
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 6, JUNE 2019 1789

A 64-Tile 2.4-Mb In-Memory-Computing CNN
Accelerator Employing Charge-Domain Compute

Hossein Valavi , Student Member, IEEE, Peter J. Ramadge , Fellow, IEEE,
Eric Nestler, Member, IEEE, and Naveen Verma, Member, IEEE

Abstract— Large-scale matrix-vector multiplications, which
dominate in deep neural networks (DNNs), are limited by data
movement in modern VLSI technologies. This paper addresses
data movement via an in-memory-computing accelerator that
employs charged-domain mixed-signal operation for enhancing
compute SNR and, thus, scalability. The architecture supports
analog/binary input activation (IA)/weight first layer (FL) and
binary/binary IA/weight hidden layers (HLs), with batch nor-
malization and input–output (IO) (buffering) circuitry to enable
cascading, if desired, for realizing different DNN layers. The
architecture is arranged as 8 × 8 = 64 in-memory-computing
neuron tiles, supporting up to 512, 3×3×512-input HL neurons
and 64, 3 × 3 × 3-input FL neurons, configurable via tile-level
clock gating. In-memory computing is achieved using an 8T bit
cell with overlaying metal-oxide-metal (MOM) capacitor, yielding
a structure having 1.8× the area of a standard 6T bit cell. Imple-
mented in 65-nm CMOS, the design achieves HLs/FL energy effi-
ciency of 866/1.25 TOPS/W and throughput of 18876/43.2 GOPS
(1498/3.43 GOPS/mm2), when implementing convolution layers;
and 658/0.95 TOPS/W, 9438/10.47 GOPS (749/0.83 GOPS/mm2),
when implementing convolution followed by batch normalization
layers. Several large-scale neural networks are demonstrated,
showing performance on standard benchmarks (MNIST, CIFAR-
10, and SVHN) equivalent to ideal digital computing.

Index Terms— Charge-domain compute, deep learning, hard-
ware accelerators, in-memory computing, neural networks.

I. INTRODUCTION

DEEP neural networks (DNNs) have achieved state-of-
the-art performance in numerous inference applications,

including image classification/detection, speech recognition,
language translation, and so on. Although these have involved
a range of different kinds of neural networks [multilayer per-
ceptron (MLP), convolutional neural network (CNN), recurrent
neural network (RNN), long short-term memory (LSTM)],
the core computation in all cases is matrix-vector multiplica-
tion (MVM). We demonstrate MVM via a binarized [1] CNN
accelerator, motivated by the widespread use of CNNs due to
their high performance and their dominance of computations,
arising from the trend of increasing network depths.

Manuscript received October 23, 2018; revised January 4, 2019 and
February 5, 2019; accepted February 9, 2019. Date of publication March 5,
2019; date of current version May 24, 2019. This paper was approved by
Associate Editor Vivek De. This work was supported in part by a gift from
Analog Devices Inc. (ADI). (Corresponding author: Hossein Valavi.)

H. Valavi, P. J. Ramadge, and N. Verma are with the Department of
Electrical Engineering, Princeton University, Princeton, NJ 08544 USA
(e-mail: hvalavi@princeton.edu).

E. Nestler is with Analog Devices Inc., Boston, MA 02110 USA.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/JSSC.2019.2899730

Fig. 1. Compute operations involved in each layer of a CNN.

As illustrated in Fig. 1, the primary operation in a CNN
is convolution between input activation (IA) pixels IAx,y,z

arranged in a 3-D array and N 3-D filters W n
i, j,k (with n

from 1 to N), whose weights are learned from training. This
essentially amounts to inner product operations, yielding a pre-
activation PAx,y,n for each filter, which is then followed by a
nonlinear activation function ρ, to yield an output activation
O Ax,y,n for each filter. The filters are then strided over all the
IAs, generating a 3-D array of output activations, which makes
up a feature map. State-of-the-art neural networks employ
a large number of filters in each hidden layer (HL) (e.g.,
64–512 in [2]) to capture a diversity of information in the
feature map.

Recent demonstrations of CNN accelerators have shown that
energy and delay are dominated by the data movement of
bringing together a large number of IAs with weights and then
redistributing a large number of output activations [3]–[18].
For instance, large-scale CNNs typically bring the data struc-
tures from off-chip memory and store them in embedded
memory to exploit many opportunities for data reuse. How-
ever, even with embedded memory, we find that data-accessing
energy typically exceeds compute energy by orders of magni-
tude [19]. Although spatial(systolic)-array architectures miti-
gate this by employing small buffers localized in processing
elements, the buffers can consume significant energy and area,
increasing the distance data must ultimately move across the
array [3]–[5], [20].

To mitigate the fundamental costs of data movement,
recently the concept of in-memory computing has been

0018-9200 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0218-9906
https://orcid.org/0000-0002-3282-216X

1790 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 6, JUNE 2019

proposed [12], [15]–[17], [21]–[41]. Rather than accessing
raw data row by row in each column, as done in con-
ventional memory, the objective is to access a compu-
tational result in each column over many rows of data,
thereby amortizing the bit-line discharge energy and delay
[16], [17], [22], [25]–[27], [31], [42]. Although this holds

the potential for factors of energy and delay reduction up
to the number of memory rows, this comes at the cost
of computational SNR. As described in [22], computation
over multiple inputs generally increases the required dynamic
range, which must be fit within the constrained bit-line swing,
thereby correspondingly degrading the computational SNR.
In-memory-computing architectures typically employ mixed-
signal operation to integrate compute in the constrained mem-
ory circuits by going beyond digital switch-based abstraction
of bit-cell transistors. Thus, computational SNR is limited by
non-ideal analog behaviors (non-linearities and variations).

To overcome this and substantially enhance the computa-
tional scalability of in-memory computing, we demonstrate
an architecture achieving high computational SNR. This is
achieved by using charge-domain computation based on highly
linear and stable metal–oxide–metal (MOM) finger capaci-
tors rather than current-domain computation, relying on bit-
cell transistor transfer functions. Although MOM capacitors,
enabled by excellent temperature/process stability/matching
(shown to improve with technology scaling), address com-
putational SNR, they can also be laid out above the bit-
cell transistors, requiring no additional area. This paper is an
extended version of [43], providing detailed explanation and
analysis of the design and CNN demonstrations, especially
analyzing sources of analog non-idealities and their impact on
the architecture.

The remainder of this paper is organized as follows. Sec-
tion II describes the overall system and how it forms DNNs.
Section III describes the detailed architecture and circuit
design. Section IV quantitatively demonstrates the benefits
of charge-domain in-memory computation in 65-nm CMOS
technology. Section V describes the prototype, basic mea-
surements, and demonstrations of various neural networks
for typical image-classification data sets. Finally, Section VI
concludes this paper.

