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This paper presents a scalable neural-network (NN) inference accelerator in 16nm, based 
on an array of programmable cores employing mixed-signal In-Memory Computing 
(IMC), digital Near-Memory Computing (NMC), and localized buffering/control. IMC 
achieves high energy efficiency and throughput for matrix-vector multiplications 
(MVMs), which dominate NNs; but, scalability poses numerous challenges, both 
technologically, going to advanced nodes to maintain gains over digital architectures, 
and architecturally, for full execution of diverse NNs. Recent demonstrations have 
explored integrating IMC in programmable processors [1,2], but have not achieved IMC 
efficiency and throughput for full executions. The central challenge is drastically different 
physical design points and associated tradeoffs incurred by IMC compared to digital 
engines. Namely, IMC substantially increases compute energy efficiency and HW 
density/parallelism, but retains the overheads of HW virtualization (state and data 
swapping/buffering/communication across spatial/temporal computation mappings). 
The demonstrated architecture is co-designed with SW-mapping algorithms 
(encapsulated in a custom graph compiler), to provide efficiency across a broad range 
of mapping strategies, to overcome these overheads. 
 
Figure 15.1.1 shows the demonstrated array-based architecture, comprised of: (1) a 
4×4 array of Compute In-Memory-Unit (CIMU) cores; (2) an On-Chip Network (OCN) 
between cores; (3) buffers, control circuits, and off-chip interfaces for testability of the 
architecture. The design employs an additional weight buffer (not included in current 
prototype) with a dedicated weight-loading network to the CIMUs, to provide flexibility 
in mapping weights to CIMU cores for maximizing utilization, and to mitigate off-chip 
weight accesses for a range of NN models. These factors are considered together with 
the architectural design, to adequately address weight-swapping overheads.   
 
The CIMU (microarchitecture described later), comprises: (1) an IMC engine for MVMs, 
called the Compute-In-Memory Array (CIMA); (2) an NMC digital SIMD with custom 
instruction set, for flexible element-wise operations; (3) buffering and control for 
enabling a wide range of NN dataflows. Each CIMU core provides a high-level of 
configurability, that is abstracted into a SW library of instructions for interfacing with 
the compiler, and where instructions can thus also be added prospectively [library 
includes single/fused instructions, e.g., element mult/add, h(•) activation, (N-step 
convolutional stride + MVM + batch norm. + h(•) activation + max. pool), (dense + 
MVM)].  
 
The OCN consists of routing channels within network in/out blocks, and a switch block, 
which provides flexibility via a disjoint architecture. The OCN works with configurable 
CIMU input/output ports to optimize data structuring to/from the IMC engine, to 
maximize data locality across MVM dimensionalities and tensor depth/pixel indices. The 
OCN routing channels consist of bidirectional wire pairs, to ease repeater/pipeline-FF 
insertion, while providing ample density. 
 
Figure 15.1.2 shows the CIMU microarchitecture. Data is received from the OCN into 
one of two buffers: (1) the input buffer, which configurably provides data to the CIMA; 
(2) the shortcut buffer, which bypasses the CIMA, providing data directly to the NMC 
digital SIMD for element-wise computations on separate and/or convergent NN activation 
paths. The central block is the CIMA, which consists of a mixed-signal 
1152(row)×256(col.) IMC macro for multibit-element MVMs. The CIMA employs a 
variant of fully row/column-parallel computation, based on metal-fringing capacitors 
[3]. Each multiplying bit cell (M-BC) drives its capacitor with a 1b digital multiplication 
(XNOR/AND), involving inputted activation data (IA/IAb) and stored weight data (W/Wb). 
This causes charge redistribution across M-BC capacitors in a column to give an inner 
product between binary vectors on the compute line (CL). This yields low compute noise 
(nonlinearity, variability), since multiplication is digital and accumulation involves only 
capacitors, which are defined by high lithographic precision. An 8b SAR ADC digitizes 
the CL and enables extension to multibit activations/weights, via bit-parallel/bit-serial 
(BP/BS) computation [1], where weight bits are mapped to parallel columns and 
activation bits are inputted serially. Each column thus performs binary-vector inner 
products, with a multibit-vector inner product simply achieved by digital bit shifting (for 
proper binary weighting) and summing across the column-ADC outputs. Digital BP/BS 

operations occur in the dedicated NMC BPBS SIMD module, which is optimized for  
1-to-8b weights/activations, and further programmable element-wise operations (e.g., 
arbitrary activations functions) occur in the NMC CMPT SIMD module. 
 
