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Abstract

We provide self-contained proof of a theorem relating probabilistic coherence of
forecasts to their non-domination by rival forecasts with respect to any proper
scoring rule. The theorem recapitulates insights achieved by other investigators,
and clarifies the connection of coherence and proper scoring rules to Bregman di-
vergence.

1 Introduction

Scoring rules measure the quality of a probability-estimate for a given event, with lower
scores signifying probabilities that are closer to the event’s status (1 if it occurs, 0
otherwise). The sum of the scores for estimates p of a vector E of events is called the
“penalty” for p. Consider two potential defects in p.

• There may be rival estimates q for E whose penalty is guaranteed to be lower
than the one for p, regardless of which events come to pass.
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• The events in E may be related by inclusion or partition, and p might violate
constraints imposed by the probability calculus (for example, that the estimate
for an event not exceed the estimate for any event that includes it).

Building on the work of earlier investigators (see below), we show that for a broad
class of scoring rules known as “proper” the two defects are equivalent. An exact
statement appears as Theorem 1. To reach it, we first explain key concepts intuitively
(the next section) then formally (Section 3). Proof of the the theorem proceeds via three
propositions of independent interest (Section 4). We conclude with generalizations of
our results and an open question.

2 Intuitive account of concepts

Imagine that you attribute probabilities .6 and .9 to events E and F, respectively, where
E ⊆ F. It subsequently turns out that F comes to pass but not E. How shall we assess
the perspicacity of your two estimates, which may jointly be called a probabilistic
forecast? According to one method (due to Brier, 1950) truth and falsity are coded
by 1 and 0, and your estimate of the chance of E is assigned a score of (0 − .6)2 since E
did not come true (so your estimate should ideally have been zero). Your estimate for
F is likewise assigned (1− .9)2 since it should have been one. The sum of these numbers
serves as overall penalty.

Let us calculate your expected penalty for E (prior to discovering the facts). With
.6 probability you expected a score of (1 − .6)2, and with the remaining probability you
expected a score of (0 − .6)2, hence your overall expectation was .6(1 − .6)2 + .4(0 −

.6)2 = .24. Now suppose that you attempted to improve (lower) this expectation by
insincerely announcing .65 as the chance of E, even though your real estimate is .6.
Then your expected penalty would be .6(1 − .65)2 + .4(0 − .65)2 = .2425, worse than
before. Differential calculus reveals the general fact:

Suppose your probability for an event E is p, that your announced probabil-
ity is x, and that your penalty is assessed according to the rule: (1−x)2 if E
comes out true; (0 − x)2 otherwise. Then your expected penalty is uniquely
minimized by choosing x = p.

Our scoring rule thus encourages sincerity since your interest lies in announcing prob-
abilities that conform to your beliefs. Rules like this are called strictly proper.1 (We

1For brevity, the term “proper” will be employed instead of the usual “strictly proper”.
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add a continuity condition in our formal treatment, below.) For an example of an im-
proper rule, substitute absolute deviation for squared deviation in the original scheme.
According to the new rule, your expected penalty for E is .6|1 − .6| + .4|0 − .6| = .48
whereas it drops to .6|1 − .65| + .4|0 − .65| = .47 if you fib as before.

Forecast
Logical

possibilities
when E ⊆ F

original rival

E true
F true .17 .205

E false
F true .37 1.105

E false
F false 1.17 1.205

Table 1: Penalties for two fore-
casts in alternative possible real-
ities

Consider next the rival forecast of .95 for E and
.55 for F. Because E ⊆ F, this forecast is incon-
sistent with the probability calculus (or incoher-
ent). Table 1 shows that the original forecast dom-
inates the rival inasmuch as its penalty is lower
however the facts play out. This association of in-
coherence and domination is not an accident. No
matter what proper scoring rule is in force, any
incoherent forecast can be replaced by a coherent
one whose penalty is lower in every possible circum-
stance; there is no such replacement for a coherent
forecast. This fact is formulated as Theorem 1 in
the next section. It can be seen as partial vindica-
tion of probability as an expression of chance.2

