
1136 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 4, APRIL 2015

Error Adaptive Classifier Boosting (EACB):
Leveraging Data-Driven Training Towards Hardware

Resilience for Signal Inference
Zhuo Wang, Student Member, IEEE, Robert E. Schapire, and Naveen Verma, Member, IEEE

Abstract—The continued scaling of CMOS technologies and con-
sideration of post-CMOS technologies has elevated hardware re-
liability to a first-class challenge, particularly in energy- and re-
source-constrained embedded sensor applications. In such applica-
tions, there is an increasing emphasis on inference functions. Ma-
chine-learning algorithms play an important role by enabling the
construction of data-driven models for inference over data that is
too complex to model analytically. This paper explores how data-
driven training can be exploited to also overcome computational
errors due to hardware faults within an inference stage. FPGA em-
ulation with randomized fault injections shows that the proposed
architecture restores system performance to the level of a fault free
system, with 1% of the hardware requiring explicit fault protec-
tion, and with digital faults affecting 2% of the circuit nodes in
the rest of the hardware. To train an error-aware inference model,
a training algorithm is presented whose hardware (memory) and
energy requirements are reduced by 65 and 10 compared to
previously reported algorithms (AdaBoost and FilterBoost respec-
tively), thereby enabling model construction entirely on the device.

Index Terms—Circuit reliability, fault tolerance, pattern classi-
fication, pattern recognition.

I. INTRODUCTION

M ACHINE-LEARNING algorithms are becoming in-
creasingly critical in embedded sensing applications

[1]–[3], as they enable the construction of data-driven models
for analyzing signals that are otherwise too complex to model
analytically. Algorithms for classification and regression are of
particular interest due to the importance of embedded recogni-
tion functions [4]. Aside from the value that machine learning
brings for analyzing application signals, recent studies have
also begun to expose its substantial potential for overcoming
complex non-idealities in the platform hardware itself. In
[5], [6], an approach called data-driven hardware resilience
(DDHR) was presented that overcomes high levels of digital
faults and data-conversion/instrumentation non-linearities by
utilizing a classification algorithm to model data in the presence
of the resulting errors. This enables high performance despite

Manuscript received August 11, 2014; revised November 19, 2014; accepted
January 06, 2015. Date of current version March 27, 2015. This work was sup-
ported by SRC, NSF (CCF-1253670), as well as Center for Future Architectures
Research (CFAR) and Systems onNanoscale Information fabriCs (SONIC), two
of the six SRC STARnet Centers, sponsored by MARCO and DARPA. This
paper was recommended by Associate Editor M. Seok.
Z. Wang and N. Verma are with the Department of Electrical Engineering,

Princeton University, Princeton, NJ 08544 USA (e-mail: zhuow@princeton.
edu; nverma@princeton.edu).
R. E. Schapire is with the Department of Computer Science, Princeton Uni-

versity, Princeton, NJ 08544 USA, and also Microsoft Research, New York, NY
10019 USA (e-mail: schapire@cs.princeton.edu).
Digital Object Identifier 10.1109/TCSI.2015.2395591

severe errors. In the DDHR systems, however, the inference
stage applying the classification model is sensitive to errors
due to hardware faults. Although generally machine-learning
algorithms exhibits some level of inherent resilience [7], [8]
against computational errors, this is found to be inadequate
in the face of the high error rates and error magnitudes that
occur due to even modest levels of hardware faults. Thus,
in the DDHR systems, the inference stage itself needs to be
fault-free, requiring 10–30% of the hardware to be explicitly
fault protected [6]. Unfortunately, as shown in [9], the inference
stage scales with the complexity of the model applied, likely
making it a dominating component in DDHR systems as both
application signals and platform hardware scale in various
dimensions.
To address this, we present an approach referred to as

error-adaptive classifier boosting (EACB) wherein the infer-
ence stage is itself allowed to be highly affected by faults.
The basic idea of EACB was presented in [10]. This work
extends that idea by proposing and evaluating a practical
system architecture, wherein faults are addressed across the
entire architecture (feature extractor and classifier), and de-
tails for embedded training of the classifier are developed.
Faults affecting over 0.01% of circuit nodes in the feature
extractor and over 2% of circuit nodes in the classifier itself
are overcome, restoring performance to a level near that of
a fully fault-free system. This is achieved with less than 1%
fault-protected hardware in the real-time detection system. The
specific contributions of this work are as follows:
1) We present the EACB approach, and demonstrate its oper-

ation within a system for epileptic-seizure detection using
sensed electroencephalogram (EEG) data. The demonstra-
tion is based on an FPGA implementation, which permits
injection of faults at controllable rates and in a random-
ized manner, enabling quantitative characterization. Ex-
tending the work in [10], experiments are performed con-
sidering faults in both the feature-extraction and classifi-
cation stages, and detailed rationale is provided behind the
fault models employed.

2) We present an algorithm and architecture to efficiently train
the EACB system entirely on the platform at run time,
the details of which have not been presented before. In
particular, data-driven training typically requires a large
training set to adequately represent the data statistics. This
leads to high energy and large embedded memory. For the
demonstrated system, our algorithm reduces the memory
by 65 and energy by 10 compared to two state-
of-the-art algorithms (AdaBoost and FilterBoost, respec-
tively). Further, our architecture generates training labels

1549-8328 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

WANG et al.: ERROR ADAPTIVE CLASSIFIER BOOSTING (EACB) 1137

itself, enabling trainingwithout any inputs from an external
expert/oracle.

3) We present an experimental design-space exploration and
analysis of the critical architectural parameters. Beyond the
initial design points considered in [10], here we describe
the design-space trade-offs in detail. We quantify the trade-
offs (gate-count/memory, energy, fault resilience) associ-
ated with the real-time hardware (feature extractor, classi-
fier) and non-real-time hardware (trainer). This establishes
guidelines for the design of EACB systems.

The remainder of this paper is organized as follows. Sec-
tion II presents background both on existing fault-resilience ap-
proaches (with an emphasis on DDHR) as well as the key princi-
ples utilized in EACB. Section III first discusses the specific de-
sign objectives (including the fault types targeted), then presents
an overview of EACB along with an architecture for efficient
embedded training. Section IV then defines the design space of
interest and the experimental approach, and finally presents re-
sults and analysis. Finally, Section V concludes.

