
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE JOURNAL OF SOLID-STATE CIRCUITS 1

Scalable and Programmable Neural Network
Inference Accelerator Based on In-Memory

Computing
Hongyang Jia , Member, IEEE, Murat Ozatay , Graduate Student Member, IEEE, Yinqi Tang , Member, IEEE,

Hossein Valavi , Student Member, IEEE, Rakshit Pathak, Student Member, IEEE,
Jinseok Lee , Graduate Student Member, IEEE, and Naveen Verma, Senior Member, IEEE

Abstract— This work demonstrates a programmable in-
memory-computing (IMC) inference accelerator for scalable
execution of neural network (NN) models, leveraging a high-
signal-to-noise ratio (SNR) capacitor-based analog technology.
IMC accelerates computations and reduces memory accessing for
matrix-vector multiplies (MVMs), which dominate in NNs. The
accelerator architecture focuses on scalable execution, addressing
the overheads of state swapping and the challenges of maintaining
high utilization across highly dense and parallel hardware. The
architecture is based on a configurable on-chip network (OCN)
and scalable array of cores, which integrate mixed-signal IMC
with programmable near-memory single-instruction multiple-
data (SIMD) digital computing, configurable buffering, and
programmable control. The cores enable flexible NN execu-
tion mappings that exploit data- and pipeline-parallelism to
address utilization and efficiency across models. A prototype is
presented, incorporating a 4 × 4 array of cores demonstrated
in 16 nm CMOS, achieving peak multiply-accumulate (MAC)-
level throughput of 3 TOPS and peak MAC-level energy efficiency
of 30 TOPS/W, both for 8-b operations. The measured results
shows high accuracy of the analog computations, matching
bit-true simulations. This enables the abstractions required
for robust and scalable architectural and software integration.
Developed software libraries and NN-mapping tools are used
to demonstrate CIFAR-10 and ImageNet classification, with
an 11-layer CNN and ResNet-50, respectively, achieving accu-
racy, throughput, and energy efficiency of 91.51% and 73.33%,
7815 and 581 image/s, 51.5 k and 3.0 k image/s/W, with 4-b
weights and activations.

Index Terms— Deep learning, hardware accelerators, in-
memory computing (IMC), neural networks (NNs), scalable
architecture.

I. INTRODUCTION

DEEP learning based on neural networks (NNs) has
enabled breakthroughs in a broad range of artificial-

intelligence (AI) tasks, such as vision, language processing,

Manuscript received April 30, 2021; revised July 27, 2021 and
September 21, 2021; accepted September 27, 2021. This article was approved
by Associate Editor Jun Deguchi. This work was supported in part by Prince-
ton University through the Generosity of William Addy ’82. (Corresponding
author: Hongyang Jia.)

The authors are with the Department of Electrical and Computer
Engineering, Princeton University, Princeton, NJ 08544 USA (e-mail:
hjia@princeton.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSSC.2021.3119018.

Digital Object Identifier 10.1109/JSSC.2021.3119018

and molecular discovery/diagnosis [1]–[9]. The increasing
scale and computational complexity of NN models has pushed
computing systems to their limits of energy efficiency and per-
formance, especially in power/energy/space-constrained edge
applications. This has motivated algorithmic and software
solutions (e.g., model quantization/compression [10]–[14] and
compiler optimizations [15], [16]), as well as hardware solu-
tions in the form of accelerators [17]–[21].

In terms of accelerators, a key focus has been on
matrix-vector multiplies (MVMs), which dominate NN infer-
ence computations, with data movement/accessing being a
critical concern due to the high-dimensionality MVMs typ-
ically involved [22]. This has led to spatial architectures
(e.g., systolic arrays), employing a 2-D structure of processing
engines (PEs) providing storage and compute, to exploit the
2-D data reuse.

In-memory computing (IMC) is an emerging approach,
aimed at taking the spatial architecture to an extreme, with
high-density memory bit cells serving as the PEs. Recent
implementations show that IMC can simultaneously achieve
10 × higher energy efficiency and compute density for MVMs
compared to standard digital accelerators [23]–[29]. However,
addressing full NN workloads requires incorporating MVMs
into programmable architectures and to which the workloads
can be scalably mapped, while preserving the efficiency and
throughput benefits. Recent work [30] has begun to explore
programmability, through a heterogeneous CPU-centric archi-
tecture. This provided a platform for building-up a software
stack to deploy workloads, but without architectural optimiza-
tions to address efficiency and performance with scalable
execution. This work focuses on such architectural design,
together with the workload-mapping techniques, to maximize
hardware utilization through flexible parallelism optimized for
IMC. Architecture-software codesign is employed to address
the drastically different physical attributes of IMC, compared
to digital accelerators.

The primary contributions of this work are as follows.

1. We analyze the challenges for scalable NN mapping to
IMC introduced by its physical attributes, namely high
compute efficiency/density and large state-swapping
overheads, and outline flexible mapping approaches for

0018-9200 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8692-1860
https://orcid.org/0000-0002-2835-2484
https://orcid.org/0000-0001-6667-1833
https://orcid.org/0000-0002-0218-9906
https://orcid.org/0000-0003-4898-4865


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 1. Illustration of high-signal-to-noise ratio (SNR) IMC, showing
(a) charge-domain IMC based on capacitors and (b) extension to MVMs with
multi-bit input-vector and weight elements.

exploiting parallelism while mitigating associated over-
heads for IMC executions.

2. We propose a programmable array-of-cores IMC archi-
tecture designed to support flexible parallelism for opti-
mally mapping different NNs and to enable architectural
and execution scale-up with minimal overheads.

3. We demonstrate the programmable NN inference accel-
erator architecture in 16 nm CMOS, including a scal-
able on-chip network (OCN) and 4 × 4 array of
IMC-based cores with integrated digital near-memory
SIMD engines, reconfigurable buffering for flexible
dataflow, and localized control.

In addition, accompanying software is developed for the
prototype chip, including: 1) NN training libraries incorpo-
rated in standard deep-learning design frameworks (PyTorch,
TensorFlow) to quantize NN models for execution on the chip
and 2) a prototype NN mapping toolchain to deploy NNs
onto the architecture. Multiple representative NN benchmarks
executing on the chip are demonstrated, achieving accuracies
equivalent to ideal digital computation.

The remainder of this article is organized as follows.
Section II provides background on IMC technology and its
challenges for efficient NN mapping. Section III provides
an architectural overview of the NN inference accelerator,
describing the key building blocks of the array-based architec-
ture. Section IV describes the microarchitectural design within
the IMC-based cores. Section V provides mapping illustra-
tions for supporting different NN dataflows, and analyzes the
mapping approaches and architectural supports. Section VI
presents the prototype measurements, software toolkits, as well
as NN demonstrations. Finally, Section VII concludes.

II. IMC BACKGROUND AND CHALLENGES

A. High-SNR IMC

A critical consideration for architectural integration of IMC
is forming a robust abstraction of its operation. This is chal-
lenged by the noise tradeoffs inherent in IMC architectures.
In contrast to traditional digital architectures, which access
stored data from memory one bit at a time by activating a
single row, IMC derives its energy and throughput gains by
accessing a compute result over multiple stored data by acti-
vating multiple rows at once. The row parallelism determines
the energy and throughput gains, but also causes the dynamic

TABLE I

PHYSICAL ATTRIBUTES OF IMC VERSUS DIGITAL HARDWARE

range of the result to increase, thus reducing the SNR for a
given readout architecture [31].

