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Abstract

It has long been hypothesized that episodic memory supports adaptive decision making by enabling
mental simulation of future events. Yet, memory research is often carried out in settings that are far
removed from ecological contexts of decision making, and models of adaptive choice, conversely, only
invoke episodic memory in highly stylized terms, if it all. To address these gaps, we propose a novel
process-level model of choice that grounds model-based evaluation in empirically informed dynamics
of episodic recall. In this model, the probability of retrieving each available memory sample is given by
the Successor Representation (SR), a biologically plausible world model in reinforcement learning. The
evolution of these probabilities based on past retrievals, in turn, is dictated by the Temporal Context
Model (TCM), a prominent model of episodic retrieval. Through a series of simulations, we demon-
strate that the patterns of episodic retrieval suggested by this model enables flexible computation of
decision variables. On this basis, we argue that a number of previously described features of episodic
memory serve an adaptive purpose in sequential decision making. For instance, we show that the clas-
sic retrieval bias known as contiguity effect, when viewed from a decision making perspective, leads
to model-based rollouts for forward simulation. We also show that features of episodic memory such
as emotional modulation enable generalization and efficient decisions given limited experience. By
bridging theoretical models across these two domains, we make a set of theoretical predictions link-
ing episodic memory properties to adaptive choice in sequential tasks that may guide future empirical
endeavors.

Keywords: episodic memory; decision-making; successor representation; temporal context model;
reinforcement learning
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Introduction

What is memory for? Although laboratory studies often focus on memory performance in isolation,
as if recall accuracy is the participants’ only goal, an important real-world use of past experience
is to guide adaptive choices. This observation has driven increasing interest in the interplay between
memory and decision making, and delivered promising insights. Understanding this interplay promises
both to unpack the mechanisms by which experience guides choice, and to illuminate the potential
adaptive function of various seemingly arbitrary aspects of memory.

The relationship between memory and decisions is perhaps most apparent for procedural memory,
where a putative neurocomputational mechanism involving dopamine, prediction errors, and stimulus-
response habits has long been the shared, orthodox model in both areas (Dolan & Dayan, 2013). Build-
ing on this relationship, there has been increasing interest in how different memory systems might
relate to different decision systems, including a potential correspondence between declarative memory
and the cognitive maps or models thought to guide goal-directed systems for deliberative evaluation
of candidate actions (Doll, Shohamy, & Daw, 2015; Eichenbaum, 2001). In particular, sequential deci-
sion tasks like spatial navigation or chess offer much evidence that the brain engages in constructive,
deliberate evaluation, akin to mental simulation informed by map- or model-like information about
the task (Pfeiffer & Foster, 2013; van Opheusden et al., 2021). However, we still understand relatively
little about the mechanisms by which deliberative sequential decisions are achieved, or how they might
draw on specific memory processes long-established in memory laboratories.

In this paper, we propose a new mechanistic theory of decision making that grounds model-based eval-
uation in the recall of episodic memories, or memories for individual autobiographical events (Tulving,
1972). Many decisions could benefit from recall of one-off autobiographical events. For example, to
navigate through a large, unfamiliar venue, we may recall having examined the sculpture in the cor-
ridor on the right earlier that night, and use that memory to orient ourselves. Episodic memory has
also been suggested to guide decisions by scaffolding the construction of hypothetical future scenar-
ios (Schacter, Benoit, Brigard, & Szpunar, 2015). Indeed, patients with episodic memory deficits are
less effective at certain decision making tasks (Gutbrod et al., 2006; Gupta et al., 2009; Bakkour et al.,
2019). Relatedly, researchers in decision neuroscience have become interested in a class of decision-
by-sampling algorithms. These algorithms bear a loose analogy to episodic memory, in that decisions
are achieved by considering a small number of individual past experiences with similar actions and
their outcomes (Plonsky, Teodorescu, & Erev, 2015; Bornstein, Khaw, Shohamy, & Daw, 2017; Lieder,
Griffiths, & Hsu, 2018). Yet, despite the suggestive links, these previous theories are not especially
informed by research on memory, and have also only been applied to a restricted class of single-step
decision tasks.

Our approach instead begins with a standard model of episodic encoding and recall – the temporal
context model (TCM; Howard & Kahana, 2002; Sederberg, Howard, & Kahana, 2008; Polyn, Norman,
& Kahana, 2009; Talmi, Lohnas, & Daw, 2019). TCM is a descriptive (rather than normative) model
originally conceived to capture patterns of episodic retrieval in tasks like word-list learning. Here, we
present a series of simulations in which TCM is applied in the setting of sequential decision making.
We show that, when the problem of action-outcome prediction is framed as the problem of recalling
relevant past experiences (which we formalize with off-the-shelf TCM recall), the resulting algorithm
provides a novel, parameterized family of decision-by-sampling estimators that are provably appro-
priate for sequential decision tasks. Our study builds on previous research showing that the encoding
stage in TCM closely relates to model learning, enabling gradual construction of a type of world model
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known as successor representation (SR) (Gershman, Moore, Todd, Norman, & Sederberg, 2012). We
extend the prior work by studying the predictions of TCM with respect to memory retrieval, which
we show to correspond to queries of the learned model that can be used for planning or evaluation at
decision time. The result is a theoretical proposal that we call TCM-SR.

Despite its root in memory literature, TCM-SR has a quantitative mapping to reinforcement learning
(RL) models in decision neuroscience that expands the connection between the two fields. We show
that two special cases of our model correspond to two influential mechanisms for model-based choice:
a constructive “rollout”-based simulation of future trajectories, and the use of temporal abstraction (SR)
to compress such iterative serial reasoning. We then show that the full model extends and interpolates
between these two extremes using intermediate parameterizations, providing a family of Monte Carlo
estimators based on a generalized notion of rollouts. We also show that several other known properties
of episodic memory can be viewed as rational from a decision-making standpoint. For instance, people
sometimes recall events in the opposite temporal sequence to that experienced during encoding, and
recall is often biased toward emotionally arousing events. Viewed in the context of our theory, these
and other features of episodic memory have unanticipated advantages for choice. More broadly, the
direct mapping we hypothesize between research in episodic memory and decision making sheds light
on both areas, and suggests many new research directions and future experiments.

The remainder of this paper is structured as follows: We begin with a description of the normative
problem of interest and the properties of the episodic memory system. We then propose a simplified
TCM-inspired model of episodic memory for sample-based action evaluation; this model illustrates the
key ideas behind our theory and serves as the basis for the more realistic variants that are presented
subsequently. Then, in each subsequent section, we show that progressive addition of known episodic
memory properties (formalized in different variants of TCM) confers unexpected decision making ad-
vantages. As we will show, our model makes a series of empirical predictions regarding the content of
retrieval during decision making, how speed and accuracy are traded off during episodic-based eval-
uation, and how a number of known memory retrieval biases give rise to novel choice biases that are
amenable to empirical testing.

Results

Decisions via model-based evaluation

We explore how episodic memory retrieval can be used to guide decisions using a stylized decision
making task in which an action is followed by a sequence of states, each associated with a (potentially
nonzero) reward (Fig. 1a). This task resembles a game of Plinko where a player drops the ball in one
of the holes in the top row of the board. The initial ball placement (action) determines the first state
of the sequence. Each subsequent state (and reward) follows from the previous through a stochastic
transition, analogous to a ball falling through the Plinko board. The agent’s goal is to choose the starting
state that maximizes the cumulative reward. We selected this stylized task to depict graphically the
process of sequential retrieval. Despite its simplicity, this problem captures a number of key aspects of
more general sequential decision tasks — in particular, rewards accumulate sequentially over a series
of steps, and cannot be predicted with certainty from each action. The problem of optimal decision
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here can be reduced to a problem of prediction: estimating, for each candidate action, the resulting
(sequential, stochastic) rewards. This is the function we ascribe to episodic retrieval.

We formalize this intuition using the framework of Reinforcement Learning (RL; Sutton & Barto, 2018).
On a particular trial, the agent receives total discounted rewardG =

∑∞
t=1 γ

tRt, whereRt is the reward
received at timestep t and γ is a discount factor specifying the degree to which earlier rewards are
favored over later rewards. The agent’s goal is to select the action which, by affecting the sequence of
future states, maximizes the expected G. One strategy is to estimate the expectation for each candidate
action a, i.e. q(a) = E[

∑∞
t=1 γ

tRt | A = a]. The quantity q(a) is known as the action value. Using
this strategy, the agent can evaluate each candidate action and select the action with maximum value.
Note that no further action is involved after the initial one; in RL terms, this corresponds to policy
evaluation in a Markov process, a classic sub-problem for solving more elaborate choice tasks (e.g.,
Markov decision processes, in which actions can occur at every step).

RL offers various approaches to estimate action values, falling broadly in two categories: agents learn
aggregated action values q from experience, or instead draw on a “world model” of the environmental
dynamics to simulate action outcomes. The former approach is most commonly associated with the
classic temporal difference (TD) algorithm (Sutton, 1988) and procedural memory, and not the focus of
this paper.

Here we focus on the second class of strategies, often called planning ormodel-based RL. Suppose at any
point of the Plinko game, the agent is capable of predicting the probability of the ball’s board position
at the next time step – i.e., the agent understands the step-by-step transition structure of the game, a
form of world model (Fig. 1b, boards labeled as T1, T2, T3). By recursively predicting the position of
the ball one step into the future, the agent can simulate one of many possible trajectories following
a given action, along with the corresponding rewards. A complete trajectory simulated in this way
is called a rollout, and its associated total reward provides a noisy estimate of the value of the given
action. Taking the total reward across for each considered action, averaged across multiple rollouts, the
agent can choose the action with maximal estimated value. Action evaluation by stochastic, iterative
simulation is at the heart of numerous model-based approaches to RL, such as Monte Carlo Tree Search
(Coulom, 2006). Its power — for instance, in competitive play of challenging games like Go (Silver et
al., 2016) — arises from its ability to compositionally (albeit laboriously) analyze novel situations, such
as never-experienced board positions (Daw & Dayan, 2014; Mattar & Lengyel, 2022).

An alternative and often more efficient RL approach is to first learn, for each action, the expected
number of visits to each state in the future (formally, M = T1 + γ1T2 + γ2T3 + · · · , where each
element Mij of matrix M represents the discounted number of visits to state j from state i). M is
known as Successor Representation (SR; Dayan, 1993), and is thought to account for various features
of human and animal behavior and neural responses (Momennejad et al., 2017; Stachenfeld, Botvinick,
& Gershman, 2017; E. M. Russek, Momennejad, Botvinick, Gershman, & Daw, 2017, 2021; Piray &
Daw, 2021). Like T, the SR matrix M summarizes the transition structure of the world, but aggregated
over multiple steps; thus it can also be understood as another form of world model (Fig. 1b, board
labeled M). If the SR is known, action values can be estimated straightforwardly by multiplying the
expected number of visits to each state by the rewards present in those states (i.e., q(a) = xT

aMr,
where xa is a one-hot column vector denoting the top-row state resulting from action a, and r is a
column vector whose kth element rk indicates the reward present in state k). Thus, while still relying
on the basic “world model” approach, the SR simplifies evaluation and avoids the iterative construction
of trajectories by using a stored model of aggregated transition dynamics over multiple time steps. The
cost of this simplification (called temporal abstraction) is that it limits the flexibility of the model to
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work out value in novel or changed situations, because information about future events is “baked in”
to M (E. M. Russek et al., 2017; Piray & Daw, 2021). Overall, then, these two model-based strategies
for prospective evaluation have different costs and benefits.

In this paper, we show that the properties of episodic memory imply an additional approach for esti-
mating action values, which both generalizes and interpolates between the rollout-based and SR-based
approaches, balancing two different strategies for long-term prospection. Our proposal builds on the
observation that episodic memory encoding has the effect of learning an SR-like model (Gershman
et al., 2012). We leverage this observation to show that the sequential retrieval of remembered events
in the same memory model implements a rollout-like (iterative) state simulation process that differs
from standard (non-iterative) uses of the SR described previously. Accordingly, we next describe the
processes of memory encoding and retrieval that support value estimation.

Episodic retrieval via the Temporal Context Model

Our starting point is a standard model of memory encoding and retrieval, the Temporal Context Model
(TCM; Howard & Kahana, 2002), which we simplify in the first instance and progressively augment
to expose the contribution of different model components. TCM aims to explain experiments where
memory is the dependent variable: which stimuli tend to be recalled and in which order, as a function of
factors such as their serial position during encoding (Fig. 1c). To explain these results, TCM centrally
posits that such episodic retrieval is affected by a drifting temporal context, a continuously evolving
representation composed of a recency-weighted running average of previously observed and retrieved
stimuli:

ct = ρct−1 + βxt. (1)

During encoding, associations are formed between the representation of the observed stimulus xt and
the temporal context ct present at that moment (Fig. 1d-f). During retrieval, items are sampled from
memory in proportion to how well the current temporal context matches the context associated with
each item during encoding (Fig. 1g-i). Retrieval is thus determined by the current context and the
agent’s memory (Fig. 1h,i), formalized as a set of associations developed during encoding (Fig. 1f)
that represent the contexts associated with each previously-seen item. Finally, retrieval also updates
the temporal context, biasing the subsequent retrieval of new items from memory (Fig. 1g-i). The
updating of the temporal context when an item is recalled allows TCM to explain ubiquitous patterns
of sequential retrieval in list learning tasks (see Methods for a formal description of TCM).