These ideas have been discussed before, first by
de Finetti (1974) who began the investigation of dominated forecasts and probabilistic
consistency (called coherence). His work relied on the quadratic scoring rule,
introduced above.3 Lindley (1982) generalized de Finetti’s theorem to a broad class of
scoring rules. Specifically, he proved that for every sufficiently regular generalization s
of the quadratic score, there is a transformation T : <→ < such that a forecast f is not
dominated by any other forecast with respect to s if and only if the transformation of
f by T is probabilistically coherent. It has been suggested to us that Theorem 1 below
can be perceived in Lindley’s discussion, especially in his Comment 2 (p. 7), which deals
with scoring rules that he qualifies as proper. We are agreeable to crediting Lindley with
the theorem (under somewhat different regularity conditions) but it seems to us that
his discussion is clouded by reliance on the transformation T to define proper scoring
rules and to state the main result.

In any event, fresh insight into proper scoring rules comes from relating them to a
generalization of metric distance known as Bregman divergence (Bregman, 1967).
This relationship was studied by Savage (1971), albeit implicitly, and more recently by
Banerjee et al. (2005) and Gneiting and Raftery (2007). So far as we know, their results

2The other classic vindication involves sure-loss contracts; see Skyrms (2000).
3For analysis of de Finetti’s work, see Joyce, 1998. Note that some authors use the term inadmis-

sible to qualify dominated forecasts.
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have yet to be connected to the issue of dominance. The connection is explored here.

More generally, to pull together the threads of earlier discussions, the present work
offers a self-contained account of the relations among (i) coherent forecasts, (ii) Bregman
divergences, and (iii) domination with respect to proper scoring rules. Only elementary
analysis is presupposed. We begin by formalizing the concepts introduced above.4

3 Framework and Main Result

Let Ω be a nonempty sample space. Subsets of Ω are called events. Let E be a
vector (E1, · · · ,En) of n > 1 events over Ω. We assume that Ω and E have been chosen
and are now fixed for the remainder of the discussion. We require E to have finite
dimension n but otherwise our results hold for any choice of sample space and events.
In particular, Ω can be infinite. We rely on the usual notation [0, 1], (0, 1), {0, 1} to
denote, respectively, the closed interval {x : 0 6 x 6 1}, the open interval {x : 0 < x < 1}

and the two-point set containing 0, 1.

Definition 1. Any element of [0, 1]n is called a (probability) forecast (for E). A
forecast f is coherent just in case there is a probability measure µ over Ω such that
for all i 6 n, fi = µ(Ei).

A forecast is thus a list of n numbers drawn from the unit interval. They are interpreted
as claims about the chances of the corresponding events in E. The first event in E is
assigned the probability given by the first number (f1) in f, and so forth. A forecast is
coherent if it is consistent with some probability measure over Ω.

This brings us to scoring rules. In what follows, the numbers 0 and 1 are used to
represent falsity and truth, respectively.

Definition 2. A function s : {0, 1} × [0, 1] → [0, ∞] is said to be a proper scoring
rule in case

(a) ps(1, x) + (1 − p)s(0, x) is uniquely minimized at x = p for all p ∈ [0, 1].

(b) s is continuous, meaning that for i ∈ {0, 1}, limn→∞ s(i, xn) = s(i, x) for any
sequence xn ∈ [0, 1] converging to x.

For condition 2(a), think of p as the probability you have in mind, and x as the one you
announce. Then ps(1, x)+ (1 −p)s(0, x) is your expected score. Fixing p (your genuine

4For application of scoring rules to the assessment of opinion, see Gneiting and Raftery (2007) along
with Bernardo and Smith (1994, §2.7.2) and references cited there.
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belief), the latter expression is a function of the announcement x. Proper scoring rules
encourage candor by minimizing the expected score exactly when you announce p.

The continuity condition is consistent with s assuming the value +∞. This can only
occur for the arguments (0, 1) or (1, 0), representing categorically mistaken judgment.
For if s(0,p) = ∞ for some p 6= 1, then ps(1, x) + (1 − p)s(0, x) can not have a unique
minimum at x = p; similarly, s(1,p) < +∞ for p 6= 0. An interesting example of an
unbounded proper scoring rule (Good, 1952) is

s(i, x) = − ln |1 − i− x| .

