
3 • 2021 IEEE International Solid-State Circuits Conference

ISSCC 2021 / SESSION 15 / COMPUTE-IN-MEMORY PROCESSORS FOR DEEP NEURAL NETWORKS / 15.1

15.1 A Programmable Neural-Network Inference Accelerator
 Based on Scalable In-Memory Computing

Hongyang Jia, Murat Ozatay*, Yinqi Tang*, Hossein Valavi*, Rakshit Pathak*,
Jinseok Lee, Naveen Verma

Princeton University, Princeton, NJ

*Equally Credited Authors (ECAs)

This paper presents a scalable neural-network (NN) inference accelerator in 16nm, based
on an array of programmable cores employing mixed-signal In-Memory Computing
(IMC), digital Near-Memory Computing (NMC), and localized buffering/control. IMC
achieves high energy efficiency and throughput for matrix-vector multiplications
(MVMs), which dominate NNs; but, scalability poses numerous challenges, both
technologically, going to advanced nodes to maintain gains over digital architectures,
and architecturally, for full execution of diverse NNs. Recent demonstrations have
explored integrating IMC in programmable processors [1,2], but have not achieved IMC
efficiency and throughput for full executions. The central challenge is drastically different
physical design points and associated tradeoffs incurred by IMC compared to digital
engines. Namely, IMC substantially increases compute energy efficiency and HW
density/parallelism, but retains the overheads of HW virtualization (state and data
swapping/buffering/communication across spatial/temporal computation mappings).
The demonstrated architecture is co-designed with SW-mapping algorithms
(encapsulated in a custom graph compiler), to provide efficiency across a broad range
of mapping strategies, to overcome these overheads.

Figure 15.1.1 shows the demonstrated array-based architecture, comprised of: (1) a
4×4 array of Compute In-Memory-Unit (CIMU) cores; (2) an On-Chip Network (OCN)
between cores; (3) buffers, control circuits, and off-chip interfaces for testability of the
architecture. The design employs an additional weight buffer (not included in current
prototype) with a dedicated weight-loading network to the CIMUs, to provide flexibility
in mapping weights to CIMU cores for maximizing utilization, and to mitigate off-chip
weight accesses for a range of NN models. These factors are considered together with
the architectural design, to adequately address weight-swapping overheads.

The CIMU (microarchitecture described later), comprises: (1) an IMC engine for MVMs,
called the Compute-In-Memory Array (CIMA); (2) an NMC digital SIMD with custom
instruction set, for flexible element-wise operations; (3) buffering and control for
enabling a wide range of NN dataflows. Each CIMU core provides a high-level of
configurability, that is abstracted into a SW library of instructions for interfacing with
the compiler, and where instructions can thus also be added prospectively [library
includes single/fused instructions, e.g., element mult/add, h(•) activation, (N-step
convolutional stride + MVM + batch norm. + h(•) activation + max. pool), (dense +
MVM)].

The OCN consists of routing channels within network in/out blocks, and a switch block,
which provides flexibility via a disjoint architecture. The OCN works with configurable
CIMU input/output ports to optimize data structuring to/from the IMC engine, to
maximize data locality across MVM dimensionalities and tensor depth/pixel indices. The
OCN routing channels consist of bidirectional wire pairs, to ease repeater/pipeline-FF
insertion, while providing ample density.

Figure 15.1.2 shows the CIMU microarchitecture. Data is received from the OCN into
one of two buffers: (1) the input buffer, which configurably provides data to the CIMA;
(2) the shortcut buffer, which bypasses the CIMA, providing data directly to the NMC
digital SIMD for element-wise computations on separate and/or convergent NN activation
paths. The central block is the CIMA, which consists of a mixed-signal
1152(row)×256(col.) IMC macro for multibit-element MVMs. The CIMA employs a
variant of fully row/column-parallel computation, based on metal-fringing capacitors
[3]. Each multiplying bit cell (M-BC) drives its capacitor with a 1b digital multiplication
(XNOR/AND), involving inputted activation data (IA/IAb) and stored weight data (W/Wb).
This causes charge redistribution across M-BC capacitors in a column to give an inner
product between binary vectors on the compute line (CL). This yields low compute noise
(nonlinearity, variability), since multiplication is digital and accumulation involves only
capacitors, which are defined by high lithographic precision. An 8b SAR ADC digitizes
the CL and enables extension to multibit activations/weights, via bit-parallel/bit-serial
(BP/BS) computation [1], where weight bits are mapped to parallel columns and
activation bits are inputted serially. Each column thus performs binary-vector inner
products, with a multibit-vector inner product simply achieved by digital bit shifting (for
proper binary weighting) and summing across the column-ADC outputs. Digital BP/BS

operations occur in the dedicated NMC BPBS SIMD module, which is optimized for
1-to-8b weights/activations, and further programmable element-wise operations (e.g.,
arbitrary activations functions) occur in the NMC CMPT SIMD module.

