
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE JOURNAL OF SOLID-STATE CIRCUITS 1

A Programmable Heterogeneous Microprocessor
Based on Bit-Scalable In-Memory Computing

Hongyang Jia , Student Member, IEEE, Hossein Valavi , Student Member, IEEE,

Yinqi Tang , Student Member, IEEE, Jintao Zhang , Student Member, IEEE, and Naveen Verma, Member, IEEE

Abstract— In-memory computing (IMC) addresses the cost of
accessing data from memory in a manner that introduces a
tradeoff between energy/throughput and computation signal-to-
noise ratio (SNR). However, low SNR posed a primary restric-
tion to integrating IMC in larger, heterogeneous architectures
required for practical workloads due to the challenges with
creating robust abstractions necessary for the hardware and
software stack. This work exploits recent progress in high-SNR
IMC to achieve a programmable heterogeneous microprocessor
architecture implemented in 65-nm CMOS and corresponding
interfaces to the software that enables mapping of application
workloads. The architecture consists of a 590-Kb IMC accelera-
tor, configurable digital near-memory-computing (NMC) acceler-
ator, RISC-V CPU, and other peripherals. To enable programma-
bility, microarchitectural design of the IMC accelerator provides
the integration in the standard processor memory space, area-
and energy-efficient analog-to-digital conversion for interfacing
to NMC, bit-scalable computation (1–8 b), and input-vector
sparsity-proportional energy consumption. The IMC accelerator
demonstrates excellent matching between computed outputs and
idealized software-modeled outputs, at 1b TOPS/W of 192|400
and 1b-TOPS/mm2 of 0.60|0.24 for MAC hardware, at VD D of
1.2|0.85 V, both of which scale directly with the bit precision of
the input vector and matrix elements. Software libraries devel-
oped for application mapping are used to demonstrate CIFAR-10
image classification with a ten-layer CNN, achieving accuracy,
throughput, and energy of 89.3%|92.4%, 176|23 images/s, and
5.31|105.2 µJ/image, for 1|4 b quantization levels.

Index Terms— Charge-domain compute, deep learning, hard-
ware accelerators, in-memory computing (IMC), neural networks
(NNs).

I. INTRODUCTION

MACHINE-LEARNING inference, particularly based on
neural networks (NNs), has provided unprecedented

capabilities in various cognitive tasks, such as vision and
language processing. [1]–[5]. However, pervasive deployment,
especially in edge applications, has been limited by the
high computational requirements that are dominated by high-
dimensionality matrix-vector multiplications (MVMs). To
address this, many optimizations, focusing on both hardware
specialization and model design (e.g., sparsity, compression,

Manuscript received December 22, 2019; revised March 10, 2020; accepted
March 30, 2020. This article was approved by Associate Editor Vivek De.
(Corresponding author: Hongyang Jia.)

Hongyang Jia, Hossein Valavi, Yinqi Tang, and Naveen Verma are with
the Department of Electrical Engineering, Princeton University, Princeton, NJ
08544 USA (e-mail: hjia@princeton.edu).

Jintao Zhang is with the IBM T. J. Watson Center, Ossining, NY 10562
USA.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2020.2987714

and pruning), have been researched [6]–[9]. Hardware accel-
eration has proven to be critical. However, traditional digital
acceleration addresses computation and is, thus, restricted in
the gains that it can provide for addressing the large amount of
data movement involved in high-dimensionality MVMs [10].
For instance, embedded memory is often employed to exploit
the many opportunities for data reuse in MVM. However, mov-
ing data from the point of storage to the point of computation
outside the memory imposes substantial communication costs
(both energy and delay), which scales with the size of memory
and, thus, the amount of data stored, causing data movement
to dominate in NN computations [11].

In-memory computing (IMC) overcomes this by exploiting
both the structural alignment between 2-D matrix multipli-
cation and a 2-D array of memory bit cells, as well as
the dataflow alignment of computations in MVMs and the
signaling provided by perpendicular word-lines and bit-lines.
This enables accessing a computational result over many
stored bits in a memory column, rather than accessing the
raw bits one at a time, as done in standard memory. Doing so
exploits the potentially high level of parallelism provided by
high-density bit cells and amortizes the communication costs
by a factor equal to the number of column bits involved in
the computation, which is referred to as the row parallelism.
However, the number of bits involved also sets the dynamic
range of the computational result, such that accessing via
memory bit lines and readout circuitry imposes a direct
signal-to-noise ratio (SNR) tradeoff [12], [13]. Furthermore,
the need to fit computation within area-constrained bit-cell
circuitry motivates analog operation, whereby richer transistor
functionality than that restricted to simple switch-based digital
models can be leveraged. In this case, computational noise
is often dominated by analog nonidealities (nonlinearity and
variations).

This SNR tradeoff has limited IMC both in terms of
scale, due to ensuing loss in accuracy or inefficiency of
SNR recovery techniques, and in terms of integration in
practical computing systems (i.e., larger architectures and
associated software), due to inability to form robust functional
abstractions of the computation. To manage this, previous
IMC designs have reduced the amount of row parallelism
[14], [15]. However, this directly impacts the energy and
throughput benefits, especially when the overheads associated
with IMC are considered (e.g., non-standard bit cells, multi-
cycle computations, and necessary periphery). Previous IMC
designs have also exploited statistical parameter training in

0018-9200 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Princeton University. Downloaded on August 07,2020 at 17:06:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8692-1860
https://orcid.org/0000-0002-0218-9906
https://orcid.org/0000-0001-6667-1833
https://orcid.org/0000-0001-6909-0612

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE JOURNAL OF SOLID-STATE CIRCUITS

machine learning, to enable reduced SNR by incorporating
models of the computational noise, in both chip-specific
[16]–[18] and chip-generalized [19] training algorithms. This
has shown promise, warranting the further research needed
to transition such models toward generalized abstractions,
suitable for application design and mapping across the range
of hardware design parameters and operating conditions.

Recently, the approach of charge-domain analog computa-
tion has been introduced for NNs [20], [21], including specif-
ically for IMC [20]. This enables high SNR by leveraging
capacitors within the bit cells for analog computation. The
capacitors are formed using metal-fringing structures above
the bit cells, thus introducing no area overhead [20]. Impor-
tantly, high stability of capacitance value can be achieved
(due to temperature stability and well-controlled geometry
via lithographic precision). As a result, the SNR tradeoff
instated by IMC can be leveraged for significant energy and
throughput benefits. With regard to the limitations previously
faced, charge-domain computation has enabled the greatest
scale and technology-normalized energy efficiency achieved
by IMC to date [13]. The purpose of this article is to
present details of how charge-domain IMC can be integrated
into a practical heterogeneous computing architecture with
associated software, extending presentations in [12].

The primary contributions of this article are as follows.

1) We present and demonstrate a heterogeneous micro-
processor in 65-nm CMOS, integrating a mixed-signal
IMC accelerator for energy-efficient MVMs, a config-
urable digital near-memory-computing (NMC) acceler-
ator for efficient localized element-wise computation
on vectors, and an RISC-V CPU for general-purpose
computation, along with required peripherals.

