A 22nm 128-kb MRAM Row/Column-Parallel In-Memory Computing Macro with Memory-Resistance Boosting and Multi-Column ADC Readout

Peter Deaville, Bonan Zhang, and Naveen Verma Princeton University, Princeton, NJ, USA (deaville@princeton.edu)

Abstract

Readout Channel Details

This paper presents a 128-kb in-memory computing (IMC) row/column-parallel macro for fully matrix-vector multiplication (MVM), implemented using a foundry MRAM in 22nm FD-SOI. Previous IMC in eNVM relied on RRAM with significantly higher resistance and resistance-state contrast than typical in foundry processes [1-3] or where parallelism was substantially reduced [4]. MRAM addresses distinct application requirements (e.g., temperature, radiation). This work advances previous MRAM IMC by improving areanormalized EDP by 60× over [5] and by employing a standard high-density bit cell without additional devices, as in [6]. This is achieved via a readout architecture that performs columnresistance boosting, with integrated auto-zeroing, and conductance-to-current sampling, to simultaneously feed four IMC columns to a single ADC for conversion to 6-b outputs (highest ADC precision among eNVM IMC designs).

IMC Macro Architecture and Overview

Fig. 1 shows the IMC macro, which performs single-shot 128×128 MVM, on 1-b input-vector elements and 4-b matrix elements (higher precision is supported as described later). It comprises a 256(row)x512(col.) MRAM array of 1T1R cells periphery for single-bit and MVM readout, bitand line/source-line (BL/SL) driving, word-line (WL) driving, and row decoding. Standard foundry MRAM is used, with only BL/SL metal strapping added to reduce parasitic resistances.

For signed binarized multiplication between input-vector and matrix elements, pairs of bit cells in a column store complementary data and are driven by complementary WL data, implementing an XNOR operation. Accumulation is achieved as the sum of parallel conductances across column bit cells between BL-SL. Multi-bit input-vectors are supported by bit-serial processing of parallel input-vector elements over multiple cycles. Multi-bit matrix elements are supported by mapping bits to parallel columns, where four columns feed one readout channel, which performs binary weighting, summation, and 6-b digitization. This eliminates area-consuming columnmultiplexing circuitry and maximizes column parallelism.

Fig. 1. Demonstrated MRAM IMC macro.

The readout channel consists of: (1) four current-sampling blocks, which convert column conductances to sampled currents; (2) a current-combiner block, which binary-weights and sums the four sampled currents, to feed a single digitizer; and (3) a 6-b current-to-digital converter (IDC), based on a SAR architecture. The 128 readout channels share a single global FSM, which controls auto-zeroing phases in the currentsampling blocks and bit-cycling phases in the SAR IDCs, and which selects between MVM and memory-data readout modes.

Fig. 2 shows details of the current-sampling block during conductance-to-current conversion. To achieve high sensitivity, it first employs auto-zeroing (AZ), where a fixed input reference conductance GAZ is generated in-situ by the MRAM array, and an MVM output conductance G_{MVM} is then processed as a relative change in conductance. AZ is described later. Conversion from G_{MVM} to current involves four stages:

Fig. 2. Current-sampling block for converting column BL-SL conductance to a sampled current.

The saturation-biased cascode device (MN_{CSCD}) has the property that the resistance (conductance) at its source is amplified (attenuated) when seen at its drain, by a factor equal to the MOSFET intrinsic gain ($g_m r_0 \approx 20$). Thus, amplification is achieved without separate current-consuming branch, reducing the current required to generate sensing voltages from small (large) parallel resistances (conductances). Following this, the differential-to-single-ended amp provides additional gain (~10). This enhances feedback by driving a device (MP_{FB}), whose current IFB through G_{MVM} works to restore the AZ biasing condition at the cascode's source node: VAZ=IFB/GMVM. Thus, IFB in proportion to GMVM is generated, and sampled via a capacitor C_{SAMP} at the gate of a binary-weighted currentsampling device, which then feeds the IDC.

Fig. 3 shows details of the AZ operation, which generates a fixed reference conductance GAZ to establish bias conditions for the current-sampling block. GAZ generation exploits the

complementary data storage in column bit cells. Specifically, during MVM compute, complementary WL driving and bitcell data storage over 256 MRAM rows means that G_{MVM} ranges from $128 \times G_P$ to $128 \times G_{AP}$ (where G_{AP}/G_P are the MRAM anti-/parallel-state conductances). However, during AZ, WL drivers perform non-complementary driving over the first 128 rows, yielding a fixed conductance of $64 \times G_{AP} + 64 \times G_P$, at the midpoint of the G_{MVM} range. The resulting GAZ is used to self-bias stages of the current-sampling block, enhancing channel sensitivity and mitigating the effects of channel-to-channel offsets. As shown, the cascode stage employs negative-feedback biasing on a gate capacitor C_{CSCD} tied to the SL. In addition to input-offset cancellation, this helps cancel effects of SL voltage variation from datadependent I_{FB} through the SL-switch (MN_{SL-SW}) resistance (prominent when MN_{SL-SW} is small to minimize area). The amp stage employs negative-feedback biasing on a capacitor CAMP.