Figure 15.1.3 shows a sample of the operations enabled by CIMU configurability and
the SW instruction libraries. In addition to temporal mapping of NN layers, the
architecture provides extensive support for spatial mapping (loop unrolling). Given the
high HW density/parallelism of IMC, this provides a range of mapping options for HW
utilization, beyond typical replication strategies, which incur excessive state-loading
overheads due to state replication across engines. To support spatial mapping of NN
layers, various approaches for receiving and sequencing input activations for IMC
computation are shown, enabled by configurability in the input and shortcut buffers,
including: (1) high-bandwidth inputting for dense layers; (2) bandwidth-reduced
inputting and line buffering for convolutional layers; (3) feed-forward and recurrent
inputting, as well as output-element computation, for memory-augmented layers; (4)
parallel inputting and buffering of NN and shortcut-path activations, as well as activation
summing. A range of other activation receiving/sequencing approaches are supported,
along with configurability in parameters of the approaches above. The spatial mappings,
enabled by such CIMU-localized buffering, mitigate the need for centralized buffering
(e.g., requiring just the small activation buffers included in the periphery of the chip).

As shown in Fig. 15.1.4, the architecture also supports spatial mapping within NN layers,
both for mitigating data swapping/movement overheads and for enabling NN model
scalability. For instance, output-tensor depth (number of output channels) can be
extended by OCN routing of input activations to multiple CIMU. Input-tensor depth
(number of input channels) can be extended via short, high-bandwidth face-to-face
connections between the outputs of adjacent CIMUs, and further extended by summing
the partial pre-activations from two CIMUs by a third CIMU. Efficient scale-up of layer
computations in this manner enables a balance in the IMC core dimensions (found by
mapping a range of NN benchmarks), where coarse granularity benefits IMC parallelism
and energy, and fine granularity benefits efficient computation mapping.

Figure 15.1.7 shows a die photo of the 25mm2 prototype in 16nm, and Fig. 15.1.5 shows
measurements of the basic operation. CIMA-column transfer functions on the left show
low variability (error bars are across 256 CIMU columns), low noise (0.68 LSBRMS), and
high linearity (INL < 1 LSB). BP/BS-computed MVM data on the right shows SNR with
respect to standard integer compute, exhibiting excellent match between chip
measurements and bit-true simulations, which model only quantization effects. This
indicates that the dominant chip noise is quantization, which can be robustly modeled
at the SW level, as typically done with quantization-aware NN training algorithms. Chip
energy measurements below are for 4b weights/activations, most notably showing a
CIMA energy per 1152-dimensional inner product of 19pJ.

Figure 15.1.6 shows the demonstration of an 11-layer CNN for CIFAR-10 classification
and ResNet-50 for ImageNet classification (last stack mapping), achieving performance
and layer-wise intermediate outputs matching bit-true software. The comparison table
below shows this to be the only IMC demonstration for scalable NN execution, while
achieving peak efficiency and throughput exceeding previously-reported accelerators.

Acknowledgements:

This work is partially supported by the School of Engineering and Applied Science at
Princeton University through the generosity of William Addy ’82. The authors thank
J. Puscar (UCSD), Prof. I. Galton (UCSD), A. Rovinski (U. of M.) and Prof. R. Dreslinski
(U. of M.) for their help with the PLL.