A comparison of alternative rules is offered in Selten (1998).

For an event E, we let CE be the characteristic function of E; that is, for all ω ∈ Ω,
CE(ω) = 1 if ω ∈ E and 0 otherwise. Intuitively, CE(ω) reports whether E is true or
false if Nature chooses ω.

Definition 3. Given proper scoring rule s, the penalty Ps based on s for forecast f
and ω ∈ Ω is given by:

Ps(ω, f) =
∑
i6n

s(CEi(ω), fi). (1)

Thus, Ps sums the scores (conceived as penalties) for all the events under consideration.
Henceforth, the proper scoring rule s is regarded as given and fixed. The theorem below
holds for any choice we make.

Definition 4. Let a forecast f be given.

(a) f is weakly dominated by a forecast g in case Ps(ω,g) 6 Ps(ω, f) for all ω ∈ Ω.

(b) f is strongly dominated by a forecast g in case Ps(ω,g) < Ps(ω, f) for all
ω ∈ Ω.

Strong domination by a rival, coherent forecast g is the price to be paid for an incoherent
forecast f. Indeed, we shall prove the following version of Lindley (1982), Comment 2.

Theorem 1. Let a forecast f be given.

(a) If f is coherent then it is not weakly dominated by any forecast g 6= f.
(b) If f is incoherent then it is strongly dominated by some coherent forecast g.

Thus, if f and g are coherent and f 6= g then neither weakly dominates the other.
The theorem follows from three propositions of independent interest, stated in the next
section. We close the present section with a corollary.
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Corollary 1. A forecast f is weakly dominated by a forecast g 6= f if and only if f is
strongly dominated by a coherent forecast.

Proof of Corollary 1. The right-to-left direction is immediate from Definition 4. For
the left-to-right direction, suppose forecast f is weakly dominated by some g 6= f. Then
by Theorem 1(a), f is not coherent. So by Theorem 1(b), f is strongly dominated by
some coherent forecast.

4 Three Propositions

The first proposition is a characterization of coherence. It is due to de Finetti (1974).

Definition 5. Let V = {(CE1(ω), · · · ,CEn(ω)) : ω ∈ Ω} ⊆ {0, 1}n. Let the cardinality
of V be k. Let conv(V) be the convex hull of V, i.e., conv(V) consists of all vectors of
form a1v1 + · · · + akvk, where vi ∈ V, ai > 0, and

∑k
i=1 ai = 1.

The Ei may be related in various ways, so k < 2n is possible (indeed, this is the case of
interest).

Proposition 1. A forecast f is coherent if and only if f ∈ conv(V).

The next proposition characterizes scoring rules in terms of convex functions. Recall
that a convex function ϕ on a convex subset of <n satisfies ϕ(ax + (1 − a)y) 6
aϕ(x)+(1−a)ϕ(y) for all 0 < a < 1 and all x, y in the subset. Strict convexity means
that the inequality is strict unless x = y. Variants of the following fact are proved in
Savage (1971), Banerjee et al. (2005), and Gneiting and Raftery (2007).

Proposition 2. Let s be a proper scoring rule. Then the function ϕ : [0, 1] → <

defined by ϕ(x) = −xs(1, x) − (1 − x)s(0, x) is a bounded, continuous and strictly
convex function, differentiable for x ∈ (0, 1). Moreover,

s(i, x) = −ϕ(x) −ϕ ′(x)(i− x) ∀x ∈ (0, 1) . (2)

Conversely, if a function s satisfies (2), with ϕ bounded, strictly convex and differen-
tiable on (0, 1), and s is continuous on [0, 1], then s is a proper scoring rule.

