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Abstract—This paper presents the first MRAM-based In-
Memory-Computing (IMC) macro, implemented as a 128-kb 
array in an advanced-node 22nm FD-SOI technology. The design 
maximizes IMC row parallelism for energy efficiency and 
throughput, while addressing the critical challenges this raises, 
namely: high column currents; high output dynamic-range 
requirements; and large area of peripheral readout circuits. 
These are addressed through current-insensitive column-
multiplexing and high-sensitivity readout circuits, occupying 
26% of the macro area. Residual IMC non-idealities, arising 
from statistical circuit variations, are modeled and incorporated 
in a chip-generalized one-time neural-network training 
algorithm, with CIFAR-10 image-classification accuracy 
demonstrated at 90.1%, equal to ideal digital computation. The 
design addresses the particularly high sensitivity required for 
MRAM-based IMC compared to other non-volatile memory 
technologies, while achieving area-normalized throughput of 758 
GOPS/mm2 and energy efficiency of 5.1 TOPS/W for the macro. 

I. INTRODUCTION 

Embedded non-volatile memory (eNVM) offers key 
advantages in ultra-low-power data-intensive applications, 
such as on-device AI, due to its high density and potential for 
low-leakage in event-based duty-cycled operation. In-memory 
computing (IMC) based on eNVM enables significant further 
energy and throughput benefits in AI applications. Such 
applications are dominated by high-dimensional matrix-vector 
multiplies (MVMs), for which IMC activates memory rows in 
parallel to access a compute result over many stored data, 
rather than accessing individual bits of data one at a time. This 
gives energy/throughput gains, but increases output dynamic 
range, causing a tradeoff with signal-to-noise ratio (SNR).  

While recent IMCs works have targeted ReRAM-based 
eNVM for row-parallel operation [1-4], IMC IP is required in 
the range of technologies suited for different application 
needs. In particular, MRAM has emerged as an important 
foundry offering to address harsh-environment robustness 
(e.g., to temperature, radiation). However, it poses key 
challenges to the IMC energy/throughput-vs.-SNR tradeoff, 
due to lower absolute resistance and lower resistance-state 
contrast of the bit cells. Both of these directly oppose 
increasing row parallelism and, thus, IMC throughput and 
energy-efficiency gains. Thus far, MRAM IMCs have been 
restricted to bit-level logical operations without addressing 
these challenges for significant row parallelism [5]. This work 
overcomes these challenges to demonstrate MRAM-based 
IMC in a 256-row macro. The major contributions of this 

work are as follows: 
 We demonstrate the first MRAM-based IMC macro, 

implemented in an advanced-node 22nm FD-SOI 
technology from GF and achieving high row parallelism, 
for maximizing IMC gains. We present basic operation 
and neural-network (NN) CIFAR-10 classification, 
leveraging a generalized training algorithm. 

 We develop a column-multiplexing approach, necessary for 
enabling readout-circuit pitch matching in high cell-
density IMC, where the area overhead of the multiplexing 
circuitry is minimized through a nonlinearity-insensitive 
switching scheme. 

 We develop high-sensitivity pitch-matched readout circuits 
suitable for eNVM-based IMC, where low absolute 
resistance and resistance-state contrast leads to small 
sensing voltages.       

II. ARCHITECTURE OVERVIEW AND CHALLENGES 
Fig. 1 shows the MRAM IMC macro demonstrated, 

comprising: a 256(row)×512(col.) 1T-1R array of MTJ-based 
MRAM bit cells; write/read periphery; and 4:1 multiplexed 
readout circuitry, providing 4-b IMC outputs. The macro 
computes a vector inner product in each column, between 
binary elements stored in the MRAM cells and binary elements 
provided on the WLs. The result is represented by the 
conductance between bit-line (BL) and source-line (SL). Fig. 2 
shows how multiplication of +/-1 binary-element data is 
performed, requiring two complementary cells in each column, 
storing complementary antiparallel(AP)/parallel(P) MTJ states, 
and driven by complementary WL data (two complementary 
are needed since multiplication is commutative, yet the stored 

 
Fig. 1 MRAM IMC macro block diagram and overview of challenges. 
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MTJ conductance and WL-controlled MOSFET conductance 
are highly asymmetric).  

This yields a one-shot 128×128 binary-element MVM. 
Having 4-b readout circuitry in the architecture is essential for 
extension to both larger MVMs and multi-bit elements. For 
larger MVMs, partial inner-products from parallel macros can 
thus be added. For multi-bit elements bit-parallel/bit-serial 
processing can be employed [1], where multiple matrix-
element bits are stored in parallel columns, and multiple input-
vector element bits are provided serially. Each column 
computation thus remains a binary inner product, and the 
multi-bit computation is achieved by properly bit-shifting 
(binary weighting) and adding the digitized column outputs.   

Fig. 1 also identifies the major challenges addressed in this 
design, resulting from large BL-SL conductance when 
increasing IMC row-parallelism. These include: (1) BL/SL 
wire resistances introduce spatial data dependency in the 
column computation; (2) the high sensing currents required for 
conductance-to-voltage conversion cause nonlinear parasitic 
series-resistance effects from column-select switches, 
particularly when keeping switch widths small to reduce area; 
(3) the small resulting input voltage ranges make readout 
circuits highly sensitive to offsets, causing significant loss of 
readout range. These are addressed through circuit and 
algorithmic techniques, as described in the following sections. 