II. SYSTEM OVERVIEW

Fig. 2 shows a deep binarized CNN, consisting of one first
layer (FL) and potentially many HLs, all possibly separated
by batch normalization layers. The demonstrated architecture
supports all of these, especially emphasizing HLs due to the
trend of increasing DNN depth. HLs receive binary IAs and
multiply them with binary filter weights. On the other hand,
FL receives high dynamic range IAs and multiplies them with
binary filter weights. As described in Section III-B, our mixed-
signal implementation has the ability to sample analog inputs.
Thus, an architecture is explored where the FL can take analog
IAs directly from an imager or sensor, potentially eliminating
the need for explicit ADCs. Although multiple HLs can be
implemented within one chip, by changing the filter weights
and cycling input–output (IO) activations, the architecture

Fig. 2. Structure of a typical deep binarized CNN, with chip implementing
convolutional FL and HLs. Chip supports up to 64, 3 × 3 × 3 FL filters, and
up to 512, 3 × 3 × 512 HL filters.

also supports cascading chips into a high-throughput pipeline,
enabled by circuitry for line buffering. In this case, it is pre-
sumed that IAs are provided row by row to conform to the data
streaming of an input active-matrix imager, and the output fea-
ture maps are presumed to have dimensionality up to 32×32×
d , where d is a configurable depth up to 512/64 for HLs/FL.

Furthermore, the architecture supports scalability and mod-
ularity, based on emerging trends in neural networks. Specif-
ically, the filters are designed to have a convolutional stride
of 1 and dimensionality of 3 × 3 × d . This dimensionality
is motivated because other filter sizes (e.g., 5 × 5, 7 × 7,
etc.) can be readily realized by cascading 3 × 3 filters [44].
Although recent DNNs [2], [45]–[48] have reduced the use
of pooling layers, max-pooling in a binarized CNN can be
readily implemented via simple OR-logic, integrated into the
proposed architecture within existing line buffers (described
in Section III).

III. ARCHITECTURE AND CIRCUIT DESIGN

This section describes the detailed operation and implemen-
tation of the architecture. The operation starts with loading the
configuration bits as well as the pre-trained weights onto the
chip. Weight loading is simply performed via static random
access memory (SRAM) read/write circuitry. This includes
read/write scan chains, sense amplifiers, address decoder, and
bit-line and word-line drivers. We start with operation when
configured as binary-input HLs and then move to the operation
when configured as analog-input FL.

A. Hidden-Layer Circuit Design

1) Overall Architecture: Fig. 3 shows the architectural
block diagram of the HL configuration. The overall dataflow
is as follows.

1) Presuming that one row (up to 32 pixels) of IAs is
available at a time, first a pixel (of depth d up to 512)
is streamed into an input shift register. This is included
in the architecture to ease the testing interfaces; in an
eventual cascade, it can be omitted, allowing for parallel
loading.

2) The incoming pixel is then loaded in parallel into an IA
SRAM. The IA SRAM serves as a line buffer, consisting
of 4 sets of 512 columns, interleaved as shown, and
having depth of 32. This allows pixels of corresponding
depth to be loaded in one column for an incoming row,
while pixels for the three other rows are being processed
for 3 × 3 filtering.

VALAVI et al.: 64-TILE 2.4-Mb IN-MEMORY-COMPUTING CNN ACCELERATOR EMPLOYING CHARGE-DOMAIN COMPUTE 1791

Fig. 3. Architecture of the chip, implementing one binary-input HL of a
deep CNN.

3) Next, the IAs to be processed are shifted from the
IA SRAM into an IA buffer (IA BUF). The IA BUF
consists of 3-b shift registers with round-robin input
interface, selecting three out of the four IA SRAM
columns for processing (in circular manner to implement
convolutional striding by one step).

4) Then, the 3 × 3 × d IAs to be filtered are broadcast in
parallel over the neuron array. The neuron array consists
of 8 × 8 neuron tiles, which provide clock gating for
scalability of both the filter size and number of filters.
Each neuron tile implements neuron filter segments, with
3 × 3 × 64 inputs vertically, and 64 different filters
horizontally. Thus, clock gating neuron tiles vertically
scales the filter size, and clock gating horizontally scales
the number of filters, to reduce the activity factor. In this
way, up to 512 pre-activations can be computed in
parallel, corresponding to one pixel, with depth up to
512.

5) The computed pre-activations are then fed to a bina-
rizing batch normalization (Bin. Batch Norm.) block
to compute the binary output activations for the pixel.
Computed output activations are then streamed out,
potentially directly feeding the next layer in a pipelined
manner.

2) Neuron Tile: The dominating computation is performed
in the neuron array, particularly in the neuron tile, using an in-
memory-computing architecture. The structure of a neuron tile
is shown in Fig. 4. Each neuron tile consists of 64×64 neuron
patches, each of which processes 3 × 3 binary IAs. 64 neuron
patches in one column belong to a single logical neuron filter,
while 64 different columns correspond to different neuron
filters. Within a neuron patch, each IA is then processed
by a multiplying bit cell (M-BC). The M-BC multiplies the
corresponding 1-b IA with a stored 1-b filter weight and stores
the result as charge on a local capacitor. Then, all capacitors
in one neuron filter are shorted together to perform charge
accumulation, yielding the pre-activation via a multiplication-
accumulation inner product operation.

3) Multiplying Bit-Cell: A key aspect of the architecture
is to perform weight storage and multiplication in as dense
an M-BC structure as possible. The M-BC circuit is shown
in Fig. 5, where the binary values of −1 and +1 are repre-
sented by GND and VDD, respectively. Although storage is

Fig. 4. Block diagram of a neuron tile. Each neuron tile includes 64 × 64
neuron patches, each containing 3 × 3 M-BCs.

Fig. 5. Structure of an eight transistor M-BCs, implementing XNOR between
an IA (IAx,y,z /IAbx,y,z) and a filter element (Wn

i, j,k /Wbn
i, j,k). Compared to

a standard 6T bit cell, M-BC has two additional pMOS devices and an extra
metal-finger MOM capacitor (shown in blue).

achieved using a standard 6T SRAM bit cell, two additional
pMOS transistors, driven by the IA signal (IAx,y,z/IAbx,y,z),
are added to implement XNOR. Then, the result is sampled
as charge on a 1.2-fF (nominal value) MOM finger capacitor.
The MOM capacitor is laid out above the bit cell, thus taking
no additional area. Furthermore, the very good matching,
temperature, and process coefficients for MOM capacitors
enable highly linear and stable compute operation. Fig. 6
shows details of how the inner product operation is performed
for three M-BCs, which are laid out together to enhance
density.

1) Reset Phase: First, all capacitors are unconditionally
discharged to GND by activating the tile-level short-
ing switches (via TSHORT/TSHORTb) and a discharge
nMOS (via PRE) on the pre-activation node. This is
done by keeping the IA signals (IAx,y,z&IAbx,y,z) high
to deactivate the M-BC pMOS devices, thereby decou-
pling the bit-cell storage nodes.

