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Abstract
Continuous on-scalp EEG monitoring provides a non-invasive

means to detect the onset of seizures in epilepsy patients, but
cables from the scalp pose a severe strangulation hazard during
convulsions. Since the power of transmitting the EEG wirelessly
is prohibitive, a complete SoC is presented, performing low-
power EEG acquisition, digitization, and local digital-processing
to extract detection features, reducing the transmission-rate by
43x. To maximize power-efficiency, the acquisition LNA oper-
ates at the lowest reported VDD (of 1V, drawing 3.5µW ), but is
able to reject offsets (characteristic of metal-electrodes) that are
even larger than the supply voltage. Importantly, its topology si-
multaneously optimizes noise-efficiency and input-impedance to
maximize electrode signal-integrity, and it uses switch-capacitor
transformers to improve the noise and manufactureabilty of large
on-chip resistors. The complete SoC generates EEG feature-
vectors every 2sec, consuming a total of 9µJ per feature-vector.

System Approach
Epileptic seizures arise from abnormal electrical neural ac-

tivity in the brain. Detection, via non-invasive on-scalp EEG,
of the subtle onset enables actuation of alert signals or stimu-
lators to abort the seizure before motor control is catastrophi-
cally lost. Early detection relies on deciphering fine shifts in the
spectral energy distribution from up to 18 EEG channels. Gen-
erally, EEG is highly irregular from patient-to-patient; so, here,
machine-learning is used, where a feature-vector correspond-
ing to the spectral energies is extracted, and a vector classifier
is trained on patient-specific seizure and non-seizure feature-
vectors to establish precise detection decision boundaries. 536
hours of patient tests show this leads to very good sensitivity, de-
tection latency, and specificity (92%, 6.8sec, 0.2/hr respectively
[1]).

The key strength of this approach from the power perspective
is shown in the actual hardware measurements of Fig. 1, where
local digital-processing, to derive the feature-vector, reduces the
wireless data-rate by 43x and the overall system power, using a
low-power short-range radio [2], by 15x. Each EEG channel in
Fig. 1 consists of an electrode and the SoC (placed close-by for
signal-integrity). The SoC integrates a low-power instrumenta-
tion amp (I-amp), 12b ADC, and low-energy digital processor
to derive a feature-vector from each channel; the feature-vectors
from all channels are concatenated for wireless transmission.

Low-Power Instrumentation Amplifier and ADC
The first stage of the I-amp, which is critical to its overall

noise and power, utilizes chopper-stabilization [3] to mitigate
1/f noise degrading low-frequency EEG (<200Hz). A critical
limitation to bio-potential sensing is large electrode offsets (EO)
(up to 100’s of mV) originating from charge accumulation at the
skin-metal interface. EO cancellation through differential bias-
ing of the amplifier input-stage [4] compromises noise-efficiency.
Alternatively, cancellation of EO on the up-modulated inputs
before the amplifier, via servo-biasing of series capacitors [5],
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Fig. 1. SoC block diagram (for one channel) and power consumption
(aggregated over 18 channels), highlighting benefit of
local-processing for radio data-rate reduction.

degrades the input resistance (RIN ). Though practical for im-
planted electrodes, much weaker EEG signal strength on-scalp
requires RIN larger than 100MΩ. In both cases, EO tolerance is
less than 50mV, and it restricts the minimum VDD (to at least
1.8V), limiting power-efficiency.

The amplifier in Fig. 2a is optimized for noise-efficiency and
operates below 1V while tolerating EO even larger than VDD.
EO are filtered-out before up-modulation via AC coupling, and
chopper-modulation is performed at the op-amp input. Im-
portantly, the virtual-ground condition here ensures that the
charge on the op-amp’s parasitic input capacitances, CP (shown
in Fig. 2b), is independent of the electrode signal. Conse-
quently, even though the input modulator introduces effective
switch-capacitor (SC) conductances between IN+ and IN−,
these do not load the electrodes. They do, however, multiply
with the input offset of the op-amp, giving rise to an offset cur-
rent, IOS,CHOP . To prevent this from saturating the amplifier
through RHP , which is intentionally large for a high-pass cut-off
of less than 0.5Hz, a GMC-integrating servo-loop provides a DC
current through RINT to cancel IOS,CHOP . Lastly, the op-amp
of Fig. 2b employs two-stages with Miller compensation, but sig-
nal de-modulation is performed before the dominant-pole [5], so
chopper-stabilization does not increase its required bandwidth.
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Fig. 2. Instrumentation amplifier (a) front-end chopper-stabilized
LNA utilizing (b) folded-cascode op-amp.