We note that the right side of (2), which is only defined for x ∈ (0, 1), can be
continuously extended to x = 0, 1. This is the content of the Lemma 1 in the next
section. If the extended s satisfies (2) then:

s(0, 0) = −ϕ(0) and s(1, 1) = −ϕ(1) . (3)
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Finally, our third proposition concerns a well known property of Bregman divergences
(see, e.g., Censor and Zenios, 1997). When we apply the proposition to the proof of
Theorem 1, C will be the unit cube in <n.

Definition 6. Let C be a convex subset of <n with non-empty interior. Let Φ :

C→ < be a strictly convex function, differentiable in the interior of C, whose gradient
∇Φ extends to a bounded, continuous function on C. For x,y ∈ C, the Bregman
divergence dΦ : C× C→ < corresponding to Φ is given by

dΦ(y, x) = Φ(y) −Φ(x) −∇Φ(x) · (y− x).

Because of the strict convexity of Φ, dΦ(y, x) > 0 with equality if and only if y = x.

Proposition 3. Let dΦ : C × C → < be a Bregman divergence, and let Z ⊆ C be a
closed convex subset of <n. For x ∈ C \ Z, there exists a unique πx ∈ Z, called the
projection of x onto Z, such that

dΦ(πx, x) 6 dΦ(y, x) ∀y ∈ Z .

Moreover,
dΦ(y,πx) 6 dΦ(y, x) − dΦ(πx, x) ∀y ∈ Z, x ∈ C \ Z . (4)

Its worth observing that Proposition 3 also holds if x ∈ Z, in which case πx = x and
(4) is trivially satisfied.

5 Proofs of Propositions 1–3

Proof of Proposition 1. Recall that n is the dimension of E, and that k is the number
of elements in V. Let X be the collection of all nonempty sets of form

⋂n
i=1 E

∗
i , where

E∗i is either Ei or its complement. (X corresponds to the minimal non-empty regions
appearing in the Venn diagram of E.) It is easy to see that:

(a) X partitions Ω.

It is also clear that there is a one-to-one correspondence between X and V with the
property that e ∈ X is mapped to v ∈ V such that for all i 6 n, e ⊆ Ei iff vi = 1. (Here,
vi denotes the ith component of v.) Thus, there are k elements in X. We enumerate
them as e1, · · · , ek, and the corresponding v by v(ej). Plainly, for all i 6 n, Ei is the
disjoint union of {ej : j 6 k ∧ v(ej)i = 1}, and hence:
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(b) For any measure µ , µ(Ei) =
∑k
j=1 µ(ej)v(ej)i for all 1 6 i 6 n.

For the left-to-right direction of the proposition, suppose that forecast f is coherent
via probability measure µ. Then fi = µ(Ei) for all i 6 n and hence by (b), fi =∑k
j=1 µ(ej)v(ej)i. But the µ(ej) are non-negative and sum to one by (a), which shows

that f ∈ conv(V).

For the converse, suppose that f ∈ conv(V), which means that there are non-negative
aj’s, with

∑
j aj = 1, such that f =

∑k
j=1 ajv(ej). Let µ be some probability measure

such that µ(ej) = aj for all j 6 k. By (a) and the assumption about the ai, it is clear
that such a measure µ exists. For all i 6 n, fi =

∑k
j=1 ajv(ej)i =

∑k
j=1 µ(ej)v(ej)i =

µ(Ei) by (b), thereby exhibiting f as coherent.

Before giving the proof of Proposition 2, we state and prove the following technical
Lemma.

Lemma 1. Let ϕ : [0, 1] → < be bounded, convex and differentiable on (0, 1). Then
the limits limp→0,1ϕ(p) and limp→0,1ϕ

′(p) exist, the latter possibly being equal to
−∞ at x = 0 or +∞ at x = 1. Moreover,

lim
p→0

pϕ ′(p) = lim
p→1

ϕ ′(p)(1 − p) = 0 . (5)

Proof of Lemma 1. Since ϕ is convex, the limits limp→0,1ϕ(p) exist, and they are finite
since ϕ is bounded. Moreover, ϕ ′ is a monotone increasing function, and hence also
limp→0,1ϕ

′(p) exists (but possibly equals −∞ at x = 0 or +∞ at x = 1). Finally,
Eq. (5) follows again from monotonicity of ϕ ′ and boundedness of ϕ, using that 0 =

limp→0

∫p
0 ϕ
′(q)dq 6 limp→0 pϕ

′(p), and likewise at p = 1.