2) Binary-Multiply Phase: Next, the IAs (IAx,y,z/IAbx,y,z)
are driven differentially, activating only one pMOS in
each M-BC, and causing the capacitor to charge
up to VDD XNOR conditionally, dependent on
the IA (IAx,y,z/IAbx,y,z) and stored weight value
(W n

i, j,k /Wbn
i, j,k).

1792 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 6, JUNE 2019

Fig. 6. XNOR computation by M-BCs, involving three signaling phases.

3) Accumulate Phase: Finally, the capacitors in one neuron
filter are shorted together to generate the analog pre-
activation value (PAx,y,n). Given the binary-value map-
ping of −1/ + 1 to GND/VDD, PAx,y,n takes one of
nominally (3 × 3 × d) + 1 levels between GND and
VDD, centered at mid-rail. Note, the routing required
across distributed capacitors introduces parasitics in the
range of ∼10%, but these have a linear effect that is
easily addressed through self-calibration (described in
Section IV-C).

In order to maximize the potential of in-memory computing,
the M-BCs must be made as dense as possible. Fig. 7 shows
the layout of the 8T M-BC next to that of a standard 6T
SRAM cell. Area of the M-BC is 1.8 μm2, roughly 80%
larger than the standard 6T cell, both laid out using logic
rules (area of a 65 nm high-density 6T cell using foundry
push-rules is 0.5 μm2). pMOS transistors are chosen for the
XNOR computation because this leads to a dense layout by
matching the number of nMOS/pMOS devices. The gate-poly
layout and pitch have been chosen with regularity in mind.
Furthermore, the M-BC employs an MOM capacitor above
the transistors, thus taking no additional area. Finally, the tile-
level shorting switches are laid out together for three M-BCs,
as shown in Fig. 8. This is because these share several nodes,
enabling their dense layout together outside the M-BC.

An important consideration is the M-BC stability during
neuron filtering operations. Starting by unconditionally dis-
charging the local MOM capacitor means that the bit-cell

Fig. 7. Layout of M-BC compared to the layout of the standard 6T SRAM
bit cell.

Fig. 8. Layout details of three M-BCs, sharing shorting switches.

Fig. 9. Transient-stability analysis for XNOR operation of M-BC (MC sims).

storage nodes are exposed to a pull-down condition. However,
Monte Carlo (MC) simulation shown in Fig. 9 confirms that
this will not disrupt stored data, which is held high by the pull-
up pMOS transistors in the 6T portion of the bit cell, for two
reasons. First, the pull-down path is weak, since it involves
a pMOS transistor for XNOR computation. Second, the small
MOM capacitance of ∼1.2 fF does not invoke a static pull-
down condition. Thus, the transient 100 k-point MC simulation
shows that the disruption to a high storage node is small, for
the minimum-sized pMOS transistors used.

4) Binarizing Batch Normalization: After computing the
pre-activation values via up to 512 parallel neuron filters,
batch normalization and a binarizing activation function are
applied, in one step. Equation 1 shows the operation required
for batch normalization [49] and application of the activation
function ρ. For the special case of a binarizing activation
function, the scaling parameter γn can be ignored since it
does not change the sign, leaving only the offset-causing

VALAVI et al.: 64-TILE 2.4-Mb IN-MEMORY-COMPUTING CNN ACCELERATOR EMPLOYING CHARGE-DOMAIN COMPUTE 1793

Fig. 10. Details of the Bin. Batch Norm. circuit (512 such circuits
implemented within Bin. Batch Norm. block).

parameters, which can be combined into the single parameter
αn , as shown in 2. Therefore, applying batch normalization and
the activation function reduces to sign comparison between the
pre-activation and an analog reference, derived from training

OAx,y,n = ρ

(
γn

PAx,y,n − μn

σ 2
n

+ βn

)
(1)

OAx,y,n = sign(PAx,y,n − αn). (2)

Fig. 10 shows the circuit used for each of the 512 filters
to implement this. It consists of a 6-b digital to analog
converter (DAC) for converting αn from a digital code into
an analog reference, where the precision requirement of 6
bits was determined from simulations. This reference, as well
as the computed pre-activation, then feeds two comparators.
The reason for two comparators, one with nMOS inputs and
one with pMOS inputs, is that both the pre-activation and the
analog αn can range from GND to VDD. Hence, to ensure
fast and robust regeneration, the MSB of the digital αn code
is used to select the comparator which is ensured to have a
high input overdrive. The binarized output activation is then
streamed out using an output shift register.

Fig. 11 shows the circuit used to implement the 6-b DAC.
Given the need to fit 512 DACs, each in the pitch of 3 M-BCs,
area was a primary consideration, motivating a serial charge-
redistribution structure, described in [50]. Here, the LSB of the
input code is applied first, to charge or discharge a transfer
capacitor, which then transfers its charge to an equal-sized
accumulation capacitor. Thus, the LSB charge is attenuated
with binary weighting through each charging and shorting
cycle. For instance, considering a code of αn[5 : 0] =
6’b100011: αn[0] = 1 charges the transfer capacitor to VDD,
causing Vout to go to (1/2) × VDD (after charge-sharing);
αn[1] = 1 charges the transfer capacitor to VDD, causing Vout
to then go to (3/4) × VDD; αn[2] = 0 charges the transfer
capacitor to GND, causing Vout to then go to (3/8) × VDD;
and so on.

Fig. 12 shows the nMOS/pMOS-input comparators used
for comparing a computed pre-activation (PAx,y,n) with an
αn analog reference voltage (αn,analog). Although a range
of comparator circuits can be considered to enable rail-to-
rail inputs, two standard nMOS/pMOS-input StrongARM-
latch comparators are used [51]. These are selected for their
power and area efficiency, as well as robust regeneration. The
clocked comparators start by resetting to a common voltage
(GND/VDD) for all nodes in the regenerative differential

Fig. 11. Circuit implementation of each 6-b DAC.

Fig. 12. Circuit implementation of the nMOS/pMOS-input comparators.

branches. Then, the comparator selected via the MSB of αn is
enabled, turning off the reset transistors and turning on the tail
transistor for the differential pair. Furthermore, the differential
current biasing the regenerative branches is dependent on the
differential input, which, in turn, generates differential rail-to-
rail output voltages set by the polarity of PAx,y,n − αn,analog.

5) Summary of Data Movement: As discussed in Section I,
CNN-accelerator energy is typically dominated by data move-
ment of IAs, weights, and output activations. Having explained
the chip architecture, here, we summarize how each of these
sources is eliminated or minimized.

1) Regarding IAs, these must be broadcast over all the neu-
ron filter hardware. This distance is minimized, thanks to
the high-density M-BCs, which form the parallel filters.

2) Regarding weights, their movement is eliminated as
they are stationary within the M-BCs. Furthermore,
a significant number of weights can be stored on-chip
in the filtering hardware (2.4 Mb in this architecture),
again thanks to the high-density M-BCs.