Figure 15.1.3 shows a sample of the operations enabled by CIMU configurability and 
the SW instruction libraries. In addition to temporal mapping of NN layers, the 
architecture provides extensive support for spatial mapping (loop unrolling). Given the 
high HW density/parallelism of IMC, this provides a range of mapping options for HW 
utilization, beyond typical replication strategies, which incur excessive state-loading 
overheads due to state replication across engines. To support spatial mapping of NN 
layers, various approaches for receiving and sequencing input activations for IMC 
computation are shown, enabled by configurability in the input and shortcut buffers, 
including: (1) high-bandwidth inputting for dense layers; (2) bandwidth-reduced 
inputting and line buffering for convolutional layers; (3) feed-forward and recurrent 
inputting, as well as output-element computation, for memory-augmented layers; (4) 
parallel inputting and buffering of NN and shortcut-path activations, as well as activation 
summing. A range of other activation receiving/sequencing approaches are supported, 
along with configurability in parameters of the approaches above. The spatial mappings, 
enabled by such CIMU-localized buffering, mitigate the need for centralized buffering 
(e.g., requiring just the small activation buffers included in the periphery of the chip). 
 
As shown in Fig. 15.1.4, the architecture also supports spatial mapping within NN layers, 
both for mitigating data swapping/movement overheads and for enabling NN model 
scalability. For instance, output-tensor depth (number of output channels) can be 
extended by OCN routing of input activations to multiple CIMU. Input-tensor depth 
(number of input channels) can be extended via short, high-bandwidth face-to-face 
connections between the outputs of adjacent CIMUs, and further extended by summing 
the partial pre-activations from two CIMUs by a third CIMU. Efficient scale-up of layer 
computations in this manner enables a balance in the IMC core dimensions (found by 
mapping a range of NN benchmarks), where coarse granularity benefits IMC parallelism 
and energy, and fine granularity benefits efficient computation mapping.  
 
Figure 15.1.7 shows a die photo of the 25mm2 prototype in 16nm, and Fig. 15.1.5 shows 
measurements of the basic operation. CIMA-column transfer functions on the left show 
low variability (error bars are across 256 CIMU columns), low noise (0.68 LSBRMS), and 
high linearity (INL < 1 LSB). BP/BS-computed MVM data on the right shows SNR with 
respect to standard integer compute, exhibiting excellent match between chip 
measurements and bit-true simulations, which model only quantization effects. This 
indicates that the dominant chip noise is quantization, which can be robustly modeled 
at the SW level, as typically done with quantization-aware NN training algorithms. Chip 
energy measurements below are for 4b weights/activations, most notably showing a 
CIMA energy per 1152-dimensional inner product of 19pJ.  
 
Figure 15.1.6 shows the demonstration of an 11-layer CNN for CIFAR-10 classification 
and ResNet-50 for ImageNet classification (last stack mapping), achieving performance 
and layer-wise intermediate outputs matching bit-true software. The comparison table 
below shows this to be the only IMC demonstration for scalable NN execution, while 
achieving peak efficiency and throughput exceeding previously-reported accelerators.  
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Figure 15.1.1: Architectural block diagram of the scalable in-memory computing 
(IMC) neural-network (NN) accelerator, comprising array of Compute-In-Memory-
Unit (CIMU) cores and on-chip network (OCN), as well as interface circuitry for 
testability.

Figure 15.1.2: Details of CIMU core, showing internal datapath comprising 
buffering/control logic, Compute-In-Memory-Array (CIMA) mixed-signal IMC 
engine, and digital near-memory-computing SIMD units.

Figure 15.1.3: Examples of configurable input-receiving/sequencing supports to 
enhance efficiency of spatial mappings, necessary for ensuring high hardware 
utilization with minimal state-swapping overheads.

Figure 15.1.5: Basic chip operation measurements, showing CIMA column-compute 
characterization, multibit-vector CIMU operation, and detailed energy breakdown.

Figure 15.1.6: System demonstrations and comparison summary, showing match 
between IMC derived outputs and ideal (bit-true) outputs, as well as advancement 
to scalable IMC architecture.

Figure 15.1.4: Illustration of spatial-mapping techniques to support NN model 
scalability and execution efficiency, showing (top) output-tensor depth extension, 
and (bottom) input-tensor depth extension.
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Figure 15.1.7: Die photo of prototype implemented in 16nm.
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