Proof of Proposition 2. Let s be a proper scoring rule. For 0 < p < 1, let

ϕ(p) = − min
x

{ps(1, x) + (1 − p)s(0, x)} . (6)

By Definition 2(a), the minimum in (6) is achieved at x = p, hence ϕ(p) = −ps(1,p) −

(1 − p)s(0,p).

As a minimum over linear functions, −ϕ is concave; hence ϕ is convex. Clearly, ϕ
is bounded (because s > 0 implies, from (6), that ϕ 6 0, but a convex function can
become unbounded only by going to +∞).

The fact that the minimum is achieved uniquely (Def. 2) implies that ϕ is strictly
convex for the following reason. We take x, y ∈ (0, 1) and 0 < a < 1 and set z =
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ax+ (1 − a)y. Then ϕ(y) = −y s(1,y) − (1 − y) s(0,y) > −y s(1, x) − (1 − y) s(0, z) by
uniqueness of the minimizer at y 6= z. Similarly, ϕ(x) = −x s(1, x) − (1 − x) s(0, x) >
−x s(1, z) − (1 − x) s(0, z). By adding a times the first inequality to 1 − a times the
second we obtain aϕ(y) + (1 − a)ϕ(x) > −z s(1, z) − (1 − z) s(0, z) = ϕ(z), which is
precisely the statement of strict convexity.

Let ψ(p) = s(0,p)−s(1,p). If ϕ is differentiable and ϕ ′(p) = ψ(p) for all 0 < p < 1,
then (2) is satisfied, as simple algebra shows.

We shall now show that ϕ is, in fact, differentiable and ϕ ′ = ψ. For any p ∈ (0, 1)

and small enough ε, we have

1
ε

(ϕ(p+ ε) −ϕ(p)) = ψ(p)

−
1
ε

[(p+ ε) (s(1,p+ ε) − s(1,p)) + (1 − p− ε) (s(0,p+ ε) − s(0,p))] .

Since (p + ε)s(1, x) + (1 − p − ε)s(0, x) is minimized at x = p + ε by Definition 2(a),
the last term in square brackets is negative. Hence

lim
ε→0

1
ε

(ϕ(p+ ε) −ϕ(p)) > ψ(p) ,

and similarly one shows

lim
ε→0

1
ε

(ϕ(p) −ϕ(p− ε)) 6 ψ(p) .

Since ψ is continuous by Definition 2(b), this shows that ϕ is differentiable, and hence
ψ = ϕ ′. This proves Eq. (2). Continuity of ϕ up to the boundary of [0, 1] follows from
continuity of s and Lemma 1.

To prove the converse, first note that if ϕ is bounded and convex on (0, 1), it can
be extended to a continuous function on [0, 1], as shown in Lemma 1. Because of strict
convexity of ϕ we have, for p ∈ [0, 1] and 0 < x < 1,

ps(1, x) + (1 − p)s(0, x) = −ϕ(x) −ϕ ′(x)(p− x) > −ϕ(p) , (7)

with equality if and only if x = p.

It remains to show that the same is true for x ∈ {0, 1}. Consider first the case x = 0.
We have to show that ps(1, 0) + (1 − p)s(0, 0) > −ϕ(p) for p > 0. By continuity of s,
Eq. (2) and Lemma 1, we have s(1, 0) = −ϕ(0) − limp→0ϕ

′(p), while s(0, 0) = −ϕ(0).
If limp→0ϕ

′(p) = −∞, the result is immediate. If ϕ ′(0) := limp→1ϕ
′(p) is finite, we

have −ϕ(0) − pϕ ′(0) > −ϕ(p) again by strict convexity of ϕ.

Likewise, one shows that ps(1, 1) + (1 − p)s(0, 1) > −ϕ(p) for p < 1. This finishes
the proof that s is a proper scoring rule.
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Proof of Proposition 3. For fixed x ∈ C, the function y 7→ dΦ(y, x) is strictly convex,
and hence achieves a unique minimum at a point πx in the convex, closed set Z.