3) Regarding output activations, these are computed in
a distributed way via passive charge redistribution in
the M-BC capacitors. Thus, they are available at the
output of the architecture at the cost of toggling a 1-b
switch-control signal. Note that the output activations
are, in fact, very high dynamic range signals; a digital
implementation would require communicating a signal
of over 12 bits [i.e., log2(3 × 3 × 512) > 12] in
this design. Therefore, communication via the single-
bit switch control signal is substantially more energy
efficient.

B. First Layer Circuit Operation

Having described the operation of the binary-input HLs,
in this section, we describe how the same architecture can

1794 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 6, JUNE 2019

Fig. 13. Block diagram of FL, based on positive/negative samplers for each
filter and each analog IA.

be configured to implement the analog-input FL. With analog
inputs, the XNOR-logic compute model of multiplication in
the M-BC cannot be exploited. Furthermore, fidelity of a
high dynamic range input signal must be ensured. To do
this, the architecture is configured, as depicted in Fig. 13,
into filters having large positive and negative sampling struc-
tures. Specifically, by deactivating the binary IA signals of
the M-BC and activating the tile-level shorting switches
(TSHORT/TSHORTb), all the capacitors of each filter segment
within one neuron tile get configured as a single logical
sampling capacitor, of approximately 690 fF. Now, given
that the filter weights are still binarized, filter segments are
designated as positive and negative samplers, i.e., each analog
IA is sampled on its positive sampler if the corresponding
weight is +1, and on the negative sampler if the weight is
−1, while holding the alternate sampler at GND. Furthermore,
the input-layer filters are of size 3×3×3 (presuming red-green-
blue (RGB) imager pixels), amounting to 27 analog inputs.
This means 27 positive samplers and 27 negative samplers
are needed to implement each FL filter. In the architecture’s
8×8 array of neuron tiles, there exist eight filter segments per
column. Thus, four columns for the positive sampler and four
columns for the negative sampler are designated for each FL
filter. Filtering then simply requires adding the charge from all
the positive samplers of each filter and subtracting the charge
from all negative samplers of each filter.

Charge addition and subtraction are performed by the signed
analog accumulator (SAA) block, as shown in Fig. 14. The
SAA operates in two phases. In the sample phase, the charge
from four columns of positive samplers is shared to the top
plate of one capacitor, and the charge from four columns of
negative samplers is shared to the bottom plate of another,
equal-valued capacitor. Then, in the compare phase, signed
summation of the charge is achieved by switching the capac-
itors into the configuration shown. This adds the positive
charge, subtracts the negative charge, and simultaneously
offsets the output voltage such that zero net charge yields mid-
scale. Then, comparison with an αn analog reference value
from training is performed as before, via the Bin. Batch Norm.
block.

IV. PRECISION ANALYSIS OF CHARGE-DOMAIN

IN-MEMORY COMPUTING

Virtually all in-memory-computing architectures reported
thus far, based on both SRAM and emerging nonvolatile

Fig. 14. Details of SAA block.

technologies, have employed current-domain computation,
relying on the current transfer function of bit-cell
MOSFETs, followed by accumulation on the bit
lines [16], [17], [22], [25]–[27], [31], [42]. Although this
enables amortization of bit-cell data into a computational
result, thereby yielding in-memory-computing gains, it suffers
from substantial computational noise. As previously
mentioned, computation over a large amount of data
stored in the bit cells generally increases the dynamic range
required. However, compute based on MOSFET current
transfer functions is highly susceptible to variation and non-
linearity, thus degrading the SNR, and substantially limiting
the computational scale (level of amortization) achievable.

Here, we analyze the computational noise arising in charge-
domain in-memory computing due to analog non-idealities.
We show that very low computational noise can be achieved,
both due to the excellent inherent matching characteris-
tics of MOM capacitors and due to readily implemented
self-calibration techniques. Thus, together, these substantially
enhance the accuracy and scale of computation that can be
achieved. We proceed by analyzing: 1) the effect of MOM-
capacitor mismatch on the computed PAx,y,n; 2) the effect of
thermal noise on the computed PAx,y,n; and 3) the effect of
switch-induced charge-injection errors on PAx,y,n.

A. Effect of Mismatch

Our analysis here primarily focuses on uncorrelated capac-
itor mismatch. Although in general correlated mismatch (e.g.,
gradients) may also be present, we examine that via proto-
type measurements, due to limited foundry-provided mod-
els for such effects. With regards to uncorrelated capacitor
mismatch, arising from lithography and oxide film-thickness
variations, very good matching characteristics are generally
observed [52], [53]. For instance, relying on previously pub-
lished data, in 32-nm CMOS, single-layer 1.2-fF capacitors
show a standard deviation of 0.8% [52], and in 180-nm
CMOS, 0.5-/1.0-/2.0-fF capacitors show a standard deviation
of 0.3%/0.2%/0.12% [53]. Similar estimates can be derived for
the target 65-nm CMOS process employed, by extrapolating
from data for larger capacitors.

To evaluate the impact of mismatch on PAx,y,n, we model
each M-BC MOM capacitor’s value as a Gaussian random
variable with mean 1.2 fF and standard deviation σc. Further-
more, we assume that the result of XNOR computation yields
an output with Bernoulli distribution with parameter p (p is

VALAVI et al.: 64-TILE 2.4-Mb IN-MEMORY-COMPUTING CNN ACCELERATOR EMPLOYING CHARGE-DOMAIN COMPUTE 1795

Fig. 15. (a) Impact of the Bernoulli distribution’s parameter p on σPAx,y,n .
(b) Impact of σc on σPAx,y,n (100 k-point MC sampling).

the probability that the result is 1). Thus, for a filter of size
3 × 3 × 512, PAx,y,n can be calculated as follows:

PAx,y,n = VDD

∑3×3×512
i=1 civi∑3×3×512

i=1 ci
ci ∼ N (1.2, σc), vi ∼ B(p).

For instance, assuming σc = 1%, Fig. 15(a) shows the nor-
malized standard deviation of PAx,y,n (i.e., (σPAx,y,n /VDD)) as
a function of p, using 100 k-point MC sampling. As expected,
the worst case occurs at p = 0.5. Thus, assuming p = 0.5,
Fig. 15(b) shows (σPAx,y,n /VDD) for different values of σc,
relevant for the expected level of mismatch. We can now
compare this to the targeted PAx,y,n’s dynamic range, which
is (3 × 3 × 512 + 1) for the size of neuron filters employed in
the architecture. Thus, we see that MOM-capacitor mismatch
is well below the required level, even for the relatively large-
scale in-memory computing demonstrated. In fact, as an exam-
ple, for σc = 0.5%, the compute error due to MOM-capacitor
mismatch is at the level of dynamic range corresponding to
accumulation over 160 k M-BC XNOR outputs.