2) We extend the previous approach of charge-domain IMC
[20], which is restricted to single-bit input-vector and
matrix elements, to arbitrary input-vector- and matrix-
element precisions. We analyze the quantization error
that arises from this, fundamentally stemming from the
SNR tradeoff instated by IMC. Due to high-SNR analog
computation, the quantization error can be precisely
modeled and integrated in the IMC abstraction required
for architectural and software design.

3) We design and analyze, in detail, the microarchitecture
for the IMC accelerator. With a primary objective of
demonstrating programmability, interfaces are designed,
which enables the integration of the accelerator in the
standard processor memory space, yielding tight CPU
coupling.

In addition, software libraries are developed integrating
with standard NN design frameworks (Keras, TensorFlow) to
enable application mapping to the architecture and training
optimized to the quantized computation performed by the bit-
scalable IMC accelerator. Several NNs are mapped to the chip
and demonstrated, yielding computation equivalent to ideally
modeled computation, thus illustrating the robust integration
of IMC in the computing system.

The remainder of this article is organized as follows.
Section II provides an overview of the architectural design

Fig. 1. Architectural block diagram of programmable heterogeneous IMC
microprocessor.

of the heterogeneous microprocessor and extension of IMC
from single- to multi-bit element computations. Section III
describes and analyzes the microarchitectural design of the
mixed-signal IMC accelerator, including the interface required
between IMC and microprocessor architecture. Section IV
presents the prototype measurements, software toolkits, and
NN demonstrations. Finally, Section V concludes this article.

II. ARCHITECTURE OVERVIEW AND RATIONALE

Analysis of machine-learning workloads for both training
and inference has shown that high-dimensionality MVMs
dominate, accounting for 70%–95% of the computation [22].
This is especially true for the CNNs of interest in target edge
applications. IMC, which benefits MVMs, can, thus, have a
significant impact, but the remaining computations must also
be addressed. These include element-wise operations, such as
activation functions, scaling, adding, and offset. [22], as well
as other signal-processing operations required in audio, video,
and so on, and pipelines [2], [23], [24]. Such computations
are distinct from MVMs in that they benefit from significant
data locality (i.e., a small number of operands is involved
in the fundamental operations even though the operations
might be parallelized). This implies that they can be well
addressed by traditional digital acceleration, where compu-
tation energy, rather than data movement and/or memory
accessing, is critical. On the other hand, the wide range
of different computations involved makes configurability and
programmability essential. Thus, it is preferable to delegate
such computations to digital accelerators or CPU. However,
especially for computations performed on the parallel elements
of MVM output vectors, integrating such acceleration near
IMC is beneficial. This mitigates the otherwise potentially high
cost of data movement from the IMC accelerator, particularly
given the physically large IMC area expected for enabling high
row parallelism.

This motivates the heterogeneous microprocessor architec-
ture shown in Fig. 1. The architecture includes: 1) a 590-Kb
compute-in-memory unit (CIMU), which integrates IMC with
configurable digital interfaces to the external microprocessor
architecture and a localized configurable NMC accelerator

Authorized licensed use limited to: Princeton University. Downloaded on August 07,2020 at 17:06:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIA et al.: PROGRAMMABLE HETEROGENEOUS MICROPROCESSOR BASED ON BIT-SCALABLE IMC 3

Fig. 2. Block diagram of CIMU.

for element-wise operations; 2) RISC-V CPU, based on
the low-power design in [25]; 3) 128 KB of the standard
program and data memory (P/DMEM), implemented using
foundry-provided SRAM compilers; 4) two-channel DMA
engine, each capable of 32-b transfers in roughly one clock
cycle; and 5) peripherals for external interfacing, including
external-memory control, bootloading, host-PC communica-
tion (UART), general-purpose IO (GPIO), and scheduling
(timers).

The central block is the CIMU, whose microarchitecture
is shown in Fig. 2. In addition to the interfacing and NMC
blocks, the CIMU is comprised of a compute-in-memory
array (CIMA), made up of 16 (4 × 4) tiles, which can be
activity-gated for configuration into an IMC array of size
up to 2304 rows × 256 columns. Following each column
are two different analog-to-digital conversion options. The
analog batch normalization (ABN) block is as in [20], pro-
viding batch normalization and activation binarization. For
binarized activations, batch normalization simply reduces to
the comparison of the preactivation (i.e., analog column-
computation output) against a configurable analog reference
voltage. The analog-to-digital converter (ADC) is for multi-bit
quantized activations and employs a successive-approximation
register (SAR) architecture providing an 8-b digital output
to the NMC block for subsequent configurable element-wise
digital computation. The choice of column dimension (2304)
and ADC precision (8-b) is derived from considerations of
the fundamental energy/throughput versus SNR tradeoff in
IMC, where larger column dimension enables greater amor-
tization of the communication/readout cost but increases the
output dynamic range, thus increasing the readout complexity.
This SNR-tradeoff consideration is quantitatively described in
Section II-B.

A. Compute-In-Memory Array

The CIMA is based on the charge-domain computation
shown in Fig. 3(a) and presented in [20], which implements

Fig. 3. Structure of CIMA. (a) Block diagram. (b) Details of the 8T M-BC.

an inner product operation (multiplication and accumulation)
between input vectors and stored matrix, both having binary
elements. This is achieved via the multiplying bit cell (M-BC)
circuit shown in Fig. 3(b). M-BC operation starts by shorting
together (via S/Sb) and discharging all of the local capacitors
while holding xn/xbn high. Then, individual M-BC capacitors
are decoupled, and multiplication is performed between binary
input element data provided on xn/xbn and binary stored
element data retained on am,n/abm,n , and the result is stored
on the local capacitor. Finally, all capacitors in a column
are shorted together to implement accumulation. The process
then restarts by again discharging the shorted capacitors. The
analysis in [26] shows that well over 10K IMC rows can be
employed before computation SNR is limited by capacitor
mismatch, enhancing the gains that can be achieved from IMC
through row parallelism.

For 1-b elements, taken to have values of +1 and −1, M-BC
multiplication reduces to a logical XNOR operation and is,
thus, purely digital with binary output states ensuring perfect
linearity. This work extends to multi-bit elements, where
two different number-representation formats and associated
computations are supported: 1) XNOR-compute, where bit
values are taken to be +1 and −1, requiring logical XNOR in
the M-BC and 2) AND-compute, where bit values are taken
to be 0 and 1 (as in two’s complement format), requiring
logical AND in the M-BC. Logical AND is readily achieved
in the M-BC simply by masking xn to remain high. Again,
both computations are purely digital and inherently linear.

In terms of density, the capacitor itself consumes no addi-
tional area, as it is formed using metal-fringing structures
above the bit cell. Additional transistors are required, and
while a variety of capacitor-based M-BC configurations were
considered (e.g., connecting together top plates and driving
bottom plates), the configuration shown was selected as it
leads to a small number of additional transistors (8T). This
incurs just 80% area overhead compared with a standard 6T
bit cell, both using logic-design-rules, for a total cell area of
1.8 µm2 (i.e., greater area overhead compared with a 6T bit
cell using foundry push rules). In addition to the 8T structure,
two additional transistors are also required per bit cell for the
shorting switches S/Sb. These incur additional area but are
laid out separately, combining together the switches for 3-b

Authorized licensed use limited to: Princeton University. Downloaded on August 07,2020 at 17:06:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 4. Illustration of BPBS computation scheme for multi-bit IMC.

cells, to take advantage of opportunities for sharing layout
features [20].

