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Abstract 
We present a 65nm CMOS mixed-signal accelerator for first and 

hidden layers of binarized CNNs. Hidden layers support up to 512, 

3×3×512 binary-input filters, and first layers support up to 64, 

3×3×3 analog-input filters. Weight storage and multiplication with 

input activations is achieved within compact hardware, only 1.8× 

larger than a 6T SRAM bit cell, and output activations are 

computed via capacitive charge sharing, requiring distribution of 

only a switch-control signal. Reduced data movement gives 

energy-efficiency of 658 (binary) / 0.95 TOPS/W and throughput 

of 9438 (binary) / 10.64 GOPS for hidden / first layers.    

System Overview 
Energy and performance of neural-network (NN) accelerators is 

bottlenecked by communication costs of bringing together many 

input activations (IAs) and neuron weights, and distributing many 

output activations (OAs). Algorithmically, lowering bit precision 

has been effective in reducing these costs [1, 2], and binarized NNs 

(BNNs), taking weights/activations to 1b [3], are showing success 

in increasing applications. This work exploits BNNs with charge-

domain computation to achieve weight storage and multiplication 

in a bit cell only marginally larger than a 6T SRAM cell. This 

eliminates weight movement from memory, and minimizes 

/eliminates IAs/OAs movement.  

Fig. 1 (top) shows the structure of a deep convolutional NN 

(CNN), consisting of convolutional first/hidden layers and fully-

connected output layers. This work focuses on first/hidden layers, 

motivated by: (1) the trend of increasing depth (more hidden 

layers), making data movement in hidden layers dominate; and (2) 

mixed-signal implementation enabling direct sampling of analog 

sensors in first layer, potentially eliminating need for ADCs in 

sensor-inference applications, which are increasing in 

prominence. The chip architecture (bottom) implements one 

first/hidden layer, and enables layers to be cascaded in a pipeline. 

An Input-Activation (IA) SRAM and Input-Activation (IA) Buffer 

enable pipeline buffering, and a Neuron Array supports up to 

512/64, 3×3×512/3×3×3 hidden/first-layer filters, followed by a 

Binarized Batch Normalization (Bin Batch Norm) block. The filter 

number (max. 512/64) and depth (max. 512/3) can be configurably 

reduced at proportional energy, and the height/width (min. 3×3) 

can be configurably increased by convolving outputs [4]. The 

pipeline computes output activations row by row (as inputs would 

be provided by active-matrix sensor). The IA SRAM stores 4 

rows, processing 3 and buffering incoming, and the IA Buffer 

stores up to 3×3×512 IAs for a current filtering operation. The IA 

Buffer enables striding over IAs via 3-b shift registers and circular 

interface to the IA SRAM. Below, operation of hidden and first 

layers is described. 

Hidden-Layer Circuit Design 
The Neuron Array is organized into an 8×8 array of Neuron Tiles, 

each with clock-gating control. Fig. 2 shows a Neuron Tile, itself 

consisting of 3×3 Neuron Patches (filter width,height 𝑥, 𝑦 ), 

arrayed 64 vertically for a single neuron (filter depth 𝑧), and 64 

horizontally for different neurons 𝑛. Input activations 𝐼𝐴𝑥,𝑦,𝑧 are 

broadcast over the neurons and multiplied by locally-stored 

weights 𝑤𝑥,𝑦,𝑧
𝑛 . In BNNs IAs/weights are 1b, requiring just XNOR 

operation. The XNOR output 𝑜𝑥,𝑦,𝑧
𝑛 , is sampled as charge on a local 

cap, and accumulation for the output pre-activation 𝑃𝐴𝑛 is 

computed by shorting together all caps in neuron n.  