Let y ∈ Z. For 0 6 ε 6 1, (1 − ε)πx + εy ∈ Z, and hence dΦ((1 − ε)πx + εy, x) −

dΦ(πx, x) > 0 by the definition of πx. Since dΦ is differentiable in the first argument,
we can divide by ε and let ε→ 0 to obtain

0 6 lim
ε→0

1
ε

(dΦ((1 − ε)πx + εy, x) − dΦ(πx, x)) = (∇Φ(πx) −∇Φ(x)) · (y− πx) .

The fact that

dΦ(y, x) − dΦ(πx, x) − dΦ(y,πx) = (∇Φ(πx) −∇Φ(x)) · (y− πx)

proves the claim.

6 Proof of Theorem 1

The main idea of the proof is more apparent when s is bounded. So we consider this
case on its own before allowing s to reach +∞.

Bounded Case.

Suppose s is bounded. In this case, the derivative of the corresponding ϕ from Eq. (2)
in Proposition 2 is continuous and bounded all the way up to the boundary of [0, 1].

Let f ∈ [0, 1]n be a forecast and, for ω ∈ Ω, let vω ∈ V be the vector with compo-
nents CEi(ω). Let Φ(x) =

∑n
i=1ϕ(xi). Then

Ps(ω, f) =

n∑
i=1

s(CEi(ω), fi) [Definition 3]

=

n∑
i=1

−ϕ(fi) −ϕ ′(fi)(CEi(ω) − fi) [Proposition 2]

= dΦ(vω, f) −

n∑
i=1

ϕ(CEi(ω)) [Definition 6]

= dΦ(vω, f) +

n∑
i=1

s(CEi(ω),CEi(ω)) [Equation 3]. (8)

Now assume that f is incoherent which, by Proposition 1, means that f 6∈ conv(V).
According to Eq. (4) of Proposition 3, there exists a g ∈ conv(V), namely the projection
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of f onto conv(V), such that dΦ(y,g) 6 dΦ(y, f) − dΦ(g, f) for all y ∈ conv(V) and
hence, in particular, for y ∈ V. Since dΦ(g, f) > 0 this proves part (b) of Theorem 1.

To prove part (a) first note that weak dominance of f by g means that dΦ(vω,g) 6
dΦ(vω, f) for all vω ∈ V, by Eq. (8). In this case, dΦ(y,g) 6 dΦ(y, f) for all y ∈
conv(V), since dΦ(y,g)−dΦ(y, f) depends linearly on y. If f is coherent, f ∈ conv(V)

by Proposition 1, and hence dΦ(f,g) 6 dΦ(f, f) = 0. This implies that g = f.

Unbounded Case.

Next, consider the case when s is unbounded. In this case, the derivative of the
corresponding ϕ from Proposition 2 diverges either at 0 or 1, or at both values, and
hence we can not directly apply Proposition 3. Eq. (8) is still valid, with both sides of
the equation possibly being +∞. However, if f lies either in the interior of [0, 1]n, or
on a point on the boundary where the derivative of Φ(x) =

∑
iϕ(xi) does not diverge,

an examination of the proof of Proposition 3 shows that the result still applies, as we
show now.

If ∇Φ(f) is finite, the minimum of Φ(y) −∇Φ(f) · y over y ∈ conv(V) is uniquely
attained at some g ∈ conv(V). Moreover, ∇Φ(g) is necessarily finite. Repeating the
argument in the proof of Proposition 3 shows that dΦ(y,g) 6 dΦ(y, f) − dΦ(g, f) for
any y ∈ conv(V), which is the desired inequality needed in the proof of Theorem 1(b).
We are thus left with the case in which f lies on an (n − 1) dimensional face of [0, 1]n

where the normal derivative diverges. Consider first the case n = 1. Then either
V = {0, 1}, in which case f is coherent, or V = {0} or {1}, in which case it is clear that
the unique coherent vector g ∈ V strongly dominates f.