B. Effect of Thermal Noise

The thermal noise of an RC circuit, corresponding to charge
sharing among the M-BCs in one neuron filter, is determined
by the kT/C limit. With a nominal value of 1.2 fF for
each MOM capacitor, this amounts to ∼ 3.4 × 10−6 V2

(at room temp.). Assuming thermal noise on the M-BC
capacitors that are independent random variables, the impact
of noise on PAx,y,n (σPAx,y,n) can be calculated according
to ((K T /C)/(3 × 3 × 512))(1/2) ∼ 2.7 × 10−5, almost an
order of magnitude lower than the compute resolution for the
targeted dynamic range of PAx,y,n. Thus, the impact of thermal
noise on the architecture is also negligible. In fact, the compute
error due to thermal noise is at the level of dynamic range cor-
responding to accumulation over 420 k M-BC XNOR outputs.

C. Effect of Charge-Injection Error

The M-BC operation described in Section III-A3 has
some susceptibility to charge-injection error. Charge-injection-
insensitive switching schemes were considered (similar to
those used for standard SAR ADCs and also recently used
for analog computing [18]). However, after determining
that the error can be made small, the switching scheme
employed was selected to minimize the number of M-BC

transistors, as M-BC density is an important considera-
tion for effective in-memory computing. Specifically, error
arises during the reset and binary-multiply phases primarily
due to the TSHORT/TSHORTb switches and M-BC pMOS
(M7/M8) switches shown in Fig. 5. However, during these
phases, the switches are deterministically biased at either
GND or VDD, thus their charge-injection error does not
cause non-linearity. Error arises during the accumulate phase
due to the TSHORT/TSHORTb switching, and biasing here
varies with the pre-activation value, thus causing non-linearity.
Although this is found to be small for the 6-b Bin. Batch
Norm. resolution targeted, it can be further addressed by self-
calibration. Self-calibration is readily performed via the Bin.
Batch Norm. block itself, by adjusting the DAC codes. Since
the DAC sets the comparator switching threshold, the switch-
ing thresholds can be selected to be linearly spaced with
respect to the pre-activation values. The required DAC codes
are determined as follows. All +1s are loaded in the M-BCs,
and the number of IAs set to +1 (versus −1) is swept,
to nominally give a pre-activation ramp (although PAx,y,n is
actually affected by non-linearity). At the desired nominal pre-
activation values, the DAC code is determined which causes
the comparator output to switch, thus linearizing the pre-
activation value with respect to the switching thresholds. Such
calibration also corrects non-linearity arising due to input-
dependent comparator offset within the Bin. Batch Norm.
block, as well as linearity error arising, for instance, due to
fixed routing parasitics. Such self-calibration, not requiring
any external reference, could in general be invoked via a
periodic calibration routine if desired (though the presented
measurements are for calibration performed once only).

V. SYSTEM PROTOTYPE AND DEMONSTRATION

Fig. 16 shows a die photograph of the custom IC in 65-nm
CMOS implementing the architecture, along with a summary
of the measured performance for both HL and FL modes. The
8 × 8 array of neuron tiles corresponds to a total of 2.4 Mb
of on-chip weight storage. The master clock frequency is
100 MHz and the nominal supply voltage is 1.2 V, although
voltage reduction is also characterized, affecting energy effi-
ciency and throughput.

Fig. 17 shows a block diagram of the measurement and
demonstration setup used. A host PC provides a Python inter-
face for sending instructions to and from a field-programmable
gate array (FPGA) board (Xilinx Virtex-7). The FPGA has an
embedded microcontroller for receiving data and instructions
via Ethernet, and for triggering register transfer level (RTL)
state machines, which generate digital waveforms to the pro-
totype for performing different operations (such as loading
configuration scan chains, writing weight data, performing
neuron filtering, etc.). The following sections describe how
this is used to perform detailed circuit-level characterization
and neural-network application demonstrations.

A. Detailed IC Characterization

This section describes the detailed testing and characteriza-
tion of the prototype.

1796 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 6, JUNE 2019

Fig. 16. Prototype die photo in 65-nm CMOS (top) and the measurement
summary (bottom).

Fig. 17. Block diagram of the demonstration setup.

1) Computation: Fig. 18(a) shows the transfer function
of the binary-input HLs (after self-calibration). The x-axis
corresponds to the nominal value of the pre-activation, which
is known from the values of the digital weights and IAs. The
y-axis corresponds to the value of the digital αn code, which
causes the output activation to transition from −1 to +1. The
transfer function is obtained by applying different (random)
capacitor combinations, demonstrating that the transfer func-
tion is highly linear and stable. The error bars show the tight
standard deviation across the 512 neuron filters. Similarly,
Fig. 18(b) shows the transfer function of the analog-input FL.
Similarly, the computation is highly linear and stable, with
error bars showing tight standard deviation over 64 first-layer
filters.

2) Energy Efficiency: Fig. 19 shows the energy breakdown
of the HL, performing continuous filtering operations at the
nominal voltage of 1.2 V. Batch Norm. corresponds to the
energy of the Bin. Batch Norm. block (dominated by the 6-b
DACs), M-BC corresponds to the energy of XNOR-conditional

Fig. 18. Transfer function of (a) HL and (b) FL configurations.

Fig. 19. Energy breakdown of the chip performing continuous filtering
operation at the nominal voltage of 1.2 V.

charging of the M-BC MOM capacitors, IA BUF Broadcast
corresponds to the energy of broadcasting IAs over the neu-
ron array, and switch control corresponds to the energy of
driving the tile- and neuron-level capacitor-shorting switches
for charge accumulation. Switch-control and IA BUF Broad-
cast are data-movement components, while Batch Norm. and
M-BC are computation components. As seen, data movement
dominates, but only slightly, given the architectural approaches
taken to address communication energy. Furthermore, Fig. 20
shows the energy breakdown when the architecture operates
at its energy-optimal voltage. The optimal voltage is found
to be 0.68 V for the IA BUF Broadcast and switch control
and 0.94 V for M-BC and the Bin. Batch Norm. block.
As seen, at the energy-optimal voltage, the communication
energy is lower than the computation energy. Furthermore,
in HL mode, a filtering operation of size 3 × 3 × 512 is
found to consume 10.6 pJ without the Bin. Batch Norm.
and 14.0 pJ with the Bin. Batch Norm. block. This corre-
sponds to (2 × 3 × 3 × 512/10.64 × 10−12) = 866TOPS/W
and (2 × 3 × 3 × 512/14.0 × 10−12) = 658TOPS/W, respec-
tively. Similarly, in FL, a filtering operation of size 3 ×
3 × 3 consumes 43 pJ without the Bin. Batch Norm. and
56.6 pJ with the Bin. Batch Norm. block. This corre-
sponds to (2 × 3 × 3 × 3/43 × 10−12) = 1.25TOPS/W and
(2 × 3 × 3 × 3/56.6 × 10−12) = 0.95TOPS/W.