TCM recapitulates two recall biases often observed in list learning paradigms: the recency effect and
the contiguity effect (Fig. 1c). The recency effect is the observed heightened probability of recalling the
most recently-studied information; as the temporal context drifts continuously in TCM, the context
at recall better matches contexts associated with the stimuli studied last. The contiguity effect refers
to a tendency for subsequent recalls to contain stimuli studied in close temporal proximity; because
temporal contexts tend to be similar for temporally close-by stimuli, the retrieval of one promotes
retrieval of others studied close in time. Note that TCM is a descriptive model, as it aims to match
rather than rationalize or justify these empirically observed patterns.
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Fig. 1. Overview of the TCM-SRmodel. (a) Our Plinko game has 10×9 states, each represented by
a small square. The agent may take any of 9 possible actions, corresponding to the 9 locations on the
top row where the Plinko ball (orange circle) may be dropped. The dropped ball follows a stochastic
trajectory down the board, collecting scattered rewards (purple stars) along the way (see Methods for
task details). The goal of the agent is to select the action leading to a trajectory containing as many
rewards as possible. (b) The first three Plinko boards labeled T1, T2, and T3 represent the probability
distribution of the ball location 1, 2, and 3 time steps after the moment depicted in (a) respectively.
The Plinko board labeled M represents the fully-learned Successor Representation (SR), given by M =
γ0T1 + γ1T2 + γ2T3 + · · · . SR values correspond to the expected number of (discounted) visitations
to each state on the board, starting from the action depicted in (a). (c) After each full trajectory is
experienced and stored in memory, the recency effect (left) predicts that stimuli from the bottom rows,
which have been experienced more recently, are more likely to be retrieved. The contiguity effect (right)
predicts that, following each stimulus retrieved on a given row, stimuli from adjacent rows are more
likely to be subsequently retrieved. (d-f) Encoding phase of TCM-SR. (d) Presentation of stimulus st
at time t by the external world updates the temporal context ct. Memory encoding amounts to storing
each temporal context present when a stimulus is seen. The first time each stimulus is presented, a new
memory is stored (circle with dashed outline). Each subsequent time the same stimulus is presented, the
associated memory is modified (not shown). (e)The temporal context ci defines a distribution p(s) over
memories. It depends on the previous temporal context ct and the current state st+1, corresponding
to a recency-weighted representation of the stimuli (depicted in f). (f) Schematic of encoding two
consecutive stimuli in the Plinko task. Stored memory of each stimulus (right box) includes a composite
representation of temporal contexts present during each of the encoding situations. (g-i) Retrieval
phase of TCM-SR. (g) The agent freely samples one or more stimuli during retrieval. The retrieved
stimulus si is a sample from the recall distribution p(s). Higher retrieval probability is assigned to
stimuli whose stored context is more similar to the current context. The context associated with the
sample influences the temporal context to affect subsequent retrievals. (h) The temporal context ci+1

depends on the previous temporal context ci and the retrieved stimulus si+1, which itself depends on
the previous context ci. The red arrow illustrates how the temporal context is affected by each retrieved
stimulus. (i) Schematic of retrieving a stimulus in the Plinko task. The temporal context is updated by
a retrieved context. See the online article for the color version of this figure.
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TCM predictions for decision tasks

In the present article, we study the predictions of TCM for an agent performing a sequential decision
task. While we study these predictions for a general task, we illustrate them in the context of a stylized
problem, the Plinko game. Here, experienced states (st, ball locations in Plinko) take the place of list
items (e.g., words in TCM). In the encoding phase (corresponding to learning a task) a sequence of states
is experienced (a trajectory followed by the ball in Plinko, viewed as a word list in TCM) and stored
in memory. In the retrieval phase states previously stored in memory can be retrieved, corresponding
to locations in the Plinko board that have been previously visited by the ball. We propose that such
recall of states can be used at some later decision time to evaluate actions, akin to an agent querying
an episodic memory for choice-relevant information.

To understand this process, we first note that the problem of learning associations between a stimu-
lus and its temporal context during encoding, as formalized in TCM, is equivalent to the problem of
learning the SR (see Gershman et al., 2012 or the Methods section). Intuitively, learning what context
precedes each stimulus is equivalent to learning that the stimulus is a likely successor of the context
components (notice how the episodic memory representations in Fig. 1f share characteristics with M
in Fig. 1b). Leveraging this observation about memory encoding, the rest of this paper shows that the
properties of episodic retrieval, as envisioned in TCM, are sufficient to compute estimates of action
values q(a) by a rollout-like state sampling process. We further show that this hypothetical process
reflects knowledge of the cognitive map or model of the task, and specifically the SR (E. M. Russek
et al., 2017; Momennejad et al., 2017; Gershman, 2018; Piray & Daw, 2021)), suggesting that episodic
retrieval is a candidate mechanism for model-based or goal-directed decisions in the brain.

In the following sections, we examine in increasing levels of detail how value estimation can be
achieved via episodic retrieval. We begin by stripping down episodic memory of many of its defin-
ing properties by removing a number of algorithmic details from the original TCM formulation, each
of which corresponds to one such property. While this approach may seem overly abstracted at first, it
leads to the cleanest baseline instantiation of recursive retrieval as a sampling algorithm that estimates
action values in sequential decision problems. We then gradually reintroduce properties of episodic
memory, which allows us to systematically analyze how each of them confers a different advantage for
action evaluation and ultimately choice. These advantages include temporal horizon extension, one-
and few-shot learning, bias-variance trade-off, and sample efficiency improvement.

Independent samples from memory yield unbiased value estimates

To study how the episodic retrieval can be used for action evaluation, we start by making two sim-
plifying assumptions which will be relaxed in subsequent sections. The first assumption is that each
stimulus (state) is experienced many times during encoding: this is analogous to studying the same
word in multiple lists in a free recall task, or to the Plinko ball visiting a particular state multiple times
across many trajectories. We make this assumption at this moment for didactic purposes, acknowl-
edging that episodic memory is more commonly associated with low-sample regimes in which learned
stimuli are experienced once or at most a few times. The repeated exposure associates each stimulus
with a single context representation, obtained by combining the contexts across every presentation of
the same stimulus (see Fig. 1f for an example of composite representation in episodic memory). As
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shown by Gershman et al. (2012), this composite context is equivalent to the stimulus’ steady-state
(i.e., fully converged) SR.

The second simplifying assumption is that the retrieval of a stimulus does not affect the temporal
context. That is, during retrieval we set β = 0 and ρ = 1 in Eq. (1), leading to ci = ci−1 (this is
equivalent to removing the red arrows in Fig. 1g-i). Note that this simplification eliminates the model’s
ability to explain the contiguity effect. Additionally, we do not impose the constraint often present in
free-recall tasks that the same item cannot be retrieved multiple times. In this setting, retrieved stimuli
can be viewed as “samples” that are independent and identically distributed (i.i.d.).

With the two assumptions above in place, the predictions of this stripped-down TCM formulation are
that the set of retrieved stimuli are i.i.d. samples (second assumption) from the steady-state normalized
SR (first assumption) of the queried action (Fig. 2a). This observation suggests a potential use for
these samples in decision making. Specifically, an action can be evaluated by averaging the rewards
associated with the episodically retrieved samples from the SR:

q̂(a) ∝ 1

N

N∑
i=1

rTx(Si), (2)

where S1, S2, . . . , SN ∼ p(s) are samples from the normalized SR, i.e., p(s) = x
T
aM

|xT
aM|

x(s), x(Si) is the

one-hot feature vector for state Si (for which we some times use the shorthand xi), and ri = rTx(Si)
is the reward present in state Si. Thus, q̂(a) is obtained by averaging samples of ri.

Intuitively, the agent first resets the temporal context to the action to be evaluated (note that this elim-
inates any residual effect of recent history). The agent then retrieves a sequence of successor states
and their respective rewards (Fig. 2a). Eq. (2) shows that the average reward across all sampled states
is a proxy for the action value, as we originally defined it. Repeating such retrieval-based evaluation
for each candidate action can thus inform the agent to select the highest-valued action. Note this pro-
cedure is not derived from normative considerations (i.e., what memories an agent ought to retrieve);
rather, it is a direct prediction of TCM: given the assumptions in place, TCM predicts i.i.d. sampling
from the SR, retrieving states whose average reward is the normative action value. Our contribution
here is to highlight and express this prediction formally and to show that these samples can be used
straightforwardly to compute action values.

The action values estimated by this process depend directly on the associations learned during encoding
(i.e., the SR). In particular, the temporal context drift rate determines the similarity between the contexts
associated with two consecutive stimuli. During retrieval, this rate modulates the sharpness by which
retrieval is biased toward states occuring soon after the starting context. In RL terms, this amounts
to the temporal horizon of the SR, parameterized by the discount factor γ. This ultimately affects
the overall value estimated; depending on the discount factor, the computed value ranges between
(i) rewards sampled exclusively from imminent states (γ = 0, Fig. 2a,b), and (ii) rewards sampled
from all future states, with a preference for earlier states (γ > 0, Fig. 2d,e). Notably, the former
case (γ = 0) implements the evaluation required for bandit problems, in which action values depend
only on instantaneous rewards. Indeed, a special case of the current model corresponds to a class of
decision-by-sampling models that have been previously described and empirically tested in single-step
problems like bandits (e.g. Plonsky et al., 2015; Bornstein et al., 2017; Lieder et al., 2018). The latter
case (γ > 0) extends the i.i.d. decision-by-sampling approach to sequential problems. Unlike rollout-
based algorithms like MCTS, which sample states serially conditional on their predecessors to produce
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trajectories, this approach estimates action values by i.i.d. Monte Carlo sampling. Such sampling
is possible because the SR effectively “flattens” the tree-like set of future situations in a sequential
task to a set of individual future states weighted by their prevalence in the tree. Consequently, it
transforms sequential decision tasks into bandit problems studied previously, extending the findings
from sampling models to the sequential case.

sss s

a b c

d e f
Number of samples

Number of samples

Probability

Probability

s s s s

Fig. 2. Independent samples from memory yield unbiased value estimates. (a-c) Sampling
from a distribution with a short temporal horizon. Parameters: ρ = 1, β = 0, γ = 0. (a) An example
of querying an action (orange circle) through memory recall (cyan stars). si shows the ith stimulus
sampled, where the same state can be sampled multiple times. Greyscale colors indicate the sampling
probabilities. (b) Probability that a sample is drawn from each row of the Plinko board. (c) We simulate
an agent who evaluates two actions (at top-center state and the state immediately adjacent to the right)
using the procedure from Eq. (2), and then selects the action with the larger estimated value. The image
shows the fraction of maximum rewards (y-axis) expected as more samples are drawn (x-axis, shown
in log-scale) as a function of different numbers of rewards placed on the Plinko board. (d-f) As in a-c,
but using parameters: ρ = 1, β = 0, γ = 0.5. See the online article for the color version of this figure.

As more sampled rewards are averaged, the action value estimate approaches the truth, enabling better
decisions. However, more samples typically require more time and resources. This leads to the ques-
tion: how many samples should one draw for a decision? The answer depends on one’s goal. Accurate
action value estimation in our task entails dozens or hundreds of samples, as each sample provides
reward information about only one of various successor states. However, many fewer samples are
usually needed for action selection, as illustrated in the following two scenarios. First, if the value of
one action dominates the others (i.e. one action leads to much larger rewards than the others), it can be
identified with many fewer samples than needed to estimate all action values accurately. Second, if no
action value dominates the others, identifying the optimal action requires a large number of samples,
but the extra computation will not lead to a substantially larger payoff. Either way, a large fraction
of the available payoff can be achieved with relatively few samples (Fig. 2c,f): in Plinko, over 80% of
maximum available reward can be obtained with fewer than 10 samples, unless the available rewards
are extremely sparse (e.g., a single reward placed in the Plinko board). This prediction aligns with pre-
vious work demonstrating that surprisingly few samples are needed for effective decisions in bandit
problems (Vul, Goodman, Griffiths, & Tenenbaum, 2014); here, by extending the decision-by-sampling
approach we show that a similar observation applies to sequential problems as well.
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In sum, if retrieval does not update the temporal context, action values can be estimated straightfor-
wardly by sampling stimuli i.i.d. from episodic memory and averaging the corresponding rewards.
That is, in this parameter regime, TCM-SR embodies the SR’s strategy for forecasting future events by
temporal abstraction: it records long-run sequential contingencies experienced at encoding time, so
as to easily recapituate them by retrieval at choice time. However, unlike previous invocations of SR
in decision neuroscience and RL, this retrieval is accomplished by sampling individual future states
rather than by exhaustive summation. This brings temporally abstract prospection into contact with
episodic retrieval and decision-by-sampling models. The next section shows that episodic retrieval can
also lead to rollout-based prospective simulation.

The contiguity effect enables value estimation via rollouts

The previous section considered a simplified setting in which the retrieval of a stimulus does not affect
subsequent retrievals, giving rise to i.i.d. samples that the agent could average to obtain action values
estimates. However, a prominent feature of episodic memory is that consecutive retrievals are not
independent. Indeed, the simplifying assumptions from the previous section eliminate the model’s
ability to explain the contiguity effect, ubiquitous in list learning experiments. Thus, we now consider
a different parameter regime of TCM, in which stimulus retrieval does affect subsequent retrievals.
We focus initially on the extreme case where retrieval depends only on the immediately preceding
retrieved stimulus (i.e., we set β = 1 and ρ = 0 in Eq. (1) to yield ci = xi), while assuming that this
update is driven by a static, task-independent representation of each stimulus — another simplifying
assumption that we also relax in the last section. TCM operationalizes this setting by fully updating
the temporal context with the last retrieval, retaining no information retrieved before that. Thus, in
contrast to the i.i.d. setting, this setting produces correlated samples (forming a Markov chain), which
can also be used to estimate action values.

As previously, the temporal context drift rate has a direct impact on sharpness of the distribution
over retrieved states. In particular, a quickly evolving temporal context during encoding leads to the
learning of an SR with a low discount factor γ. In the extreme of γ = 0, the first retrieved memory is an
immediate successor of the considered action (becauseM = T1+γ1T2+· · · = T1 when γ = 0, Fig. 1b).
Upon retrieving the first memory and updating the temporal context, the second retrieved memory is
an immediate successor of the first sample (Fig. 3a). Repeating this sampling process recursively leads
to a rollout (in Plinko, this process amounts to a simulation of a trajectory through which the ball
might plausibly fall; Fig. 3a,b).