The logical CIMA columns are folded into three physical
columns. The logical column length is chosen to be a multiple
of 9 (3 × 3). As in [20], this is done to better match the trend
of 3 × 3 kernels in CNNs [4]. Furthermore, it also enables
layout feature sharing of the S/Sb switches and relaxes ADC
layout constraints for pitch matching to columns.

B. Multi-Bit IMC

To extend the bit-wise IMC of [20] to multi-bit IMC, a bit-
parallel/bit-serial (BPBS) scheme is used. Illustrated in Fig. 4
for the case of 3-b elements, BPBS stores matrix-element
bits in parallel columns and provides input-vector element
bits serially, in LSB-first order. This reduces each column
computation to an inner product between binary vectors. For
multi-bit computation, each column output is digitized, proper
bit-weighting is applied via digital barrel shifting, and the
digital summation is performed across the column outputs.
For example, for the first input bit, the MSB column ADC
output is shifted by two, the MSB-1 column ADC output
is shifted by one, and the LSB column output is unshifted.
For the next input bit, one additional shift is applied to all
columns. Multi-bit extension for IMC has been considered
previously [27] but must be analyzed in terms of the critical
SNR tradeoffs inherent in IMC and the impacts of different
number representation formats conducive for IMC. This is
done next.

The two multi-bit number representations require slightly
different computations. With XNOR-compute, a B-bit number
is represented using B + 1 bits as

x =
B−1∑

i=1

bi × 2i−1 + (b0+ + b0−) × 2−1 (1)

where bi ’s are taken to have values of +1 and −1 (represented
as a logic-0 state in the digital circuits). In this case, a value of
zero cannot be represented by one bit alone. Thus, to represent
the LSB, two bits b0+ and b0− are required, each with 2−1

weighting. Unlike conventional two’s complement represen-
tation, the sign is determined by all the bits combined (e.g.,
sign extension requires setting the MSB to the desired sign,
and all other extended bits as well as the original MSB to the
opposite sign). The required conversions for XNOR-compute
are made using simple logic circuitry preceding the CIMA.
Then, following the CIMA, the ADC output is made bipolar,
from −128 to 127, by applying a constant offset, before bit-
weighting and summation across BPBS column computations.
With AND-compute, a B-bit number is represented using stan-
dard two’s-complement number representation. In this case,
the ADC output is multiplied by −1 for the MSB column
and again by −1 for all of the column computations involving
the MSB input-vector bit. Then, bit-weighting and summation
across BPBS column computations are performed.

While the BPBS scheme enables arbitrary bit precision for
input-vector and matrix elements, rounding error is effectively
introduced by the finite-precision ADC. This sets the effec-
tive signal-to-quantization noise ratio (SQNR) achievable and
corresponds to the energy/throughput versus SNR tradeoff for
IMC mentioned earlier.

The SQNR is, thus, analyzed and defined as follows:

SQNR = Psignal

Pnoise
=

∑M
m=1 y2

m∑M
m=1(ym − ŷm)2

(2)

where ym denotes the inner-product of two vectors, �am and �x ,
with full-precision (floating-point) elements, and ŷm denotes
the inner-product result computed via the BPBS scheme (a
total of M inner products of length N are used). The computed
inner-product incurs noise due to element quantization of �am

and �x , as with standard integer computation, but also due to
rounding of the bit-wise column computations by the finite-
precision ADC.

Specifically, with each M-BC providing a binary XNOR or
AND result on its local capacitor, charge accumulation over N
M-BCs (column dimensionality) results in a dynamic range of
N + 1 possible voltage levels. If such dynamic range is sup-
ported by the column ADC, integer computation is perfectly
emulated. However, with a large N , preferred for larger IMC
gains through row parallelism, the ADC cost can be excessive.
In this design, for instance, the column dimensionality is up
to N = 2304, and the ADC dynamic range is 8-b (256 levels).
These values are chosen by considering the relative ADC
overhead and impact on SQNR. Specifically, the 8-b ADC
results in 15% area overhead and 18% energy overhead in
each column.

The simulated SQNR, assuming perfect analog accumula-
tion and digitization, is shown in Fig. 5 for both XNOR- and
AND-computes (with uniformly distributed input-vector and
matrix elements). To isolate the various quantization effects,
the analysis considers different levels of quantization for input-
vector elements (Bx) and matrix elements (BA), as well as
different levels of column dimensionality N . With N = 255,
the dynamic range of the column computation matches that
of the 8-bit ADC quantization, and the SQNR of integer
computation is perfectly emulated, increasing directly with
Bx and BA. On the other hand, higher N would require an
ADC precision of log2(N + 1) (∼12 b for the maximum

Authorized licensed use limited to: Princeton University. Downloaded on August 07,2020 at 17:06:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIA et al.: PROGRAMMABLE HETEROGENEOUS MICROPROCESSOR BASED ON BIT-SCALABLE IMC 5

Fig. 5. Analysis of SQNR with respect to Bx , BA, and N . (a) XNOR-compute
and (b) AND-compute, where the N = 255 cases ideally emulate standard
integer compute.

N = 2304 in this design), ultimately leading to SQNR
saturation as Bx and BA are increased, due to ADC rounding
effects. Nonetheless, for the Bx and BA ranges of interest
for low-power quantized NN applications (2-6 b) [28], [29],
the selected design point leads to SQNR close to integer
computation (i.e., the N = 255 curves). As seen, XNOR- and
AND-computes lead to somewhat different SQNR curves due
to both the different number representation formats and bit-
wise computations involved, offering design alternatives for
different application requirements.

However, more importantly than the resulting SQNR, we
point out that the high capacitor-matching precision ensures
that the column computation and subsequent ADC rounding
effects can be accurately modeled even for large N . Con-
sequently, the quantization effects can be robustly incorpo-
rated into parameter-training algorithms, as done for standard
quantized NNs [28], [29]. This enables multi-bit IMC to be
robustly employed for NN applications, as we demonstrate
in this work through training libraries incorporated in Keras
and TensorFlow (see Section IV-B). In addition, in this work,
the column dimensionality can be configured to less than
the maximum (2304) via column-gating switches at 64-row
increments, as in [20]. This provides a knob for mitigating
ADC rounding effects if needed in applications. Finally, acti-
vation sparsity also restricts the effective dynamic range of the
column computation, thus enabling another way to mitigate
ADC rounding effects. To exploit this, microarchitectural
support is included in the CIMU, as described in the following.

III. CIMU MICROARCHITECTURAL DESIGN

This section presents microarchitectural design details of the
CIMU blocks, along with analysis of the cycles required for
computation and data movement to/from the CIMU to char-
acterize its achievable utilization. As mentioned previously,
the primary objective of the architecture is to demonstrate the
integration of IMC in a programmable platform. Accordingly,
the CIMU microarchitecture is designed for a tightly coupled
accelerator architecture, where the CIMU is integrated into the
standard processor memory space. While this imposes circuit

Fig. 6. Memory map and IMC MVM service routine.

overheads for proper interfacing, it enhances programmabil-
ity by making the CIMU input/output buffers, configuration
registers, and IMC array accessible from software as standard
memory locations (as demonstrated in Section IV-B).