3) Throughput: In HL mode, we assigned 25 clock cycles
for a filtering operation (10 for Reset, 10 for Binary-multiply,
5 for Accumulate) and 25 clock cycles for the batch nor-
malization operation, although we point out that pipelining of
some operations is possible. However, assuming no pipelining,
with the 10-ns clock period, filtering operations are performed
with a throughput of (512 × 2 × 3 × 3 × 512/25 × 10−8) =
18876GOPS, while filter and batch normalization is performed
with a throughput of (512 × 2 × 3 × 3 × 512/50 × 10−8) =

VALAVI et al.: 64-TILE 2.4-Mb IN-MEMORY-COMPUTING CNN ACCELERATOR EMPLOYING CHARGE-DOMAIN COMPUTE 1797

Fig. 20. Energy breakdown of the chip when blocks operate at their energy-
optimal voltage levels.

TABLE I

COMPARISON TABLE

9438GOPS. Similarly, in the FL mode, we assign 8 clock
cycles for a filtering operation. This amounts to the through-
put of (64 × 2 × 3 × 3 × 3/8 × 10−8) = 43.2GOPS (fil-
tering operation) and (64 × 2 × 3 × 3 × 3/33 × 10−8) =
10.47GOPS (filter and batch normalization), respectively.

4) Comparison With Prior Work: Table I shows a compar-
ison table of recently presented neural network accelerators.
As seen, this paper achieves the highest energy efficiency and
throughput. It should be noted, however, that the architecture
performs binary operations, while some other accelerators
support higher precision. The energy efficiency and throughput
are summarized in the scatter plot shown in Fig. 21.

B. Neural Network Demonstrations

For demonstration, we have mapped several DNNs to the
architecture, where the layers are mapped one at a time to
the chip. Table II summarizes the performance of different
networks on three standard data sets, where the HLs are
mapped to the IC. The different network configurations used
are shown at the bottom of the table. As seen, visual geometry
group (VGG)-style networks [44] of practical complexity are
used. The testing and validation performance are shown at
the top, both for the architecture and for an ideal software
implementation. It can be seen that the chip and an ideal
pure-digital software (SW) implementation achieve essentially
equivalent performance. The energy numbers are measured
(via power supply current) from the chip. The throughput
numbers are estimated from the filter and Bin. Batch Norm.
characterization, as actual demonstration throughput is limited
by the FPGA-based testing setup (Fig. 17), where, for each

TABLE II

ACCURACY COMPARISON FOR DATA SETS & DNNS

Fig. 21. Scatter plot, comparing the chip with other recently presented neural
network accelerators. All chips are fabricated in 65-nm CMOS, except Google
TPU [57], Bankman et al. [18], and Moons et al. [54] that are fabricated in
28-nm CMOS, and Bang et al. [55] implemented in 40-nm CMOS. Further-
more, Bankman et al. [18], Ando et al. [12], Biswas and Chandrakasan [15],
Jiang et al. [42], and this work are designed for binarized neural networks,
Gonugondla et al. [17] implements the support vector machine (SVM), and
the rest implement multi-bit neural networks.

layer, IAs are provided by the FPGA via an input shift register
and output activations are captured by the FPGA via an output
shift register, one pixel at a time (as described in Section III-
A1); the shift registers are required to reduce the chip’s IO, but
for layer-by-layer computation, they limit the demonstration
throughput. We note that in an eventual system, the throughput
will also depend on the utilization of in-memory-computing
cores, which strongly depends on the overall architecture.
Recent work has begun to explore one approach to such a
complete architecture, providing utilization analysis [56].

VI. CONCLUSION

The energy and delay in large-scale neural-network accel-
erators, dominated by high-dimensional MVMs, are limited
by data movement in modern VLSI technologies. This has
motivated the concept of in-memory computing, where com-
putation is performed in-place within bit cells where matrix

1798 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 6, JUNE 2019

elements are stored, and where input vector elements need be
transmitted minimal distance, across the high-density bit-cell
arrays. However, the challenge with in-memory computing is
accuracy and scalability, due to the need for analog oper-
ation, to integrate compute in constrained bit-cell circuits,
and the need for increased dynamic range, over many bit-
cell outputs. This paper demonstrates an in-memory com-
puting architecture that achieves high SNR for mixed-signal
compute, by exploiting charge-domain computation using
bit-cell-integrated MOM capacitors. A 64-bank, 2.4-Mb in-
memory-computing accelerator is achieved, mapping binarized
convolutional neural-networks of practical size with perfor-
mance equivalent to ideal software implementation, yet with
energy efficiency of 866 binary TOPS/W and throughput
of 19TOPS.

REFERENCES

[1] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: training neural networks with low pre-
cision weights and activations,” J. Mach. Learn. Res., vol. 18, no. 1,
pp. 6869–6898, 2017.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[3] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware for
machine learning: Challenges and opportunities,” in Proc. IEEE Custom
Integr. Circuits Conf. (CICC), Apr./May 2018, pp. 1–8.

[4] V. Sze, “Designing hardware for machine learning: The important role
played by circuit designers,” IEEE Solid State Circuits Mag., vol. 9,
no. 4, pp. 46–54, Nov. 2017.

[5] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[6] D. Kim, J. Ahn, and S. Yoo, “ZeNA: Zero-aware neural network
accelerator,” IEEE Design Test, vol. 35, no. 1, pp. 39–46, Feb. 2018.

[7] Y.-H. Chen, J. Emer, and V. Sze, “Using dataflow to optimize energy
efficiency of deep neural network accelerators,” IEEE Micro, vol. 37,
no. 3, pp. 12–21, Jun. 2017.

[8] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, “Memory-
centric accelerator design for convolutional neural networks,” in Proc.
ICCD, Oct. 2013, pp. 13–19.

[9] Z. Du et al., “Shidiannao: Shifting vision processing closer to the
sensor,” ACM SIGARCH Comput. Archit. News, vol. 43, no. 3,
pp. 92–104, 2015.

[10] T.-J. Yang, Y.-H. Chen, J. Emer, and V. Sze, “A method to estimate the
energy consumption of deep neural networks,” in Proc. 51st Asilomar
Conf. Signals, Syst., Comput., Oct. 2017, pp. 1916–1920.

[11] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient con-
volutional neural networks using energy-aware pruning,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 6071–6079.

[12] K. Ando et al., “BRein Memory: A single-chip binary/ternary reconfig-
urable in-memory deep neural network accelerator achieving 1.4 TOPS
at 0.6 W,” IEEE J. Solid-State Circuits, vol. 53, no. 4, pp. 983–994,
Apr. 2018.

[13] K. Bong, S. Choi, C. Kim, S. Kang, Y. Kim, and H.-J. Yoo,
“14.6 A 0.62 mW ultra-low-power convolutional-neural-network face-
recognition processor and a CIS integrated with always-on Haar-like face
detector,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2017, pp. 248–249.