Key to eliminating/minimizing weights/IA movement is the 

dense Multiplying Bit Cell (M-BC) shown in Fig. 2, and key to 

eliminating pre-activation movement is accumulation by charge 

shorting. The M-BC performs storage and XNOR in minimal area 

by introducing two PMOSs, in a standard 6T SRAM cell. Weights 

are stored as in an SRAM (via  𝑊𝐿, 𝐵𝐿/𝐵𝐿𝑏) . For neuron 

operation (see waveforms), all local capacitors are first pre-

discharged, via 𝑃𝑅𝐸 and 𝑇 − 𝑆𝐻𝑂𝑅𝑇, and charged only XNOR-

conditionally via the PMOSs, by broadcast of differential 

𝐼𝐴𝑥,𝑦,𝑧 / 𝐼𝐴𝑏𝑥,𝑦,𝑧  signals. Then, accumulation is performed by 

switches (controlled by 𝑇 − 𝑆𝐻𝑂𝑅𝑇), best situated outside the M-

BC, since they share a common node in the neuron.  

        Layout density of the M-BC is critical for: (1) storing a large 

number of weights on chip, i.e., comparable to SRAM yet 

eliminating explicit accessing incurred in an SRAM; and (2) 

enabling up to 512 parallel neurons, so all input activations are 

broadcast just once, and over minimal distance. Fig. 3 shows the 

M-BC layout, having ~1.8x area of a standard 6T cell. This is 

achieved by: (1) employing PMOSs for the XNOR, to give more 

regular layout by balancing the N/PMOSs; and (2) employing 

charge-domain accumulation via MOM caps above, occupying no 

additional area. For custom layout, cell areas are estimated using 

logic, rather than SRAM, design rules; but, device sizing is 

equivalent to 6T cell, and M-BC employs regular gate-poly layout, 

for compatibility with SRAM rules. Monte Carlo (MC) 

simulations (see transient waveforms), show that, in addition to 

read/write, M-BC stability is easily maintained for XNOR, since 

only small isolated caps (1.2fF) are charged via the PMOSs. Note 

that while possible to use a 6T cell for current-domain XNOR and 

accumulation on 𝐵𝐿/𝐵𝐿𝑏 [5], this can restrict neuron scalability 
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Fig.1:  Structure of a deep neural network, with chip implementing 

convolutional first/hidden layers. 
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Fig. 2: Details of Neuron Tile, consisting of 3×3 M-BC Neuron Patches. 
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due to limited dynamic range of 𝐵𝐿/𝐵𝐿𝑏 for I-V conversion, and 

can depend on transistor-current nonlinearity and 

temperature/process variations. In contrast, charge-domain 

accumulation benefits dynamic range by normalizing Q-V 

conversion by the total shorted capacitance, and caps are less 

susceptible to temperature/process variations/nonlinearity.  

   Following charge accumulation, the pre-activation 𝑃𝐴𝑛 is fed to 

the Bin Batch Norm in Fig. 4, which, with binarization, only 

requires comparison against a reference value 𝛼𝑛, from training. 

Analog 𝛼𝑛 is generated using the cyclic DAC shown, where pulse 

propagation in a shift register controls VDD/GND charging on a 

transfer cap CDAC1, as well as shorting to an equal-sized 

accumulation cap CDAC2. A cyclic DAC avoids binary-weighted 

caps, enabling small area for the 512 DACs needed. Simulating a 

range of image-recognition applications shows sampling noise is 

negligible and 6-b resolution is adequate. Since analog 𝛼𝑛 takes 

values from GND-VDD, an N/PMOS-input comparator is selected 

via the MSB of 𝛼𝑛, to ensure comparator overdrive. The resulting 

output activation 𝑂𝐴𝑛 then feeds an output shift register. 

 First-Layer Circuit Design 
For the first layer, which takes analog inputs, the precise input 

interface needed depends on the choice of sensor. For exploration, 

the 3×3×3 input activations are presumed to be available at once 

for sampling (depth is 3 for R/G/B imager). Fig. 5 shows the first 

layer realization. To improve analog-sampling fidelity, all 

capacitors of a neuron within one tile are shorted via 𝑇 − 𝑆𝐻𝑂𝑅𝑇, 

yielding 690fF input samplers. After discharging (via 𝑃𝑅𝐸), input 

charge is stored on a positive or negative sampler, depending on 

the weight value in a shift-register element. Charge from 8 

samplers vertically across the Neuron Tiles is shorted together 

via  𝑁 − 𝑆𝐻𝑂𝑅𝑇 . This yields differential partial pre-activation 

signals, with 4 such signals 𝑃𝑃𝐴(1 − 4)+/−
𝑛  needed to support 

filtering over 32 inputs, i.e., more than the required 3×3×3. 