A dominant source of noise in IMC arises due to the need
for analog operation to fit computation within the constrained
bit cells. The SNR is thus limited by variations and nonlinear-
ities typical in analog circuits. Recently, a high-SNR approach
to IMC for binary input-vector and matrix (weight) elements
was proposed in [27]. As illustrated in Fig. 1(a), this performs
1-b multiplication in the bit cells, corresponding to a logical
XNOR or AND operation, and then makes use of capacitors
to perform computation via analog charge accumulation for
reduction of the column data. The capacitors are formed using
the overlying metal wires. Thanks to lithographic precision
in forming metal structures, as well as the intrinsic linearity
and temperature stability of capacitors, this leads to high-
precision computation, with analysis showing the potential
to reach thousands of rows before capacitor nonidealities
(random mismatch) limit the column-computation dynamic
range. This enables the formation of robust abstractions, which
are necessary for architectural integration.

B. Multi-Bit IMC

In [30], the capacitor-based binary MVM IMC approach
was extended to multi-bit input-vector and matrix (weight)
elements. As shown in Fig. 1(b), this was done via a bit-
parallel/bit-serial (BPBS) scheme, where weight bits are stored
in parallel columns, and input-vector bits are applied serially,
thus preserving binary-operand computation in each column.
The multi-bit-operand results were then formed after the
column ADCs, by simply bit-shifting (binary weighting) and
adding the column outputs. It is important to note that
involving an ADC in this manner has quantization implica-
tions, which are also analyzed in detail [30]. Nonetheless,
in terms of creating architectural abstractions, the robustness
of capacitor-based analog computing leaves only such quan-
tization effects to be modeled, which is standard practice in
digital architectures.

C. Challenges for Scalable NN Execution

Despite their increased efficiency and throughput for MVM
computation compared to digital architectures, the ability for
IMC architectures to achieve efficient and scalable execution
for full NNs is challenged by their physical attributes, namely
unimproved write costs and high hardware density. Generally,
scalable execution requires maximizing computer hardware



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIA et al.: SCALABLE AND PROGRAMMABLE NN INFERENCE ACCELERATOR BASED ON IMC 3

TABLE II

CHALLENGES OF STATICALLY MAPPING NNS TO IMC

utilization in space and time, by scheduling and mapping dif-
ferent subgraphs of a computation onto the available hardware
resources. This instates state-swapping overheads, e.g., writing
NN weight data to the hardware.

Table I compares the pertinent physical attributes of IMC
(measured from the presented prototype, as described in Sec-
tion VI) and digital architectures (reported in [32] and scaled
for 16 nm technology). Two aspects are of particular note.
First, the IMC energy ratio of write operations to multiply-
accumulate (MAC) operations is 30× (as compared to just 2×
for digital architectures). The reason for this is that compute-
line (CL) driving and bit-line (BL) driving, which determine
the MAC and write energies, respectively, both scale directly
with the number of rows, but CL driving corresponds to many
MAC operations (set by the IMC row parallelism) while BL
driving corresponds to a single-write operation. Second, IMC
has much higher hardware density (22×), enabling greater
hardware parallelism. But this also incurs larger amount of
state data that needs to be written to achieve high hardware
utilization.

One approach that has been suggested to eliminate the
state-swapping (write) overheads is to statically store all NN
weights in IMC hardware. However, this is typically infea-
sible, because IMC intrinsically couples storage and compute
resources, which need to be optimized separately. Specifically,
NN weights are generally involved in very different number
of operations. So, on the one hand, allocating a single IMC
bit cell for each weight bit, to minimize storage footprint,
leads to very low utilization for bit cells involved in fewer
operations. Table II, in the first row, shows this overall IMC
bit-cell utilization for full execution of different NNs, defined
as the ratio of bit-cell operations per second performed to those
available in total. On the other hand, replicating weight data in
IMC bit cells according to the number of operations, to max-
imize utilization, would require an infeasibly large number
of bit cells, preventing the scale-up of NN models. Table II,
in the second row, shows this overall bit-cell requirement.

Instead of static allocation, writing weights from separate
memory enables independent optimization of the storage and
compute resources, but incurs write overhead. Typically archi-
tectures aim to amortize this over many compute operations
by exploiting data reuse. The actual number of compute
operations per weight determines the maximum possible data
reuse, and is set by the NN model and input batch size. For
this work, we focus on optimizing for batch size of 1, as is
typically required in latency-sensitive edge applications. In this
case, the average computations per weight for ResNet-50,
as an example, is 170. As visualized in the roofline plot in
Fig. 2, the high compute energy efficiency in IMC requires

Fig. 2. Roofline plot showing IMC-write and IMC-compute bound regimes
with respect to weight-data compute intensity.

much greater reuse to amortize the overheads from writing
data into IMC bit cells (including data accessing from embed-
ded memory and communicating over weight-loading (WL)
network). This is exacerbated by the high hardware density
of IMC, which necessitates compute parallelism to ensure
high utilization. However, the typical approach of data-level
parallelism (also known as replication) directly reduces data
reuse below the maximum. Accordingly, the physical attributes
of IMC make it challenging to adequately amortize write
overheads.

This makes it necessary for an IMC architecture to support
flexible mappings, specifically to address write overheads
while ensuring high parallelism. In addition to data-level paral-
lelism, another common form of parallelism is operation-level
parallelism (similar to instruction-level parallelism in CPUs),
where computations (e.g., NN layers) are pipelined. Both
forms of parallelism incur important overheads of their own,
e.g., state replication in data-level parallelism, and inter-stage
buffering and latency in operation-level parallelism. Thus,
flexible optimization motivates integrating proper architectural
and microarchitectural supports for addressing these.

While the attributes (e.g., Table I) arise from general
tradeoffs relative to digital hardware, the range of different
IMC optimizations and designs previously reported [23]–[26],
[28], [30], [33] will ultimately raise different architectural
requirements. While this work employs an IMC macro similar
to that in [30], the focus there was on enabling program-
mability to explore the deployment of a software stack for
mapping applications, without explicit focus on the efficiency
of full-scale NN executions. In contrast, this work focuses on
flexible and efficient NN executions through different forms
of parallelism.

III. CHIP OVERVIEW AND SCALABLE IMC
ARCHITECTURE

This section presents an overview of the scalable NN infer-
ence accelerator and the building blocks of the array-of-cores



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 3. Architectural block diagram of programmable and scalable IMC NN
inference accelerator.

architecture. The scalable architecture is composed of an array
of cores called compute-in-memory units (CIMUs), as shown
in Fig. 3. The number of cores can be selected based on area
and throughput requirements, with the presented prototype
comprising a 4 × 4 array of CIMUs. The CIMUs employ a
form of weight-stationary dataflow, by storing a subset of the
NN weights for computation. The CIMUs are connected by
a flexible OCN, which is used for transmitting input–output
activation data between cores.