[14] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU:
A 50.6 TOPS/W unified deep neural network accelerator with 1b-to-16b
fully-variable weight bit-precision,” in IEEE ISSCC Dig. Tech. Papers,
Feb. 2018, pp. 218–220.

[15] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An energy-efficient
SRAM with embedded convolution computation for low-power CNN-
based machine learning applications,” in IEEE ISSCC Dig. Tech. Papers,
Feb. 2018, pp. 488–490.

[16] W.-S. Khwa et al., “A 65 nm 4 Kb algorithm-dependent computing-in-
memory SRAM unit-macro with 2.3 ns and 55.8 TOPS/W fully parallel
product-sum operation for binary DNN edge processors,” in IEEE ISSCC
Dig. Tech. Papers, Feb. 2018, pp. 496–498.

[17] S. K. Gonugondla, M. Kang, and N. Shanbhag, “A 42 pJ/decision 3.12
TOPS/W robust in-memory machine learning classifier with on-chip
training,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 490–492.

[18] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann,
“An always-on 3.8 μJ/86% CIFAR-10 mixed-signal binary CNN proces-
sor with all memory on chip in 28-nm CMOS,” in IEEE ISSCC Dig.
Tech. Papers, Feb. 2018, pp. 222–224.

[19] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in IEEE ISSCC Dig. Tech. Papers, Feb. 2014, pp. 10–14.

[20] Y.-H. Chen, J. Emer, and V. Sze. (2018). “Eyeriss v2: A flexible
and high-performance accelerator for emerging deep neural networks.”
[Online]. Available: https://arxiv.org/abs/1807.07928

[21] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam,
K. K. Likharev, and D. B. Strukov, “Training and operation of an
integrated neuromorphic network based on metal-oxide memristors,”
Nature, vol. 521, no. 7550, pp. 61–64, 2015.

[22] J. Zhang, Z. Wang, and N. Verma, “A machine-learning classifier
implemented in a standard 6T SRAM array,” in Proc. IEEE Symp. VLSI
Circuits (VLSI-Circuits), Jun. 2016, pp. 1–2.

[23] Q. Dong et al., “A 0.3 V VDDmin 4+2T SRAM for searching and
in-memory computing using 55 nm DDC technology,” in Proc. Symp.
VLSI Circuits, Jun. 2017, pp. C160–C161.

[24] C. Chen, K. Li, A. Ouyang, Z. Zeng, and K. Li, “Gflink: An in-memory
computing architecture on heterogeneous CPU-GPU clusters for big
data,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 6, pp. 1275–1288,
Jun. 2018.

[25] M. Le Gallo et al., “Mixed-precision in-memory computing,” Nature
Electron., vol. 1, no. 4, pp. 246–253, 2018.

[26] W.-H. Chen et al., “A 65 nm 1 Mb nonvolatile computing-in-memory
ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN
AI edge processors,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018,
pp. 494–496.

[27] M. Kang, S. K. Gonugondla, A. Patil, and N. R. Shanbhag, “A multi-
functional in-memory inference processor using a standard 6T SRAM
array,” IEEE J. Solid-State Circuits, vol. 53, no. 2, pp. 642–655,
Feb. 2018.

[28] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity DRAM technology,” in Proc. 50th Annu.
IEEE/ACM Int. Symp. Microarchitecture, 2017, pp. 273–287.

[29] Y. Zhang, L. Xu, Q. Dong, J. Wang, D. Blaauw, and D. Sylvester,
“Recryptor: A reconfigurable cryptographic cortex-M0 processor with
in-memory and near-memory computing for IoT security,” IEEE J. Solid-
State Circuits, vol. 53, no. 4, pp. 995–1005, Apr. 2018.

[30] Y. Zhang et al., “Recryptor: A reconfigurable in-memory cryptographic
Cortex-M0 processor for IoT,” in Proc. Symp. VLSI Circuits, Jun. 2017,
pp. C264–C265.

[31] F. Su et al., “A 462 GOPs/J RRAM-based nonvolatile intelligent
processor for energy harvesting IoE system featuring nonvolatile logics
and processing-in-memory,” in Proc. Symp. VLSI Circuits, Jun. 2017,
pp. T260–T261.

[32] T. F. Wu et al., “Brain-inspired computing exploiting carbon nanotube
FETs and resistive RAM: Hyperdimensional computing case study,” in
IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 492–494.

[33] H. Yonekawa et al., “In-memory area-efficient signal streaming proces-
sor design for binary neural networks,” in Proc. IEEE 60th Int. Midwest
Symp. Circuits Syst. (MWSCAS), Aug. 2017, pp. 116–119.

[34] L. Ni, H. Huang, Z. Liu, R. V. Joshi, and H. Yu, “Distributed in-memory
computing on binary RRAM crossbar,” ACM J. Emerg. Technol. Comput.
Syst., vol. 13, no. 3, 2017, Art. no. 36.

[35] Z.-R. Wang et al., “Efficient implementation of boolean and full-
adder functions with 1T1R RRAMs for beyond von Neumann in-
memory computing,” IEEE Trans. Electron Devices, vol. 65, no. 10,
pp. 4659–4666, Oct. 2018.

[36] F. Parveen, S. Angizi, Z. He, and D. Fan, “Low power in-memory
computing based on dual-mode SOT-MRAM,” in Proc. IEEE/ACM Int.
Symp. Low Power Electron. Design (ISLPED), Jul. 2017, pp. 1–6.

[37] L. Ni, Z. Liu, H. Yu, and R. V. Joshi, “An energy-efficient digital
ReRAM-crossbar based CNN with bitwise parallelism,” IEEE J. Explor.
Solid-State Computat. Devices Circuits, vol. 3, pp. 37–46, Dec. 2017.

[38] D. Bhattacharjee, F. Merchant, and A. Chattopadhyay, “Enabling in-
memory computation of binary BLAS using ReRAM crossbar arrays,”
in Proc. IFIP/IEEE Int. Conf. Very Large Scale Integr. (VLSI-SoC),
Sep. 2016, pp. 1–6.

[39] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined ReRAM-
based accelerator for deep learning,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2017, pp. 541–552.

VALAVI et al.: 64-TILE 2.4-Mb IN-MEMORY-COMPUTING CNN ACCELERATOR EMPLOYING CHARGE-DOMAIN COMPUTE 1799

[40] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” ACM SIGARCH Comput.
Archit. News, vol. 44, no. 3, pp. 14–26, 2016.

[41] S. Park et al., “Neuromorphic speech systems using advanced ReRAM-
based synapse,” in IEDM Tech. Dig., Dec. 2013, pp. 25.6.1–25.6.4.

[42] Z. Jiang, S. Yin, M. Seok, and J.-S. Seo, “XNOR-SRAM: In-memory
computing SRAM macro for binary/ternary deep neural networks,” in
Proc. IEEE Symp. VLSI Technol., Jun. 2018, pp. 173–174.