𝑃𝑃𝐴(1 − 4)+/−
𝑛 are then provided to the Signed-Analog-

Accumulation (SAA) block. As shown, the SAA performs 

sampling and subtraction of positive and negative charge, while 

also offsetting the voltage to mid-VDD. Then, comparison with an 

analog reference 𝛼𝑛 is performed for binarizing batch 

normalization. 
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block. 

Measurement Results 

Fig. 6(a) shows the prototype IC in 65nm CMOS. Fig. 6(b)/(c) 

show operation of hidden/first-layer neurons by plotting  𝛼𝑛  at 

which the output activation switches vs. the 𝑃𝐴𝑛 value. Initially, 

some nonlinearity can be observed due to variable comparator 

offset over the analog 𝛼𝑛 range (especially at 𝛼𝑛=6’d31, where 

N/PMOS-input comparator selection changes); but, since the 

charge-domain 𝑃𝐴𝑛 operation is much more linear, self-

calibration is easily performed, by setting IAs and weights to 

sweep 𝑃𝐴𝑛  and adjusting 𝛼𝑛  for linearity. This yields the 

linearity shown, measured with random IAs and weights 

subsequently applied, and with tight error bars showing sigma 

over all 512/64 hidden/first-layer filters. With M-BC and Bin 

Batch Norm at 940mV, and IA Drivers and control signals at 

680mV, the energy per 3×3×512/3×3×3 hidden/first-layer filter is 

14pJ/68pJ, both scaling proportionally with the number and size 

of neurons. Summary Table I shows the design integrates more 

weights on chip and achieves higher energy-efficiency and 

throughput than prior art. Table II shows performance equal to SW 

implementation is achieved for standard datasets and NNs. 
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TABLE I: MEASUREMENT SUMMARY & COMPARISON TABLE  

Chen,
ISSCC”16

Moons,
ISSCC”17

Bang,
ISSCC”17

Ando,
VLSI”17

This 
Work

Technology 65nm 28nm 40nm 65nm 65nm

Chip Area 16mm2 1.87mm2 7.1mm2 12mm2 17.6mm2

Operating VDD 0.8 – 1.2V 1.0V 0.63 – 0.9V 0.55 – 1.0V 0.68 / 0.94 / 1.2V 
CLK Freq. 200MHz 200MHz 1.9-19.3MHz 100-400MHz 100MHz

Bit Precision 16b 4 – 16b 6-32b 1b 1b

On-chip Mem. 108KB 128kB 270kB 100kB 295kB

Throughput 120 GOPS 400 GOPS 108 GOPS 1264 GOPS 9438 GOPS

TOPS/W 0.0096 10 0.384 6 658

TABLE II: ACCURACY COMPARISON FOR DATASETS & NNs. 

    L m–n: indicates m   to n   layer. BN: indicates batch normalization layer.

     X CON3: indicates X 3×3 binarized filters (depth defined by previous layer).                 Y FC: indicates Y fully-connected layers.*
*
*

th th

* ****
**

MNIST CIFAR-10 SVHN

Baseline Neural Network (NN)
L1-2 : 64 CONV3 – BN

L3-4: 128 CONV3 – BN

L5: 10 FC 

L1-2 : 64 CONV3 – BN

L3-4: 128 CONV3 – BN

L5-6: 256 CONV3 – BN

L7-8: 1024 FC – BN

L9: 10 FC

L1-2 : 64 CONV3 – BN

L3-4: 128 CONV3 – BN

L5-6: 256 CONV3 – BN

L7-8: 1024 FC – BN

L9: 10 FC

Test Accuracy (chip / SW)

Validation Acc. (chip / SW)

98.60% / 98.92%

98.58% / 98.75%

83.27% / 83.50%

84.09% / 84.37%

94.35% / 95.10%

94.03% / 94.63%
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Fig. 3:  Layout of M-BC and MC transient-stability analysis for XNOR. 
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