In addition, there is a dedicated WL network, for moving
weights to the CIMUs from an SRAM-based weight buffer,
which would ultimately be on chip but is not integrated in the
prototype. The weight-buffer architecture assumes segments
of 36 kB SRAM blocks, to provide weight data with high total
bandwidth. The total size of the weight buffer is chosen to be
28 MB, to mitigate DRAM accesses for the NN models of
interest, as is becoming typical for edge-inference processors,
ranging from extreme-edge devices [34] to edge servers [35].

Finally, the test chip integrates top-level peripheral mod-
ules for testing purposes to interface with a host processor,
including a 128 kB SRAM input–output buffer; configuration
interfaces; and controllers. The capacity of the activation
buffer is chosen to support the activations from most hidden
layers for batch size of 1 processing of ImageNet data in a
ResNet-50 model (note, few layers requiring larger memory
exploit buffering within the cores). Though larger batch sizes
can increase data reuse, batch-size of 1 is the focus due to
latency-sensitive execution for edge platforms. As is typical,
larger batches are then handled by providing images one at a
time from the host processor.

A. Architectural Execution Model

The architecture implemented in the test chip supports
weight-data parallelism and layer pipelining. Fig. 4 illustrates

Fig. 4. Parallelized and pipelined execution of NN layers on the array-based
architecture.

Fig. 5. Block diagram of the programmable CIMU core, supporting various
NN dataflows.

scheduling for an example set of NN layers (assumes eight
CIMUs for illustration). A subset of the layer weights are
mapped to parallel CIMUs at a time (first layers 1–3, then
layers 4–5), and pipelined execution proceeds. Leveraging
different forms of parallelism enables optimization of energy
efficiency and throughput, with consideration to the paral-
lelism overheads.

B. CIMU Core

Fig. 5 shows a block diagram of the programmable CIMU
core. It includes a mixed-signal compute-in-memory array
(CIMA), input buffer, shortcut buffer, and near-memory-
computing (NMC) SIMD datapaths. The central block is
the CIMA, which includes a 1152 (row) × 256 (column),
capacitor-based IMC bit-cell array. Using the BPBS approach
described earlier, the CIMA can be configured to perform
MVMs with multi-bit input-vector and matrix elements
scalable from 1 to 8 bits. In addition to the energy and
throughput versus SNR/quantization considerations discussed
in Section II, the array size is chosen to balance NN-mapping
granularity.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIA et al.: SCALABLE AND PROGRAMMABLE NN INFERENCE ACCELERATOR BASED ON IMC 5

Fig. 6. Structure of OCN, including (a) block diagram of OCN in a 2 × 2
CIMU tile, (b) buffered switch block, (c) output block, for transmitting output
activations from CIMU cores, and (d) input block, for feeding input activations
to CIMU cores (rotated 90◦ clockwise).

At the inputs to the CIMA, a configurable input buffer
receives and buffers input-activation data from the OCN. The
input buffer provides a range of configurability for supporting
different NN mappings and dataflows.

In parallel with the input buffer, there is an auxiliary buffer,
called the shortcut buffer. While the input buffer feeds data to
the CIMA, the shortcut buffer bypasses the CIMA, providing
data directly to the following SIMD engines. This enables
further configurability for NN compute graphs, for instance:
supporting buffering needed for shortcut activation paths,
such as residual connections; alignment between convergent
activation paths; logical operations on activation paths, such
as depth-wise shuffling.

Following the CIMA, the programmable near-memory
SIMD engines receive the digitized column-computation
results and support further digital operations. The first SIMD
engine, the BPBS SIMD, is optimized for the shifting and
addition required for BPBS reconstruction in multi-bit com-
putations. The second SIMD engine, the compute (CMPT)
SIMD, is optimized for element-wise operations, such as
activation functions, activation scaling, and biasing, and cross-
element operations, such as pooling and peep-hole operations.
The final quantized computation results are then sent to the
OCN.

C. On-Chip Network

The OCN enables flexible computation mappings in
a manner similar to coarse-grained reconfigurable arrays

Fig. 7. Block diagram of CIMA.

(CGRAs) [36]–[38]. Fig. 6(a) shows a block diagram of the
OCN in a tile grouping of 2 × 2 CIMU cores. Within a tile,
the OCN is composed of three building blocks, all of which are
fully synthesizable: a switch block, output blocks, and input
blocks.

As shown in Fig. 6(b), the repeater buffered switch block
employs a fully-disjoint architecture to connect ingoing wires
flexibly to outgoing wires. The input and output blocks are
implemented as duo-directional, pipelined routing segments,
connected to the CIMU input buffers and connected from the
CIMU CMPT SIMD outputs, respectively. Fig. 6(c) shows
details of the output block. The 80 duo-directional channels are
routed vertically, fitting between CIMUs on the left and right
side. Each channel is pipelined by registers at the input/output
from/to the adjacent tile and switch block. Similar to the output
block, Fig. 6(d) shows details of an input block. With full
connectivity at the CIMU outputs, each CIMU input port can
be limited to connecting to only a subset (20 chosen for this
design) of the duo-directional routing channels in the input
block, providing adequate routing configurability.

IV. CIMU MICROARCHITECTURAL DESIGN

A. Compute-in-Memory Array

Fig. 7 shows details of the CIMA, which employs the
capacitor-based multi-bit computation scheme mentioned in
Section II. The precision of capacitor-based computation is
exploited toward a high level of IMC parallelism. The CIMA
has 1152 rows and 256 independent column CLs, which can
also be configured to a 2304-by-128 array to extend input
dimensionality. Each CL is followed by an 8-b SAR ADC. The
ADC resolution is selected by balancing the energy/area over-
head and the impact of quantization effects (as described in
Section II-B). Several studies have explored the ADC resolu-
tion requirements [30], [39]. For instance, analysis performed
in [30] shows that, with the column dimensionality adopted
in this work, 8-b ADC resolution leads to SNR close to
standard integer computation for the range of weight/activation
precisions of interest in current quantized NNs. Accordingly,
the 256 CIMA column ADCs occupy roughly 20% of the area
and 29% of the energy of the CIMA.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 8. Block diagrams of the CIMU buffers, including (a) input and
(b) shortcut buffer.

B. Input Buffer

Fig. 8(a) shows details of the input buffer, which can
be configured to support different computation mappings,
dataflows, and reuse patterns. The parallel input ports take
OCN data at configurable bandwidth (e.g., depending on level
of convolutional reuse relative to a stride-1 3 × 3 kernel) via
multiplexers that are capable of running at up to 9× the CIMA
interface clock frequency.

The input buffer comprises eight SRAM-based line buffers,
each of which is designed to buffer pixels for a convolutional
window. The switching networks around the SRAM blocks
enable flexible in-buffer arrangement of data, for ease of
sequencing to the CIMA. This includes arranging data near
the base of the CIMA to facilitate column gating for improved
energy efficiency and SNR. Additionally, local padding logic
is provided, to generate zero padding, as needed.

C. Shortcut Buffer

The auxiliary shortcut buffer shown in Fig. 8(b) has a
similar, though simplified, structure as the input buffer. As data
from the shortcut buffer is directly provided to the NMC
SIMDs, the maximum input dimensionality is set to 256 cor-
responding to the number of CIMA columns.