II. BACKGROUND

A. Emerging Approaches to Fault Tolerance
The increasing susceptibility of advanced-CMOS technolo-

gies [11]–[13] and the projected susceptibility of post-CMOS
technologies (carbon nanotubes, tunneling FETs) [14], [15]
to device-level variabilities and manufacturing defects has
prompted substantial research in fault resilience. Many
emerging directions focus on algorithmic and architectural ap-
proaches rather than circuit- and device-level approaches, since
1) higher-level approaches are showing increased leverage
for handling faults [16], and 2) many applications enable
some level of error tolerance, offering various alternatives for
overcoming the effects of faults [17]. Prominent examples in-
clude algorithmic noise tolerance (ANT) [18], soft N-modular
redundancy (Soft NMR) [19], and stochastic sensor network
on chip (SSNOC) [20]. A key attribute in the implementation
of all these is the use of some, preferably minimal, fault-pro-
tected component. As another example, error-resilient system
architecture (ERSA) [8] employs an explicitly fault-protected
programmable core to enable resilient, programmable control
operations over fault-prone data-processing cores.

B. Data-Driven Hardware Resilience (DDHR)
The approach of DDHR aims to minimize the fault-protected

hardware by incorporating the error-handling mechanism
within an existing system-level algorithmic framework. More
importantly, at the system level, it is able to overcome errors in
the context of the input data and the output results of interest.
As a result, it achieves a more fundamental level of resilience,
shown to be set by the level of information retained for the
processing of interest.
DDHR applies to systems that employ data-driven modeling

for implementing inference functions. Specifically, it achieves
resilience against faults by utilizing data derived from fault-af-
fected hardware in order to train a model for classification or
regression [5], [21]. The concept was demonstrated on a su-
pervised classification framework as shown in Fig. 1(a). The
framework consists of a trainer and a detector. The trainer em-
ploys previously observed data to learn statistically how the data
corresponds with the inference of interest (i.e., the class mem-

bership). The detector performs inference on newly observed
data based on the constructed model by employing a classifi-
cation kernel. Generally, faults occur randomly and cause un-
predictable errors; by using error-affected data, DDHR enables
modeling of the data statistics in the presence of the partic-
ular faults within a given instance of hardware. A machine-
learning algorithm, implemented on a small kernel of fault-pro-
tected hardware is exploited within DDHR to construct and
apply the model. Fig. 1(b) shows a DDHR system that was
demonstrated for EEG-based seizure detection. The gate counts
(from RTL synthesis) for the fault-prone and the fault-protected
hardware (shown in gray) are given in the table. The fault-af-
fected blocks include feature-extraction stages while the fault-
protected blocks include machine-learning classifiers and a mi-
crocontroller, used for infrequent model training. The classifier
used in [5], [21] is a support-vector machine (SVM) [22]. Being
a supervised-learning algorithm, an SVM requires training data,
in this case derived from the fault-affected hardware, as well as
training labels. While labels are conventionally provided by an
external expert, in [5] an architecture capable of estimating la-
bels without any external inputs is proposed. This involves the
use of a temporary error-free system implemented in software
on the fault-protected microcontroller. Although the software
implementation is energy intensive and cannot run in real time,
it can be actuated temporarily during training, providing class
declarations as training labels. This was shown to yield perfor-
mance close to that achieved by training with perfect labels.
Fig. 1(c) illustrates DDHR. On the left, the data and classi-

fication model from a fault-free system are shown; on the right
the data from a fault-affected system (emulated using an FPGA)
are shown. The resulting errors substantially alter the feature-
vector distributions; however, a new classification model, called
an error-aware model, can be learned and constructed for the
resulting distributions. The errors can thus be viewed as al-
tering the way that information for classification is encoded.
With a strong learner, capable of fitting complex distributions,
the severity of the errors is no longer critical. In fact, it is shown
that performance close to a fault-free system is achieved even
at high fault rates (i.e., fault affecting over 0.02% of the cir-
cuit nodes), causing high bit-level error (i.e., bit-error rates of
20–50%). Rather, what is critical is the fundamental level of in-
formation retained in the new encoding. This is demonstrated in
[21] by computing the mutual information (between the error-
affected data and the class membership) and showing that this
exhibits strong correspondence with the system performance.
Though DDHR is thus able to achieve a more fundamental

level of performance in the presence of errors, we see from
Fig. 1(a) that substantial fault-protected hardware is required.
While the gate counts are modest in the demonstrated systems
[21], we expect the machine-learning kernels to scale with the
complexity of the model required [9]. Thus, as both the appli-
cation signals and the fault-prone platform scale in complexity,
these kernels become a dominating aspect. This work focuses on
making the inference kernel itself capable of overcoming high
rates of faults. This is achieved by exploiting amachine-learning
algorithm know as Adaptive Boosting (AdaBoost).

C. Adaptive Boosting (AdaBoost)

AdaBoost is a machine-learning algorithm that achieves a
strong classifier through a combination of iteratively-trained

1138 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 4, APRIL 2015

Fig. 1. Illustration of DDHR [21]. (a) Supervised classification framework con-
sists of a trainer and a detector performing inference function. (b) The archi-
tecture of an implemented EEG-based seizure detector uses a small kernel of
fault-protected hardware (shown in gray) to enable high system-level perfor-
mance. (c) The DDHR concept is based on constructing an error-aware (EA)
model of the error-affected EEG-feature data (principal component analysis is
used to visualize the high-dimensionality feature data).

weak classifiers [23]. Weak classifiers are typically classifiers
whose output may be only weakly correlated with the true class.
In practice, this often comes about due to the use of simple
decision rules, unable to fit complex distributions of the data.
In this work, the concept is extended by treating fault-prone
classifiers as weak classifiers. The aim is not only to boost the
final decision rule, but also, as in the case of DDHR, to enable
adaptive training in response to unpredictable classifier output
statistics generated due to random hardware faults.
In addition to forming a fault-resilient strong classifier,

this work also develops an efficient algorithm for embedded
training, which can thus be achieved entirely on a low-power
device. As we describe in Section III-C, a key challenge is the
amount of memory required for the training data in order to
ensure low generalization error. To address this, we build on
the idea of FilterBoost [24], which is set in the scenario where
training data can be acquired sequentially from an oracle to
refine the classification model during iterative training stages of
the weak classifiers. In this work, we propose a new algorithm
extending FilterBoost to reduce both the computational energy
of acquiring the training data and the instantaneous memory
required for training each iteration.