Fig. 6 shows the resulting memory map and programming
model for executing MVMs. First, the CIMU is configured,
for the desired input-vector and matrix bit precisions, input-
vector and matrix dimensionalities, near-memory computing
operations, and so on. This is typically done once or infre-
quently in an application. Second, matrix elements are loaded,
from one of four sources: 1) directly from the CPU, as a
result of general-purpose computations performed there; 2)
from data memory; 3) from I/O; and 4) from the external-
memory interface. The last three sources can exploit the DMA
module for efficient data transfers. This is also typically done
infrequently in an application, though it must be a focus
of application-mapping optimizations (for instance, weight
loading in NNs). Third, input vectors are loaded, also from
the same four sources as matrix elements. Forth, MVM is
performed. This is done by the CPU writing to a CIMU
control register, and waiting for an interrupt, triggered upon
completion (alternatively, the CPU can also poll a status bit
in the CIMU control register). Finally, the computed output
vector, stored in a CIMU peripheral buffer, is then moved,
again to any of the original four sources.

Sections III-A–III-E describe the details of the key microar-
chitectural blocks of the CIMU and then provide performance
and utilization analysis.

A. Word-to-Bit Reshaping Buffer

The purpose of the word-to-bit (w2b) Reshaping Buffer is
to efficiently interface the external 32-b processor architecture
with the configurable high-dimensional bit-wise operations
performed within the CIMA. Fig. 7(a) shows the w2b Reshap-
ing Buffer that takes input-vector data at near the maximum
bandwidth of the external 32-b buses and sequences binary
vectors of configurable dimensionality (up to N = 2304)
to the CIMA. Up to eight binary vectors can be sequenced,

Authorized licensed use limited to: Princeton University. Downloaded on August 07,2020 at 17:06:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 7. Interface from processor architecture to CIMA, showing (a) block
diagram of w2b Reshaping Buffer and (b) illustration of CIMA-stored matrix
data and register-file-provided input-vector data, from shifting interface for
input-activation reuse in convolutions.

corresponding to the configurable bit-serial computation. The
w2b Reshaping Buffer also supports convolutional reuse of
the data, optimized for 3 × 3 CNN kernels with a stride of
1 (i.e., the case with maximum reuse). This is motivated by
the trend toward modular CNN design, where other kernel
sizes, such as 5 × 5 and 11 × 11, can be composed of 3 × 3
kernels [4], [11]. For strides larger than 1 (i.e., cases with
less reuse), convolutional reuse is not supported, in favor of
reducing buffering complexity (the analysis in Section III-E
shows minimal impact on throughput for pipelined input-
activation transfers).

The w2b Reshaping Buffer operates by first loading 32-b
input words into a set of four 8-b registers, filling up 24
such registers with successive 32-b data. Then, input data
are moved to eight register files, segmented in this manner
to ensure adequate bandwidth of configurable transfers to the
register files and transfers from the register files. Namely,
for 1-b input-vector elements, all data bits from all of the
24 × 4 8-b registers are moved in parallel (i.e., as 768 bits)
to the eight register files. For 8-b input-vector elements, one
data bit from each of the 24 × 4 8-b registers is moved in
parallel (i.e., as 96 bits) to one of the register files, until
all eight data bits are loaded. Then, loading proceeds to the

next register file, until all eight register files are loaded. This
places input-vector element bits in consecutive locations of
the register file columns, for bit-serial sequencing. Similar
loading is employed for the other bit configurations, with the
number of cycles for the reshaping operation proportional to
the input-vector bit-precision Bx . The reshaping operation is
only required once for every 24 transfers of 32-b input data.
Thus, the maximum utilization of the external 32-b buses is
24/(1 + 24) = 96% and 24/(8 + 24) = 75% for 1-b and
8-b input-vector elements, respectively (corresponding to the
number of cycles required for reshaping in each case).

Each of the eight register files has 96 columns, with enough
bits per column to store eight 8-b input-vector elements
(i.e., 64 bits), plus a sparsity-mask bit for each input-vector
element (i.e., 8 bits, used as described in the following). This
allows four input-vector elements of bit precision up to 8-b
to be stored and also double buffered so that loading can be
pipelined with readout to the CIMA. The readout is performed
of 72 bits at a time, from 3/4th of the columns. For the case
of convolutional reuse, this enables processing of data from
three of the columns, while a fourth column is simultaneously
being loaded. A shifting interface at the output implements
convolutional striding, selecting three columns from a set of
four. While full convolutional reuse in 3 × 3 kernels requires
only 1/9th of the data to be loaded, this would substantially
increase the buffering requirements to at least three full rows
or columns of input feature maps. Instead, loading 1/3rd
of the data reduces buffering to only the input activations
being processed and has minimal impact on throughput (as
analyzed in Section III-E). To illustrate the input-activation
reuse scheme, Fig. 7(b) shows the matrix elements (weight
data) stored in the CIMA and the input-vector elements (input-
activation data) provided from the register files through the
shifting interface, during two CIMA operations. Finally, the
full binary input vector, with dimensionality up to N = 2304,
is provided to the CIMA in four cycles, by serially accessing
bits from the four input-vector elements stored in each column.
Each serial access is input to one row of CIMA tiles shown
in Fig. 2, with fewer accesses required in the case of smaller
input-vector dimensionalities (and corresponding tile gating).

B. Sparsity/AND-Logic Controller

The purpose of the Sparsity/AND-logic Controller is to
provide input-vector sparsity-proportional energy savings and
SQNR gains, as well as proper AND-logic functionality from
the M-BCs. The energy savings arise from gating broadcast
of the input-vector elements xn/xbn and, thereby, also prevent-
ing the charging of the local M-BC capacitors. Together, these
two energy sources account for roughly 66% of the CIMA
energy. The SQNR gains arise from a resulting reduction in
the maximum dynamic range of the column computation, as
discussed in Section II-B. The logic functionality for AND-
compute is achieved by simply masking xn to remain high,
thereby preventing charging up of the M-BC capacitor via the
corresponding PMOS transistor.

Fig. 8 shows the Sparsity/AND-logic Controller. We point
out that with AND-compute, a zero-valued input-vector

Authorized licensed use limited to: Princeton University. Downloaded on August 07,2020 at 17:06:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIA et al.: PROGRAMMABLE HETEROGENEOUS MICROPROCESSOR BASED ON BIT-SCALABLE IMC 7

Fig. 8. Block diagram of Sparsity/AND-logic Controller.

element is represented by successive logic 0’s, which intrin-
sically avoids active switching, for both broadcast of xn /xbn

and charging of local M-BC capacitors. However, with XNOR-
compute, a zero-valued input-vector element is represented
by +1 and −1 in successive bit positions, which leads to
charging up of the M-BC capacitors during bit-wise XNOR

multiplication. Thus, in the w2b Reshaping Buffer, a mask bit
is derived for each input-vector element during its transfer to
a register file, corresponding to a zero-valued element, during
XNOR-compute, or any-valued element, during AND-compute.
The mask bit is stored in a register file location corresponding
to the input-vector element (i.e., requiring a total of 4 bits in
each register-file column for each input vector). Then, both the
input-vector-element bits (for bit-serial computation) and their
corresponding mask bits are read out from the register files
in four cycles (i.e., 72 bits from each of eight register files in
parallel, for total input-vector dimensionality up to N = 2304)
and stored in data and mask buffers, respectively. The mask
buffer bits are fed to an adder to derive a count of the zero-
valued elements. For XNOR-compute, such a count is required
to properly offset the output of each column computation,
which otherwise treats uncharged local capacitors as a value
of −1, rather than 0. Thus, the count is provided to the NMC
block to apply this offset in the digital domain, following the
ADC. The data buffer bits are then simply fed to the CIMA,
after proper gating from the mask bits, to drive the xn /xbn

signals.