In addition to sending activation data to the NMC SIMDs,
the shortcut buffer can also bypass and directly send data to
the CIMU output ports for transmission on the OCN. Such
bypassing enables efficient support for NN dataflow, such as
depth-wise shuffling (by configuring CIMU input-/output-port
connections to the OCN) and shortcut paths (by providing path
latency through buffering for proper reconvergence). Direct
input-/output-port connectivity, isolated from other CIMU
datapath blocks, enables the shortcut buffer to be a flexible
independent resource for implementing NN operations.

D. BPBS SIMD Datapath

The BPBS SIMD constructs digitized outputs from
the column computations, corresponding to inner products
between binary vector elements, into two’s compliment results
across column computations, corresponding to inner products

Fig. 9. Microarchitecture of BPBS SIMD datapath, receiving data from
CIMA outputs and shortcut buffer.

Fig. 10. Microarchitecture of CMPT SIMD datapath, supporting various
element-wise and cross-element operations.

between multi-bit vector elements. Fig. 9 shows the microar-
chitecture of the BPBS SIMD datapath, which has similarities
with the near-memory datapath employed in [30]. The instruc-
tion controller for BPBS SIMD issues one instruction per clock
cycle from a 128-entry instruction buffer. The SIMD instruc-
tion set has both fused instructions for BPBS computation
and a no-operation instruction, to flexibly align the pipeline
with CIMA and CMPT SIMDs. To match the layout pitch and
throughput of the CIMA columns, each datapath is multiplexed
across four columns. This optimizes for 4-b weights, with
minimal-overhead extension to 8-b supported in the CMPT
datapath (described next). The datapath includes multiple
pipelined computation stages, which receive operands from
local registers and SIMD instructions. A shift-and-scale stage,
composed of integer adder and multiplier, is provided for ADC
gain and offset correction and bias-shift and scaling for batch
normalization. A barrel-shifting stage is provided for multiply-
ing with local base-two exponential terms, and applying global
binary weighting for BPBS construction. Finally, buffers and
an accumulator are provided for serial BPBS operations and
for interfacing to the CMPT SIMD.

Two features of the datapath are as follows. First, in addition
to ADC outputs from the CIMA, the datapath can also
receive shortcut-buffer data, to execute programmable com-
putations on shortcut-path activations. Second, a face-to-face
connection (F2FC) input is provided at the accumulator for
summing partial inner-product results from an adjacent CIMU
core, through dedicated interfaces for efficient MVM inner-
dimension extension.

E. CMPT SIMD Datapath

Fig. 10 shows the microarchitecture of the CMPT SIMD
datapath module, which enables support for different NN
dataflows through arithmetic following MVMs. The CIMU



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIA et al.: SCALABLE AND PROGRAMMABLE NN INFERENCE ACCELERATOR BASED ON IMC 7

core includes 16 CMPT modules, with each multiplexed
across four BPBS SIMD datapaths. This is motivated by two
considerations. First, multiplexing again enables layout-pitch
and throughput matching, where supporting diverse compu-
tations in the CMPT SIMD leads to larger datapath area
and optimizing for 4/8-b weights leads to considerable band-
width reduction from the SIMD datapaths. Second, this
allows CMPT-datapath input locality across 4 × 4 = 16
CIMA columns, enabling low-overhead cross-element oper-
ations (e.g., as required by LSTMs) and support for weight
precision larger than 4 b. In addition to the BPBS SIMD
datapath, the CMPT SIMD datapath can take inputs from the
shortcut buffer for more flexible activation path merging (e.g.,
as needed in GRU [40]).

The CMPT SIMD datapath comprises four main blocks:
1) arithmetic-logic unit (ALU); 2) register file for interme-
diate storage; 3) shared look-up table (LUT) across all the
CMPT datapath modules; and 4) an output buffer for sending
computation results to the OCN. The ALU takes two inputs
from the BPBS SIMD, shortcut buffer, or local register file,
both of which can be barrel shifted for multiplication with
base-two exponent terms. The ALU supports standard integer
arithmetic computations, such as ADD/SUB/MULT, and spe-
cialized operations for NN dataflows, such as ReLU activation
function, average pooling, and max pooling. The computed
data are either pushed back to the local register file, or for-
warded to the output buffer. The register file has 16 general-
purpose entries for storing the intermediate result, which
is adequate support for NNs of interest. These register file
entries can also be preloaded with constant numbers, or read
out for debugging purposes, through the CIMU configuration
network. Two special-purpose register-file entries are provided
for exchanging data with neighboring datapath modules to
better support cross-element operations. The nonlinear acti-
vation functions, such as sigmoid and tanh, are implemented
via a shared LUT, which is controlled through two additional
special-purpose registers (one for addressing, while the other
one for reading LUT data), without intervention of CMPT
SIMD instructions. The output buffer stores the final quantized
output activations, and reshapes them into bit streams of
multiple parallel output activations.

V. PROGRAMMABLE AND SCALABLE NN MAPPING

This section illustrates how the architecture and microachi-
tecture support programmable and scalable mapping of NNs
by flexible supports for parallelism. First, several example
mappings of different NN dataflows are described. Then,
methods for extending inner and outer MVM dimensions for
NN layer scalability are described. Finally, the impact of such
supports are analyzed, particularly on the scalability of the
architecture.

A. Layer Mappings

Considering some standard NN layer types, Fig. 11
shows example mappings of convolutional, shortcut/residual-
connection, fully-connected, and memory-augmented layers.
Fig. 11(a) illustrates mapping of a convolutional layer (e.g.,

Fig. 11. Examples of various dataflow mappings for different NN-layer types,
including (a) convolutional layer, (b) convergent shortcut/residual connection
between two activation paths, (c) dense layers, and (d) memory augmented
layers (e.g., LSTM).

3 × 3 kernel, stride of 1), where the convolutional ker-
nel is flattened, and weights are mapped into the CIMA
along the column dimension while inputs/outputs correspond
to input/output activations. The flattened kernel weights are
densely loaded at the bottom of the CIMA column at run
time to enable gating of unused rows for enhancing energy
efficiency and SNR.

Fig. 11(b) illustrates mapping of a shortcut/residual con-
nection between two activation paths, supported through the
input buffer together with the shortcut buffer. The input
buffer receives and sequences activation data to the CIMA,
as described above. The shortcut buffer also receives activation
data from the OCN (e.g., residual path), however, passes it
directly to the NMC SIMD engines for merging computation.
The shortcut buffer also provides synchronization as a FIFO
with latency configurable to match with the layer-pipeline
latency.

Fig. 11(c) illustrates mapping of dense and other no-reuse
(e.g., 1 × 1 convolution) layers. The input buffer receives
activations with high bandwidth from the OCN, and directly
sequences data to the CIMA.

Fig. 11(d) illustrates mapping of a recurrent/memory-
augmented layer. The OCN is configured to provide output-
to-input routing. The input buffer then concatenates the new
state input x t with preceding hidden state yt−1. Using LSTMs
as an example, the weight matrices preceding the four LSTM
gates are interleaved across the CIMA columns, so that the
element-wise and cross-element operations after MVMs can
be performed within neighboring NMC SIMD datapaths, for
output-data locality. The register file within the CMPT SIMD



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 12. Examples of mappings for layer scalability, including extension of
(a) MVM outer dimensionality and (b) MVM inner dimensionality.

datapath also stores the previous cell state Ct−1 locally for
computing the current cell state Ct .

