probability of bad transition was defined as p = 0.10 for
low risk and p = 0.15 high risk, based on the objective risk probabilities in the empirical
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experiment (Bach, 2015). The asymptomatic Q-values were solved for using value iteration
for both the low and high risk conditions under pessimistic assumptions, w ∈ [1.0, 0.6, 0.2].

Aversive Pruning

In the aversive pruning task (Huys et al., 2012; Lally et al., 2017), participants learn to navi-
gate a six-state graphworld, where each state is directly connected to only two other states.
Each state is associated with some reward (cost), and participants must plan trajectories
through the state-space so as to maximize reward (minimize cost).

We model the task as an undiscounted MDP where the original 6-node network has
been ”unravelled” into a 15-state decision tree. This is equivalent to having the partici-
pant start in one state and plan to make three actions. The rewards associated with tran-
sitioning to each state were taken directly from (Huys et al., 2012; Lally et al., 2017). The
asymptomatic Q-values were solved for using value iteration for both the low and high risk
conditions under pessimistic assumptions, w ∈ [1.0, 0.5].

Free Choice Task

In the free choice task (Leotti & Delgado, 2011), participants complete a series of two-stage
trials. In the first stage, they select between a free choice option, allowing them to make an
additional choice in the second stage, and a fixed choice, permitting no choice in the second
stage. In the second stage, participants select between one of two bandits (free choice) or
are randomly assigned a bandit (fixed choice). Importantly, all bandits pay out under an
identical reward distribution.

We model the task as an undiscounted MDP with 6 state decision tree structure. In
the free choice branch, agents are able to select between two terminal bandits; in the fixed
choice branch, agents can only choose one terminal bandit. All bandits pay out identically,
in this case randomly in the set, r ∈ [−1, 1]. Learned Q-values were computed using pes-
simistic temporal difference learning algorithm, with learning rate η = 0.4. Each simulated
agent learned the values of each action over 100 trials, with an increasing, logarithmically
spaced inverse temperature in the range of β ∈ [0, 15]. (Inverse temperature was gradually
increased over learning to facilitate exploration of choice options.) The resulting fraction of
free choices made over the last 50 trials were stored for 1000 simulated agents, run sepa-
rately for pessimistic assumption, w ∈ [1.0, 0.5, 0.0].
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