C. Analog-to-Digital Converter and Analog
Batch Normalization

The ADC has an 8-b SAR architecture. It employs standard
circuits and topologies using a 1.2-fF unit capacitor for its
capacitive digital-to-analog converter (DAC) in the feedback
path. The major consideration is fitting the ADC layout in
the pitch of one CIMA column. As mentioned earlier, the
CIMA columns are folded into three physical columns to
relax the ADC layout pitch. Furthermore, the control logic
required in the SAR architecture to sequence bit-cycling
is shared across all the column ADCs, requiring only the
feedback DAC, comparator, and output-code register for each
column ADC.

The ABN offers an alternate mode implemented in a
previous CIMA design [20] to provide energy-efficient batch
normalization and binarization in binary-activation NNs. This

Fig. 9. Eight-way multiplexed NMC data path.

functionality is readily supported within the NMC block and
is only included for testing purposes, making it possible to
remove the ABN for future area savings.

D. Near-Memory-Computing Block

The purpose of the NMC block is to provide both the
digital operations required for BPBS computation and the
parallel element-wise operations required on MVM output-
vector elements. While the dominance of MVM computations
in NNs leads to significant energy and throughput leverage of
IMC, it is also necessary to accelerate element-wise operations
and to do so close by to IMC. This ensures that element-
wise operations continue to account for a small proportion
of the energy and delay and maximizes the benefits of IMC
by mitigating the cost of output data movement, especially
when element-wise operations reduce the output data activity,
as in the case of activation sparsity. However, the wide range
of different element-wise operations (activation functions,
multiplication, addition, shift, and so on) raises the need
for configurability and programmability of the computations.
Thus, digital accelerator architectures are preferred, motivating
the NMC block.

Fig. 9 shows the data path in the NMC block. The NMC
multiplexes across eight CIMA columns, both to relax the
layout pitch requirements and to ensure that the relatively
compact digital hardware is able to operate at a significantly
higher frequency than the highly parallel CIMA hardware
(as discussed further in the following). The NMC data path
consists of several hardware computation stages, which can
take operands from local registers, or global registers shared
across all NMC blocks. An adder is provided to apply offset
values, where, for example, a local register can be used to
negate ADC offset from calibration or apply the offset required
for batch normalization, or the global register can be used to
apply the offset required for XNOR-compute sparsity control.
A multiplier is provided to apply scaling values, for example,
to negate ADC gain error or apply the scaling required for
batch normalization. A barrel shifter is provided to apply
multiplication by base-2 exponential terms, for example, for
BPBS bit-weighting. Local scratchpad registers are provided to
spatially and temporally store intermediate variables for BPBS
and other element-wise operations. An activation function
is provided, for application of nonlinear activation functions
(currently, only ReLU is supported, but the extension to other
nonlinear functions has been analyzed and can be provided

Authorized licensed use limited to: Princeton University. Downloaded on August 07,2020 at 17:06:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 10. Analysis of CIMU utilization across different bit precisions,
evaluating data-transfer latency to/from CIMU against latency of CIMU
(CCIMU for the Bx = 1 case corresponds to the number of clock cycles
required for the basic CIMU operation).

through a local lookup table). The control signals required
for the NMC block are provided through a global control
block, configured and sequenced through CIMU configuration
registers. This yields an architecture similar to an SIMD
processor.

E. Microarchitectural Analysis

In the programming model described in Section III, incom-
ing input vectors are multiplied by a matrix (or portion of
the matrix) loaded in the CIMA to perform MVM via IMC.
However, for a tightly coupled accelerator architecture, an
important concern is ensuring that input- and output-vector
transfers in the 32-b processor do not limit the throughput
of the highly parallelized CIMU computations. This section
analyzes the respective latencies, where input-vector transfers,
CIMU computations, and output-vector transfers are pipelined.
For full application mapping, compiler design must also con-
sider the latency of loading matrix elements in the CIMA, in
order to optimize how computations are scheduled. To move
toward such application-mapping optimizations, which are a
focus of on-going research, matrix-element loading latencies
are characterized here.

Fig. 10 shows the clock cycles required for input-vector
transfers Cx , CIMU computations CCIMU, and output-vector
transfers Cy , for the implemented hardware operating in CNN
mode with input-activation reuse (i.e., targeted design point
for optimization). Cx assumes the convolutional reuse scheme
of 2/3rds within a 3 × 3 kernel, as the target for design
optimization. The cycles required depend on the selected
input-vector precision Bx and matrix-element precision BA

and are given for the maximum input-vector dimensionality,
of N = 2304, and maximum output-vector dimensionality,
of M = 256/BA, which represents the worst case latency of

transfers. Furthermore, the output-vector elements are assumed
to have the full precision (By) supported by BPBS and NMC
computation, allowing for diverse precision requirements of
subsequent computations (e.g., by the CPU). Cx ’s dependence
on Bx is due to the number of bits per element, which must
be transferred. CCIMU’s dependence on Bx is due to bit-serial
compute, where the Bx = 1 case shows the number of cycles
for single CIMA operation. Cy’s dependence on Bx and BA

is due to the number of output-vector bits per element and
the output-vector dimensionality, respectively, which must be
transferred. All transfers are assumed to occur via the on-
chip DMA module, avoiding CPU intervention to maximize
bandwidth.

As seen, CCIMU dominates for nearly all of the cases, except
for Bx = 1/BA = 1 case and slightly for Bx = 2/BA = 1. This
is because these cases represent the highest number of output-
vector elements. Nonetheless, the analysis indicates the poten-
tial for high CIMU utilization, not significantly bottlenecked
by input/output-vector transfers. However, we point out that
the current CIMA design point has been optimized for energy
efficiency and not throughput; considerable potential exists
for increasing throughput, which is likely to ultimately make
input/output-vector transfers an important concern, necessi-
tating architectural optimizations for interfacing. Finally, we
point out that other factors, such as the utilization of M-
BCs within the CIMA, also play a role in setting the overall
utilization and must be also optimized during application
mapping.

The number of clock cycles required for loading matrix
elements CLOAD is set by the number of bits stored in
the CIMA and its physical dimensions. Although the CIMA
logically has 2304 rows and 256 columns, each logical column
is folded into three physical columns, yielding CIMA SRAM
dimensionality of 768 × 768 bits. Thus, 24 DMA transfers of
32 bits are required for each row, and 768 row-wise writes are
required in total. With each DMA transfer taking one clock
cycle, while each row-wise write requiring 20 clock cycles,
CLOAD = 33K cycles are required. The row-wise write cycles
can be hidden with proper pipelining in the future design,
giving a potentially lower CLOAD = 18K cycles.