Weight and activation sparsity, which has been studied for
digital accelerators [12], also impacts dataflow. The CIMA
natively supports energy savings in proportion to activation
sparsity, simply by masking zero-valued data within the input
drivers [30], which dominant CIMA energy consumption.
Though such masking does not increase throughput, like with
digital zero-skipping mechanisms, some recent IMC designs
have added additional supports at the cost of corresponding
overheads [25], [41]. Weight sparsity is not a focus of opti-
mization in this work, due to limitations observed at reduced
parameter quantization levels; however, weight-sparsity at
kernel-level granularity is natively exploited.

B. Layer Scalability

NN layer scalability requires efficiently extending MVM
inner and outer dimensionalities across CIMU cores. Fig. 12(a)
shows how extension of output channels is handled. The
OCN broadcasts input activations to multiple CIMU cores
operating in parallel. Then, the outputs from parallel CIMUs
are regrouped on the OCN for feeding to subsequent NN
layers. Fig. 12(b) shows how extension of input channels
is supported. At compile time, kernels are segmented for
mapping to parallel CIMU cores, and during execution the
parallel CIMU outputs are reduced. This is done in two ways.

Fig. 13. Ratio of MAC operations to WL operations with architecture scale-
up, with hardware parallelism used to map MVM execution loops.

First, as mentioned in Section IV-B, computed partial inner
products from one CIMU can be fed and summed with those of
a second CIMU, extending number of input channels by two.
Second, for further arbitrary extension, computed activations
from two CIMUs can be fed to a third CIMU for summation
via element-wise adders following the input buffer (and then
passed directly to the OCN or NMC SIMD for further element-
wise operations).

C. Analysis of Mappings Exploiting Flexible Parallelism

As mentioned in Section II-C, the physical attributes of
IMC introduce important challenges in exploiting parallelism
toward efficient and scalable execution of NNs. These make
it necessary to optimize flexibly across different forms of
hardware parallelism, motivating the accelerator architecture
described. This section illustrates the execution gains of such
optimization, relative to a baseline approach based on data
parallelism, commonly used in digital NN accelerators.

For quantitative illustration of the challenges, especially as
the IMC architecture is scaled (from a 4 × 4 CIMU array to a
16 × 16 CIMU array), Fig. 13 shows the ratio of MAC oper-
ations to WL operations for different NN benchmarks. This
analysis assumes that hardware parallelism is primarily used
for mapping the MVM execution loops. As seen, the number
of MAC operations decreases significantly with architectural
scale-up, often falling below the expected compute-bound
regime (as visualized in Fig. 2). This indicates that alternate
approaches are required to exploit the high parallelism result-
ing from IMC hardware.

The architectural supports for flexible parallelism, spanning
data-level (replication) and operation-level (pipeline) paral-
lelism, allow compiler optimizations to efficiently achieve
scalable execution on IMC hardware, i.e., to ensure high
hardware utilization while minimizing state-loading overheads.
Specifically, instead of relying just on replication across hard-
ware, jointly exploiting data and pipeline parallelism enables
scale-up while addressing WL operations. Fig. 14 shows the
resulting reduction in WL operations, when optimizing across
the parallelism supports for the different NN benchmarks. The
reductions increase with architectural scale-up.

Fig. 15 shows the overall throughput gains through such
optimization. Throughput gains are seen in many cases,
where operation-level parallelism has modest overheads (e.g.,
pipeline buffering and latency). However, in several cases,
the approach of data-level parallelism remains optimal. It is
noted that this has strong correspondence with the ratio of
MAC operations to WL operations (i.e., level of weight reuse)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIA et al.: SCALABLE AND PROGRAMMABLE NN INFERENCE ACCELERATOR BASED ON IMC 9

Fig. 14. Possible reduction of WL operations, when optimizing across
supported parallelism approaches.

Fig. 15. Overall throughput gains by optimizing across supported parallelism.

analyzed in Fig. 13, but now with the overheads of the
parallelism supports also having impact.

VI. PROTOTYPE MEASUREMENTS

The IMC-based inference accelerator is prototyped in a
16 nm CMOS technology, integrating a 4 × 4 array of CIMU
cores. Fig. 16(a) shows the die photograph, with top-level
architectural blocks labeled. Fig. 16(b) shows the detailed
layout view of a CIMU core, with CIMA, SIMD engines, and
buffering resources marked. Fig. 16(c) and (d) show the pho-
tograph and block diagram of the test setup for measurement
and demonstration, including a custom PCB implemented
as an FMC daughter card with BNC power connectors for
monitoring the power of key blocks separately, a controller
FPGA to communicate with a host PC through PCIe link [42],
and microcontrollers for start-up (PLL) control.

A. Block-Level Measurements

Table III provides a summary of the overall chip- and block-
level measurements. Measurements are taken at the nominal
voltage of 0.8 V. While timing closure targeted 500 MHz
operation, testing was performed with CIMU digital logic
running at 200 MHz and CIMA ADC outputs provided at
20 MS/s, where the ultimate frequency was limited by power
deliver in the wirebond prototype. The primary focus of this
design being on the architectural and microarchitectural sup-
ports required for efficient scalable execution, the frequency
can be increased with further logic-path timing optimizations.
The energy breakdown for execution of a representative CNN
kernel of 3×3 window size and 128 input-channel depth is also
shown. The energies for the CIMA, input buffer, and SIMD
engines are the total numbers, measured for 4-b weight and
4-b activation configuration, assuming full utilization of the
CIMA. The CIMA write energy corresponds to the standard
SRAM write operation for loading weights into IMC memory.
The OCN energy is reported for sending all four bits of one
output activation through one OCN block.

Fig. 16. Prototype system used for testing, including (a) die photograph of the
test chip in 16-nm CMOS, (b) layout view of the CIMU core, (c) photograph
of the test setup for interfacing with host processor, and (d) block diagram
of the test setup.

TABLE III

SUMMARY OF CHIP ENERGY MEASUREMENTS

As shown in Table III, the CIMA dominates energy, with the
NMC SIMD engines introducing only small overhead. Thus,
the overall architecture substantially leverages IMC. It is noted
that the next dominant energy corresponds to the input buffer,
which is primarily responsible for configurability in scalable
dataflow mappings, exploiting hardware parallelism.

Fig. 17 presents detailed characterization of the basic CIMU
operations, showing the transfer function of each CIMA col-
umn. For this, all 1’s are loaded for the matrix data stored
in the CIMA, and the number of 1’s versus 0’s in the input
vector is swept. This ideally generates a ramp voltage at the
ADC input. The data shown are after the 8-b ADC (following
offset calibration), thus corresponding to the fundamental
CIMA-transfer function from digital inputs to digital outputs.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 17. Basic CIMA-column measurements, including (a) overall transfer
functions, (b) noise standard deviation, and (c) INL.

It is noted that the transfer function thus characterizes all
nonidealities, through input driving, capacitor-based column
computation, and ADC digitization.