The low cut-off frequencies necessary to detect EEG require
large on-chip resistors, RHP and RINT , greater than 700MΩ.
SC resistors are highly area-efficient and stable, but require



fast switching frequencies to minimize noise PSD elevation due
to aliasing [3], leading to unmanufactureably small switch-
capacitors. However, by using the SC transformer of Fig. 3,
where current is conveyed from node X to Y through series-
charging/parallel-discharging, the individual capacitors can be
made 10x larger than that of a conventional SC (also shown) of
an equivalent resistance.
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Fig. 3. 2-stage series-charging/parallel-discharging switch-capacitor
topology to improve manufacturability of large resistances.

The 12b SAR ADC operates at 1V, consuming only dynamic-
power, except in the comparator, where static preamps reduce
hysteresis and improve accuracy. The ADC is fully differential,
and, to avoid sampling input common-mode, its S/H uses no
internal references, easing the comparator CMRR required [6].

Low-Energy Feature Extraction Processor
Extraction of spectral energy from each EEG channel, to de-

rive the feature-vector, is implemented using a modulated filter
bank (shown in Fig. 4), formed by seven FIR filters (BPF0− 6
centered from 2Hz-20Hz). Each of these is followed by a mag-
nitude accumulator to derive the bin energy over a two second
window. To minimize area, active-energy, and leakage-power,
the minimum tolerable filter order, coefficient-precision, and ac-
cumulator width was validated by simulating the detection algo-
rithm on 20hrs of pre-recorded patient data consisting of seizure
and non-seizure EEG.
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Fig. 4. Spectral feature extraction processor block diagram.

The optimal filter order was obtained by applying a decima-
tion filter to the ADC samples. In addition to the 100Hz cut-off
of the I-amp (set for general EEG acquisition), on-scalp EEG is
affected by 1/f filtering through the skull, providing some band-
limiting prior to ADC sampling; however, to ensure at least
20dB of aliasing suppression in the highest EEG band used for
seizure detection (i.e. beta-band 13-33Hz), the ADC oversam-
ples at 600Hz. Consequently, digital decimation (by eight) eases
the filter implementation. The order and coefficient-precision of
the decimator is 48 and 8b respectively, and that of the modu-
lated filters is 46 and 8b respectively.
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Fig. 5. IC performance summary and die-photo.

Measurement Results
The prototype IC is fabricated in 5M2P 0.18µm CMOS and

operates from a single 1V supply. A performance summary is
in Fig. 5 along with a die-photo. Fig. 6 shows the I-amp and

ADC output recording of actual EEG from the frontal (forehead)
and occipital (behind the neck) scalp locations using Ag/AgCl
electrodes. Periodic eye-blinks are visible on the frontal channel,
and alpha-wave (indicating a relaxed eyes-closed state) is visible
on the occipital channel, but then immediately abolished after
eyes are opened. The FFT shows the occipital output during
both eyes-open and closed, highlighting 8-13Hz activity of alpha.
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Fig. 6. EEG’s captured using on-chip I-amp/ADC (without any
post-processing) and FFT of occipital channel.

EEG Classification System Demonstration
Before patient seizure testing, complete EEG acquisition,

feature-vector extraction, and final classification is demon-
strated by configuring a one-channel system to detect a subject’s
relaxed state with eyes-closed (i.e. onset of alpha at occipital
channel). First, to train the vector classifier, the IC generates
10 feature-vectors (requiring 20sec of monitoring) correspond-
ing to both relaxed eyes-closed and eyes-open states. Then, the
IC continuously generates feature-vectors and transmits them to
the vector classifier for real-time alpha detection. Fig. 7 shows
a segment of output feature-vector classification as well as the
EEG (recorded by the IC, and annotated with the observed on-
set of alpha). Over a detection period exceeding 200sec, the
onset of all alpha-waves are detected with less than 2.5sec la-
tency.
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Fig. 7. Demonstration of EEG classification by IC trained to
detected relaxed eyes-closed state characterized by alpha-wave.
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