How can these samples used to estimate action values? As described in the RL literature (Tesauro &
Galperin, 1996; Coulom, 2006), the sampled rewards in a traditional rollout can be added to produce
an estimate of the action value:

q̂γ̃=1(a) ∝
N∑
i=1

rTx(Si), (3)

where S1, S2, . . . , SN are samples from the normalized SR with γ = 0, each represented by a one-hot
feature vector xi = x(Si), with p(S1 = s) = x

T
aM

|xT
aM|

x(s) representing the SR of the queried action,

p(S2 = s) = x
T
1M

|xT
1M|

x(s) representing the SR of the first sample, and so on. Note that each stimulus of
the trajectory S1, S2, . . . , SN is drawn from a different distribution.
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Intuitively, for each action being evaluated, the agent retrieves a plausible sequence of states and the
rewards associated with them. The total reward across all sampled states is an estimator for the action
value. This is equivalent to an agent recalling a previous study list, and evaluating its worth based on
the number of rewarded items it recalled. Again, this is a descriptive observation about TCM rather
than a normative prescription about memory: a specific parameter regime of TCM implies that stimuli
will be retrieved in sequences that correspond to a rollout in RL. Our contribution is to make this
observation explicit and note that such rollouts can be used to estimate action values.

Probability

Probability

s s s s

a b c

e

d

f g h
Number of samples

s s s s

Number of samples

Fig. 3. Recall-dependent context updates lead to rollouts. (a-d) Sampling from a distribution
with a short temporal horizon. Parameters: ρ = 0, β = 1, γ = 0. (a) An example sequence of
memory retrieved when initiating the temporal context as the top-center state (orange circle) through
memory recall (cyan stars). si shows the ith stimulus sampled. Greyscale colors indicate the sampling
probabilities. (b) Probability that a sample is drawn from each row of the Plinko board. We illustrate
these distributions for three values of pstop (0.05, 0.5, and 1), each leading to an effective temporal
discount factor γ̃ = 1− pstop. (c) We simulate an agent that evaluates two actions (at top-center state
and the state immediately adjacent to the right) using the procedure from Eq. (4), and then selects the
action with the larger estimated value. The image shows the fraction of maximum rewards (y-axis)
expected as more samples are drawn (x-axis, shown in log-scale), setting pstop = 0.05 as a function of
different numbers of rewards placed on the Plinko board. (d) Probability that a sample is drawn from
each row of the Plinko board, as a function of the distance to the previously sampled row. (e-h) As in
a-d, but using parameters: ρ = 0, β = 1, γ = 0.5. See the online article for the color version of this
figure.

Note that each rollout incorporates all future rewards with equal weight. This leads to an action value
estimate for a unit discount factor (which we denote q̂γ̃=1(a)), even though the sampling distributions
specified by the normalized SR are encoded with γ = 0. This happens because, by retrieving n con-
secutive memories and summing the rewards according to Eq. (3), one is concatenating n one-step
predictions (i.e., γ = 0), which is equivalent to performing one n-step prediction (i.e., γ̃ = 1). How-
ever, weighing all future rewards equally is not always desirable or even possible, as it would require
each rollout to continue forever. We circumvent this issue by positing a fixed probability of interrupt-
ing the retrieval process at any moment, denoted pstop. The larger the interruption probability, the less
likely is the rollout to continue far into the future. This probability, in turn, allows the agent to control
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the effective discount factor of the constructed values during retrieval:

q̂γ̃(a) ∝
N∑
i=1

rTx(Si), (4)

where S1, S2, . . . , SN are samples from the normalized SR with γ = 0. The effective discount factor
is given by γ̃ = 1 − pstop, where pstop is the interruption probability (see Methods for details). Using
this sampling scheme, we can measure the empirical distribution that each sample is drawn from each
row for different values of pstop (Fig. 3b). This confirms the relationship between pstop and the effective
discount factors during retrieval, γ̃.

The reliability of a value estimate is again proportional to the number of samples and rollouts per-
formed. As before, over 80% of maximum available reward can be obtained with fewer than 10 samples
(i.e., one full rollout), unless the available rewards are extremely sparse (e.g., a single reward placed
in the Plinko board; Fig. 3c). Note that since each retrieved item promotes the retrieval of successor
states, this regime explains part of the contiguity effect: it predicts the recall of items encoded after,
but not before, the just-recalled item (Fig. 3d).

All this raises a potentially confusing notational and conceptual point. The current model now involves
two discount factors, because it uses serial retrieval to extend the temporal range of the encoded associ-
ations. The parameter γ refers to the timescale of associations formed when building an SR at encoding
time. Sampling directly from this encoded SR i.i.d. (as in the previous section) estimates action values
q reflecting that discount factor (i.e., in which future rewards lose value exponentially with rate γ;
this happens in TCM-SR because the corresponding states are less likely to be retrieved). However, by
performing iterative sequential retrieval from the same model, it is possible to extend this timescale at
retrieval time to give more weight to later rewards, i.e. to estimate values reflecting a larger discount
factor than the encoding γ. We denote the effective discount factor achieved at retrieval by γ̃. Using
rollouts from a one-step model (γ = 0) to compute long-run action values is a familiar case of this
construction; we develop further examples next.

Going beyond the extreme case of γ = 0 studied above, we now study the case of a general encoding
timescale γ > 0. Here, the first retrieved item is a sample from the normalized SR at the candidate ac-
tion, and each subsequent recall is a sample from the SR of the previous sample (Fig. 3e-h). Sequential
retrieval again resembles a rollout, but due to the longer timescale of the SR, two consecutive samples
can be separated by multiple rows. We call such a jumpy, state-skipping rollout a generalized rollout.
To estimate action values using generalized rollouts, the sampled rewards can again be added to pro-
duce a sample of the cumulative return, exactly as in Eq. (4). Moreover, by specifying an interruption
probability, the effective discount factor produced during retrieval can be controlled and corresponds
to γ̃ = γpstop + (1− pstop) (see Methods for details).

Why is this useful? Just as rollouts construct long-run predictions from a one-step model, generalized
rollouts construct longer-run predictions from an SR. The timescale of the encoded world model may
not be under the control of the agent. For example, it may be constrained by biological factors such as
those governing neural plasticity (e.g., the temporal decay of intracellular concentrations that main-
tain eligibility traces) and/or by the statistics of experience, such as the timescales of the trajectories
that they encounter. By contrast, we posit that pstop is likely under the control of the agent. A chess
player, for example, can decide how much time to spend simulating a particular sequence of moves
(E. Russek, Acosta-Kane, van Opheusden, Mattar, & Griffiths, 2022). This highlights a remarkable fea-
ture of episodic memory: even if the learned associations at encoding have a short timescale (in the
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extreme, a myopic SR with γ = 0, equivalent to a one-step transition model of the world), the retrieval
phase can extend this timescale to implement any desired discount factor simply by continuously sam-
pling successor memories. The effective discount factor thus increases as the simulated trajectories
lengthen. This allows the agent to decouple the discount factor from timescale of the world model.

In sum, we have shown that when each retrieval completely resets the temporal context, action values
can be estimated by accumulating sampled rewards drawn sequentially from episodic memory. This
procedure implements a generalized rollout algorithm whose “skippiness” γ is specified by the drift
rate at encoding, and whose effective discount factor γ̃ can be controlled by the probability of inter-
rupting the retrieval process. Overall, the case of rollouts studied here, as well as the i.i.d. case studied
previously, represent two distinct modes of operation of episodic memory, which TCM formalized as
extreme settings of the parameter space. Next, we consider intermediate, more general — and likely
more realistic — settings.

Data from free recall experiments suggest an intermediate regime

The previous sections examined two different strategies for predicting future events, corresponding to
extreme settings in parameter space of TCM. The first section established that when retrieval does not
modulate the temporal context, action values can be estimated via i.i.d. sampling from a model whose
learned associations span future states over some temporal horizon. The second section showed that
if retrieval completely resets the temporal context, sequential retrieval chains together predictions to
extend this horizon, and action values can be estimated via generalized rollouts. Yet behavioral data
from memory tasks suggest that human memory operates in neither of these two extreme modes,
but rather displays signatures of both (Howard & Kahana, 2002). Indeed, the best fitting parameters
describing context update in free recall experiments usually fall between the two extremes (i.e., 0 <
β < 1 in Eq. (1)), suggesting that each retrieval updates the temporal context but only partially. We
now consider this intermediate regime and show that here, too, episodic memory can help compute
action values.

The partially-updated temporal context at retrieval can be understood as a mixture of the current
test context and the encoding context. For instance, immediately after the first retrieval, the context
mixture enables sampling from either the SR of the queried action (the original context), or from the
SR of the first sample (the retrieved context). Thus, the second sample either starts a new rollout with
probability 1 − β, or continues an existing rollout with probability β. Hence, β interpolates between
the two distinct settings discussed above. Each action can be evaluated according to:

q̂γ̃(a) ∝ β

N∑
i=1

rTx(Si), (5)

where β > 0 and S1, S2, . . . , SN ∼ p(s) are samples from the normalized SR p(s) corresponding to
some effective discount factor γ̃. Note that this estimator is only unbiased given an infinite number of
samples and otherwise an underestimate (see Methods for details); however, a relatively large number
of samples is sufficient for an estimate that’s close to the truth (Fig. 4c,f).

The same insights gained in the previous sections apply here, including extension of the effective dis-
count factor with a larger β (Fig. 4b,e) and the sample efficiency during decision making (Fig. 4c,f).
Notably, due to the partial updating, implemented by setting ρ = β = 0.5, the effective discount fac-
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tors as computed in the generalized rollout case (i.e., fully updating the temporal context with the last
retrieval with ρ = 0, β = 1; lines in Fig. 4b,e) no longer capture the empirical sampling distributions
under the same pstop unless pstop = 1 (dots in Fig. 4b,e). Recall that the larger the β, the further into the
future later samples reach: i.e., β controls the degree to which the timescale at retrieval is extended
(Fig. 4a,d). Thus both increasing β and decreasing the interruption probability extend the agent’s effec-
tive temporal horizon for action evaluation, with the exception that the resultant sampling distribution
may not correspond to any specific γ̃ as it is not necessarily an exponential distribution (e.g. red dots
in Fig. 4b).

Hence in the more realistic setting of partial context updates, action values can still be estimated from
retrieved episodic samples. This suggests that by modulating β (i.e. how drastically context is shifted
to reflect each new sample), the agent can modulate its reliance on temporal abstraction vs construc-
tive, rollout-based simulation, allowing it to balance the costs and benefits of these evaluation regimes
depending on circumstances. This is similar to other examples in which, it has been argued, the brain
adjusts its decision computations due to similar cost-benefit tradeoffs (Daw, Niv, & Dayan, 2005; Kera-
mati, Dezfouli, & Piray, 2011; Nicholas, Daw, & Shohamy, 2022).

All simulations so far only consider the case of unlimited experience (i.e., multiple rounds of encoding;
sampling from a converged SR). The next section extends our predictions to settings when only limited
experience is available.

a b c

e fd

s s s s

s s s s

Probability

Probability

Fig. 4. An intermediate regime between i.i.d. sampling and rollouts. (a-c) Parameters: ρ = 0.5,
β = 0.5, γ = 0. (a) An example sequence of memory retrieved when initiating the temporal context
as the top-center state (orange circle) of a Plinko board. si shows the ith stimulus sampled. Greyscale
colors indicate the sampling probabilities. (b) Probability that a sample is drawn from each row of
the Plinko board, in this intermediate sampling regime (dots) versus generalized rollout (lines, same as
Fig. 3b) given the same discount factors. We illustrate these distributions for three values of pstop (0.05,
0.5, and 1), each leading to an effective temporal discount factor γ̃ = 1 − pstop. (c) We simulate an
agent that evaluates two actions (at top-center state and the state immediately adjacent to the right),
and then selects the action with the larger estimated value. The image shows the fraction of maximum
rewards (y-axis) expected as more samples are drawn (x-axis, shown in log-scale), setting pstop = 0.05
as a function of different numbers of rewards placed on the Plinko board. (d-f) As in a-c, but using
parameters: ρ = 0.5, β = 0.5, γ = 0.5. See the online article for the color version of this figure.
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With limited experience, retrieval is based on trajectories

Our simulations thus far assumed that the retrieval simulations we describe are preceded by an ex-
tensive encoding phase in which each state (location on the Plinko board) is encoded a large number
of times. With repeated exposure, the associations formed between stimuli and contexts converge to
the true steady-state SR (Gershman et al., 2012). Yet episodic memory is generally believed to be most
useful, and perhaps most frequently used, when our experience with stimuli is limited. Indeed, this
belief underlies most previous models of decision making informed by episodic memory (Lengyel &
Dayan, 2007; Gershman & Daw, 2017; Ritter et al., 2018). We investigate this low-sample setting be-
low, showing how unbiased value estimates are possible from states sampled along few experienced
trajectories. In this case, the encoded model approximates the true task dynamics using this sparse set
of encoded trajectories. Apart from that, the flexible prospection properties of the model remain the
same.

Consider first that the agent has encountered only a single trajectory. TCM’s account of encoding
this trajectory into episodic memory is equivalent to the RL account for learning an SR from this
same experience (e.g., via temporal difference learning; Gershman et al., 2012). This forms associations
corresponding to the sequential contingencies experienced by the agent. If this encoding is followed
by TCM retrieval, only states along the experienced trajectory will be retrieved (Fig. 5a, “Trial 1”), with
states early in the trajectory having higher retrieval probability due to the temporal discount factor γ.
Each subsequent stimulus is drawn from a distribution that depends on the degree of context update
β. As before, this leads to a sampling scheme resembling i.i.d. sampling, rollouts, or both: but over a
sparsely populated transition model consisting of only the encoded trajectory.