Fig. 17(a) plots data from all columns in one CIMU core,
and data from all CIMU cores are observed to be highly
similar. The transfer function exhibits excellent linearity and
stability, with tight error bars showing the standard deviation
across the 256 columns (shown in detail and individual over-
lay, in the inset).

Fig. 17(b) shows the noise standard deviation observed
in the ADC outputs across 20 repeated measurements. The
average standard deviation is 0.68 LSB (shown as the orange
dotted line).

Fig. 17(c) shows the overall integral nonlinearity (INL) of
the transfer function from CIMA-input to ADC-output. The
CIMA column, together with the following ADC, achieves
nonlinearity less than 1 LSB. The periodic INL steps indicate
mismatch in the SAR-ADC capacitors.

Moving now from column transfer functions to MVM
operations, Fig. 18 shows the overall computation SNR after
BPBS reconstruction with different bit precisions. For this,
uniformly-distributed input data are generated in floating-point
precision, and then quantized to integer for both input-vector
and matrix elements. The blue bars show the ideal SNR (rel-
ative to full floating-point computation), assuming only quan-
tization effects in data generation and ADC [i.e., representing
ideal signal-to-quantization-noise ratio (SQNR)]. While the

Fig. 18. Measured and bit-true-simulated SNR of multi-bit MVMs.

red bars show the final measured SNR including all physical
analog effects.

As seen, at 4–8 b the SNR saturates, set by ADC quan-
tization effects (as also predicted by analysis in [30]), while
lower SNR is observed at 2 b, set by input-data quantization.
In all cases, the measured SNR closely matches the ideal
SQNR, indicating that quantization is the only significant noise
effect in the computation. Since quantization can be modeled
using standard digital approaches, a robust abstraction of the
computation can be developed for architectural and software
integration.

Table IV compares this work with the recently demonstrated
state-of-the-art NN accelerators, including both digital and
IMC-based architectures. The peak MAC-level throughput
and peak MAC-level energy efficiency are measured for both
4- and 8-b weights/activations. As described in Section II-B,
the number of CIMA cycles for BPBS computation scales
linearly with both weight and activation precision, and accord-
ingly so does the throughput and energy efficiency. The
reported MAC-level energy includes that from the CIMA
(with ADCs) and BPBS SIMD for BPBS reconstruction (other
operations, such as input buffering and activation functions, are
performed in peripheral blocks within the architecture as previ-
ously described to optimize end-to-end NN executions, but not
included in the MAC-level energy). This work achieves orders-
of-magnitude gain in MAC-level energy efficiency compared
with digital implementations and highest MAC compute den-
sity. Comparing with other IMC demonstrations, this work
achieves the highest energy efficiency, throughput, and com-
pute density. There is only one exception [26], due to different
target model/task complexities and compute precisions. This is
also the only IMC work that programmably supports a range of
model types, optimized for execution scalability. In addition to
the MAC-level efficiency and throughput, the accelerator-level



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIA et al.: SCALABLE AND PROGRAMMABLE NN INFERENCE ACCELERATOR BASED ON IMC 11

TABLE IV

COMPARISON WITH STATE-OF-THE-ART NN ACCELERATORS

Fig. 19. Developed toolchains and compilers for (a) quantized NN training
and (b) NN mapping and on-chip deployment.

efficiency and throughput are important and characterized next
by considering specific workload executions.

B. Software Mapping Tools and System Demonstrations

The accelerator architecture is co-designed with soft-
ware mapping algorithms and tools. To better outline the
model-deployment flow and system-demonstration configura-
tions, Fig. 19 shows the developed NN training flow and
software-mapping toolchain.

Fig. 19(a) shows a block diagram of the NN training
flow, with software libraries integrated in TensorFlow and
PyTorch. First, an NN model is trained with floating-point

Fig. 20. Measured and bit-true-simulated pre-activations for benchmark NNs.

parameters. Then, the floating-point model is provided to the
custom quantized-NN training flow, which models the BPBS
and SIMD engines’ quantization effects. This generates the
integer NN model, which is then fed to a prototype graph
compiler and mapping tools for deploying on to the prototype
IC. It is noted that the trainer only models quantization effects,
with no analog nonidealities necessary to consider.

Fig. 19(b) shows a block diagram of the toolchain for
mapping and deploying NNs on the architecture. The prototype
graph compiler performs allocation and scheduling of CIMU
resources to maximize hardware utilization while execut-
ing the NN compute graph. Following allocation, physical
placement is performed, employing a simulated-annealing-
based algorithm, to minimize communication between CIMU
cores. Finally, a heuristic optimization algorithm leverag-
ing integer-linear programming is used to configure the
OCN routing resources for communication between CIMU



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE JOURNAL OF SOLID-STATE CIRCUITS

TABLE V

NN DEMONSTRATIONS

cores, similar to CGRA and FPGA routing approaches [43],
[44]. The toolchain then generates configuration data nec-
essary for end-to-end execution of NN models on the
architecture.

Using this training and mapping flow, multiple NNs have
been demonstrated on the prototype. As two examples,
Fig. 20 shows both measured and bit-true-simulated ideal
pre-activation data for two benchmarks. The top data corre-
spond to a VGG-style network performing CIFAR-10 image
classification, while the bottom data correspond to a ResNet-
50 network performing ImageNet classification, both with 4-b
weights and activations. The measured pre-activation data,
shown as red lines, matches closely with the simulated data,
shown as black lines. Table V summarizes the results of
these two benchmarks. The VGG-style NN is fully mapped
on chip, while all four stacks of the ResNet-50 model are
mapped, including 48 convolutional layers (three shortcut
projections between stacks require 8-b precision, and are
computed off-chip as this eases mapping of all other 4-b
layers).

The 4-b VGG-style network for CIFAR-10 image classi-
fication achieves energy efficiency of 51.5 k image/s/W, and
throughput of 7815 images/s, with testing accuracy of 91.51%.
While the 4-b ResNet-50 network for ImageNet dataset shows
3.0 k image/s/W energy efficiency and 581 image/s through-
put, with 73.33% testing accuracy. The achieved testing accu-
racies for both CIFAR-10 and ImageNet datasets are within
the known range of the state-of-the-art quantized NNs [11],
[45], particularly for fully-integer models, as used in this
work [46]. As shown, the final accuracies from chip mea-
surements match with the reference accuracies corresponding
to ideal software-based computations. The VGG-style network
achieves effective IMC bit-cell hardware utilization of 83%,
while ResNet-50 achieves 29%. The utilization is primarily
limited by mapping granularity, due to the chosen IMC array
dimensions exceeding the workload MVM inner dimensions,

as mentioned in Section III-B (e.g., ResNet-50 is particularly
limited by 1 × 1 convolutions).