III. ERROR-ADAPTIVE CLASSIFIER BOOSTING (EACB)
The aims of the EACB system are as follows: 1) achieving

a strong classifier based on data-driven learning that enables
scalable decision rules as well as minimal energy and hard-
ware complexity for real-time classification; 2) high classifi-
cation performance in the presence of very high fault rates; 3)
minimizing the ratio of fault-protected to fault-prone hardware;

Fig. 2. Illustration of error adaptive classifier boosting (EACB) system archi-
tecture.

and 4) embedded model training with low energy and low hard-
ware overhead. The following subsections describe the EACB
architecture, implementation (along with design parameters),
and training algorithm.

A. Architecture of Error Adaptive Classifier Boosting
The architecture for EACB is shown in Fig. 2. It leverages

the AdaBoost algorithm that we previously discussed in Sec-
tion II-C. The classifier consists of a set of weak classifiers,
which are fault affected, as well as voter and trainer blocks,
which are both fault protected. Generally, protection against
faults can be achieved through various means (e.g., selectively
using a higher supply voltage in low-voltage systems [25], [26],
selectively employing conservative physical design rules for
deeply-scaled technology manufacturing [27], etc.) The table
shows actual gate counts from the hardware experiments of Sec-
tion IV for the fault-affected and fault-protected block, both de-
rived from synthesis of RTL to a gate-level netlist. We point out
that although the classifier requires somewhat more hardware
than that in the previous DDHR systems [Fig. 1(b)], in both
cases the classifier hardware represents a small portion of the
overall systems.
The principle behind EACB extends from DDHR [10].

EACB is based on the recognition that a processing stage
capable of data-driven training introduces the possibility of
learning the statistics of its input data. Given that hardware
faults in the preceding stages cause errors whose effect is to
alter these statistics, data-driven training enables desired out-
puts to be produced in the presence of these errors as long as the
information required to derive the desired outputs is preserved
in the resulting statistics. As shown in [5], [21], the information
is very often preserved by a fault-prone processor even in
the case of severe output errors. To exploit this idea, EACB
implements classification via a structure where data-driven
training is performed in successive stages, so that each stage
raises some possibility of training to, and thus overcoming,
errors in the previous stages. Such a classifier structure can be
trained using the AdaBoost algorithm, wherein weak classifiers
are trained in an iterative manner. However, a critical aspect
in EACB is that a weak-classifier's output depends not only
on the input data and the corresponding classification model
(derived from training), but also on the error statistics generated
by faults within the weak classifier. The aim is thus to train
subsequent weak classifiers in response to the resulting error
statistics. During each iteration of training, the error affected
outputs from previous iterations are fed to the trainer and used
along with training data (feature vectors) to establish 1) the

WANG et al.: ERROR ADAPTIVE CLASSIFIER BOOSTING (EACB) 1139

weight values for classifier voting, and 2) the weight distribu-
tion for applying the training data in subsequent iterations; the
algorithm for training is described in Section III-C below.

B. Weak Classifier for Minimal Fault Protection

The choice and implementation of the weak classifiers
strongly influences overall performance (i.e., tradeoff between
accuracy and simplicity of weak classifiers [23], [28]), training
complexity, and level of fault tolerance. Among the various
classifiers that have been considered for boosting (support
vector machines [29], neural networks [30], decision trees,
and decision stumps [28], [31]), decision trees and decision
stumps enable minimal training complexity and, as described
below, offer the potential for very high fault tolerance within
the EACB architecture.
A critical aspect for fault tolerance is the manner in which

computation control is handled in the hardware implementa-
tion. A requirement from the theory of AdaBoost is that the
weak classifiers must provide some correlation with the true
class membership (i.e., must be better than 50-50 guessing) [23].
While data-path faults perturb (perhaps severely) the output sta-
tistics generated by a classifier, the probability of obtaining out-
puts exhibiting some correlation remains high. However, con-
trol-path faults can often result in degenerate outputs, which
might thus be inadequate for even a weak classifier within Ad-
aBoost. An implementation that predefines the tree structure in
hardware, as in [32], minimizes the control path (while also en-
hancing speed and energy efficiency). Alternatively, [33] ex-
ploits the similarity between decision trees and threshold net-
works, implementing the nodes as a “hidden layer” whose out-
puts are used to construct a logical function for classification;
this once again minimizes the control path. However, in EACB
a high degree of programmability in the classification model
is critical for error-adaptive training. In both implementations
above, the programmability is too limited. On the other hand,
implementations that roll the tree into a single universal node
(e.g., [34]), offer a high degree of programmability (while also
minimizing the hardware), but rely too heavily on a control path.
Fig. 3 shows the implementation of the classification pro-

cessor developed in this work with decision tree weak classi-
fiers. The classifiers (TREE 1 to TREE) all employ the same
hardware, and the voter is implemented as a -input signed
adder for deriving the final hypothesis , where the sign bit
is provided by the weak-classifier outputs and the corre-
sponding weight is provided from a register file. The deci-
sion-tree implementation consists of three stages. The first stage
essentially implements the nodes of the decision tree by testing
the features composing a feature vector
against their corresponding thresholds via
the comparison blocks . The benefit of performing this
operation first is that the -dimensional feature vector is reduced
to bits, corresponding to the binary values evaluated at the
nodes. The second stage uses -to-1 multiplexers to
essentially select the nodes to be included in the tree, also de-
rived from model training. Notice that typically trees will have
fewer nodes than the total number of features . Accordingly,
in the first stage, only thresholds for the selected features need
to be considered (others can be set arbitrarily, to zero in our im-
plementation). With such a structure, the number of nodes in
the tree is limited to during training. Finally, the third stage

Fig. 3. Classification processor consisting of -node decision-tree weak
classifiers operating on -dimensional feature vectors.

uses the -bit output from the multiplexers as the index to a
look-up table (LUT) to derive the single-bit classifier output.
The LUT entries are also derived from training. While such an
implementation minimizes control-flow circuitry, for improved
fault resilience, it does lead to increased hardware complexity.
Even so, it is worth mentioning that taking the seizure detector
presented in Section IV as an example, the energy per classifi-
cation (estimated from hardware measurements) is reduced by
a factor of 16 compared to an SVM classifier with RBF kernel
implemented with an accelerator (from 2.22 to 0.14).
A key aspect of the classifier implementation is that it min-

imizes the control path while enabling a high degree of model
programmability, limiting only the number of nodes in the tree.
The primary cost paid is that the tree is computed in a flattened
manner. Where a tree conventionally enables a logarithmic
computation scaling, now the computation scales linearly with
the number of features (first stage) and linearly with the total
number of nodes (second stage). To reduce the number of fea-
tures, the training algorithm (described below) performs feature
selection by exploiting a metric computed off-line during an
initial training phase (though feature selection helps to reduce
the classifier complexity, as we describe below, it is primarily
performed to reduce trainer complexity). To reduce the number
of nodes, we pursue design-space exploration over the tree
parameters (Section IV). We find that in practice a tree with
very few nodes can be used without substantially increasing
the number of iterations required in the overall classifier. As a
result, the computational complexity of the classifiers can be
small.