The extension to multiple experienced trajectories is straightforward. For instance, if an action has been
executed twice, both trajectories should be encoded in the learned SR. Here, states belonging to either
trajectory can be retrieved, with dynamics again depending on the degree of context updating (Fig. 5a,
“Trial 2”). The learned SR comes to represent a composite of possible trajectories as experiences expand,
eventually converging to the steady-state SR (Fig. 5a, right). Thus, TCM-SR predicts that retrieval is
based on experienced trajectories when experience is limited; as the agent acquires more experience,
our model predicts the limit cases studied in previous sections.

Note that the TCM predictions above share commonalities with previous proposals for how episodic
memory might be used for decision making (Lengyel & Dayan, 2007; Gershman & Daw, 2017). In
particular, Gershman and Daw (2017) proposed that agents store individual trajectories in memory,
such that when a familiar state is encountered, action values can be computed by summing the rewards
along a trajectory and averaging across trajectories: the very prediction given by β = 1 and γ = 0 in
TCM-SR. However, our model also predicts sampling along novel trajectories. e.g. given trajectories
ABDE and ACDF, our model predicts that rollouts along ABDF or ACDE are possible. For more general
parameter settings, our model predicts state-skipping (if γ > 0) or backward jumping (if β < 1).
Furthermore, states in the beginning of an experienced trajectory (predictions of the near-future vs.
distant-future) are prioritized for retrieval due to discount factor. These differences result from the
critical assumption of our model that agents retrieve individual states, rather than trajectories.

In sum, when limited experience is available, action values can be estimated by sampling states along
(a composite of) previously experienced trajectories, facilitating few-shot estimation of action values
as formalized in previous models. The next section considers additionally how preferentially retrieving
emotionally salient stimuli, as observed empirically, can lead to faster evaluation.
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Emotional modulation of memory yields bias-variance trade-off

The sections thus far formalize how temporal contingencies at encoding affect retrieval at a later time,
and why retrieval dynamics in the TCM-SR are suited well for action evaluation. Yet, so far we have
ignored another prominent feature of episodic memory that ought to affect retrieval-based evaluation
during decision making: the psychological impact of states that are rewarded, compared to those that
are not.

Episodic retrieval is strongly affected by signs that some stimuli are more important than others. For
example, in the phenomenon of value-directed remembering, memory for high-reward stimuli is better
than memory for low-reward stimuli (Stefanidi, Ellis, & Brewer, 2018). Even when reward is not sig-
nalled overtly, signals that some stimuli should be prioritized promotes their retrieval (Mather, Clewett,
Sakaki, & Harley, 2015). In fact, stimuli that attract processing resources are remembered better even
when retaining them in memory is not obviously goal-congruent. One well-known example is that
emotionally salient stimuli are retrieved preferentially even when participants have no external incen-
tive (Yonelinas & Ritchey, 2015). Formal models of emotionally enhanced memory have attributed the
effect either to a differential learning rate (Talmi et al., 2019; Cohen & Kahana, 2019) or differential
information decay (Zhou, Guo, & Yu, 2020) during encoding. Given that emotional salience modulates
episodic memory, it follows that it should also modulate action evaluation in TCM-SR. We examine
this issue below. For present purposes, we gloss over the many differences between emotional stimuli,
prioritized stimuli, and rewards and punishments with varied magnitude, referring to all of them as
’emotionally salient’ or ’important’ states, and speak generally about ’emotional modulation’ to refer
to their effect on memory (Talmi, Kavaliauskaite, & Daw, 2018).

To study the effect of emotional modulation in the Plinko game, we first note that when there is a
single state with nonzero reward, the optimal actions are the ones capable of reaching that state. But
if samples are prioritized based purely on temporal contingencies, that key state will be sampled very
rarely among the many background states, and the agent might need a large number of samples to
discover which actions are most likely to obtain it. Indeed, this sort of “needle in the haystack” effect
accounts for the relatively poor performance for TCM-SR with few samples in our simulations thus
far (Figs 2c,f; 3c,g; 4c,f). While performance can be improved by drawing more samples, this longer
deliberation can be costly in terms of time and effort.

A potentially more effective way to find the best action might be to bias sampling toward the most
relevant states (here, the goal), even if biasing the sampling procedure might lead to biases of the
estimated payoff q (Lieder et al., 2018). Here we suggest that such favorable biasing can be accom-
plished by (and, conversely, helps to justify) emotionally modulated retrieval, where we operationalize
emotionally salient states as those with unusually large (or small) rewards.

Computationally, an emotionally modulated retrieval results in a bias-variance trade-off : preferential
retrieval of emotionally-salient stimuli disproportionally influences the final evaluation, resulting in an
estimation bias, that is, either an over- or an under-estimation of true action values. When most samples
come from the smaller set of “important” states, samples are less varied, resulting in lower estimation
variance. Consequently, fewer samples are required to be reasonably precise and fewer retrievals are
needed to arbitrate between competing actions. Nevertheless, the eventual decision can be suboptimal,
in the sense that the action selected may not be the one associated with most reward. The larger the
retrieval preference towards emotionally-salient stimuli, the larger the estimation bias and smaller the
variance – thus, a bias-variance trade-off. A similar observation has been previously made in bandit
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settings (Lieder et al., 2018). Here, we extend this class of Monte Carlo models to sequential tasks,
and show that the same observation applies. The main contribution of this section is that TCM-SR
allows us to expose how action evaluation in sequential tasks relates to episodic memory, helping to
rationalize emotional memory effects.

To illustrate this effect in our Plinko environment, we follow previous modeling work and employ a
higher learning rate to encode emotionally salient stimuli into memory (Talmi et al., 2019). This means
that the learned SR will be skewed towards the rewarded states (Fig. 5b). Consequently, in the Plinko
game, states associated with rewards are sampled more frequently during retrieval (Fig. 5d, right).
Without emotional modulation, rewarded states would have been sampled only rarely (Fig. 5d, left).
The consequences of operationalizing emotional modulation in TCM-SR such that rewarded states are
encoded with a larger learning rate are threefold. First, the action value estimates no longer converges
to the correct action values. Second, convergence will be faster, resulting in a bias-variance trade-off
(Fig. 5f, compare with Fig. 5e). Third, if the agent selects actions according to this regime, a higher
fraction of rewards can be obtained for a given number of samples (Fig. 5c), suggesting that biased
retrieval can be more favorable, in terms of ultimately guiding choice, than unbiased retrieval.

Retrieving a learned context allows backward sampling

Starting from a simplified model of episodic memory, the previous sections examined the effect of
various known properties of episodic memory on action evaluation and choice. A key insight of the
model is that forward contiguity gives rise to predictive state rollouts. However, in list learning data,
contiguity also runs in reverse: stimuli are also more likely to be recalled if they were experienced
before as well as after the just-recalled stimulus (Fig. 1c). From the perspective of mental simulation,
this property seems counterintuitive: in our example, it corresponds to rollouts in which the Plinko
ball, impossibly, runs uphill. Here we suggest that this type of reversible simulation is actually adaptive
for many tasks other than Plinko.

The reason our simulations thus far reproduced only the forward contiguity (Fig. 3d,h) is because of
one final simplification that have not yet been re-examined. We have assumed that when a memory
is retrieved, it updates the temporal context with a static, task-independent representation of the re-
trieved stimulus (xt in Eq. (1); Fig. 1h). In contrast, the original TCM model explains the two-sided
contiguity effect by positing that context update caused by retrieving a stimulus is not static and task-
independent; rather, memory retrieval updates the temporal context with a dynamic, task-dependent
representation, a representation that changes each time that stimulus is experienced. In particular,
TCM assumes that the temporal context is updated by a retrieved context associated with a given stim-
ulus, instead of being updated by the stimulus representation xt itself. Formally, the temporal context
is updated during retrieval according to ci = ρci−1 + βcIN

i , where cIN
i = Mxi, i.e., cIN

i is the column
of the SR indexed by the stimulus. Importantly, this modification only concerns retrieval; it does not
affect encoding, where the context still evolves according to Eq. (1) with cIN

i = xt. Thus, whenever
stimulus S is retrieved, the temporal context is updated by the context associated with S, which is
similar to the contexts associated with both subsequent stimuli and preceding stimuli. This results in
the classic, bidirectional contiguity effect, often reported in list learning experiments (Fig. 6a,b).

What might be the adaptive purpose of a bidirectional pattern of retrieval? This pattern might appear
counterintuitive since an action value is determined by the expectation of future rewards. Indeed, in
our previous simulations, action values were estimated via strictly forward-looking rollouts, i.e., in
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Fig. 5. Retrieval with limited experience and with emotional modulation. (a) Each pair of pan-
els represent a ’trial’ where the agent observes the trajectory that follows a single action (left, each
visited state denoted in x’s, and each rewarded state in *) and the ensuing learned SR after conver-
gence (γ = 0.9) (right). The impact of accumulated experience is shown by comparing Trials 1, 2, 3,
4, and Trial→ ∞, presented in the five pairs of panels going from left to right, all without emotional
modulation (α = 0.01). (b) The same as (a) but now with emotional modulation (α = 0.01 for unre-
warded states and α = 0.5 for rewarded states). (c) We simulate an agent that evaluates two actions
(at top-center state and the state immediately adjacent to the right) using the procedure from Eq. (2),
with (dashed lines) and without emotional modulation (solid lines). The agent selects the action whose
estimated value is larger. The image shows the fraction of maximum rewards (y-axis) expected as more
samples are drawn (x-axis, shown in log-scale), setting pstop = 0.05 as a function of different numbers
of rewards placed on the Plinko board. (d) Average fraction of sampled states with (r.) and without
a reward (n.r.). Error bars indicate s.e.m. across experiments. Left: no emotional modulation. Right:
with emotional modulation. (e-f) Bias and variance convergence based on a single observation for
γ = 0.9 without emotional modulation (e) and with modulation (f). Top: mean bias of estimates based
on 10, 100, 1000 samples. Bottom: mean discrepancy between the true value and the estimated value
as a function of number of samples on a log scale. See the online article for the color version of this
figure.
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terms of future rewards alone. With a bidirectional pattern of retrieval, sampling no longer respects
the temporal order of events experienced during encoding. We argue that, in most realistic tasks, the
experienced temporal ordering of events is only one of all possible orderings; most state transitions
experienced in one order can also be traversed in the reverse order. Although this is never the case in
Plinko (since gravity strictly pulls the ball downward), it is often the case in tasks like spatial navigation.
In other tasks (like chess), many actions are reversible while some others (e.g. capturing a piece) are not.
An agent operating in the low-data regime can leverage this reversibility to infer, after experiencing
state A followed by B (A→ B), that transitioning from B to A (B→ A) is likely also possible. Similarly,
given only a few experiences in an environment, the agent can infer an exponentially larger number
of unexperienced but likely possible trajectories (e.g., extrapolating A→ B→ C to not only C→ B→
A, but also A → B → A, C → B → C, etc), which in turn generalizes action evaluation. Ideally, the
relative strength of forward vs. reverse continguity (biased forward in classic list learning data) would
reflect the chance that a newly encountered action is reversible; this might, in turn depend on context.

As an example, consider an experience where an action is followed by A→ B→ C, and that the agent
retrieves stimulus B. The generalized rollout studied previously permits a subsequent sample of C but
not A due to its strictly forward-looking nature. By assuming that the retrieved stimulus updates the
temporal context with a retrieved context, the next retrieval can be either C or A, consistent with the
assumption of reversibility. This can improve sample efficiency, as multiple (plausible) sequences of
events can be simulated despite having encoded only a single experience.

To simulate this scenario, we modified our Plinko task to eliminate gravity so that the agent can move
diagonally in any direction, and it may start from any board position. The agent’s goal is to select an
adjacent state to move into, after which each subsequent states is selected at random from between
the neighbors of the previous state. In this “reversible Plinko”, the value of each state is affected by
all rewards on the board, with nearby rewards contributing a higher weight to the value. If an agent
only experiences top-to-bottom trajectories in the reversible Plinko task, and uses a strictly forward-
looking rollout to evaluate actions, the resulting values will correspond to values under the gravity-
bound Plinko rules. While they are in line with the agent’s experiences, they do not match the true
values under the reversible Plinko rules (Fig. 6d). A retrieved context aids the agent to go beyond
unidirectional experience and correctly estimate the values for the reversible Plinko (Fig. 6c). Hence
we suggest that the ubiquitous human tendency to recall stimuli in the opposite order than experienced
may allow a more efficient use of one’s limited experience.

Discussion

Summary of Findings

We proposed TCM-SR, a process-level model of how episodic memory informs decision making. What
is extraordinary about this model is that it applies — essentially unmodified — a standard theory of
episodic memory function to an entirely different setting: that of sequential decision tasks. The re-
sulting hybrid implements and extends a prominent class of theories of how the brain makes sequen-
tial decisions. The proposed grounding of decision variables and choices in specific episodic retrieval
dynamics brings to bear much of our knowledge of episodic memory, including a richly developed
behavioral and neural framework. It also suggests many testable predictions for choice manipulation
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Fig. 6. Retrieving a learned context allows backward sampling. (a) An example sequence of
memory retrieved when initiating the temporal context with the state shown as an orange circle, and
using γ = 0.5. si shows the ith stimulus sampled. Greyscale colors indicate the sampling probabilities.
(b) Contiguity curve implied by the sampled states with respect to their corresponding row number
given γ = 0.5 (zero omitted). Note that both forward and backward sampling are predicted. (c)
Distribution of estimation error using the SR as the feature-to-context association matrix. Errors are
computed as the difference between the sampling-based value estimation and the ground-truth value
in a reversible MDP (i.e., a grid world rather than a Plinko game). (d) As in (c), but using the identity
matrix as the feature-to-context association matrix (as in the previous simulations). See the online
article for the color version of this figure.

via manipulations known to affect memory encoding or retrieval. Conversely, the theory rationalizes
seemingly arbitrary features of episodic memory — such as emotional memory effects and the bidirec-
tionality of temporal contiguity — which appear counterintuitive from the traditional RL perspective,
but turn out to be adaptive for choice.