References:

[1] H. Jia et al., “A Programmable Heterogeneous Microprocessor Based on Bit-Scalable
In-Memory Computing,” IEEE JSSC, vol. 55, No 9, pp 2609-2621, 2020.
[2] J. Wang et al., “A Compute SRAM with Bit-Serial Integer/Floating-Point Operations
for Programmable In-Memory Vector Acceleration,” ISSCC, pp. 224-226, 2019.
[3] H. Valavi et al., “A 64-Tile 2.4-Mb In-Memory-Computing CNN Accelerator Employing
Charge-Domain Compute,” IEEE JSSC, vol. 54, No 6, pp 1789-1799, 2019.
[4] Y. Chen, T. Krishna, J. Emer and V. Sze, “Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks,” ISSCC, pp. 262-263, Feb. 2016.
[5] D. Bankman, L. Yang, B. Moons, M. Verhelst and B. Murmann, “An always-on
3.8μJ/86% CIFAR-10 mixed-signal binary CNN processor with all memory on chip in
28nm CMOS,” ISSCC, pp. 222-224, Feb. 2018.
[6] Y. Jiao et al., “A 12nm Programmable Convolution-Efficient Neural-Processing-Unit
Chip Achieving 825TOPS,” ISSCC, pp. 136-140, Feb. 2020.

978-1-7281-9549-0/21/$31.00 ©2021 IEEE

4DIGEST OF TECHNICAL PAPERS •

ISSCC 2021 / February 17, 2021 / 8:30 AM

Figure 15.1.1: Architectural block diagram of the scalable in-memory computing
(IMC) neural-network (NN) accelerator, comprising array of Compute-In-Memory-
Unit (CIMU) cores and on-chip network (OCN), as well as interface circuitry for
testability.

Figure 15.1.2: Details of CIMU core, showing internal datapath comprising
buffering/control logic, Compute-In-Memory-Array (CIMA) mixed-signal IMC
engine, and digital near-memory-computing SIMD units.

Figure 15.1.3: Examples of configurable input-receiving/sequencing supports to
enhance efficiency of spatial mappings, necessary for ensuring high hardware
utilization with minimal state-swapping overheads.

Figure 15.1.5: Basic chip operation measurements, showing CIMA column-compute
characterization, multibit-vector CIMU operation, and detailed energy breakdown.

Figure 15.1.6: System demonstrations and comparison summary, showing match
between IMC derived outputs and ideal (bit-true) outputs, as well as advancement
to scalable IMC architecture.

Figure 15.1.4: Illustration of spatial-mapping techniques to support NN model
scalability and execution efficiency, showing (top) output-tensor depth extension,
and (bottom) input-tensor depth extension.

In
pu

t
B

uf
fe

r
Sh

or
tc

ut
B

uf
fe

r

BPBS
SIMD

Instr.
Mem

CMPT
SIMD

Instr.
Mem

Ctrl.
Unit

CIMA
(1152 rows × 256 col.

In-Memory Computing)

CIMA Weight Loader

Fr
om

 O
n-

C
hi

p
N

et
w

or
k

(O
C

N
)

To On-Chip Network (OCN)

From Weight-Loading Network Compute In-Memory Array (CIMA)

8-
b A

DC

M-BC M-BC

M-BC M-BC

Multiplying Bit Cell (M-BC)

CL

BL BLbBL BLb

WL,
IA,
IAb

WL IAbIA

BL BLb

WL

CL

WL,
IA,
IAb

8

W Wb

15

CIMU CIMU

CIMU CIMU

CIMU CIMU

CIMU CIMU

CIMU CIMU

CIMU CIMU

CIMU CIMU

CIMU CIMU

On-chip Network On-chip Network

On-chip Network On-chip Network

Scalable IMC Architecture (4×4 CIMU array demo�ed)
& Interfaces to Off-chip

Segmented Weight Buffer Compute-In-Memory Unit (CIMU)

Compute-In-
Memory Array

(CIMA)

Pr
og

ra
m

m
ab

le

D
ig

ita
l S

IM
D

Compute and
Dataflow Buffers

Prog�ing
&

Control

Ac
tiv

at
io

n
Bu

ffe
r

Ac
tiv

at
io

n
Bu

ffe
r

Activation
Buffer

Activation
BufferOff-chip

Control
PLL

On-Chip Network (OCN)

N
et

w
or

k
O

ut
 B

lo
ck

N
et

w
or

k
O

ut
 B

lo
ck

Network
In Block

Network
In Block

Disjoint Buffer Switch

Duo-Directional
Pipelined Routing

Switch
Block

CIMU Out
Port

W
ei

gh
t N

et
w

or
k

W
ei

gh
t N

et
w

or
k

W
ei

gh
t N

et
w

or
k

W
ei

gh
t N

et
w

or
k

W
eight Netw

ork
W

eight N
etw

ork

W
eight Netw

ork
W

eight Netw
ork

W
0

W
N-

1

y0 yN-1

W
N

W
2N

-1

yN y2N-1

x x

y

Output-
Depth

Extension

W
0

W
N-

1

W
0

W
N-

1

W
0

W
N-

1

W
0

W
N-

1

16

(input
activation
routed to
multiple CIMU)