C. Low-Hardware, Low-Energy Trainer

To implement the trainer, EACB employs a small fault-pro-
tected microcontroller (in the system presented, an OpenMSP
core is used [35]). In a supervised-learning algorithm such as
AdaBoost, classifier training requires both feature-vector data
and training labels. The training feature vectors are derived at
runtime by the system. The training labels are estimates, as in
the case of DDHR [5], [21], that correspond to the output from
a temporary error-free classifier implemented in software on
the fault-protected microcontroller. Although a software imple-
mentation of the classifier is energy intensive and cannot run in

1140 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 4, APRIL 2015

Fig. 4. Memory usage comparison for adaptive-boosting training and the pro-
posed on-line training algorithm (the case of weak-classifiers based on decision
stumps is considered).

real-time, it is viable for infrequent training phases. The dom-
inant concern during each iteration of training is the hardware
complexity and energy required to compute the weak-classifier
model. In particular, this is limited by the large amount of
training data typically needed to ensure generalization of the
classifier model, resulting in a large embedded memory and
large number of computation cycles. Below, we describe a
training algorithm thus optimized to reduce the memory and
energy of embedded training.
1) Memory Reduction: Fig. 4 considers the memory required

for training the seizure detector (based on decision-stump
weak classifiers) presented in Section IV, both before and
after optimizations. As shown, without applying the proposed
optimizations, AdaBoost training requires a training batch
size of approximately 5000 training-data instances to ensure
adequate data diversity. Considering feature vectors based
on EEG spectral-energy distribution (having a dimensionality
of 42 and a per-feature bit width of 16 bits, as described in
Section IV-C), 420 kB of memory is required just for storing
the training data. As shown in the second row, the memory
requirements in this work are reduced to 6.4 kB (for the case of
decision stumps, discussed in Section IV-D). This is achieved
through two approaches: 1) feature-vector dimensionality re-
duction via a learner-driven selection metric; and 2) training-set
reduction (while ensuring generalization) through an algorithm
leveraging the idea of FilterBoost [24].
With regards to feature-dimensionality reduction, approaches

have included feature construction via space-dimensionality
reduction and reduced-set selection [36]. Feature-construction
methods such as principal component analysis (PCA) raise
additional computational requirements both during training and
classification, elevating energy and susceptibility to faults. Re-
duced-set selection, on the other hand, aims to simply discard
features that are least informative. While there exist generic
metrics such as mutual information to assess the features, here
we employ a metric directly related to the choice of weak-clas-
sifier employed, namely decision trees. This metric is computed
during off-line training of a generic fault-free boosted classifier;
training of one such classifier is required for generating training
labels for all fault-affected instances of the system. During this
training process, a histogram is computed of how often each
feature is utilized within the set of weak-classifiers (i.e., for
the decision-tree nodes). Then, features most frequently used
by the generic classifier are selected. Thus, this metric aims
to identify features that are of greatest value for the classifier
implementation chosen. Fig. 5 is an example of such a com-
puted histogram from the system presented in Section IV. The
black bars identify the sixteen features thus selected, which can
be seen to occur with substantially higher frequency than the
others.
With regards to training-set reduction, learning theory tells

us that for batch AdaBoost algorithms, the generalization error
of training will increase as we reduce the training set size [23].
So, to reduce the size of the training set for on-line training,

Fig. 5. Histogram for evaluating how informative each feature is.

while maintaining low generalization error, we leverage an
idea from FilterBoost [24]. Generally, boosting algorithms can
be grouped into two types: 1) boosting by filtering, and 2)
boosting by reweighting. In boosting by filtering, training-data
instances arrive in a stream, and the algorithm selects which
instances to use for training and which to discard. In boosting
by reweighting, the algorithm takes a batch of training-data
instances, which are used (and reused) every iteration, but with
new weighting applied to the batch instances. FilterBoost is
a “boosting-by-filtering” algorithm. Standard AdaBoost is a
“boosting-by-reweighting” algorithm [23]. Compared to stan-
dard AdaBoost, FilterBoost draws new data for each iteration
of training. This allows us to reduce the training set with respect
to that required for generalization in a standard AdaBoost
algorithm. This is possible because generalization is enhanced
through boosting thanks to diverse training sets employed for
each iteration. We leverage this to enhance the diversity of the
data set across the training iterations, permitting the data set
used at each iteration to be substantially smaller. However,
the original FilterBoost algorithm does not specifically target
data-set minimization at each iteration, and it incurs high
energy for computing metrics to select the train-data instances.
So we introduce a modified on-line training algorithm, which
takes advantage of both “boosting by filtering” and “boosting
by reweighting.” Like “boosting by filtering,” we learn from a
stream of instances. This addresses training memory. However,
as shown in the following section, the instances are weighted
rather than being filtered. This addresses training energy.
For the system presented in Section IV, the proposed on-line
training algorithm reduces the memory required at each itera-
tion to 200 instances and the energy by 10 (compared to
FilterBoost algorithm). Combined with feature-dimensionality
reduction, the total memory required is thus reduced to 6.4 kB,
as shown in Fig. 4, representing 65 reduction compared to a
standard AdaBoost algorithm.
2) Energy Reduction: The proposed algorithm, achieving

both memory and energy reduction, is specified in Algorithm
1. Within the system, training data with label is acquired at
runtime from sensor data source , and the trainer is initiated
at selected periods (either once at startup or periodically during
the lifetime of the device).
Compared to the FilterBoost algorithm, the major differences

in the proposed on-line training algorithm are as follows. First,
the FilterBoost algorithm assumes that a source of data is
available from which instances preferred for the training set can
be selected. This is done by computing a weight for an in-
stance under consideration, and accepting that instance with a
probability corresponding to the weight. In the targeted system,
the data , ultimately presented to the EACB trainer is being
actively sensed at run time and is thus constrained. For this