Our model inherits from TCM a drifting temporal context that integrates the agent’s recent experience
during memory encoding and guides retrieval. The agent evaluates actions by retrieving memories that
correspond to task’s states and the rewards associated with them, according to the prediction of TCM.
As we have shown, such recursive retrieval implements a parameterized family of sampling algorithms
that, when applied to sequential decision problems, gives rise to action value estimates. Our model
thus provides a novel mechanistic account of model-based evaluation, incorporating aspects of both
SR theories and iterative rollout-based planning, the hallmarks of both of which have been previously
seen in neural and behavioral data (Momennejad et al., 2017; Stachenfeld et al., 2017; E. M. Russek et
al., 2017; Momennejad, Otto, Daw, & Norman, 2018; Mattar & Daw, 2018; E. M. Russek et al., 2021; Liu,
Mattar, Behrens, Daw, & Dolan, 2021). Crucially, many previous ideas (both theoretically justified or
empirically observed) about the role of episodic memory on decision making arise naturally as subcases
of our model.

The theoretical derivations and simulation results we presented established that TCM can compute
decision variables in stylized tasks, but we have not focused on applying these insights to specific ex-
periments. This is because the two classes of theories our account merges — TCM and SR — are already
supported well in each domain, with large bodies of experiments and simulations, which we do not
repeat. In particular, our model inherits TCM’s account of a panoply of list learning phenomena (e.g.,
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primacy, recency, and contiguity effects; Howard & Kahana, 2002; Sederberg et al., 2008; Polyn et al.,
2009; Talmi et al., 2019). Meanwhile, since its strategy encompasses model-based and SR-based choice,
it can explain the full range of behavioral phenomena that suggest that the brain recruits cognitive
maps or world models in decisions (e.g., nimble replanning, revaluation and transfer, and credit as-
signment in multi-step MDPs; Daw et al., 2005; Keramati et al., 2011; E. M. Russek et al., 2017). It also
explains occasional slips of action consistent with the use of an SR (Momennejad et al., 2017; Piray &
Daw, 2021). Furthermore, the decision-time sampling process is broadly consistent with neural results
showing that these types of model-based choices are at least sometimes accompanied by replay or re-
instatement reminiscent of rollouts (Pfeiffer & Foster, 2013; Momennejad et al., 2018; Mattar & Daw,
2018).

TCM-SR produces a number of new and untested predictions in both the decision and memory do-
mains. We have argued that recall biases like contiguity and emotional memory enhancement have
corresponding effects on choices. If deliberative evaluation is indeed grounded in free recall, these de-
cision effects should be quantitatively comparable to their counterparts measured in list learning, that
is, model fits should reveal they reflect the same within- and between-individual best-fitting parame-
ters. Additionally, other manipulations that affect memory, like proactive and retroactive interference,
should also have concomitant effects on decisions via enhancement or suppression of particular states
and/or outcomes. Conversely, the rationalization of these parameterized memory effects as enabling
more efficient choice in various settings suggests that the parameters governing them are potentially
malleable, adapting to the statistics of the study material to optimize choice (Nicholas et al., 2022).
For instance, when states or study items reflect non-reversible environmental dynamics, a rational RL
agent would be expected to dial back the reversibility assumption when learning an SR. In turn, this
may also attenuate the backward contiguity effect as measured via memory recall. In another exam-
ple, the usefulness of emotional memory enhancement (Fig 5) at improving choices strongly depends
on the statistics of the emotionally salient rewards, such as their sparsity. If the degree of emotional
enhancement is normatively adjusted to reflect its circumstantial suitability, this may also impact mem-
ory. This line of reasoning may suggest an explanation for findings in the memory domain showing
that these effects are modulated by how emotional and neutral items are clustered during study (Talmi
et al., 2019).

Successor Representation and Generalization to Sequential Decision Prob-
lems

Our account is consistent with a class of models that use a handful of selective samples to construct
decision variables (Plonsky et al., 2015; Bornstein et al., 2017; Lieder et al., 2018). While these models
address a number of empirical phenomena in choice, and suggest a broad analogy with episodic recall,
they consider only the special case of one-step decision problems and incorporate few insights about
known episodic memory mechanisms. We argue that incorporating the effects of contiguity, estab-
lished in episodic memory research, is key to extending sampling models beyond bandit problems into
the sequential realm — a broader, more realistic, and more challenging classes of decision making prob-
lems. Bandit-like evaluation then arises as a special case in our model, allowing it to both incorporate
the results from previous models while extending many of these ideas (like bias-variance tradeoffs in
the small-sample domain) to the sequential domain.

Another crucial ingredient for generalizing from one-step bandits to sequential decision problems is
the successor representation (SR). Prior work suggests the SR is biologically plausible to learn, given its
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ability to explain patterns in human behavior (Momennejad et al., 2017; E. M. Russek et al., 2017) and
in the activity of hippocampal neurons (Brea, Gaál, Urbanczik, & Senn, 2016; Stachenfeld et al., 2017;
Garvert, Dolan, & Behrens, 2017). Building on the previously established equivalence between TCM
encoding and SR learning (Gershman et al., 2012), our model extends the insight to formalize, for the
first time, how TCM retrieval amounts to sample-based action evaluation in sequential settings. This
temporally extended sampling process marks a departure from the canonical view in SR models from
both neuroscience and AI, where state values are instead computed instantaneously via a dot product
v = Mγr (Dayan, 1993; Momennejad et al., 2017; E. M. Russek et al., 2017). Apart from drawing
a connection with episodic retrieval, our sampling variant places it in the context of rollout-based
models, allows the model iteratively to construct forecasts beyond its innate temporal scope.

Relation to Existing Models

Episodic Control

Previous episodic control models in RL have often been stylized in design, treating “episodic” memory
chiefly as a store of individual instances. Our model improves on them by incorporating known mecha-
nistic details of episodic memory. For example, a recent model of this class assumes that action values
are computed by considering all relevant trajectories the agent has experienced (Gershman & Daw,
2017). In contrast, TCM-SR assumes that trajectories are only encoded indirectly via state-context as-
sociations, while maintaining the ability to simulate rollouts during retrieval. The two achieve similar
action values, except in cases where our model retrieves rollout samples by merging different trajec-
tories. Importantly, our model explicates the process of retrieval, predicting that (1) individual states
rather than trajectories are retrieved, and (2) retrieved samples may skip over intermediate states. Fu-
ture work should investigate whether these predictions better describe how humans evaluate actions.

Episodic vs. Model-Based Evaluation

Previous work has often distinguished between at least two types of decisions, model-based (goal-
directed, deliberative) and model-free (habitual, automatic) (Daw et al., 2005). It remains unclear,
though, both what is the exact neural and computational basis for the planning-like behaviors as-
sociated with model-based control, and whether any contributions of episodic memory to choice are
distinct from this. The recruitment of constructive rollouts in our model suggests an intriguing possibil-
ity that what has been attributed to model-based evaluation might be wholly or partially explained by
episodic retrieval. Several lines of empirical results support this hypothesis: patients with hippocam-
pal damage tend to exhibit a lower degree of model-based control (Gutbrod et al., 2006; Vikbladh et
al., 2019); the hippocampus is often active in tasks requiring model-based control (Bornstein & Daw,
2013); and finally, inactivating the hippocampus in rats causes their behavior to shift from model-based
to model-free (Miller, Botvinick, & Brody, 2017).

All this casts doubt on the influential hypothesis that episodic control represents a distinct “third way”
that departs from the model-based vs. model-free dichotomy (Lengyel & Dayan, 2007). Instead, TCM-
SR predicts that episodic retrieval can give rise to evaluations resembling either episodic or semantic
model-based control, depending on the amount of experience the agent has been able to accumulate,
which determines the sparsity of its memory representation. Given ample experience, like a world
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model, SR only retains statistical commonalities across experience, and thereby facilitates model-based
rollouts for action evaluation. This is consistent with the complementary learning systems account
whereby semantic representations are obtained by extracting regularities across individual experiences
via a process of consolidation (O’Reilly, Bhattacharyya, Howard, & Ketz, 2014; Kumaran, Hassabis, &
McClelland, 2016). When experience is limited, SR represents individual trajectories, and recall largely
follows them as experienced. Therefore, despite different formalizations, TCM-SR in fact agrees in
spirit with a prediction of the earlier model (Lengyel & Dayan, 2007) that agents might rely more
on evaluations grounded in distinct episodic records when experience is limited, giving way to control
based on a more statistical model as more experience is gathered. Together, the empirical and modeling
evidence suggest a close link between episodic and model-based evaluation as a function of experience.
Importantly, these considerations point to the importance of future investigation in a memory regime
that has not seen much study in list learning: how episodic recall is affected by repeated exposure
to lists with overlapping items (Gershman et al., 2012), analogous to the hypothetical transition from
individual trajectories to an SR in our model.

Additional computational considerations

TCM has been extended in a series of successor models, such as TCM-A (Sederberg et al., 2008) and
CMR (Polyn et al., 2009). These extensions are all compatible with our approach. Indeed, the additional
features of memory addressed there — particularly clustering of recall not just by temporal context but
also semantic and source-memory similarity — may have unappreciated consequences in the decision
domain that TCM-SR does not yet address.

A major computational simplification of our model is that we treat candidate decisions as only a single
choice made at the first step, after which the model predicts further states as though the task played
out passively, like a falling Plinko ball. For most sequential decision tasks, such as mazes, actions must
additionally be chosen at each subsequent step, and these choices impact the value of the action at the
first step (Sutton & Barto, 2018). Like other SR-based models, our present model does not fully solve
this broader class of tasks. That said, the RL literature typically considers the action evaluation problem
our model does solve (termed “policy evaluation” in the RL literature) to be the key subproblem for
addressing the more general policy optimization problem. Critically, even in a task where every step
involves a decision, an SR or other model can learn the world’s dynamics under a particular assumption
about which actions are chosen, called a policy. This turns a problem with decisions at every step to one,
like Plinko, in which the state evolves passively (because subsequent decisions are assumed known).
In this way, the agent can evaluate the consequences of any candidate action choice at any particular
step, temporarily assuming the others are fixed. This local “policy improvement” process can iterate,
with the SR continually relearned, recomputed, or adjusted, to reflect improved policies as learning
proceeds. Future work could address a number of alternative approaches to this problem, including
nonlinear SR variants that approximate maximization at intermediate steps (Piray & Daw, 2021), or
rollout/retrieval dynamics that include some degree of maximization biasing the choice at each rollout
step (E. M. Russek et al., 2017), similar to traditional value iteration algorithms.

To conclude, the contribution of TCM-SR is in bridging two distinct families of theory and cognition,
each explaining, but hitherto separately, a large body of empirical data. We have suggested how to
address decision problems using the tools of memory research, and how to apply normative insights
from decision problems back to emory mechanisms. By doing so, and pointing to a number of possible
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new avenues rife for exploration, we hope to bring research literatures that have evolved separately
closer to each other.
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Methods

Task Details

We wish to formalize how action values in sequential decision problems can be estimated via episodic
memory samples, taking into account several known properties about retrieval dynamics in free-recall.
We illustrate this process with a temporally extended game called Plinko (Fig. 1a). This game is an
analogy to a generic sequential decision task where each action leads to a stochastic sequence of states,
and where each state can be reached by potentially multiple actions. We selected the game of Plinko
because it allows the visual depiction of the sequential retrieval process in a didactic manner (as rows
represent both time and space). The game should therefore not be interpreted literally as choices in a
real game of Plinko are unlikely to be guided by episodic memory.

In Plinko, the agent chooses a place on the top row of the board to drop a ball. At each step, the ball
falls diagonally either to the left or to the right by one row, with equal probability. If the ball is at the
left edge of the board, it falls diagonally to the right with probability 1. Similarly, if the ball is at the
right edge, it falls diagonally to the left with probability 1. A trial starts when the ball is dropped on the
top row and ends when the ball reaches the bottom of the board. Rewards, which are scattered across
the board, can be collected whenever they are hit by the falling ball. An experiment is composed of
multiple trials having a single reward placement.

The agent must decide where to drop the ball in order to collect as much reward as possible. To decide,
we assume that the agent estimates the goodness of each candidate location along the top row so as to
support effective decision making. The goodness of each action is the total expected reward resulting
from that action. We further assume that the agent has had prior experience with this task stored in
episodic memory. Whenever the agent needs to select an action, it evaluates each candidate action by
retrieving episodic memories. No other source of information is available to the agent.

Formal setting

We formalize this problem as Markov Reward Process (MRP) – a discrete-time stochastic process which
extends a Markov Chain by adding a reward to each state. Unlike in a Markov Decision Process (MDP),
the state dynamics in an MRP are not under control of the agent (note that an MRP is obtained by fixing
the agent’s policy in an MDP). Thus, in an MRP we are typically concerned with the problem of reward
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prediction (e.g., how much reward will follow from each state on the top row of Plinko) and not control
(e.g., which actions to select at each Plinko state). Nonetheless, we use the notation of MDPs in this
paper to remain consistent with the decision making literature.

The task is formalized by a 5-tuple ⟨S,A,P ,R, γ⟩. S = {s1, s2, . . . , s|S|} denotes the set of states, and
A denotes the set of actions corresponding to each state in the top row, i.e.,A = {sa=1, sa=2, . . . , sa=|A|}.
P : S 7→ S is the Markov transition function that defines the probability distribution P(s′|s) of tran-
sitioning from state s to state s′. R : S 7→ R is the reward function R(s) specifying the reward
magnitude received upon visiting state s, and γ ∈ [0, 1) is the discount factor that controls the tempo-
ral horizon of computations by reducing the importance of rewards in distant future.