(output activation
routing)

Input-
Depth

Extension (digital adder for
scalable depth
extension)

y0 yN-1

Skip
CIMA

Operation

8

(face-to-face
connections for
2× depth extension)

x0

x1151

x1152

x2303 x4607

x3456

x2304

x3455

Dataset CIFAR-10 ImageNet
Neural-network Style VGG ResNet-50

Neural-network Demonstrations

Bit Precision 4b/4b Weight/Act. 4b/4b Weight/Act.1

Accuracy of Chip (vs Sim.)
Energy per Class.2

91.51% (vs 91.68%)

Throughput2

Neural-network Topology

L1 : CONV 3×3 128
L2 : CONV 3×3 128
L3 : CONV 3×3 128
L4 : CONV 3×3 128
 POOL
L5 : CONV 3×3 256
L6 : CONV 3×3 256
 POOL
L7 : CONV 3×3 256
L8 : CONV 3×3 256
 POOL
L9 : DENSE 1024
L10: DENSE 1024
L11: DENSE 10

CONV 1×1 64
CONV 3×3 64
CONV 1×1 256

Stride 2
CONV 1×1 128
CONV 3×3 128
CONV 1×1 512

Stride 2
CONV 1×1 256
CONV 3×3 256
CONV 1×1 1024

Stride 2
CONV 1×1 512
CONV 3×3 512
CONV 1×1 2048

DENSE 1000

×3

×4

×6

×3

Stack
1

Stack
2

Stack
3

Stack
43

Chip Measurements

0 50 100 150 200 250 300
Data Index

-500

-250

0

C
om

pu
te

 V
al

ue

1 Shortcut projection in bottleneck layers employs higher precision, as typically required (<10% of total MACs).
2 Energy and throughput are for array-based accelerator core.
3 Last stack mapped to chip at time of submission, due to time constraints (other stacks being mapped).

Bit-true sim. Chip meas.

7815 image/sec
19.4 μJ

Comparison Table

Technology
Area (mm2)
Voltage (V)

On-chip Memory
Bit Precision

Peak MAC Throughput (GOPS)2

Peak MAC Energy Eff. (TOPS/W)2

MAC Comp. Density (TOPS/mm2)2

Application

This work

16nm

Jia,
JSSC�20

65nm
8.56 25

1.2 | 0.85 0.8
576 Kb1 4.5 Mb1

1 � 8 b 1 � 8 b

 54.6 | 136.63

25 | 123

0.015 | 0.0383

CNN,RNN,
MLP, etc.

Dong,
ISSCC�20

7nm
0.0032

0.8 | 1.0
4 Kb1

4 b

372 | 455
611 | 436
116 | 142 2.673

11.8K3

Yue,
ISSCC�20

65nm
9

0.9 � 1.05
16 Kb1

2 b � 8 b

36.15
79.384

0.066

CNN, MLP

Wang,
ISSCC�19

28nm

Arbitrary

2.7
0.6 � 1.1

1 Mb1

131

0.16
4

Vector OPs Matrix-Vec.
Mult.

Guo,
VLSI�19
65nm

1 | 1 | 3 b

6.2
0.9 � 1.1
64 Kb1

38.4

0.014
0.73

RNN

In-memory ComputingNot In-memory Computing
Chen,

ISSCC�16
65nm

16 b

16
0.8 � 1.2
864 Kb

1.92K

0.192
1.33

CNN

Bankman,
ISSCC�18

28nm

1 b

6
0.6 | 0.8
2.6 Mb

3.75 | 25

0.0024 | 0.016
 48.3 | 33.4

CNN

1 Only consider memory conduct In-memory Computing 2 Normalized to 4-bit compute 3 Scale with number of bits used for input activation and weight

1213

Optimized for Execution Scalability YES NO YESYES NO NO NO NO NO

Jiao,
ISSCC�20

12nm
709
0.85

1536 Mb
8 b | 16 b

3.3M
11.8
4.65

CNN

4 Number by exploring weight/input sparsity

0 50 100 150 200
-50

0

50

C
om

pu
te

 V
al

ue

Data Index

(CIFAR-10 CNN, 4-b weights/activations)

(ImageNet ResNet-50, 4-b weights/activations)

581 image/sec
334 μJ

73.08% (vs 73.17%)

Bit-true sim. Chip meas.