WANG et al.: ERROR ADAPTIVE CLASSIFIER BOOSTING (EACB) 1141

reason, we fix the training set size to for each iteration, and
accept all actively sensed data for training (Line 1, 7). This pre-
cludes the need to compute an acceptance probability. In this
way, the data acquired for on-line training is not filtered, but
rather associated with a weight for training (Line 4). Second,
in the FilterBoost algorithm, each iteration of
training requires two subsets of data that are explicitly diverse
(i.e., independent samples). The first subset is used to train the
current weak classifier (i.e., establish the nodes, thresh-
olds, and structure of the decision tree). The second subset is
used to derive the weight associated with the current weak
classifier [i.e., for voting in the overall classifier
(Line 12)]. However, in the proposed algorithm, only one new
data set , is required at each iteration. The current weak
classifier is trained using the data set acquired during
the previous iteration , (Line 6) and the current
weak-classifier's weight is derived using a newly acquired
data set , (Line 9) (this data set is then used to train the
next weak classifier). Third, the FilterBoost algorithm derives
the weak-classifier's weight by continually applying training
data until a probabilistic confidence bound is met for the com-
puted weight. However, the proposed algorithm uses the ac-
quired data set and derives a best estimate for the weight based
on this.
Both the FilterBoost algorithm and the proposed algo-

rithm were implemented. On the tested cases, the classifier
performance was close. Execution clock-cycle counts were

determined through cycle-accurate simulation of an MSP4301
microcontroller, which is also used for the implementation
and experiments in Section IV. For each iteration of training,
the original algorithm requires 55 M clock cycles, while the
proposed algorithm requires only 5.0 M clock cycles, making
embedded training much more viable. The proposed algorithm
is used for the experiments in Section IV.

IV. EXPERIMENTS

In the subsections below, we first describe the design space
over which experimentation is performed. Then we describe the
details of the experimentation approach. Next, we present the
EEG-based seizure-detection system used for demonstration.
Finally, we present the results and analysis.

A. Evaluation Metrics and Design Space
Given the aims of EACB, the critical metrics for evalua-

tion are the following: 1) the fraction of hardware that must
be fault protected; 2) the energy and hardware complexity of
the low-duty-cycle trainer (consisting of a microcontroller with
embedded memory); 3) the energy and hardware complexity of
the real-time classifier (consisting of the weak classifiers and
a voter); and 4) the fault-rates tolerable while maintaining ap-
plication-level performance. As described in Section III-B, the
choice of weak classifier strongly influences these factors. We
focus on decision trees due to their scalability thanks to simple
implementation, their comparatively low-complexity training
algorithm, and their fault tolerance due to the potential to mini-
mize the control path. However, the parameters of the decision
tree, most notably the number of nodes, has important impli-
cations on EACB (recall the reduced-control-path decision-tree
implementation proposed also fixes the number of nodes). Thus,
for design exploration, we thus consider three tree structures: 1)
7-node trees; 2) 4-node trees; and 3) 1-node trees (i.e., stumps).

B. Experimental Approach
For experimental demonstration, we focus on FPGA emula-

tion. While custom IC prototyping is directly affected by man-
ufacturing defects and variation scenarios, it is difficult to in-
troduce resulting faults in a controllable and suitably-random-
ized manner to enable characterization. Simulation make such
a characterization possible but unviable. The reason is the al-
gorithmic approach of EACB requires system-level simulation,
but accurate representation of faults necessitates models derived
from practical technological defects, necessitating low levels of
abstraction (transistor, gate level). System simulations over ad-
equately large datasets are unviable at such levels.
On the other hand, FPGA emulation enables representation of

faults at the gate level and enables processing of enough data to
adequately evaluate the prototyped system. The emulation flow
is shown in Fig. 6(a). An RTL description (Verilog) of the EACB
system is synthesized into a gate-level netlist using an ASIC
logic library. Faults are then introduced within the gate-level
netlist. The fault model employed should have strong correspon-
dence with physical fault sources (defects and variation) within
hardware. We thus focus on stuck-at-1/0 faults, which are rep-
resentative of a wide range of physical fault sources in CMOS
processing (such as random dopant fluctuations affecting static

1The specific MSP430 architecture used is MSP430F5438A.

1142 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 4, APRIL 2015

Fig. 6. Approach for emulating a fault-prone system [21]. (a) The FPGA map-
ping flow starts by synthesizing RTL of the processor and ends with mapping a
circuit in which faults can be activated. (b) Configurable faults are introduced
by adding multiplexers for enforcing stuck-at-0/1 nodes in the circuit.

noise margins in low-voltage circuits [25], [37], lithographic de-
fects affecting nano-scale manufacturing [38], [39]). To intro-
duce the faults, the gate-level netlist is edited (via a script) by
including 1) multiplexers on a large number of nodes, and 2)
a fault-control module for generating signals (and

) to control the multiplexers. Each multiplexer drives
its output node with either the intended signal or with a static
logic 1/0, as illustrated in Fig. 6(b). The fault-control module
consists of a register file that programmably activates fault con-
figurations over themultiplexed circuit nodes. Recognizing that,
in addition to the fault rate, the precise nodes affected by faults
can strongly impact the errors, multiple fault configurations are
tested for each fault rate. A second FPGA is used strictly as an
Ethernet transceiver, to load configuration data into the fault-
control module and to retrieve output data from the system to a
host PC [21].