The goal of the agent is to choose the action that maximizes the cumulative discounted return G =∑∞
t=1 γ

tR(St), where St is a random variable denoting the state at time t. As a shorthand, Rt is a ran-
dom variable denoting the reward obtained at time t. Upon selecting an action, the agent experiences
a sequence of states, each drawn with probability P

(
St+1 = s′ | St = s

)
= P(s′|s). This gives rise to a

“trajectory” given by S1, R1, S2, R2, S3, R3, . . . , SH , RH , where H = |S|
|A| is the number of rows in the

Plinko board. After reaching the bottom of the Plinko board, we assume that the ball is transferred to
an unrewarded, absorbing state outside the board.

The value of state s, denoted v(s), is defined as the expected return when starting in s: v(s) =

E
[∑∞

k=1 γ
kRt+k | St = s

]
. The value of taking action a, denoted q(a), is defined as the expected return

when taking action a in the beginning of a trial: q(a) = E[
∑∞

t=1 γ
tRt | A = a], and can also be defined

strictly in terms of states: q(a) = E[
∑∞

t=1 γ
tR(St) | S1 = sa]. We refer to q(a) as “action value”.

In order to select an action, the agent estimates q(a) for each candidate action. The field of RL de-
scribes various methods for estimating q(a), broadly divided into model-free and model-based meth-
ods. Model-free methods are those where the agent learns to estimate q(a) directly from experience.
The classic temporal difference (TD) algorithm, for example, iteratively updates the agent’s estimate
Q(a) as Q(a) ← Q(a) + α

(
γR1 + γ2v(S2)−Q(a)

)
whenever action a is performed. In model-

based methods, in contrast, the agent uses a model of the world (i.e., an estimate of P and R) to
estimate q(a). If both P and R are perfectly known, the agent can generate a plausible trajectory
S1, R1, S2, R2, S3, R3, . . . , ST , RT resulting from a, where S1 = sa, Si+1 ∼ P(.|Si), and Ri = R(Si).
Each such trajectory is called “rollout”, alluding to the fact that states (and rewards) are sampled re-
cursively (Tesauro & Galperin, 1996). The total discounted reward along a rollout trajectory is a Monte
Carlo estimate of the action value, i.e., Q(a) =

∑H
i=1 γ

iRi.

Successor Representation

Consider the one-step state-transition matrix T ∈ RS×S whose (i, j)-th entry Tij corresponds to the
probability of transitioning from state i to state j: Tij = P

(
St+1 = sj | St = si

)
. Consider also the

one-step reward vector r ∈ R|S| whose k-th entry rk corresponds to the reward present in state k. The
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value function can be expressed in vector form as:

v = T1r+ γ1T2r+ γ2T3r+ · · ·

=

(
∞∑
k=0

γkTk

)
Tr

= (I− γT)−1Tr.

(6)

The matrix (I− γT)−1T is the successor representation (SR), denoted by Mγ (Dayan, 1993). The
(i, j)-th entry Mij corresponds to the expected sum of future visits to state j from state i, discounted
according to γ. The SR can be learned directly from experience using TD learning. If the “true” SR is
available to the agent, all state values can be estimated simultaneously by v = Mγr.

We note that our definition differs from the more traditional (I− γT)−1. The inclusion of an additional
T in the definition simply indicates that the value of some state does not depend on rewards present
in that same state, but only on rewards present in future states. This is a matter of definition, and is
equivalent to stating that, in Plinko, rewards are collected upon entering, but not exiting a state.

Temporal Context Model

Overview

TCM is a computational model of episodic memory designed to explain human behavior in free recall
experiments. In a free recall experiment, subjects first study a list of items (often words or word-pairs)
presented one at a time for a brief period. Then, subjects are asked to recall the items in any order
they wish. TCM models memory encoding through associative learning between recently studied
stimuli and the temporal context at presentation time. The learned associations then guide retrieval -
specifically, the stimulus most similar to the current context is retrieved (Howard & Kahana, 2002).

TCM posits that each stimulus is represented by a feature vector, while the abstract temporal context
is formalized as the combination of recently experienced stimuli. The temporal context in TCM is
updated during both the encoding and retrieval of memories, while specifying the recall probability of
each individual stimulus.

TCM predicts a recency effect, as observed in human free recall: since the temporal context at the
beginning of recall is most similar to the one maintained near the end of the list during encoding, the
last few stimuli are more likely to be recalled by association (Fig. 1c, left). Indeed, when a distractor
task is introduced to delay recall, the recency effect is significantly attenuated (Greene, 1986), likely
because the context when retrieval started has evolved away from the end-of-list context.

TCM also predicts a temporal contiguity effect observed in human free recall. Kahana (1996) used the
lag conditional response probability (lag-CRP) to quantify such effect. The lag-CRP is computed as the
conditional probability that, given the most recently recalled stimulus and its serial position i during
encoding, the subsequently recalled stimulus comes from serial position i + j, where j is a signed
integer representing the lag. Crucially, TCM captures the temporal contiguity effect using its evolving
temporal context. At an arbitrary point in time, the context is composed of two components – one
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that encodes the associations formed during the experiment thus far, encompassing both encoding
and retrieval, and one that’s primarily associated with the most recently experienced stimulus. The
former, called experimental context, is part of the temporal context both before and after the recent
stimulus presentation; but the latter, called pre-experimental context, is only introduced at the mo-
ment of stimulus presentation (or recall). Thus while the former shares similarity to other stimuli as
a symmetrical function around the stimulus, the latter is likely dissimilar to all preceding stimuli and
is only incorporated in ensuing contexts. As a result, TCM predicts lag-CRP to be asymmetrical, with
higher probability to recall subsequent stimuli than preceding ones (Fig. 1c, right)

Notably, temporal contiguity effect is approximately scale-invariant - it has been observed both within
individual lists and across lists spanning extended amount of time (e.g. Howard & Kahana, 1999,
Howard, Youker, & Venkatadass, 2008), suggesting maintenance of temporal contexts over multiple
timescales and entities.

In summary, the temporal context and its evolution dynamics in TCM provides an algorithmic hy-
pothesis of how human episodic memory, especially aspects that are captured in free recall paradigms,
manifests specific retrieval dynamics contingent on the relative temporal order.

Formal Model Description

Let ct denote the experimental context at time t and cIN
t denote the pre-experimental context at t, both

as column vectors. Additionally, let x(St) be the feature representation of the stimulus encoded at
time t, e.g., a one-hot |S|-dimensional vector. As a shorthand, we write xt in place of x(St). Likewise,
we denote the stimulus retrieved at time i as xi. i.e., we use t ∈ {1, 2, . . . , T} to index encoding time
and i ∈ {1, 2, . . . , N} to index retrieval steps. Additionally, TCM achieves associative learning via a
context-to-stimulus matrix MCS and a stimulus-to-context matrix MSC. The learning and update rules
are summarized in Table 1.

Table 1: Summary of the Temporal Context Model

Name Expression

Context-to-Feature Matrix MCS =
∑
t

xtc
T
t (7)

Input Context cIN
t = MSCxt (8)

Context Update ct = ρct−1 + βcIN
t (9)

Feature Retrieval xi = MCSci (10)

TCM posits that when a stimulus st is experienced either in encoding or retrieval, the following se-
quence of events take place in order: first, presenting xt evokes its associated context cIN

t via the
stimulus-to-context matrix according to Eq. (8). If the stimulus is unique, cIN

t is equivalent to the
stimulus’ pre-experimental context; if the stimulus is repeated, cIN

t also contains the (weighted) exper-
imental context where it was previously experienced. Next, the retrieved context updates the current
context ct according to Eq. (9). Note that ρ and β are chosen so that ct remains a unit vector. Finally,
MCS and MSC are updated as needed and the above sequence ensues. If Hebbian learning is assumed,
for instance, MCS at time t during encoding is updated by the outer product of the recently encoded
stimulus xt and its temporal context ct as shown in Eq. (7).
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At the beginning of each new experiment, MCS may be reset for simplicity. Howard and Kahana (2002)
derived a learning rule for the stimulus-to-context matrix MSC such that it behaves in a desirable
manner when a stimulus is repeated after a long delay. Since we are interested in sequential decision
making scenarios with distinct stimuli, we will not discuss the details in this paper.

The Successor Representation in the Temporal Context Model

Consider the special case where MSC is the identity matrix. It follows that cIN
t = xt. i.e. the associated

context of a stimulus is exactly its corresponding features. Thus Eq. (9) is reduced to Eq. (1).

Assuming one-hot encoding, we can use the delta function to map each retrieved xt to an abstract state
vector indexed by time. Thus the j-th entry of ct satisfies

ct+1(sj) =

{
ρct if St ̸= sj

ρct + 1 if St = sj,

which is analogous to the eligibility trace over X, the set of all possible feature vectors. In particular,
Gershman et al. (2012) showed that if stimuli are unique and ρ = λγβ, learning of the context-to-
stimulus associations according to Eq. (7) and the transpose of the SR matrix are equivalent under the
TD(λ) learning algorithm. Specifically, each TD update can be then written as

MCS
t+1 ←MCS

t + αct+1(x
′
t+1 + γx′

t+1M
CS
t − x′

tM
CS
t ). (11)

If each experience with a certain stimulus is treated as a visitation to a unique state in some abstract
memory state space, the context-to-stimulus matrix MCS is exactly equivalent to the transpose of the
SR. i.e. MCS = M′. Additionally, because of the uniqueness, the prediction error is always zero, so
Eq. (11) is reduced to MCS

t+1 ← MCS
t + αct+1x

′
t+1; this is exactly Hebbian learning rule for MCS in

Eq. (7).

On the other hand, if the visited state are not unique, Eq. (7) predicts that context-to-stimulus associa-
tion will grow without bound, whereas Eq. (11) avoids this issue while maintaining the same functional
form in the case of unique stimuli (Gershman et al., 2012).

Value Computation in TCM-SR

Setting MCS to the transpose of SR gives rise to a family of sample-based action value computation
techniques, which we call TCM-SR. As a special case, consider the problem of estimating the state value
of some S0. Letmπ

S0,∗;γ denote the row inMπ
γ corresponding to S0 andmπ

S0,S
′
;γ

the entry corresponding
to a future state S ′ of the current state S0 (i.e., expected number of future visits to S ′ from S0). Further
define r(S) as the one-step expected reward by visiting state S. By expressing values in terms of the
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SR and one-step rewards, the state value of S0 can consequently be rewritten as

vπ(S0) = mπ
S0,∗;γr =

∑
S
′

mπ
S0,S

′
;γ
r(S ′). (12)

Note that each row of Mπ
γ sums to 1/(1− γ). Thus we may treat the normalized vector 1

1/(1−γ)
mπ

S0,∗;γ
as a probability distribution over successor states of S0, which in turn supports standard Monte Carlo
sampling techniques to obtain an estimate of vπ(S0) corresponding to a specific discount factor. As a
straightforward example, we can draw N i.i.d. successor states (samples) S1, S2, . . . , SN according to
the normalized row mπ

S0,∗;γ . i.e., Si ∼ (mπ
S0,∗;γ/∥m

π
S0,∗;γ∥). The Monte Carlo estimator of ṽπ(S0) is

ṽπ(S0) =
1

N(1− γ)

N∑
i=1

r(Si). (13)

Setting ρ = 1, β = 0,MCS = M′,MSC = I|S| in TCM gives rise to this exact sampling scheme, as the
temporal context is never updated with contexts of the sampled states and stays at mS0,∗;γ .

However, in general, TCM draws are not i.i.d., because a non-zero β would cause the temporal context
to drift towards the most recently experienced stimulus. Subsequent recalls are therefore dependent
on preceding memory samples, as manifested by the contiguity effect where subsequent recalls are
biased towards successors of the previous sample. In particular, xi may be obtained via

xi ∼
1

Z
MCSci,

where Z is the normalization constant and ci = ρci−1 + βMSCxi−1.

Importantly, by leveraging the temporal correlation of samples in TCM, value computation can be
performed in a flexible manner despite various learning constraints. For example, the discount fac-
tor restricts the timescale over which future rewards are considered in the successor representation.
The decay of eligibility traces also limits the extent to which reward information is propagated dur-
ing encoding. Nonetheless, samples drawn, during retrieval, using the drifting temporal context could
effectively extend the horizon such that an TCM-SR agent with a small discount factor appears far-
sighted. When γ = 0 and β = 1, TCM-SR produces a standard rollout such that successive samples
form a full trajectory, even though the SR at each time step is completely myopic. With a larger γ, the
agent could skip multiple steps at a time and compute expected return by searching over an extended
temporal scope. With a smaller but non-zero β, the agent interpolates between i.i.d. sampling from
the normalized SR (the flattened distribution over successors) and rollouts iteratively over successors’
successors.

TCM-SR generates samples analogous to stochastically and recursively constructing a tree over states.
At each time step, a state is retrieved from the current temporal context and added to the tree. Because
contexts are linear combinations of individual state contexts, suppose S ′ is drawn from the context
of some state S with probability p. An edge between S and a realization S ′ = s is then added with
probability equal to p(1 − γ)mπ

S,S
′
;γ

. i.i.d. sampling (β = 0) results in a random tree with one root
node equal to the starting state and all children as leaf nodes (i.e., a star tree). In contrast, the gener-
alized rollout scheme (β = 1) produces a linear graph - a single chain of state following the starting

29



state. In expectation, an intermediate β gives rise to an interpolated tree structure of these two types.
Simulations 1-3 demonstrate the behavior of each of these cases, and we prove the exact state value
computation in the next section.