III. NONLINEARITY-INSENSITIVE COLUMN MUX’ING 

 
Fig. 3. Readout circuit with nonlinearity-insensitive column-mux’ing. 

 

Fig. 3 shows the column readout circuit. The macro 
consists of 512 columns 4:1-multiplexed into 128 4-b current-
feedback SAR ADCs, whose the bit-cycling (BC) phases are 
controlled by one global BC state-machine block. Each ADC 
consists of a high-sensitivity comparator, bit-decision FFs, and 
a PMOS binary-weighted feedback current(I)-DAC. The I-
DAC outputs currents from 600-696µA, to yield adequate 
voltage across the BL-SL conductance for comparator sensing.  

While column multiplexing is necessary for pitch-matching 
the bit-cell array and readout circuits, a key challenge has been 
the large area occupied by the mux’s themselves. This arises 
due to the need for wide MOSFET switches, in order to 
suppress VDS nonlinearity from the large currents used to 
generate adequate BL-SL sensing voltage across the small-
valued and parallelized bit-cell resistances. The proposed 
circuit is made insensitive to switch nonlinearity by using 
separate DAC switches (which carry current) and comparator 
switches (which carry no current), so the comparator input 
VCMP corresponds to only the voltage across the BL-SL 
conductance. This enables significant reduction of switch sizes, 
and thus total readout area. 

IV. HIGH-SENSITIVITIY READOUT CIRCUITS 

The readout circuitry is used for both standard memory 
read operations and IMC column-computation readout. IMC  
readout sets the sensitivity requirements, due to the high 
column-computation dynamic range and low parallelized BL-
SL resistance (leading to small voltage-sensing range). 
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Fig. 4: Details of the high-sensitivity comparator’s preamp stages, 
showing autozeroing and analyzing CMRR to enhance insensitivity to 
DAC column-select switch resistances (RDAC-SW). 

Fig. 4 shows details of the readout circuit, focusing on the 
high-sensitivity comparator. To minimize the required I-DAC 
current, which dominates readout-circuit energy, the small 
resulting VCMP (from Fig. 3) is amplified by four pre-amp 
stages, with the first stage designed for low thermal noise. The 
fourth stage feeds a clocked regenerative latch, whose output 
settling is detected and used to generate a DONE signal, to 
quickly shut off the I-DAC current path. The pre-amp stages 
employ input-offset autozeroing via sampling on capacitors 
through feedback. This ensures pre-amp operation remains in 
the high-gain region despite offsets, enabling large gain per 
stage for enhancing sensitivity. Autozeroing is sequenced 

 
Fig. 2 Multiplication via bit cells storing complementary AP/P state data 
(left), corresponding to resistance states shown in hysteresis curve (right). 
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from the first preamp to the last, using the AZ1-4 signals (all 
activated before each SAR-ADC conversion begins), to 
successively cancel offset error arising due to charge injection 
from the autozeroing switches.  

The primary remaining source of comparator error is 
input common-mode voltage VIN,CM on VCMP, arising due to 
current through the DAC-switch resistances (RDAC-SW). This is 
mitigated by using the differential preamp topology shown, 
whose 3-σ CMRR, set by device mismatch and finite tail-
MOSFET conductance, is nearly 40dB from Monte Carlo 
simulations. 

Standard read operations are performed using the same 
readout circuitry, but by activating the WL of a single bit-cell 
and using a separate, fixed bias current IREAD instead of the I-
DAC feedback current (note, IREAD can be significantly lower 
to generate adequate sensing-voltage with a single bit-cell 
resistance). The remaining pre-amps and comparator are 
reused, but with the global BC state machine configured for a 
single BC phase, to give a 1-b output.   

V. HARDWARE-GENERALIZED NEURAL NETWORK TRAINING 
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Fig. 5. Stochastic modeling of residual nonidealities.  
In addition to circuit approaches, algorithmic approaches 

are leveraged to address the SNR tradeoff incurred with high 
row-parallelism MRAM IMC. A stochastic neural-network 
(NN) training algorithm is employed, which represents the 
statistical distributions of key noise sources within the macro, 
and samples from those distributions during loss-function 
evaluation in the backpropagation algorithm. Representing 
statistical distributions in this way enables model parameters to 
be learned that generalize across hardware instantiations of the 
macro, without further parameter tuning [6]. 

 As illustrated in Fig. 5, three noise sources are considered. 
First, bit-cell AP/P-state conductance variations are modeled as 
additive Gaussian noise following NN IMC operations. 
Second, residual offset in the comparator is modeled as 
Gaussian-distributed offset in the column ADC, yielding 
premature ADC-code saturation after digital-domain offset 
cancellation. Third, the residual spatial data dependence 
induced by BL/SL resistance (even after aggressive BL/SL 
strapping within the MRAM array) is further mitigated by 
shuffling the mapping of input-vector and matrix elements to 
rows of the macro. This randomizes any spatial patterns in 
application MVM data.    