IV. PROTOTYPE MEASUREMENTS

The microprocessor is prototyped in a 65-nm CMOS
process. Fig. 11(a) shows the die photograph, with major archi-
tectural blocks labeled. For testing and applications’ develop-
ment, a custom PCB is designed, as shown in Fig. 11(b), which
provides off-chip bootloading via a E2PROM, interfacing to a
host PC, breakout header connections for general purpose IO
(e.g., to interface with off-chip sensors), interfacing to off-chip
DRAM controller, and BNC power connections for monitoring
the power consumption of different on-chip voltage domains.
Sections IV-A and IV-B describe the block-level testing of the
chip and NN application demonstrations.

A. Block-Level Measurements

Table I provides a summary of the overall chip and block-
level measurements. Measurements are taken at two voltage

Authorized licensed use limited to: Princeton University. Downloaded on August 07,2020 at 17:06:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIA et al.: PROGRAMMABLE HETEROGENEOUS MICROPROCESSOR BASED ON BIT-SCALABLE IMC 9

Fig. 11. Prototype system. (a) Die photograph of the microprocessor in
65-nm CMOS. (b) PCB for chip testing and application demonstration.

TABLE I

SUMMARY OF CHIP MEASUREMENT AND ENERGY BREAKDOWN

conditions and corresponding clock frequencies: 1) the nom-
inal voltage of 1.2 V, with a clock frequency of 100 MHz
and 2) lower energy voltages of 0.7 V for the standard
SRAMs and 0.85 V for the rest of the chip, with a clock
frequency of 40 MHz. The energy for each block at each of
these voltages is shown, noting that the CIMU computation
energy (CIMA, ADC, and ABN) are shown for each CIMA
column, with the exception of the NMC block, whose energy
is shown per output, thus corresponding to 1-8 CIMA columns,
depending on the matrix-element precision selected. The other
energies are shown for operations on 32-b words. The weight
loading energy in CIMA is also normalized to 32-b words for
comparison with other data transfer costs.

To further analyze the CIMU, Fig. 12 shows a detailed
energy breakdown of MVM-related operations, including
input-vector reshaping, CIMA column computation, and ADC
(all normalized for 1-b MACs) as well as CIMA loading
(last bar). The CIMA computation and ADC energies cor-
respond directly to values in Table I, divided by the column
dimensionality (2304), while the input-vector reshaping energy
corresponds to the value in Table I, divided by both the column
dimensionality and the 32-b word length (normalizing for a
single CIMA bit). Similarly, the CIMA-loading energy is nor-
malized to a single bit (since 1-b MAC requires loading single
CIMA bit). As shown, CIMA loading consumes only 55.2×
more energy than MVM computation, indicating that even
modest weight reuse in NNs ensures that the CIMU operation
is not limited by weight loading (e.g., this is achieved for CNN

Fig. 12. Energy breakdown and comparison for MVMs within CIMU.

output feature maps larger than 8 × 8, even with a batch size
of 1).

Fig. 13 shows the detailed measurements of the basic CIMU
operation, in the form of the column transfer function, for both
ADC output and ABN output. The measurements correspond
to both XNOR- and AND-compute due to the digital multipli-
cation performed within the M-BC, leaving only the range of
pre-ADC values to be interpreted differently mathematically
(i.e., [−2304, 2304] with step by 2 for XNOR-compute, while
[0, 2304] with a step of 1 for AND-compute).

Fig. 13(a) shows the basic ADC-output column transfer
function across all 256 columns, where all 1’s are loaded
in the CIMA as 1-b matrix elements. Then, input vectors
are applied with 1-b elements, where the number of 1’s is
swept, nominally yielding a ramp with 2305 uniformly spaced
levels. The 8-b ADC then quantizes this to 256 levels. The
result following offset calibration is shown, with error bars
(visible in insets) corresponding to the standard deviation
across the 256 columns. Fig. 13(b) shows ten ADC-output
column transfer-function curves for one column, measured by
sweeping the number of 1’s in the input vector, but where
1’s appear at different randomized element locations. This
indicates the ideality of the computation against data patterns.
Fig. 13(c) shows the ADC-output column transfer-function
curve represented as an integral nonlinearity (INL). Note that
the nonlinearity, observed to be less than 4 LSBs, corresponds
to the entire column computation, not just the ADC. The
dominant source of nonlinearity is charge-injection switching
noise from the M-BC operation and ADC sampling, both
occurring most prominently near mid-rail voltages. Fig. 13(d)
shows the standard deviation observed in ADC output for
each nominal value of the pre-ADC column computation, with
the computation repeated 100 times. The average standard
deviation is 0.37 LSB (shown as the yellow line), with periodic
spikes smaller than 1 LSB observed at pre-ADC computation
values that are close to the critical switching thresholds of the
ADC.

Fig. 13(e) shows the ABN-output column transfer function,
where matrix elements and input vectors are set as earlier;
but for each case, the ABN code (DAC output) that causes
an output transition is plotted. Again, high linearity and small
variation across columns (standard deviation shown as error
bars) are observed.

Authorized licensed use limited to: Princeton University. Downloaded on August 07,2020 at 17:06:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 13. CIMA-column measurements. (a) ADC output transfer function.
(b) Drawing of ten different transfer function curves of one ADC output with
random input ordering. (c) INL of one ADC. (d) Standard deviation of one
ADC readout over 100 times repeated measurements. (e) ABN output transfer
function.

Fig. 14 shows the detailed measurements of the multi-
bit CIMU operation, using XNOR-compute as an example.
Fig. 14(a) shows ideal SQNR measurements with uniformly
distributed input-vector and matrix elements, for different bit
precisions Bx and BA, and two different dimensionalities
N = 1152 and N = 1728. The measured results (square
markers) show very good agreement with the expected SQNR
(dashed lines), with some errors observed for BA at 6 and 8
bits. This indicates that circuit non-idealities are small, and the
overall computations closely match the modeled quantization
effects. Fig. 14(b) shows the representative outputs actually
obtained from a segment of the SQNR testing, with blue lines
corresponding to measurements and orange lines correspond-
ing to bit-true simulations. As seen, very good agreement is
observed.

Table II provides a comparison with state-of-the-art NN
accelerators that have recently been demonstrated, especially
targeting energy efficiency. Both digital and IMC accelerator-
based designs are shown. While IMC designs tend to achieve
higher energy efficiencies, their overall throughputs tend to
be limited due to the reduced scale that has been achieved
for the analog computations involved. One exception is the

Fig. 14. Measurements of multi-bit MVMs. (a) SQNR. (b) Output waveform.

design in [20], which moves to the charge-domain computation
based on capacitors. This work extends this approach further to
provide bit-scalable IMC and integration in a programmable,
heterogeneous architecture, with configurable NMC and fully
programmable CPU. The degradations in energy efficiency and
throughput compared with [20] mainly come from introducing
the ADCs and reducing the column dimensionality by a factor
of 2 for multi-bit SQNR tradeoffs, while overheads caused
by the interfacing stay modest. The energy-efficiency and
throughput numbers shown for this works are given for 1-
bit compute, while the numbers for other bit-precisions scale
linearly with Bx and BA, respectively.