C. Application for Demonstration

For experimentation, we employ EACB in a system for
EEG-based detection of epileptic seizures. The system consists
of a feature-extraction stage as well as a classifier and trainer.
The feature-extraction processing is shown in Fig. 7. The
features correspond to the spectral-energy distribution of each
EEG signal channel [40]. Since the band of interest is below
20 Hz, the EEG signals sampled at 600 Hz are down-sampled
by 8 with a decimation filter. This results in 75 Hz samples,
which are then fed to a bank of seven band-pass filters (BPF1
to BPF7) with center frequencies from 0 Hz to 19 Hz and
bandwidth of 3 Hz. The magnitudes of the resulting output
samples are then accumulated over a two-second epoch (150

Fig. 7. Architecture for feature extractor of EEG-based seizure-detection
system [21].

samples) to represent the spectral energies. This results in seven
features per EEG channel, which are then concatenated with
those from two previous epochs, giving a total of 21 features
per channel. With two EEG channels used in the application,
the total feature-vector dimensionality is 42. As mentioned,
three implementations are considered for the decision trees
used within the classifier (7-, 4-, 1-node trees). The training
algorithm runs on a microcontroller, implemented using an
OpenMSP core [35]. For this, both the training algorithm and
the temporary error-free classifier for deriving training labels
are coded in C and compiled for execution.
EEG data for testing is obtained from the MIT-CHB Seizure

Database [41], [42]. The application-level performance metrics
are as follows [40]: 1) sensitivity, corresponding to the per-
centage of seizure correctly detected; 2) number of false alarms;
and 3) latency, corresponding to the delay in detecting a seizure
compared to the point of onset declared by an expert (expert-an-
notated labels are provided in the dataset). A total of 10 k sec-
onds of EEG data are used for testing.

D. Experimental Results

In this section, we present experimental results, first intro-
ducing faults only in the classifier, to demonstrate extension
of previous approaches to DDHR (which required the classi-
fier to be fault protected). Then we introduce faults in the en-
tire system, demonstrating that EACB simultaneously achieves
DDHR over errors in the classifier and feature extractor.
1) System Performance With Faults: Faults are injected on

circuit nodes of the classifier at a rate ranging from 0% (rep-
resenting fault-free system performance) up to 3%. Five cases
of fault configurations are tested at each rate, with the fault-af-
fected nodes randomly selected in each case. The system per-
formance employing EACB is shown in Fig. 8, along with that
not employing EACB (i.e., with weak-classifiers models and
weights based on training a generic classifier rather than training
the particular fault-affected classifiers via the on-line training al-
gorithm). As shown for the fault rates considered, with EACB
system performance is consistently at the level of the error-free
case (represented in the plots by the start-shaped marker). On
the other hand, without EACB, system performance rapidly de-
grades, as reflected by reduced sensitivity and elevated false
alarms across the cases tested. This highlights the limited in-
herent resilience of the machine-learning algorithm in the face
of errors caused by even modest levels of faults. As seen, a
similar trend is observed for all tree structures considered, sug-
gesting a design space compatible with the EACB architecture.

WANG et al.: ERROR ADAPTIVE CLASSIFIER BOOSTING (EACB) 1143

Fig. 8. Performance of the systems with respect to the fault rates, for the cases with and without EACB. Three types of weak classifiers are implemented (a)–(c)
decision stumps (d)–(f) 4-node decision trees (g)–(i) 7-node decision trees. Five fault configurations are tested at each fault rate. In the bar plots, the markers
indicate the average value over the five test cases, while the error bars denote maximum and minimum cases.

Fig. 9. Comparison of EACB system parameters for various weak-classifier
choices (stumps, 4-node trees, and 7-node trees).

As we analyze below, the size of the trees impacts important pa-
rameters associated with the trainer and classifier hardware.
2) Classifier-Complexity Considerations: Fig. 9 shows the

implementation details, comparing the three weak-classifier
choices. Notably, since smaller trees result in weaker classifiers,
somewhat more iterations are required for performance
convergence when we assume an unconstrained training-set
size. In the hardware implementation used for the trees (Fig. 3),
smaller trees result in only minor reduction of gate counts
(since the implementation in Section III-B applies thresholding
to all input features in the first stage, regardless of the number
of nodes). Consequently, the increased iterations lead to higher
total gate counts for the smaller trees. The voter hardware,
which must be fault protected, consisting of a -input signed
adder. The adder hardware scales more than linearly with
the number of iterations. As a result, smaller trees with more
iterations lead to higher total ratio of fault-protected hardware.
Nonetheless, across all cases EACB enables 82–89% of the
classifier hardware to be fault affected. As we describe below,
by enabling faults in the feature-extraction processor as well,
the total fault-protected hardware is reduced to below 1% for
the entire system.

3) Trainer-Complexity Considerations: While the classi-
fier-complexity favors the use of larger trees, here we find that
smaller trees are favored in terms of the trainer complexity.
Accordingly, a tradeoff emerges between classifier complexity
and trainer complexity. The training algorithm presented in
Section III-C reduces the amount of trainer memory by 1)
performing feature selection (based on a learner metric), and
2) enhancing generalization by acquiring a new data set for
training at each iteration. Thus, increasing the weak-classifier
iterations or increasing the data-set size improves general-
ization. The classifier-complexity analysis presented above
(Fig. 9) does not consider constraints on the size of the data set
for training each iteration. Fig. 10(a) shows that, in fact, the
number of iterations required to achieve convergence depends
on the constrained size of the data set- larger data sets enable
fewer iterations thanks to greater generalization achieved at
each iteration. In this scenario, we see that for the 7-, 4-, and
1-node trees, the number of iterations required for convergence
tracks each other. As a proxy to energy, Fig. 10(b) shows
the trainer clock cycles (corresponding to execution on the
OpenMSP core), illustrating the relative complexity of training
larger trees. Accordingly, while it is true that larger trees yield
the potential for fewer iterations (and thus the classifier-com-
plexity benefits described above), realizing this benefit would
require a larger trainer memory and more clock cycles. As a
point of reference, we show classifier and trainer parameters
(namely, trainer memory and clock cycles) in Fig. 11, that yield
a reasonable balance between the tradeoffs discussed.
4) EACB for Simultaneously Overcoming Feature Extractor

and Classifier Faults: In this section, we present results when

1144 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 4, APRIL 2015

Fig. 10. On-line training system design trade-offs enabled by modifying weak
classifier type (stumps, 4-node trees, or 7-node trees) and training data pool size.

Fig. 11. Comparison of trainer complexity for different sized trees (design pa-
rameters are chosen that yield a reasonable balance between system tradeoffs.