VI. PROTOTYPE MEASUREMENTS AND DEMONSTRATIONS 

The 128-kb MRAM IMC macro is implemented in a GF 
22nm FD-SOI technology. Fig. 6 shows the die photo and a 
layout annotations of the macro. As shown, the high density of 
the MRAM array itself means that the area efficiency of the 
readout circuitry is crucial for achieving overall area 
efficiency. The readout circuity occupies 26% of the total 
macro area, despite the high-sensitivity circuits employed to 
support high column parallelism. As shown, the area of the 
column-multiplexing switches has been significantly reduced 
compared to previous designs, thanks the nonlinearity-
insensitive switching (Fig. 4), which substantially eases the 
switch-resistance requirements. The remainder of the readout 
circuitry is dominated by the area of the four pre-amp stages 
(each with auto-zeroing capacitors implemented as metal-layer 
fringing structures) required for high sensitivity. 

  
Fig. 6. Prototype die photo. 

 Fig. 7 shows measurements of the basic operation and 
NN computations. Column transfer functions (top) are 
obtained by loading all 1’s in the MRAM array and sweeping 
the number of input vector +1’s vs. -1’s. The left and middle 
column-transfer plots correspond to sweeps from top-to-
bottom and bottom-to-top of the rows, respectively. The 
significant bowing is due the residual resistance after BL/SL 
strapping, which causes a spatial data-dependent nonlinearity. 
The upper-right plot shows that this nonlinearity is corrected 
by the algorithmic approach of shuffling the rows, with 
transfer-function data shown for different macro columns. 

Column Transfer Functions 

 
MVM Results from NN Demo 

  
Fig. 7. Transfer functions for single IMC operations (top), showing the 
need for row-shuffling to overcome nonlinearity, and transfer functions 
for large MVMs (bottom) mapped to multiple IMC operations, 
exhibiting good linearity with row-shuffling algorithm. 
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 Also shown (bottom) are averaged transfer functions from 
large MVM operations mapped to the chip, for a six-
convolutional-layer CNN demonstrated for CIFAR-10 image 
classification (variations at ends are due to less averaging 
where there is less data from the CNN layer computations). 
Finally, the lower-right plot shows raw data samples from one 
of the layer computations, derived from both chip measurement 
and ideal software simulation for comparison. As seen the row-
shuffling algorithm leads to high linearity and good output 
agreement (noise at the ends is due to variation where there is 
less CNN data). 

The prototype was tested using an FPGA to implement a 
controller for read, write and IMC operations, as well as 
Ethernet-based interface to a host PC. Further, Python-based 
software interfaces were designed to implement MVM and 
NN-layer kernels, enabling integration with PyTorch for NN 
performance evaluation and benchmarking against software 
executions. For IMC execution, software MVM API calls 
were replaced with the custom functions, which initiated 
communication and control to the prototype chip through the 
FPGA, allowing computations to be directly and flexibly 
delegated to the prototype.  

   

 
Fig. 8: Comparison table. This work is the only MRAM IMC 
demonstration comparable to previous ReRAM IMC designs. 

 
Fig. 8 shows the comparison summary, against previous 

eNVM-based IMC designs performing parallelized multiply 
accumulates. As shown, while all previous works target 
ReRAM, this is the only MRAM-based IMC. This work 
achieves high compute density (normalized to 1-b element 
operations) of 758 1b-GOPS/mm2, thanks to high row/column 
parallelism. While the energy-efficiency of 5.1 1b-TOPS/W is 
lower than previous designs, this is due to significantly lower 
resistance and resistance-state contrast of the MRAM 
technology, which directly affects IMC energy in through the 
SNR tradeoff. Finally, a 6-layer CNN was mapped to the 
design for CIFAR-10 image classification (testing 1 layer at a 
time), using the training algorithm of Sec. V, without any 

further tuning of the model parameters to the specific test-chip 
employed for the demo. A classification accuracy of 90.1% is 
achieved, matching that expected from ideal software-based 
computation, and one of the few to scale up to a CIFAR-10 
classification task.  

VII. CONCLUSIONS 

This work presents the first MRAM-based IMC design 
enabling high row-parallelism. The foundry MRAM 
technology, integrated in an advanced-node 22nm FD-SOI 
process, introduces the challenges of low bit-cell resistance 
and resistance-state contrast, both of which directly impact 
critical IMC considerations concerning parallelism and 
compute SNR. Circuit and algorithmic approaches are 
developed to address the challenges, including: (a) 
nonlinearity-insensitive column-multiplexing to reduce the 
area of column-select switches;  (b) high-sensitivity readout 
and analog-to-digital conversion; and (c) row-wise data 
shuffling to mitigate data-dependent spatial nonlinearity from 
BL/SL parasitic resistance. Accompanying the macro, a 
hardware-generalized stochastic NN training algorithm is 
developed and used to demonstrate a 6-layer CNN for CIFAR-
10 classification, achieving accuracy of ideal software 
implementation without the need for any chip-specific 
parameter tuning.  
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