The current combiner takes the binary-weighted current outputs from four current-sampling blocks and provides these to the V_{G-DAC} node of the SAR IDC. The sampled currents are provided through cascode PMOS's to shield against parasitic V_{G-DAC} to C_{SAMP} coupling (from C_{D-G}). The SAR IDC employs a conductance-feedback DAC, implemented by binary weighted NMOS's with supply-tunable drivers, which provide conductance trimming for IDC gain control. The DAC's code-dependent conductance sets the settling time constant and thus the max readout frequency, as shown in the bottom waveforms.

Fig. 4 shows details of the current-combiner and IDC blocks.

Chip Results and NN Demo

Fig. 5 (left) shows chip-measured IMC column transfer functions in the form of heatmaps. Data is shown for both 128 complementary bit cells (full 256-row parallelism) and 64 complementary bit cells (128-row parallelism). A fullymapped 6-layer conv. neural network (CNN) is demonstrated for CIFAR-10/100 image classification. Fig. 5 (right) shows ideal- and chip-measured average transfer functions for tiled MVM computations at each layer. At lower-right is ideal and chip-measured pre-activation data, showing raw MVM results.

Fig. 5. Heatmaps of the measured column transfer function (left), and MVM data from CNN CIFAR-10 demo (right).

Fig. 6 summarizes the results and comparison with previous work. The presented macro achieves high energy efficiency (41.6 1b-TOPS/W), area-norm. throughput (5480 1b-GOPS/mm²), and output ADC resolution, without modifying the bit-cell circuit (as in [6]) or the bit-cell resistance levels (as in [1-3]), relative to typical foundry technologies (energy range corresponds to configurable biasing points of current-sampling block). High application performance is verified for CIFAR-10/100 classification, mapping all conv. layers to the chip, with accuracy of 90.24%/71.08% matching ideal SW computation.

	Sector of the se	Ree Cha (x' 1125 um 200	WL Periphery Write idout innels 128) WL Periphery. RD/Compute 0 um		RAM rray sx512		
	[1] ISSCC '20	[2] T-ED '20	[3] ISSCC '21	[4] ISSCC '21	[5] ESSCIRC '21	[6] Nature '21	This Work
Technology	ReRAM, 130nm CMOS	ReRAM, 90nm CMOS	ReRAM, 22nm CMOS	ReRAM, 40nm CMOS	MRAM, 22nm CMOS	MRAM, 28nm CMOS	MRAM, 22nm CMOS
Row Parallelism	784	128	4	1-9	256	64	256
Col. Parallelism	100	8	64	8	128	64	512
Area-Norm. Throughput (1b-GOPS/mm ²)	450	3424	139.32	109.2	758	4430	5480
Efficiency (1-b TOPS/W)	117.6	24.5 - 51.4	23.8 - 391.4	4.5 (avg.) 56.67 (peak)	5.1	262 - 405	19.5 – 41.6
Cell Resistance & Contrast	HIGH	HIGH	HIGH	LOW	LOW	LOW	LOW
ADC Bits	1b	3b	4b	4b	4b	4b	6b
Standard Bit Cell	YES	YES	YES	YES	YES	NO	YES
FoM (Throughput x Efficiency, OPS ² /W/mm ²)	5.29 x 10 ²⁵	1.75 x 10 ²⁶	5.44 x 10 ²⁵	6.19 x 10 ²⁴	3.86 x 10 ²⁴	1.79 x 10 ²⁷	2.28 x 10 ²⁶
NN Demo	MNIST, 94.4%	CIFAR-10, 83.5%	None	MNIST, ~95%	CIFAR-10, 90.1%	MNIST 93.23%	CIFAR-10 / 100 90.24 / 71.08%

Fig. 6. Die photo and comparison table, with neuralnetwork demonstration summary.

Acknowledgements: Research sponsored by AFRL and DARPA, agreement no. FA8650-18-2-7866.

References: [1] Q. Liu et al., ISSCC, 2020 [2] S. Yin, et al., IEEE T-ED, Oct. 2020 [3] C.-X. Xue et al., ISSCC, 2021 [4] J.-H. Yoon, et al., ISSCC, 2021 [5] P. Deaville, et al., ESSCIRC, 2021 [6] S. Jung et al., Nature, 2022