Furthermore, emotion is known to influence memory. Emotional salience tends to modulate memory
retrieval. This effect may be explained by differential rates of stimulus encoding (Talmi et al., 2019) or
faster decay of less salient outcomes (Zhou et al., 2020). From the reinforcement learning perspective,
both accounts effectively lead to over-representation of particularly rewarding (or detrimental) states,
or a utility-weighted memory encoding (Lieder et al., 2018). While enhanced availability of certain
samples may bias decisions, when data are sparse and deliberation time is limited, such bias provides a
practical advantage to consider rare but critical future possibilities. Noting this link between emotional
salience and memory encoding, TCM-SR predicts over-representation of certain events in memory
translates to those events having an enhanced impact on decision variables. Similar to Lieder et al.
(2018), we simulate emotional modulation with importance sampling, implying a bias-variance trade-
off; namely, although over-representation creates a bias in estimation, fewer samples are required for
a confident estimate. We give a formal derivation in the next section.

Finally, because SR is dependent on the behavioral policy under which it is learned, a large change
in the transition structure or reward function may render the previously obtained SR fruitless. For
instance, if a behavioral policy poorly represents certain state transitions around the reward location,
an agent using its corresponding SR will be inflexible and perform suboptimally in transfer learning
(e.g. Momennejad et al., 2017; Lehnert, Tellex, & Littman, 2017). On the other hand, humans can
solve a wide range of transfer learning problems, and perform tasks such as counterfactual reasoning
that require simulations of strictly never-seen scenarios. As our main objective is to understand how
memory can facilitate effective decision making with limited experience, it is important for the TCM-
SR agent to learn values in a flexible manner beyond what the SR prescribes.

Up until now, for simplicity’s sake, we have assumed MSC to be the identity matrix - that is, the context
associated with a state is exactly its feature vector. Alternatively, MSC could encode some backward
transitions such as the transpose of MCS, so memory search proceeds in never-experienced directions.
Crucially, retrieval of memory samples and subsequent value computation would depend less on the
behavioral policy during study. This amounts to regularizing a directional policy to include the pos-
sibility of backtracking. We argue that restoring this key feature of the encoding model produces a
representation that diverges from the SR, but in so doing corrects one of its key deficiencies.

Theory Details

We now formally prove the relevant properties of the TCM-SR model instantiated as in the Results
section. In each of the following cases, the main goal is to prove that the model can be used to compute
an unbiased estimate of some queried action a (i.e., q̂(a)) in the limit of sample size. For simplicity, we
assume that a leads to a deterministic transition to some state S0. e.g. in the Plinko game, the agent
chooses to place the ball in one of the states on the top row of the board. Thus the problem is equivalent
to solving v(S0), or the value of the state corresponding to action a.

In addition, derivations and proofs in this section assume all feature vectors are one-hot coded, and that
the starting context is the same as the feature vector associated with the starting state. i.e. c0 = x0. We
use x(sn) to indicate the location of one at sn in feature vector x. For clarity, the policy π and discount
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factor γ during the encoding phase are implicit in the following proofs. e.g. using M as a shorthand
for Mπ

γ .

Independent samples from memory yield unbiased value estimates

We first consider the case where ρ = 1, β = 0,MCS = M′,MSC = I|S|, which is the i.i.d. sampling
regime.

Lemma 1. Recall the feature vector associated with the i-th sampled state Si is xi. Given ρ = 1, β = 0,
the sampling distribution of Si is

P(Si) = (1− γ)x′
0Mxi.

Proof. (proof by induction) Base case: i = 1. Since each row of M sums to 1/(1− γ),

P(S1) =
1

1/(1− γ)

(
MCS (ρc0 + βMSCx0

))′
x1 Eq. (10)

= (1− γ)
(
MCSx0

)′
x1

= (1− γ)x′
0Mx1

Now consider arbitrary time step i > 1. By Eq. (9), ci = ci−1 = · · · = c0 = x0. Thus P(Si) =
(1− γ)x′

0Mxi.

Theorem 2. Given ρ = 1, β = 0, and N samples S1, S2, . . . , SN , the value of state S0, v(S0), satisfies

v(S0) =
1

N(1− γ)
E

[
N∑
i=1

r(Si)

]
.

Proof. Denote the feature representation of state sk ∈ S as x(sk). Consider the expected reward of the
i-th sample:

E [r(Si)] =

|S|∑
k=1

P(Si = sk)r(sk)

=

|S|∑
k=1

(1− γ)x′
0Mx(sk)r(sk) Lemma 1

= (1− γ)x′
0M

|S|∑
k=1

x(sk)r(sk)

= (1− γ)x′
0Mr

= (1− γ)x′
0v.

By linearity of expectation,

E

[
N∑
i=1

r(Si)

]
=

N∑
i=1

E [r(Si)] = N(1− γ)x′
0v = N(1− γ)v(S0).
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Rearranging the terms, we have

v(S0) =
1

N(1− γ)
E

[
N∑
i=1

r(Si)

]
.

In summary, in an i.i.d. sampling regime, an action can be evaluated in an unbiased manner by taking
the mean across rewards retrieved from episodically sampling the encoded SR.

The contiguity effect suggests value estimation via rollouts

We now consider the case where ρ = 0, β = 1,MCS = M′,MSC = I|S|, corresponding to the general-
ized rollout sampling regime.

Lemma 3. Given ρ = 0, β = 1, the sampling distribution of the i-th sampled state Si is

P(Si) = (1− γ)ix′
0M

ixi.

Proof. (proof by induction) Base case: i = 1. This is equivalent to the i.i.d. sampling case. By Lemma
1, the base case holds. Induction hypothesis: for arbitrary i > 0, P(Si) = (1− γ)ix′

0M
ixi.

P(Si+1|Si) =
1

Z

(
MCS (ρci + βMSCxi

))′
xi+1

=
1

Z

(
MCS (MSCxi

))′
xi+1

=
1

Z
x′
iMxi+1,

where Z = x′
iM1 = 1/(1− γ) is the normalizing factor. Therefore,

P(Si+1) =
∑
sk

P(Si = sk)P(Si+1|Si = sk)

=
∑
sk

(1− γ)ix′
0M

ix(sk) · (1− γ)x(sk)
′Mxi+1

= (1− γ)i+1x′
0M

i
∑
sk

(
x(sk)x(sk)

′)Mxi+1

= (1− γ)i+1x′
0M

i+1xi+1.

Theorem 4. Given ρ = 0, β = 1, and arbitrary encoding γ, the value of S0 for γ̃ = 1, vγ̃=1(S0), satisfies

vγ̃=1(S0) =
1

(1− γ)
E

[
N∑
i=1

r(Si)

]
.
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Proof. Consider the expected reward of the i-th sample:

E [r(Si)] =

|S|∑
k=1

P (Si = sk)r(sk)

=

|S|∑
k=1

(1− γ)ix′
0M

ix(sk)r(sk) Lemma 3

= (1− γ)ix′
0M

i

|S|∑
k=1

x(sk)r(sk)

= (1− γ)ix′
0M

ir.

By linearity of expectation,

E

[
N∑
i=1

r(Si)

]
=

N∑
i=1

E [r(Si)]

=
N∑
i=1

(1− γ)ix′
0M

ir

= (1− γ)x′
0

(
T+ γT2 + γ2T3 + . . .

)
r+ (1− γ)2x′

0

(
T2 + 2γT3 + 3γ2T4 + . . .

)
r+ . . .

= (1− γ)x′
0Tr+ (γ(1− γ) + (1− γ)2)x′

0T
2r+ (γ2(1− γ) + 2γ(1− γ)2 + (1− γ)3)x′

0T
3r+ . . .

= (1− γ)x′
0Tr+ (1− γ)x′

0T
2r+ (1− γ)x′

0T
3r+ . . .

= (1− γ)x′
0

(
Tr+T2r+T3r+ . . .

)
= (1− γ)x′

0vγ=1.

Rearranging the terms, we have

vγ̃=1(S0) =
1

(1− γ)
E

[
N∑
i=1

r(Si)

]
.

Now consider a fixed probability pstop that interrupts the sampling process of the generalized rollout
regime at any moment. i.e., there is a pstop probability that the trial terminates immediately after the
current retrieval, regardless whether the trial has reached the end or not (e.g., reaching the bottom row
of the Plinko game). The temporal context that guides retrieval is reset following termination. Hence
if pstop = 1, the agent always resets the context after sampling one stimulus - equivalent to the i.i.d.
sampling regime. If pstop = 0, the agent carries on with the generalized rollout until some pre-defined
end state(s) is reached so each trial results in a full trajectory with possible skips over time steps. The
latter corresponds to the case proved in Theorem 4.

Proposition 5. Given ρ = 0, β = 1, pstop ∈ [0, 1], and arbitrary encoding γ, the effective discount factor
γ̃of the estimated value satisfies γ̃ = γpstop − pstop + 1.
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Proof. Consider retrieval at some time i. Let Ai denote the event that the sampling process is yet
terminated at time i. Thus by the above definition of pstop, P(Ai) = (1− pstop)

i−1 for all i ≥ 1. Further
assume that upon termination, all remaining samples have reward zero (even though technically no
more samples are drawn). By Theorem 4, we know

E [r(Si)] = P(Ai)(1− γ)ix′
0M

ir+ P(Ac
i ) · 0 = (1− pstop)

i−1(1− γ)ix′
0M

ir.

By linearity of expectation,

E

[
N∑
i=1

r(Si)

]
=

N∑
i=1

E [r(Si)]

=
N∑
i=1

(1− pstop)
i−1(1− γ)ix′

0M
ir

= (1− γ)x′
0

(
T+ γT2 + γ2T3 + . . .

)
r+ (1− pstop)(1− γ)2x′

0

(
T2 + 2γT3 + 3γ2T4 + . . .

)
r+ . . .

= (1− γ)x′
0Tr+ (γ(1− γ) + (1− pstop)(1− γ)2)x′

0T
2r

+ (γ2(1− γ) + 2(1− pstop)γ(1− γ)2 + (1− pstop)
2(1− γ)3)x′

0T
3r+ . . .

= (1− γ)x′
0Tr+ (1− γ)(γpstop − pstop + 1)x′

0T
2r+ (1− γ)(γpstop − pstop + 1)2x′

0T
3r+ . . .

= (1− γ)x′
0

(
Tr+ (γpstop − pstop + 1)T2r+ (γpstop − pstop + 1)2T3r+ . . .

)
.

Interpreting γpstop − pstop + 1 as the discount factor, we get

E

[
N∑
i=1

r(Si)

]
= (1− γ)x′

0vγ̃=γpstop−pstop+1.

Therefore, in effect, the additional interruption probability permits modification of the temporal hori-
zon during retrieval (and consequently, evaluation) beyond the intrinsic encoding discount factor γ. In
particular, assuming the agent has control over this interruption probability, by varying pstop between
0 and 1, it can interpolate γ̃ between the encoding γ and 1. Note γ̃ = 1 corresponds to the rollout
sampling regime proven by Theorem 4.

In summary, in a generalized rollout sampling regime, an action can be evaluated in an unbiased man-
ner by adding up rewards retrieved from episodically sampling the encoded SR. Specifically, the esti-
mated action value corresponds to a discount factor of 1, or an undiscounted estimate. This implication
may be problematic for tasks with an infinite horizon, as termination is undefined and the sum of re-
wards may be infinite. Thus we introduce an additional interruption probability pstop at any given
moment during retrieval/evaluation, which the agent is assumed to have control over. The result is an
effective discount factor γ̃ that can be flexibly interpolated between the encoding discount factor γ and
1. For clarity, in the main text, we refer to the effective discount factor γ̃ whenever applicable, making
pstop implicit in our arguments.
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Data from free recall experiments suggests an intermediate regime

Observe that the sequentially obtained samples can be conceptualized as a random tree with root at S0.
At each retrieval step i where i > 0, a node Si is inserted into the existing tree Ti−1 such that an edge
is drawn between the current node Si and some existing node Sj (i > j ≥ 0) if Si is drawn from the
SR-defined distribution at Sj . Because each context is a linear combination of successor distributions of
experienced stimuli, in theory, we can identify a sample as the successor of some previously retrieved
state given the context it is drawn from. Let pa(i) = j denote the event that Sj is the parent of Si. For
instance, P(pa(1) = 0) = 1 since S1 is always drawn from the distribution (1− γ)x′

0M regardless of
the value of ρ and β. P(pa(2) = 0) = ρ and P(pa(2) = 1) = β according to Eq. (9). In general, for any
i > j ≥ 0 we have

P(pa(i) = j) =

{
ρi−1 if j = 0

ρi−j−1β if j > 0,

Note that the construction necessarily results in a tree because of the sequential nature of the sam-
pling process, namely a newly inserted node has an index strictly larger than that of any existing
node. The resultant tree with all N nodes plus the root node is TN . Observe that if ρ + β = 1, then
∀j.
∑j−1

i=0 P(pa(i) = j) = 1, so the distribution is a proper probability distribution.

Lemma 6. Assume ρ+ β = 1, ρ, β > 0. As N →∞, TN is expected to be a tree with 1/(1− ρ) degrees
at the root and linear graphs thereafter.

Proof. Consider dN(i), the number of children nodes Si has in tree TN . It suffices to show that

lim
N→∞

E[dN(i)] =

{
1/(1− ρ) if i = 0

1 if i > 0.

For arbitrary N ∈ N, E[dN(0)] =
∑N

i=1 P(pa(i) = 0) =
∑N

i=1 ρ
i−1 = 1−ρ

N

1−ρ
, and ∀j > 0. E[dN(j)] =∑N

i=j+1 P(pa(i) = j) =
∑N

i=j+1 ρ
i−j−1β = β(1−ρ

N−j
)

1−ρ
= 1−ρN−j . Thus, limN→∞ E[dN(0)] = 1/(1−ρ),

limN→∞ E[dN(j)] = 1 for all positive j.