[43] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A mixed-signal
binarized convolutional-neural-network accelerator integrating dense
weight storage and multiplication for reduced data movement,” in Proc.
IEEE Symp. VLSI Circuits, Jun. 2018, pp. 141–142.

[44] K. Simonyan and A. Zisserman. (2014). “Very deep convolutional
networks for large-scale image recognition.” [Online]. Available:
https://arxiv.org/abs/1409.1556

[45] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proc. AAAI, vol. 4, 2017, p. 12.

[46] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
Connected Convolutional Networks.,” in Proc. CVPR, Jul. 2017,
pp. 2261–2269.

[47] S. Zagoruyko and N. Komodakis. (2016). “Wide residual networks.”
[Online]. Available: https://arxiv.org/abs/1605.07146

[48] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2015, pp. 1–9.

[49] S. Ioffe and C. Szegedy. (2015). “Batch normalization: Accelerating
deep network training by reducing internal covariate shift.” [Online].
Available: https://arxiv.org/abs/1502.03167

[50] R. E. Suarez, P. R. Gray, and D. A. Hodges, “All-MOS charge-
redistribution analog-to-digital conversion techniques. II,” IEEE J. Solid-
State Circuits, vol. 10, no. 6, pp. 379–385, Dec. 1975.

[51] T. Kobayashi, K. Nogami, T. Shirotori, and Y. Fujimoto, “A current-
controlled latch sense amplifier and a static power-saving input buffer
for low-power architecture,” IEICE Trans. Electron., vol. E76-C, no. 5,
pp. 863–867, 1993.

[52] V. Tripathi and B. Murmann, “Mismatch characterization of small metal
fringe capacitors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61,
no. 8, pp. 2236–2242, Aug. 2014.

[53] H. Omran, H. Alahmadi, and K. N. Salama, “Matching properties of
femtofarad and sub-femtofarad MOM capacitors,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 63, no. 6, pp. 763–772, Jun. 2016.

[54] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envi-
sion: A 0.26-to-10tops/w subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28nm
fdsoi,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2017, pp. 246–247.

[55] S. Bang et al., “A 288μW programmable deep-learning processor with
270kB on-chip weight storage using non-uniform memory hierarchy
for mobile intelligence,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2017,
pp. 250–251.

[56] H. Jia, Y. Tang, H. Valavi, J. Zhang, and N. Verma. (2018). “A micro-
processor implemented in 65nm CMOS with configurable and bit-
scalable accelerator for programmable in-memory computing.” [Online].
Available: https://arxiv.org/abs/1811.04047

[57] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2017, pp. 1–12.

[58] S. Choi, J. Lee, K. Lee, and H.-J. Yoo, “A 9.02 mW CNN-stereo-
based real-time 3D hand-gesture recognition processor for smart mobile
devices,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 220–222.

Hossein Valavi (S’13) received the B.Sc. degree in
electrical engineering from the Sharif University of
Technology, Tehran, Iran, in 2013, and the M.A.
degree in electrical engineering from Princeton Uni-
versity, Princeton, NJ, USA, in 2015, where he is
currently pursuing the Ph.D. degree.

His research focuses on ultra-low-energy system
design for signal processing and machine learning
applications.

Mr. Valavi was a recipient of the Analog Devices
Outstanding Student Designer Award in 2016.

Peter J. Ramadge (F’95) received the B.Sc., B.E.,
and the M.E. degrees from the University of New-
castle, Callaghan, NSW, Australia, and the Ph.D.
degree in electrical engineering from the University
of Toronto, Toronto, ON, Canada.

In 1984, he joined the Faculty of Princeton Uni-
versity, where he is currently a Gordon Y. S. Wu
Professor of Engineering and a Professor of electri-
cal engineering. His current research interests are
in statistical signal processing, machine learning
and various applications, including: data analysis,

classification, prediction, medical and functional magnetic resonance imaging
(fMRI) data analysis, and video and image processing.

Dr. Ramadge is a member of SIAM. He was a recipient of several honors
and awards, including: a paper selected for inclusion in IEEE book Control
Theory: Twenty Five Seminal Papers from 1932 to 1981; the Outstanding
Paper Award from the Control Systems Society of the IEEE; a listing in
ISIHighlyCited.com; the Convocation Medal for Professional Excellence from
the University of Newcastle, Australia; an IBM Faculty Development Award;
and the University Medal from the University of Newcastle, Australia.

Eric Nestler (M’75) received the B.S.E.E. degree
from Tufts University, Medford, MA, USA, and the
M.S.E.E degree from the University of Wisconsin-
Madison, Madison, WI, USA.

He was with HP Medical, Palo Alto, CA, USA,
and Symbolics, Inc., Chatsworth, CA, USA. In 1987,
he joined ADI, Norwood, MA, USA, where he
currently is an ADI Fellow working in the Analog
Garage, Cambridge, MA, USA, and also the Founder
of the Energy Metering Division that has shipped
over 500 million energy metering parts during the

past 20 years. He worked for two startups. He was with Lyric Semiconductor,
ADI, in 2011, where he developed switched-capacitor analog signal processing
circuit technology that provides very low power for complex signal processing.
His present work is in ultralow power sampled analog technology (SAT)
designs applied to areas such as sensor interfaces and ultrasound imaging.
He holds more than 25 patents issued in a number circuit and product areas.

Naveen Verma (S’03–M’09) received the B.A.Sc.
degree in electrical and computer engineering from
The University of British Columbia, Vancouver, BC,
Canada, in 2003, and the M.S. and Ph.D. degrees
in electrical engineering from the Massachusetts
Institute of Technology, Cambridge, MA, USA,
in 2005 and 2009, respectively.

Since 2009, he has been with the Department of
Electrical Engineering, Princeton University, Prince-
ton, NJ, USA, where he is currently an Associate
Professor. His research focuses on advanced sensing

systems, including low-voltage digital logic and SRAMs, low-noise analog
instrumentation and data-conversion, large-area sensing systems based on
flexible electronics, and low-energy algorithms for embedded inference,
especially for medical applications.

Dr. Verma was a recipient or co-recipient of the 2006 DAC/ISSCC Stu-
dent Design Contest Award, the 2008 ISSCC Jack Kilby Paper Award,
the 2012 Alfred Rheinstein Junior Faculty Award, the 2013 NSF CAREER
Award, the 2013 Intel Early Career Award, the 2013 Walter C. Johnson Prize
for Teaching Excellence, the 2013 VLSI Symposium Best Student Paper
Award, the 2014 AFOSR Young Investigator Award, the 2015 Princeton
Engineering Council Excellence in Teaching Award, and the 2015 IEEE
TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING

TECHNOLOGY Best Paper Award. He is a Distinguished Lecturer of the IEEE
Solid-State Circuits Society and serves on the technical program committees
for the International Solid-State Circuits Conference (ISSCC), the VLSI
Symposium, DATE, and the IEEE Signal-Processing Society (DISPS).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