Fig. 12. EACB system performance with faults injected in both the feature
extractor and real-time classifier.

faults are injected in the entire system (including feature ex-
tractor and classifier). For experimental exploration, we inject
stuck-at faults in the classifier at a fixed rate of 2% of the total
hardware (generally regarded as a very high fault rate). Then
we progressively increase the fault rate in the feature extractor.
For each experiment, we measure the number of iterations re-
quired to reach convergence (i.e., minimal further improvement
in system performance). As before, five fault configurations are
tested at each fault rate to represent faults in different random-
ized locations of the circuit. From the experiments, we find that
system performance is consistently maintained for feature-ex-
tractor fault rates of 0.011%. Fig. 12 summarizes the system pa-
rameters for all three tree topologies considered, where the fault
rate is set to 0.011% and 2% for the feature extractor and classi-
fier, respectively. We can see that the iteration required for con-
vergence varies substantially for the different tree topologies,
but follows a similar trend to that shown in Fig. 10. By applying
the proposed techniques, the only component within the entire
real-time system that must be fault protected is the final voter
(Fig. 2), which accounts for 1–4% of the total circuit hardware.

V. CONCLUSIONS

In this paper, we present the concept of error adaptive clas-
sifier boosting (EACB). EACB applies iterative training over
fault-prone weak classifiers to achieve strong classification re-
silient against hardware faults. A system for EEG-based seizure
detection is presented, implemented via an FPGA to enable con-
trollable injection of faults. The system includes a fault-pro-
tected microcontroller (based on an OpenMSP) executing a pro-
posed training algorithm, wherein the trainer memory required
is reduced by 65 to 6.4 kB and the trainer energy is reduced
by 10 (compared to state-of-the-art algorithms). Results from

FPGA emulation show that the system is able to overcome high
fault rates, affecting over 3% of the total circuit nodes in the
classifier. The paper analyzes the complexity of the classifier
and trainer with respect to the key design parameters.

REFERENCES
[1] F. M. Khan, M. G. Arnold, and W. M. Pottenger, “Hardware-based

support vector machine classification in logarithmic number systems,”
in Proc. IEEE Int. Symp. Circuits Syst., 2005, vol. 5, pp. 5154–5157.

[2] K. H. Lee and N. Verma, “A 1.2-0.55 V general-purpose biomedical
processor with configurable machine-learning accelerators for high-
order, patient-adaptive monitoring,” in Proc. IEEE ESSCIRC, 2012,
pp. 285–288.

[3] J. Park, J. Kwon, J. Oh, S. Lee, J.-Y. Kim, and H.-J. Yoo, “A 92-mW
real-time traffic sign recognition system with robust illumination adap-
tation and support vector machine,” IEEE J. Solid-State Circuits, vol.
47, no. 11, pp. 2711–2723, 2012.

[4] P. Dubey, “Recognition, mining and synthesis moves computers to the
era of tera,” Technol.@Intel Mag., vol. 9, no. 2, pp. 1–10, 2005.

[5] N. Verma, K. H. Lee, K. J. Jang, and A. Shoeb, “Enabling system-level
platform resilience through embedded data-driven inference capabili-
ties in electronic devices,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2012, pp. 5285–5288.

[6] Z. Wang, K. H. Lee, and N. Verma, “Hardware specialization in low-
power sensing applications to address energy and resilience,” J. Signal
Process. Syst., vol. 78, no. 1, pp. 49–62, 2015.

[7] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T.
Chakradhar, “Scalable effort hardware design: Exploiting algorithmic
resilience for energy efficiency,” in Proc. Design Autom. Conf., 2010,
pp. 555–560.

[8] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error
resilient system architecture for probabilistic applications,” in Proc.
Design, Autom., Test Eur. Conf. Exhib., 2010, pp. 1560–1565.

[9] K. H. Lee, S.-Y. Kung, and N. Verma, “Improving kernel-energy trade-
offs for machine learning in implantable and wearable biomedical ap-
plications,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2011, pp. 1597–1600.

[10] Z. Wang, R. Schapire, and N. Verma, “Error-adaptive classifier
boosting (EACB): Exploiting data-driven training for highly fault-tol-
erant hardware,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2014, pp. 3884–3888.

[11] M. Bohr, “The new era of scaling in an SoC world,” in Proc. IEEE Int.
Solid-State Circuits Conf. Dig. Tech. Papers, 2009, pp. 23–28.

[12] J. W. McPherson, “Reliability challenges for 45 nm and beyond,” in
Proc. Design Autom. Conf., 2006, pp. 176–181.

[13] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bern-
stein, “Scaling, power, and the future of CMOS,” in IEDM Dig. Tech.
Papers, 2005, pp. 7–15.

[14] J. Zhang, A. Lin, N. Patil, H. Wei, L. Wei, H. Wong, and S. Mitra,
“Robust digital VLSI using carbon nanotubes,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 31, no. 4, pp. 453–471, 2012.

[15] S. Datta, H. Liu, and V. Narayanan, “Tunnel FET technology: A reli-
ability perspective,” Microelectron. Rel., vol. 54, no. 5, pp. 861–874,
2014.

[16] N. R. Shanbhag, S.Mitra, G. D. Veciana,M. Orshansky, R.Marculescu,
J. Roychowdhury, D. Jones, and J. M. Rabaey, “The search for alter-
native computational paradigms,” IEEE Design Test Comput., vol. 25,
no. 4, pp. 334–343, 2008.

[17] N. R. Shanbhag, R. A. Abdallah, R. Kumar, and D. L. Jones, “Sto-
chastic computation,” in Proc. Design Autom. Conf., 2010, pp.
859–864.

[18] N. Shanbhag, “Reliable and energy-efficient digital signal processing,”
in Proc. Design Autom. Conf., 2002, pp. 830–835.

[19] E. P. Kim and N. R. Shanbhag, “Soft N-modular redundancy,” IEEE
Trans. Comput., vol. 61, no. 3, pp. 323–336, 2012.

[20] G. V. Varatkar, S. Narayanan, N. R. Shanbhag, and D. Jones, “Sensor
network-on-chip,” in Proc. IEEE Int. Syst. Chip Conf., 2007, pp. 1–4.

[21] Z. Wang, K. H. Lee, and N. Verma, “Overcoming computational errors
in sensing platforms through embedded machine-learning kernels,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., to be published.

[22] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel Based Learning Methods. Cambridge,
U.K.: Cambridge Univ. Press, 2000.

[23] R. E. Schapire and Y. Freund, Boosting: Foundations and Algo-
rithms. Cambridge, MA, USA: MIT Press, 2012.