VII. CONCLUSION

IMC accelerates MVM operations, which dominate NN
applications, by addressing both computation and data-
movement costs. However, scalable end-to-end executions
are challenged by the proportionally high cost of writing
data to and extremely high parallelism of IMC hardware.
To address these challenges, flexible parallelization strategies
for mapping NNs are required, with associated architectural
and microarchitectural support for minimizing the associated
overheads. A prototype NN inference accelerator is demon-
strated in 16 nm CMOS based on a scalable architecture,
including a 4 × 4 array of IMC-based cores. The accelerator
achieves 30 TOPS/W peak MAC-level energy efficiency and
3 TOPS peak MAC-level throughput, for 8-b computations.
Using developed training and mapping toolchains, several
NN benchmarks are demonstrated. At the accelerator level,
an 11-layer CNN with 4-b weights and activations, performing
CIFAR-10 classification, achieves test accuracy of 91.51%
(matching ideal digital computation), with energy of 51.5 k
image/s/W and throughput of 7815 images/s. A ResNet-50 net-
work with 4-b weights and activations, performing ImageNet
classification, achieves test accuracy of 73.33% (matching
ideal digital computation), with energy efficiency of 3.0 k
image/s/W and throughput of 581 images/s.

ACKNOWLEDGMENT

The authors would like to thank Julian Puscar at the
University of California, San Diego (UCSD), La Jolla, CA,
USA, Prof. Ian Galton, UCSD, Austin Rovinski at the Uni-
versity of Michigan (UMich), Ann Arbor, MI, USA, and
Prof. Ronald Dreslinski, UMich, for their help with the PLL.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[5] H. Yin et al., “Dreaming to distill: Data-free knowledge transfer via deep
inversion,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 8712–8721.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[7] D. Amodei et al., “Deep speech 2: End-to-end speech recognition in
English and Mandarin,” in Proc. 33rd Int. Conf. Mach. Learn. (ICML),
vol. 48, Jun. 2016, pp. 173–182.

[8] A. W. Senior et al., “Improved protein structure prediction using
potentials from deep learning,” Nature, vol. 577, no. 7792, pp. 706–710,
2020.

[9] B. Schmauch et al., “A deep learning model to predict RNA-seq
expression of tumours from whole slide images,” Nature Commun.,
vol. 11, no. 1, pp. 1–15, Dec. 2020.

[10] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” J. Mach. Learn. Res., vol. 18, no. 1,
pp. 6869–6898, 2017.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIA et al.: SCALABLE AND PROGRAMMABLE NN INFERENCE ACCELERATOR BASED ON IMC 13

[11] J. Choi, Z. Wang, S. Venkataramani, P. I-Jen Chuang, V. Srinivasan,
and K. Gopalakrishnan, “PACT: Parameterized clipping activation for
quantized neural networks,” 2018, arXiv:1805.06085. [Online]. Avail-
able: http://arxiv.org/abs/1805.06085

[12] S. Han et al., “EIE: Efficient inference engine on compressed deep
neural network,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput.
Architecture (ISCA), Jun. 2016, pp. 243–254.

[13] S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and Huffman coding,” 2015, arXiv:1510.00149. [Online]. Available:
http://arxiv.org/abs/1510.00149

[14] X. Dai, H. Yin, and N. K. Jha, “Grow and prune compact, fast, and
accurate LSTMs,” IEEE Trans. Comput., vol. 69, no. 3, pp. 441–452,
Mar. 2020.

[15] R. Wei, L. Schwartz, and V. Adve, “DLVM: A modern compiler
infrastructure for deep learning systems,” 2017, arXiv:1711.03016.
[Online]. Available: http://arxiv.org/abs/1711.03016

[16] M. Sivathanu, T. Chugh, S. S. Singapuram, and L. Zhou, “Astra:
Exploiting predictability to optimize deep learning,” in Proc. 24th Int.
Conf. Architectural Support Program. Lang. Oper. Syst. (ASPLOS),
Apr. 2019, pp. 909–923.

[17] Y. Chen et al., “DaDianNao: A machine-learning supercomputer,” in
Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Dec. 2014, pp. 609–622.

[18] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envi-
sion: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28 nm
FDSOI,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2017, pp. 246–247.

[19] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[20] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann,
“An always-on 3.8 µ J/86% CIFAR-10 mixed-signal binary CNN
processor with all memory on chip in 28-nm CMOS,” IEEE J. Solid-
State Circuits, vol. 54, no. 1, pp. 158–172, Jan. 2019.

[21] Y. Jiao et al., “A 12 nm programmable convolution-efficient neural-
processing-unit chip achieving 825TOPS,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2020, pp. 136–140.

[22] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec. 2017.

[23] R. Guo et al., “A 5.1 pJ/neuron 127.3 µs/inference RNN-based speech
recognition processor using 16 computing-in-memory SRAM macros
in 65 nm CMOS,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers,
Jun. 2019, pp. C120–C121.

[24] J. Wang et al., “A 28-nm compute SRAM with bit-serial logic/arithmetic
operations for programmable in-memory vector computing,” IEEE J.
Solid-State Circuits, vol. 55, no. 1, pp. 76–86, Jan. 2020.

[25] J. Yue et al., “A 65 nm computing-in-memory-based CNN
processor with 2.9-to-35.8TOPS/W system energy efficiency using
dynamic-sparsity performance-scaling architecture and energy-efficient
inter/intra-macro data reuse,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2020, pp. 234–236.

[26] M. E. Sinangil et al., “A 7-nm compute-in-memory SRAM macro sup-
porting multi-bit input, weight and output and achieving 351 TOPS/W
and 372.4 GOPS,” IEEE J. Solid-State Circuits, vol. 56, no. 1,
pp. 188–198, Jan. 2021.

[27] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-tile 2.4-Mb
in-memory-computing CNN accelerator employing charge-domain com-
pute,” IEEE J. Solid-State Circuits, vol. 54, no. 6, pp. 1789–1799,
Jun. 2019.

[28] S. K. Gonugondla, M. Kang, and N. Shanbhag, “A 42 pJ/decision
3.12TOPS/W robust in-memory machine learning classifier with on-chip
training,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2018, pp. 490–492.

[29] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of a
machine-learning classifier in a standard 6T SRAM array,” IEEE J.
Solid-State Circuits, vol. 52, no. 4, pp. 915–924, Apr. 2017.

[30] H. Jia, H. Valavi, Y. Tang, J. Zhang, and N. Verma, “A programmable
heterogeneous microprocessor based on bit-scalable in-memory com-
puting,” IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2609–2621,
Sep. 2020.

[31] N. Verma et al., “In-memory computing: Advances and prospects,” IEEE
Solid-State Circuits Mag., vol. 11, no. 3, pp. 43–55, Aug. 2019.

[32] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. 44th Annu. Int. Symp. Comput. Architecture
(ISCA), Jun. 2017, pp. 1–12.

[33] X. Si et al., “A twin-8T SRAM computation-in-memory unit-macro for
multibit CNN-based AI edge processors,” IEEE J. Solid-State Circuits,
vol. 55, no. 1, pp. 189–202, Jan. 2020.

[34] Flex Logix Technologies. (Oct. 2020). Flex Logix Announces Working
Silicon of Fastest and Most Efficient AI Edge Inference Chip. [Online].
Available: https://flex-logix.com/wp-content/uploads/2020/10/2020-10-
20-X1-chip-launch-FINAL.pdf

[35] Qualcomm Technologies. (Sep. 2020). Qualcomm Cloud AI 100
Announcement. [Online]. Available: https://www.qualcomm.com/media/
documents/files/qualcomm-cloud-ai-100-announcement.pdf

[36] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling,” in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2003, pp. 296–301.