Matrix-Vec.
Mult.

Chip Summary
Technology (nm) 16 FCLK (MHz) 200

Voltage (V) 0.8 Total Area (mm2) 25
Energy Breakdown (measured using 3×3×128 CNN kernel w/ 4b/4b weight/activation)
CIMA (pJ/output act.)
CIMA Write (pJ/bit) 0.23

BPBS SIMD (pJ/output act.) 3.89

IA Buff. (pJ/output act.) 8.60

19.08

OCN (pJ/bit/seg.) 0.27

0 200 400 600 800 1000 1200
Ideal Pre-ADC Value

0
50

100
150
200
250

0 50 100 150 200 250
ADC Output Code

-1

0

1

IN
L

(L
SB

)
A

D
C

 O
ut

pu
t

C
od

e
N

oi
se

(L
SB

R
M

S)

234 306
60

70

80

234 306

Measured across 256 columns of a CIMU
(error bars show std. deviation)

For typical ADC

0.4

0.6

0.8

1
Averaged across 256 columns of a

CIMU (error bars show std.
deviation)

Avg. noise across range:
0.68 LSBRMS SQ

N
R

 (d
B

)

Weight Bit Precision
2 4 6 8

CMPT SIMD (pJ/output act.) 0.60

0

4

8

12

0
5

10

15
20

0
5

10

15

20

Activation Bit
Precision: 2

Activation Bit
Precision: 4

Bit-true sim.
Chip meas.

Activation Bit
Precision: 8

CIMA Single-column Characterization CIMU Multibit-vector Characterization

Dense Layer

Output
Pre-activation

(e.g., 4-b
weights)

Convolutional Layer

(e.g., stride step 1)

Input
Buffer CIMA

LSTM Layer

Cross-Column OPs

Shortcut Connection
Shortcut

Buffer

Cross-input
SIMD

Output Activation

x

(from OCN)

(from OCN)

xt
yt-1

ct-1

ct

yt

CMPT
SIMD

(configurable
accessing

for pooling)

(from OCN)

W
i

(e.g., 4-b
weights)

Input
Buffer CIMA

W
i

(from OCN)

Output
Pre-activation

(e.g., 4-b
weights)

Input
Buffer CIMA

W
i

W
z

W
i

W
f

W
o

R z R i R f R o

Input
Buffer CIMA

• 2021 IEEE International Solid-State Circuits Conference 978-1-7281-9549-0/21/$31.00 ©2021 IEEE

ISSCC 2021 PAPER CONTINUATIONS

Figure 15.1.7: Die photo of prototype implemented in 16nm.

CIMU
0

CIMU
1

CIMU
2

CIMU
3

CIMU
4

CIMU
5

CIMU
6

CIMU
7

CIMU
11

CIMU
10

CIMU
9

CIMU
8

CIMU
12

CIMU
13

CIMU
14

CIMU
15

OCN

OCNOCN

OCN

Activation Buffer Activation Buffer

A
ct

iv
at

io
n

B
uf

fe
r

A
ct

iv
at

io
n

B
uf

fe
r

PLLCtrl.

Test Structure

5 mm

5
m

m

Additional References:
[7] R. Guo et al., “A 5.1pJ/Neuron 127.3us/Inference RNN-based Speech Recognition
Processor using 16 Computing-in-Memory SRAM Macros in 65nm CMOS,” VLSI

Symp. on Circuits, Kyoto, pp. C120-C121, June 2019.
[8] J. Yue et al., “A 65nm Computing-in-Memory-Based CNN Processor with 2.9-to-
35.8TOPS/W System Energy Efficiency Using Dynamic-Sparsity Performance-Scaling
Architecture and Energy-Efficient Inter/Intra-Macro Data Reuse,” ISSCC, pp. 234-
236, Feb. 2020.
[9] Q. Dong et al., “A 351TOPS/W and 372.4GOPS Compute-in-Memory SRAM Macro
in 7nm FinFET CMOS for Machine-Learning Applications,” ISSCC, pp. 242-244, Feb.
2020.