WANG et al.: ERROR ADAPTIVE CLASSIFIER BOOSTING (EACB) 1145

[24] J. K. Bradley and R. E. Schapire, “FilterBoost: Regression and classifi-
cation on large datasets,” in Proc. Adv. Neural Inf. Process. Syst. Conf.,
2007, pp. 185–192.

[25] J. Kwong and A. P. Chandrakasan, “Variation-driven device sizing
for minimum energy sub-threshold circuits,” in Proc. Int. Symp. Low
Power Electron. Design, 2006, pp. 8–13.

[26] S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. M.
Bull, and D. T. Blaauw, “RazorII: In situ error detection and correction
for PVT and SER tolerance,” in IEEE Int. Solid-State Circuits Conf.
Dig. Tech. Papers, 2009, vol. 44, no. 1, pp. 32–48.

[27] B. Wong, A. Mittal, Y. Cao, and G. W. Starr, Nano-CMOS Circuit and
Physical Design. Hoboken, NJ, USA: Wiley, 2005.

[28] T. G. Dietterich, “An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and ran-
domization,” Mach. Learn., vol. 40, no. 2, pp. 139–157, 2000.

[29] X. Li, L. Wang, and E. Sung, “Adaboost with svm-based component
classifiers,” Eng. Appl. Artif. Intell., vol. 21, no. 5, pp. 785–795, 2008.

[30] H. Schwenk and Y. Bengio, “Boosting neural networks,” Neural
Comput., vol. 12, no. 8, pp. 1869–1887, 2000.

[31] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of su-
pervised learning algorithms,” in Proc. Int. Conf. Mach. Learn., 2006,
pp. 161–168.

[32] S. Lopez-Estrada and R. Cumplido, “Decision tree based FPGA-archi-
tecture for texture sea state classification,” in Proc. IEEE Int. Conf.
Reconfigurable Comput. FPGA, 2006, pp. 1–7.

[33] A. Bermak and D.Martinez, “A compact 3D VLSI classifier using bag-
ging threshold network ensembles,” IEEE Trans. Neural Netw., vol. 14,
no. 5, pp. 1097–1109, 2003.

[34] J. Struharik, “Implementing decision trees in hardware,” in Proc. IEEE
Int. Symp. Intell. Syst. Informat., 2011, pp. 41–46.

[35] O. Girard, OpenMSP430, 2009.
[36] I. Guyon and A. Elisseeff, “An introduction to variable and feature

selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.
[37] N. Verma, J. Kwong, and A. P. Chandrakasan, “Nanometer MOSFET

variation in minimum energy subthreshold circuits,” IEEE Trans. Elec-
tron Devices, vol. 55, no. 1, pp. 163–174, 2008.

[38] X. Shi, S. Hsu, F. Chen, M. Hsu, R. Socha, and M. Dusa, “Un-
derstanding the forbidden pitch phenomenon and assist feature
placement,” Proc. SPIE, vol. 4689, pp. 985–996, 2002.

[39] S. Ghosh and F. J. Ferguson, “Estimating detection probability of in-
terconnect opens using stuck-at tests,” in Proc. 14th ACM Great Lakes
Symp. VLSI, 2004, pp. 254–259.

[40] A. H. Shoeb and J. V. Guttag, “Application of machine learning to
epileptic seizure detection,” in Proc. Int. Conf. Mach. Learn., 2010,
pp. 975–982.

[41] A. H. Shoeb, “Application of machine learning to epileptic seizure
onset detection and treatment,” Ph.D. dissertation, Massachusetts Inst.
Technol., Cambridge, MA, USA, 2009.

[42] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “Physiobank, physiotoolkit, and physionet components of a
new research resource for complex physiologic signals,” Circulation,
vol. 101, no. 23, pp. e215–e220, 2000.

Zhuo Wang received his B.S. degree in Micro-
electronics from Peking University, Beijing, China,
in 2011. He received his M.S. degree in 2013 and
is currently a Ph.D. candidate in the Department
of Electrical Engineering, Princeton University,
Princeton, NJ, USA. His research interest is on
robust system design. More specifically, he is
interested in designing robust VLSI systems for
highly-energy-constrained applications, and how
machine-learning techniques can be exploited, not
only to model sensor signals, but also hardware

faults affecting the platform.

Robert E. Schapire received his Sc.B. in math
and computer science from Brown University,
Providence, RI, USA, in 1986, and his S.M. (1988)
and Ph.D. (1991) from the Massachusetts Institute
of Technology, Cambridge, MA, USA, under the
supervision of Ronald Rivest. After a short Postdoc
at Harvard, he joined the technical staff at AT&T
Labs (formerly AT&T Bell Laboratories) in 1991.
Since 2002, he has been with the Computer Science
Department at Princeton University, Princeton,
NJ, USA, and was named the David M. Siegel '83

Professor in Computer Science in 2013. He joined Microsoft Research in New
York City as a Principal Researcher in 2014 (on leave from Princeton). His
awards include the 1991 ACM Doctoral Dissertation Award, the 2003 Gödel
Prize, and the 2004 Kanelakkis Theory and Practice Award (both of the last
two with Yoav Freund). He is a fellow of the AAAI, and a member of the
National Academy of Engineering. His main research interest is in theoretical
and applied machine learning, with particular emphasis on boosting and online
learning.

Naveen Verma received the B.A.Sc. degree in elec-
trical and computer engineering from the University
of British Columbia, Vancouver, BC, Canada, in
2003 and the M.S. and Ph.D. degrees in electrical
engineering from the Massachusetts Institute of
Technology, Cambridge, MA, USA, in 2005 and
2009, respectively. Since July 2009, he has been
an Assistant Professor of Electrical Engineering
at Princeton University, Princeton, NJ, USA. His
research focuses on ultra-low-power integrated
circuits and systems with an emphasis on sensing

applications. Of particular importance is the use of emerging devices for the
creation of functionally diverse systems and the use of advanced signal-analysis
frameworks for low-power inference over embedded signals. On the circuit
level, his focus spans low-voltage digital logic and SRAMs, low-noise analog
instrumentation and data-conversion, and integrated power management. Prof.
Verma is co-recipient of 2008 ISSCC Jack Kilby Award for Outstanding
Student Paper, and 2006 DAC/ISSCC Student Design Contest Award. He is
recipient of the Alfred Rheinstein Junior Faculty Award at Princeton and the
2013 NSF CAREER award.