B. System Demonstrations and Software

To map NN applications and demonstrate the feasibility
of integrating IMC in full systems, software libraries are
developed. These follow the programming model described in
Section III and mapping of input activations (input-vector ele-
ments) and weights (matrix elements), as shown in Fig. 7(b).
As shown in Fig. 15, two types of libraries are developed:
1) training libraries for BPBS quantized NNs, integrated into
TensorFlow and Keras and 2) inference-system libraries that
allow the chip to be used as either a co-processor attached
to a host processor or as a standalone platform. Specialized
training libraries are developed because the BPBS computation
introduces different rounding errors than standard integer
computation. However, the high-SNR charge-domain analog
computation allows BPBS rounding to be accurately modeled
and incorporated in the loss function, as done for the standard
quantized NN training [28], [29]. The training libraries imple-
ment a superclass for each type of NN layer in TensorFlow and
Keras, with arguments for the bit precision and a flag to set
the quantization type to either “integer” or “BPBS,” enabling
validation that the equivalent performance is achieved across a
broad range of networks. The inference-system libraries pro-
vide an emulation mode, where BPBS CIMU computation is
modeled in software, strictly for development purposes without
requiring the chip. For inference-system deployment, libraries
are developed for Python and MATLAB, whereby top-level
NN control can be rapidly prototyped on a host system, with
function calls made to the chip over the UART interface for
energy-intensive (e.g., MVM) operations. Libraries are also

Authorized licensed use limited to: Princeton University. Downloaded on August 07,2020 at 17:06:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIA et al.: PROGRAMMABLE HETEROGENEOUS MICROPROCESSOR BASED ON BIT-SCALABLE IMC 11

TABLE II

COMPARISON WITH STATE-OF-THE-ART NN ACCELERATORS

Fig. 15. Application mapping flow of the developed software and firmware
stack.

TABLE III

NN DEMONSTRATION

developed for C, whereby the prototyped NNs can be deployed
entirely on the chip.

Multiple NNs have been deployed and evaluated on the
chip using the software mapping flow. As a representative
benchmark, Table III shows two networks for CIFAR-10
image classification, employing 4-b weight and activation
precision, as well as 1-b weight and activation precision. The
demonstrated systems achieve energy efficiencies of 105.2
and 5.31 µJ/image and throughputs of 23 and 176 images/s,
respectively. The chip measurements, including all sources
of analog noise (variation, nonlinearity, and so on), show

equivalent testing accuracies as those from ideal software
models. The 4-b network achieves 92.4% accuracy, while the
1-b network achieves 89.3% accuracy.

V. CONCLUSION

High-dimensionality MVM operations dominate in many
critical workloads, such as NNs. Given the high cost of data
movement and memory accessing, traditional digital accelera-
tion is limited in the gains (energy efficiency and throughput)
that it can provide, ultimately being limited by the overheads
in bringing data to the accelerator. This motivates IMC. While
analog operation, resulting in degraded computation SNR, has
limited the integration of IMC within computing systems,
recently, the charge-domain IMC has been proposed for high
SNR. This work leverages charge-domain IMC to demonstrate
integration in a fully programmable, heterogeneous architec-
ture and software stack. The architecture extends charge-
domain IMC to enable MVM with multi-bit (1-8 b) input-
vector and matrix elements, highly parallel configurable NMC
digital acceleration, and interfaces for IMC integration in the
standard processor memory space, resulting in a tightly cou-
pled architecture for enhanced programmability. A prototype
in 65-nm CMOS demonstrates computation with the excellent
matching between measurements and the software abstractions
while achieving energy efficiency of 192|400 1b-TOPS/W and
throughput of 2185|874 1b-GOPS at VD D of 1.2|0.85 V (both
scaling with the number of input-vector- and matrix-element
bits). The developed software libraries are used to map NNs
for CIFAR-10 image classification with 4- and 1-b weight and
activation precisions, achieving 105.2 and 5.31 µJ/image at 23
and 176 images/s, respectively, with accuracies of 92.4% and
89.3%, matching ideal software implementation.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jun. 2016, pp. 770–778.

Authorized licensed use limited to: Princeton University. Downloaded on August 07,2020 at 17:06:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE JOURNAL OF SOLID-STATE CIRCUITS

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[5] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[6] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[7] S. Han et al., “EIE: Efficient inference engine on compressed deep
neural network,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2016, pp. 243–254.

[8] S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and Huffman coding,” 2015, arXiv:1510.00149. [Online]. Available:
http://arxiv.org/abs/1510.00149

[9] X. Dai, H. Yin, and N. K. Jha, “Grow and prune compact, fast, and
accurate LSTMs,” IEEE Trans. Comput., vol. 69, no. 3, pp. 441–452,
Mar. 2020, doi: 10.1109/tc.2019.2954495.

[10] M. Horowitz, “1.1 Computing’s energy problem (and what we can do
about it),” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2014, pp. 10–14.

[11] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec. 2017.

[12] H. Jia, H. Valavi, Y. Tang, J. Zhang, and N. Verma, “A programmable
embedded microprocessor for bit-scalable in-memory computing,” in
Proc. IEEE Hot Chips 31 Symp. (HCS), Aug. 2019, pp. 1–29.

[13] N. Verma et al., “In-memory computing: Advances and prospects,” IEEE
Solid StateCircuits Mag., vol. 11, no. 3, pp. 43–55, Sum. 2019.

[14] J. Wang et al., “A 28-nm compute SRAM with bit-serial logic/arithmetic
operations for programmable in-memory vector computing,” IEEE
J. Solid-State Circuits, vol. 55, no. 1, pp. 76–86, Jan. 2020.

[15] P. Srivastava et al., “PROMISE: An end-to-end design of a pro-
grammable mixed-signal accelerator for machine-learning algorithms,”
in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput. Archit. (ISCA),
Jun. 2018, pp. 43–56.

[16] S. K. Gonugondla, M. Kang, and N. Shanbhag, “A 42 pJ/decision
3.12 TOPS/W robust in-memory machine learning classifier with on-
chip training,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2018, pp. 490–492.

[17] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of a
machine-learning classifier in a standard 6T SRAM array,” IEEE
J. Solid-State Circuits, vol. 52, no. 4, pp. 915–924, Apr. 2017.

[18] J. Zhang and N. Verma, “An in-memory-computing DNN achieving
700 TOPS/W and 6 TOPS/mm2 in 130-nm CMOS,” IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 358–366, Jun. 2019.

[19] B. Zhang, L.-Y. Chen, and N. Verma, “Stochastic data-driven hardware
resilience to efficiently train inference models for stochastic hardware
implementations,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2019, pp. 1388–1392.

[20] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-tile 2.4-Mb
in-memory-computing CNN accelerator employing charge-domain com-
pute,” IEEE J. Solid-State Circuits, vol. 54, no. 6, pp. 1789–1799,
Jun. 2019.

[21] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann,
“An always-On 3.8µJ/86% CIFAR-10 mixed-signal binary CNN proces-
sor with all memory on chip in 28-nm CMOS,” IEEE J. Solid-State
Circuits, vol. 54, no. 1, pp. 158–172, Jan. 2019.

[22] S. Shukla et al., “A scalable multi-TeraOPS core for AI training and
inference,” IEEE Solid-State Circuits Lett., vol. 1, no. 12, pp. 217–220,
Dec. 2018.