Corollary 7. Given ρ+β = 1, ρ, β > 0, ifN is large but finite, TN is expected to have (1−ρN)/(1−ρ)
children, while the number of children of early samples are subcritical.

Proof. The proof follows directly from Lemma 6 with finite N , noting that when j is small, N − j is
close to N so E[dN(0)] ≈ 1− ρN < 1.

Theorem 8. Given ρ+ β = 1, ρ, β > 0,

vγ=1(S0) =
β

(1− γ)
E

[
∞∑
i=1

r(Si)

]
.

Proof. Here we provide a sketch of the formal proof: note that the extreme cases where one of ρ, β is 1
can be realized as a random recursive tree describe above. Specifically, as N →∞, ρ = 1 corresponds
to a tree with height 1 and infinitely many branches at the root; ρ = 0 corresponds to a path graph with
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infinite height. Importantly, given such a tree, we know vγ=1(S0) may be computed as the expected
total return of an arbitrary path from the root node to a leaf node in a random tree T∞. i.e., sum along
paths and average across paths from Theorem 2 and 4 respectively. The result then directly follows
from Lemma 6 noting 1− ρ = β.

Lemma 9. Given ρ+β = 1, ρ, β > 0, there is a non-zero probability that the shortest path from the root
node to a leaf has length 2.

Proof. Without loss of generality, consider the event l2 that no vertex is attached to node 2 (equivalently,
no future sample is drawn from the successor distribution of S2). Then

P(l2) =
N∏
i=3

(1− P(pa(i) = 2))

=⇒ logP(l2) =
N∑
i=3

log(1− ρi−3β) =
N−3∑
i=0

log(1− ρiβ) ≈ −
N−3∑
i=0

ρiβ <∞

=⇒ P(l2) > 0

Proposition 10. Given ρ+ β = 1, ρ, β > 0, N <∞, the value estimator in Theorem 8 is biased.

Proof. Lemma 9 implies any random tree resulted from the constructive process likely has a short path
(a ”stub”), thus applying Theorem 8 tends to underestimate v(S0).

Therefore, in the intermediate sampling regime that interpolates between the i.i.d. and generalized
rollout regimes, an action can be evaluated in an unbiased manner by first adding up the rewards
retrieved from episodically sampling the encoded SR and then scaling the sum by β, which acts like
the branching factor in the limit of sample size. We have explicitly shown that such estimator may be
biased downwards in the case of relatively small number of samples, but like previous cases, given a
sufficiently large number of samples, the estimate approaches the true value.

Emotional Modulation of memory yields bias-variance trade-off

We implement emotional modulated learning similar to Talmi et al. (2019) by employing a fixed learn-
ing rate that is higher for emotionally salient than non-salient stimuli to learn MCS. For clarity, a
state s either contains nothing (i.e. R(s) = 0) or a small reward (R(s) = 1). All else being equal,
the resultant, emotionally modulated TC-SR agent is thus more likely to obtain a rewarding sample
than an unmodulated agent. Denote the unbiased context-to-stimulus associative matrix M′ and the
biased M

′ ̸= M′. To compute an estimation of expectation, it needs importance sampling to translate
distributions of M to M.

For simplicity, consider ρ = 1, β = 0 (i.i.d. sampling). By Lemma 1, the unbiased sampling distribution
of the i-th sample Si is P (Si) = (1−γ)x′

0Mxi, while the biased sampling distribution of Si is Q(Si) =

36



(1− γ)x′
0Mxi. To correct for the difference between P and Q, each sample Si is reweighed by

wSi
=

P (Si)

Q(Si)
=

mS0,Si

mS0,Si

.

Using M
′, the expected total reward for the i-th sample may be estimated as

E [r(Si)] =

|S|∑
k=1

P (Si = sk)r(sk)

=

|S|∑
k=1

Q(Si = sk)
P (Si = sk)

Q(Si = sk)
r(sk)

=

|S|∑
k=1

wSi
Q(Si = sk)r(sk).

Theorem 2 can be then applied to estimate a specific state value. In general, ṽ is biased if N is finite.
Specifically, ṽ demonstrates a bias-variance trade-off, such that extreme events are over-represented
in the samples due to the biased associative matrix, but value estimates also tend to be less varied.

Similarly, if ρ = 0, β = 1 (generalized rollout), by Lemma 3, the unbiased distribution of the i-th
sampled state Si is P (Si) = (1− γ)ix′

0M
ixi, while the biased sampling distribbution of Si is Q(Si) =

(1 − γ)ix′
0M

i
xi. Denote the (S0, Si)-th entry of Mi as

(
Mi
)
S0,Si

and that of Mi as
(
M

i
)
S0,Si

. To
correct for the difference between P and Q, each sample Si should be reweighed by

wSi
=

P (Si)

Q(Si)
=

(
Mi
)
S0,Si(

M
i
)
S0,Si

.

The expected total reward proceeds similarly as stated in Theorem 4 with reweighing. For demonstra-
tion purposes, we use the i.i.d. regime to illustrate the effect of emotional modulation in simulations.

Simulation Details

All simulations used a Plinko game of size 10x9 (i.e. H = 10, |S| = 90, excluding the absorbing state
which is outside the main board). Binary rewards were randomly placed in locations between row 1
and row 6 (inclusive; top row is row 0) such that all of them were reachable from the starting state.
Each experiment was characterized by its reward placement. Details of each simulation are specified
below.
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Details of Simulation 1: Independent samples from memory yield unbiased
value estimates

We set ρ = 1, β = 0 to simulate the effect of a stationary context, which gave rise to independent
draws of memory samples in TCM-SR. Simulations were repeated using two different discount factors
γ = 0 (Fig. 2a-c) and γ = 0.5 (Fig. 2d-f) during encoding, with the latter corresponding to a slower rate
of temporal drift (i.e., longer timescale). The stimulus-to-context associative matrix MSC was equal to
the identity matrix I|S|.

A total of 100 experiments (games) were conducted for each different discount factor, with 50 trials
per experiment and 1000 (independent) samples per trial (i.e., N = 1000). At least one reward was
placed within the agent’s temporal horizon. e.g., given γ = 0, row 2 contained at least one reward. The
sampling distributions over rows (Fig. 2b,e) reflect trial averages if starting from the top-center state
(marked with a orange circle in Fig. 2a,d).

Given a game, the agent needed to decide where to drop the ball along the top row to maximize expected
total return. For clarity, there were two options - either the top-center state or the location directly
to its right. A deterministic policy was assumed based on their respective state value estimate, which
was computed as the average across samples and trials. Simulations were repeated for games with 1,
5, 10, 20 binary rewards accessible from either dropping location (Fig. 2c,f). The number of rewards
were chosen to reflect a spectrum of reward abundance ranging from a single reward to about 50%.
The percentage of maximum rewards obtained of a particular game pmr was computed as

pmr =
v(Schosen)

v(S∗)
,

where Schosen is the state selected by the deterministic policy, S∗ is the state with higher expected total
return, and v(·) : S 7→ R is the state value function. Note an optimal choice implies pmr = 1. Fig. 2c,f
show the average pmr across 100 experiments.

Details of Simulation 2: Recall-dependent context updates lead to rollouts

We set ρ = 0, β = 1 to simulate the effect of a context fully determined by the most recent retrieval,
which gave rise to generalized rollouts in TCM-SR. Simulations were repeated using two different
discount factors γ = 0 (Fig. 3a-d) and γ = 0.5 (Fig. 3e-h) during encoding. For each γ, simulation were
repeated using three different probabilities of interruption p = 0.05, 0.5, 1, resulting in three different
effective discount factors γ̃’s for each underlying true γ at retrieval (Fig. 3b,f). Thus as long as the ball
had not reached the bottom of the Plinko board, at each time step, there was a p probability that the trial
will terminate, regardless of the ball’s location. Consequently, each trial started from the top-center
state (marked with a orange circle in Fig. 3a,e) and ended if either the ball hit the bottom of the board or
the sampling process terminated due to the non-zero interruption probability. The stimulus-to-context
associative matrix MSC was equal to the identity matrix I|S|.

A total of 100 experiments were conducted for each combination of discount factor and interruption
probability. The sampling distributions over rows (Fig. 3b,f) reflect averages across 1000 trials per ex-
periment if starting from the top-center state. The implied contiguity curves (Fig. 3d,h) were computed
similarly using the same starting state.
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Given a game, the agent needed to decide where to drop the ball along the top row to maximize expected
total return. For clarity, there were two options - either the top-center state or the location directly
to its right. A deterministic policy was assumed based on their respective state value estimate, which
was obtained by summing samples within each of 5000 trials and averaging across trials. 100 games
were simulated and each trial consists of a variable number of correlated samples (at most nine, or
H − 1). The interruption probability is fixed at 0.05. Simulations were repeated for games with 1, 5,
10, 20 binary rewards accessible from either dropping location (Fig. 3c,g). The percentage of maximum
rewards obtained follows the same computation as in Simulation 1. Fig. 3c,g show the average pmr
across 100 experiments.

Details of Simulation 3: An intermediate regime between i.i.d. sampling and
rollouts

We set ρ = β = 0.5 to simulate the effect of an intermediate context updating regime in TCM-SR
that better explains human behavioral data on free recall tasks. Simulations were repeated using two
different discount factors γ = 0 (Fig. 4a-c) and γ = 0.5 (Fig. 4d-f) during encoding. For each γ,
simulations were repeated using three different probabilities of interruption p = 0.05, 0.5, 1, resulting
in three different effective discount factors γ̃’s for each underlying true γ at retrieval (Fig. 4b,e). Thus
as long as the ball had not reached the bottom of the Plinko board, at each time step, there was a p
probability that the trial will terminate, regardless of the ball’s location. Consequently, each trial started
from the top-center state (marked with a orange circle in Fig. 4a,d) and ended when the ball hit the
bottom of the board or the sampling process terminated due to the non-zero interruption probability.
The stimulus-to-context associative matrix MSC was equal to the identity matrix I|S|.

A total of 100 experiments were conducted for each combination of discount factor and interruption
probability. The sampling distributions over rows (Fig. 4b,e) reflect averages across 100 trials per ex-
periment if starting from the top-center state.

Given a game, the agent needed to decide where to drop the ball along the top row to maximize expected
total return. For clarity, there were two options - either the top-center state or the location directly to
its right. A deterministic policy was assumed based on their respective state value estimate, which was
obtained by summing samples within each of 5000 trials and averaging across trials. 100 games were
simulated and each trial consists of a variable number of correlated samples. The interruption proba-
bility is fixed at 0.05. Simulations were repeated for games with 1, 5, 10, 20 binary rewards accessible
from either dropping location (Fig. 4c,f). The percentage of maximum rewards obtained follows the
same computation as in Simulation 1. Fig. 4c,f show the average pmr across 100 experiments.

Details of Simulation 4: Retrieval with limited experience and with emotional
modulation

We chose the i.i.d. sampling regime (i.e., ρ = 1, β = 0) to illustrate the effect of limited experiences
and emotional modulation. The stimulus-to-context associative matrix MSC was equal to the identity
matrix I|S|.
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The intermediate and converged SR matrices of the top-center state (4 panels to the left in Fig. 5a,b)
were learned via TD(λ), where λ = 0.7, γ = 0.9. A ball was dropped four times from the top-center
position of a board with predetermined reward locations and reached the bottom following a sequence
of transitions, resulting in 4 complete trajectories. An intermediate SR was computed after observation
of each complete trajectory. The unmodulated and modulated learning rates were initialized to 0.01 and
0.5 respectively. i.e., α0 = 0.01, αmod,0 = 0.5. Both the unmodulated agent (Fig. 5a) and the modulated
agent (Fig. 5b) were trained using the same exponential decay schedule such that the learning rates
upon observing trajectory t was defined as

αt = α0 ∗ e−kt

αmod,t = αmod,0 ∗ e−kt,

where decay rate k = 0.001. In both cases, the SR converged after observing 10000 trajectories.

We used 100 random experiments (games) and drew 1000 samples from the TD-learned SR after one
observation (trajectory) in each experiment to compute the average fraction of samples that contained
a reward (Fig. 5d). The same set of samples (i.e., after observing a single trajectory) were used to
compute the bias and variance in the value estimate of the top-center state, with a random number of
binary rewards between 20 (inclusive) and 40 (exclusive) placed on the board (Fig. 5e,f).

Given a game, the agent needed to decide where to drop the ball along the top row to maximize expected
total return. For clarity, there were two options - either the top-center state or the location directly to
its right. A deterministic policy was assumed based on their respective state value estimate, which was
computed as the average across 1000 i.i.d. samples and 50 trials. Simulations were repeated for games
with 1, 5, 10, 20 binary rewards accessible from either dropping location (Fig. 5c). The percentage
of maximum rewards obtained follows the same computation as in Simulation 1. Fig. 5c shows the
average pmr across 100 experiments.

Details of Simulation 5: Retrieving a learned context allows backward sam-
pling

We chose the generalized rollout regime (i.e., ρ = 0, β = 1) to illustrate the effect of retrieving a
learned context associated with a stimulus as opposed to a task-independent feature representation.
The stimulus-to-context associative matrix MSC was equal to the SR matrix M. Simulations used
γ = 0.5 during encoding and three different interruption probabilities p = 0.2, 0.5, 1, resulting in
three different effective discount factors γ̃’s at retrieval (Fig. 6c,d). Each simulation consisted of 500
experiments and 1000 trials (rollouts) per experiment from the top-center state.

The true state value of the top-center state was computed by assuming full reversibility (i.e., symmetry
of conditional transition probabilities), while the estimates are computed similar to Simulation 2 (i.e.,
as generalized rollouts; Fig. 6c,d).

The simulation code will be made available at https://github.com/corxyz/tcm-sr upon
publication.
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