[37] S. Yin, X. Yao, T. Lu, L. Liu, and S. Wei, “Joint loop mapping and
data placement for coarse-grained reconfigurable architecture with multi-
bank memory,” in Proc. 35th Int. Conf. Comput.-Aided Design (ICCAD),
Nov. 2016, pp. 1–8.

[38] T. Nowatzki, N. Ardalani, K. Sankaralingam, and J. Weng, “Hybrid opti-
mization/heuristic instruction scheduling for programmable accelerator
codesign,” in Proc. 27th Int. Conf. Parallel Architectures Compilation
Techn. (PACT), 2018, pp. 1–15.

[39] S. K. Gonugondla, C. Sakr, H. Dbouk, and N. R. Shanbhag, “Funda-
mental limits on the precision of in-memory architectures,” in Proc. 39th
Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2020, pp. 1–9.

[40] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” 2014,
arXiv:1412.3555. [Online]. Available: http://arxiv.org/abs/1412.3555

[41] J.-H. Kim, J. Lee, J. Lee, J. Heo, and J.-Y. Kim, “Z-PIM: A sparsity-
aware processing-in-memory architecture with fully variable weight bit-
precision for energy-efficient deep neural networks,” IEEE J. Solid-State
Circuits, vol. 56, no. 4, pp. 1093–1104, Apr. 2021.

[42] M. Jacobsen and R. Kastner, “RIFFA 2.0: A reusable integration frame-
work for FPGA accelerators,” in Proc. 23rd Int. Conf. Field Program.
Log. Appl. (FPL), Sep. 2013, pp. 1–8.

[43] S. A. Chin and J. H. Anderson, “An architecture-agnostic integer
linear programming approach to CGRA mapping,” in Proc. 55th
ACM/ESDA/IEEE Design Autom. Conf. (DAC), Jun. 2018, pp. 1–6.

[44] C. H. Hoo, A. Kumar, and Y. Ha, “ParaLaR: A parallel FPGA router
based on Lagrangian relaxation,” in Proc. 25th Int. Conf. Field Program.
Log. Appl. (FPL), Sep. 2015, pp. 1–6.

[45] C. Louizos, M. Reisser, T. Blankevoort, E. Gavves, and M. Welling,
“Relaxed quantization for discretized neural networks,” in Proc. Int.
Conf. Learn. Represent. (ICLR), 2019, pp. 1–15.

[46] X. Zhao, Y. Wang, X. Cai, C. Liu, and L. Zhang, “Linear symmetric
quantization of neural networks for low-precision integer hardware,” in
Proc. Int. Conf. Learn. Represent. (ICLR), 2020, pp. 1–16.

Hongyang Jia (Member, IEEE) received the B.Eng.
degree in microelectronics from Tsinghua Univer-
sity, Beijing, China, in 2014, and the M.A. and Ph.D.
degrees in electrical engineering from Princeton
University, Princeton, NJ, USA, in 2016 and 2021,
respectively.

His research focuses on ultra-low energy sys-
tem design for inference applications. His primary
research interests are CMOS IC design which lever-
ages approximate computing technique for model
complexity reduction and mixed-signal computing

for energy-efficient machine learning applications.
Dr. Jia received the Analog Devices Outstanding Student Designer Award

in 2017.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Murat Ozatay (Graduate Student Member, IEEE)
received the B.Sc. degree in electrical and electron-
ics engineering from Middle East Technical Univer-
sity, Ankara, Turkey, in 2015, and the M.A. degree
in electrical engineering from Princeton University,
Princeton, NJ, USA, in 2017, where he is currently
pursuing the Ph.D. degree.

His research focuses on bringing together algo-
rithms and insights for learning with technologies
and systems for advanced sensing. His primary
research interests include machine learning, artifi-

cial intelligence, the Internet-of-Things, and the design of very-large-scale
integration systems.

Yinqi Tang (Member, IEEE) received the B.S.
degree in microelectronics from Fudan University,
Shanghai, China, in 2014, and the M.A. degree in
electrical engineering from Princeton University,
Princeton, NJ, USA, in 2016, where he is currently
pursuing the Ph.D. degree.

His current research interests include
energy-efficient hardware systems for machine
learning and deep learning applications, in both
algorithm and hardware design aspects.

Hossein Valavi (Student Member, IEEE) received
the B.Sc. degree in electrical engineering from
the Sharif University of Technology, Tehran, Iran,
in 2013, and the M.S. and Ph.D. degrees in electrical
engineering from Princeton University, Princeton,
NJ, USA, in 2015 and 2020, respectively.

His research focuses on ultra-low-energy system
design for signal processing and machine learning
applications.

Dr. Valavi was a recipient of the Analog Devices
Outstanding Student Designer Award in 2016.

Rakshit Pathak (Student Member, IEEE) received
the B.Tech. degree in electronics and electrical
communication engineering from IIT Kharagpur,
Kharagpur, India, in 2018, and the M.A. degree
in electrical engineering from Princeton University,
Princeton, NJ, USA, in 2020, where he is currently
pursuing the Ph.D. degree under the guidance of
Prof. Naveen Verma.

His research focuses on algorithm-hardware co-
design of machine learning platforms. His research
includes design of heterogeneous computing and

low-energy in-memory computing systems.

Jinseok Lee (Graduate Student Member, IEEE)
received the B.S. and M.S. degrees in electrical engi-
neering from Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, South Korea,
in 2015 and 2017, respectively. He is currently
pursuing the Ph.D. degree with Princeton University,
Princeton, NJ, USA.

Naveen Verma (Senior Member, IEEE) received
the B.A.Sc. degree in electrical and computer engi-
neering from The University of British Columbia,
Vancouver, BC, Canada, in 2003, and the M.S.
and Ph.D. degrees in electrical engineering from
MIT Cambridge, MA, USA, in 2005 and 2009,
respectively.

Since July 2009, he has been with Princeton Uni-
versity, Princeton, NJ, USA, where he is currently
the Director of the Keller Center for Education in
Innovation and Entrepreneurship and a Professor of

electrical engineering. His research focuses on advanced sensing systems,
exploring how systems for learning, inference, and action planning can be
enhanced by algorithms that exploit new sensing and computing technolo-
gies. This includes research on large area, flexible sensors, energy-efficient
statistical-computing architectures and circuits, and machine learning and
statistical-signal-processing algorithms.

Prof. Verma was a recipient or a co-recipient of the 2006 DAC/ISSCC
Student Design Contest Award, the 2008 ISSCC Jack Kilby Paper Award,
the 2012 Alfred Rheinstein Junior Faculty Award, the 2013 NSF CAREER
Award, the 2013 Intel Early Career Award, the 2013 Walter C. Johnson Prize
for Teaching Excellence, the 2013 VLSI Symposium Best Student Paper
Award, the 2014 AFOSR Young Investigator Award, the 2015 Princeton
Engineering Council Excellence in Teaching Award, and the 2015 IEEE
TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING

TECHNOLOGY Best Paper Award. He also serves on the technical pro-
gram committees for ISSCC, VLSI Symposium DATE, and the IEEE
Signal-Processing Society (DISPS). He has served as a Distinguished Lecturer
for the IEEE Solid-State Circuits Society.