[23] D. Amodei et al., “Deep speech 2: End-to-end speech recognition in
English and Mandarin,” in Proc. 33rd Int. Conf. Mach. Learn. (ICML),
vol. 48, Jun. 2016, pp. 173–182.

[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” 2018,
arXiv:1810.04805. [Online]. Available: http://arxiv.org/abs/1810.04805

[25] P. Davide Schiavone et al., “Slow and steady wins the race? A com-
parison of ultra-low-power RISC-V cores for Internet-of-Things appli-
cations,” in Proc. 27th Int. Symp. Power Timing Modeling, Optim.
Simulation (PATMOS), Sep. 2017, pp. 1–8.

[26] H. Omran, H. Alahmadi, and K. N. Salama, “Matching properties of
femtofarad and sub-femtofarad MOM capacitors,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 63, no. 6, pp. 763–772, Jun. 2016.

[27] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in Proc. ACM/IEEE 43rd
Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016, pp. 14–26.

[28] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” J. Mach. Learn. Res., vol. 18, no. 1,
pp. 6869–6898, 2017.

[29] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan, and
K. Gopalakrishnan, “PACT: Parameterized clipping activation for quan-
tized neural networks,” 2018, arXiv:1805.06085. [Online]. Available:
http://arxiv.org/abs/1805.06085

[30] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst,
“14.5 envision: A 0.26-to-10 TOPS/W subword-parallel dynamic-
voltage-accuracy-frequency-scalable convolutional neural network
processor in 28 nm FDSOI,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2017, pp. 246–247.

[31] K. Ando et al., “BRein memory: A single-chip binary/ternary reconfig-
urable in-memory deep neural network accelerator achieving 1.4 TOPS
at 0.6 W,” IEEE J. Solid-State Circuits, vol. 53, no. 4, pp. 983–994,
Apr. 2018.

[32] W.-S. Khwa et al., “A 65 nm 4 Kb algorithm-dependent computing-in-
memory SRAM unit-macro with 2.3 ns and 55.8 TOPS/W fully parallel
product-sum operation for binary DNN edge processors,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018,
pp. 496–498.

[33] Z. Jiang, S. Yin, M. Seok, and J. Seo, “XNOR-SRAM: In-memory
computing SRAM macro for binary/ternary deep neural networks,” in
IEEE Symp. VLSI Technol. Dig. Tech. Papers, Jun. 2018, pp. 173–174.

[34] X. Si et al., “A twin-8T SRAM computation-in-memory unit-macro for
multibit CNN-based AI edge processors,” IEEE J. Solid-State Circuits,
vol. 55, no. 1, pp. 189–202, Jan. 2020.

[35] R. Guo et al., “A 5.1pJ/Neuron 127.3 µs/inference RNN-based
speech recognition processor using 16 computing-in-memory SRAM
macros in 65 nm CMOS,” in Proc. Symp. VLSI Circuits, Jun. 2019,
pp. C120–C121.

Hongyang Jia (Student Member, IEEE) received the
B.Eng. degree in microelectronics from Tsinghua
University, Beijing, China, in 2014, and the M.A.
degree in electrical engineering from Princeton Uni-
versity, Princeton, NJ, USA, in 2016, where he is
currently pursuing the Ph.D. degree.

His research focuses on ultra-low energy sys-
tem design for inference applications. His primary
research interests are CMOS IC design that leverages
the approximate computing technique for model
complexity reduction and mixed-signal computing

for energy-efficient machine learning applications.
Mr. Jia received the Analog Devices Outstanding Student Designer Award

in 2017.

Hossein Valavi (Student Member, IEEE) received
the B.Sc. degree in electrical engineering from the
Sharif University of Technology, Tehran, Iran, in
2013, and the M.A. degree in electrical engineering
from Princeton University, Princeton, NJ, USA, in
2015, where he is currently pursuing the Ph.D.
degree.

His research focuses on ultra-low-energy system
design for signal processing and machine learning
applications.

Mr. Valavi was a recipient of the Analog Devices
Outstanding Student Designer Award in 2016.

Authorized licensed use limited to: Princeton University. Downloaded on August 07,2020 at 17:06:39 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/tc.2019.2954495

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIA et al.: PROGRAMMABLE HETEROGENEOUS MICROPROCESSOR BASED ON BIT-SCALABLE IMC 13

Yinqi Tang (Student Member, IEEE) received the
B.S. degree in microelectronics from Fudan Univer-
sity, Shanghai, China, in 2014, and the M.A. degree
in electrical engineering from Princeton University,
Princeton, NJ, USA, in 2016, where he is currently
pursuing the Ph.D. degree.

His current research interests include energy-
efficient hardware systems for machine learning and
deep learning applications, in both algorithm and
hardware design aspects.

Jintao Zhang (Student Member, IEEE) received the
B.S. degree in electrical engineering from Purdue
University, West Lafayette, IN, USA, in 2012, and
the M.A. and Ph.D. degrees in electrical engineering
from Princeton University, Princeton, NJ, USA, in
2014 and 2019, respectively.

He is currently a Research Staff Member with
the IBM T. J. Watson Center, Ossining, NY, USA,
where he has been working on AI accelerator hard-
ware design. His research interests include the real-
ization of machine learning algorithms in mixed-

signal/digital hardware, low-energy mixed-signal ASIC design for machine
learning applications, and algorithms designed for such embedded systems.

Naveen Verma (Member, IEEE) received the
B.A.Sc. degree in electrical and computer engineer-
ing from The University of British Columbia (UBC),
Vancouver, BC, Canada, in 2003, and the M.S. and
Ph.D. degrees in electrical engineering from the
Massachusetts Institute of Technology (MIT), Cam-
bridge, MA, USA, in 2005 and 2009, respectively.

Since July 2009, he has been with Princeton Uni-
versity, Princeton, NJ, USA, where he is currently
the Director of the Keller Center for Education in
Innovation and Entrepreneurship and a Professor of

electrical engineering. His research focuses on advanced sensing systems,
exploring how systems for learning, inference, and action planning can be
enhanced by algorithms that exploit new sensing and computing technolo-
gies. This includes research on large-area, flexible sensors, energy-efficient
statistical-computing architectures and circuits, and machine-learning and
statistical-signal-processing algorithms.

Prof. Verma was a recipient or a co-recipient of the 2006 DAC/ISSCC
Student Design Contest Award, the 2008 ISSCC Jack Kilby Paper Award, the
2012 Alfred Rheinstein Junior Faculty Award, the 2013 NSF CAREER Award,
the 2013 Intel Early Career Award, the 2013 Walter C. Johnson Prize for
Teaching Excellence, the 2013 VLSI Symposium Best Student Paper Award,
the 2014 AFOSR Young Investigator Award, the 2015 Princeton Engineering
Council Excellence in Teaching Award, and the 2015 IEEE CPMT Best Paper
Award. He has served as a Distinguished Lecturer for the IEEE Solid-State
Circuits Society. He also serves on the technical program committees for
ISSCC, VLSI Symposium, DATE, and the IEEE Signal Processing Society
(DISPS).

Authorized licensed use limited to: Princeton University. Downloaded on August 07,2020 at 17:06:39 UTC from IEEE Xplore. Restrictions apply.