We now proceed by induction on the dimension n of the forecast f. In the (n − 1)

dimensional hypercube, either f lies inside or on a point of the boundary where the
normal derivative of Φ is finite, in which case we have just argued that there exists a
g̃ that is coherent and satisfies Ps(ω, g̃) < Ps(ω, f) for all ω such that vω lies in the
(n − 1) dimensional face. In the other case, the induction hypothesis implies that we
can find such a g̃. Note that for all the other ω, Ps(ω, g̃) = Ps(ω, f) = ∞. Now simply
pick an 0 < ε < 1 and choose gε = (1 − ε)g̃ + εl−1

∑l
i=1 vi, where the vi denote all

the l elements of V outside the (n − 1)-dimensional hypercube. Then Ps(ω,gε) < ∞
for all ω and also, using Lemma 1, limε→0 Ps(ω,gε) = Ps(ω, g̃). Hence we can choose
ε small enough to conclude that Ps(ω,gε) < Ps(ω, f) for all ω ∈ Ω. This finishes the
proof of part (b) in the general case of unbounded s.

To prove part (a) in the general case, we note that if f =
∑
i aivi for vi ∈ V and

ai > 0, then necessarily dΦ(vi, f) < ∞. That is, any coherent f is a convex combination
of vi ∈ V such that dΦ(vi, f) < ∞. This follows from the fact that a component of f
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can be 0 only if this component is 0 for all the vi’s. The same is true for the value 1.
But the dΦ(v, f) can be infinite only if some component of f is 0 and the corresponding
one for v is 1, or vice versa.

Since dΦ(vi, f) < ∞ for the vi in question, also dΦ(vi,g) < ∞ by Eq. (8) and the
assumption that f is weakly dominated by g. Moreover, dΦ(vi,g)−dΦ(vi, f) 6 0. But∑
i ai(dΦ(vi,g) − dΦ(vi, f)) = dΦ(f,g) > 0, hence f = g.

7 Generalizations

7.1 Penalty functions

Theorem 1 holds for a larger class of penalty functions. In fact, one can use different
proper scoring rules for every event, and replace (1) by

Ps(ω, f) =
∑
i6n

si(CEi(ω), fi) ,

where the si are possibly distinct proper scoring rules. In this way, forecasts for some
events can be penalized differently than others. The relevant Bregman divergence in this
case is given by Φ(x) =

∑
iϕi(xi), where ϕi is determined by si via (2). Proof of this

generalization closely follows the argument given above, so it is omitted. Additionally,
by considering more general convex functions Φ our argument generalizes to certain
non-additive penalties.

7.2 Generalized scoring rules

7.2.1 Non-uniqueness

If one relaxes the condition of unique minimization in Definition 2(a), a weaker form
of Theorem 1 still holds. Namely, for any incoherent forecast f there exists a coherent
forecast g that weakly dominates f. Strong dominance will not hold in general, as the
example of s(i, x) ≡ 0 shows.

Proposition 2 also holds in this generalized case, but the function ϕ need not be
strictly convex. Likewise, Proposition 3 can be generalized to merely convex (not neces-
sarily strictly convex) Φ but in this case the projection πx need not be unique. Eq. (4)
remains valid.
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7.2.2 Discontinuity

A generalization that is more interesting mathematically is to discontinuous scoring
rules. Proposition 2 can be generalized to scoring rules that satisfy neither the continuity
condition in Definition 2 nor unique minimization. (This is also shown in Gneiting and
Raftery, 2007).

Proposition 4. Let s : {0, 1}× [0, 1]→ [0, ∞] satisfy

ps(1, x) + (1 − p)s(0, x) > ps(1,p) + (1 − p)s(0,p) ∀x,p ∈ [0, 1] . (9)

Then the function ϕ : [0, 1] 7→ < defined by ϕ(x) = −xs(1, x)−(1−x)s(0, x) is bounded
and convex. Moreover, there exists a monotone non-decreasing function ψ : [0, 1] 7→
< ∪ {±∞}, with the property that

ψ(x) > lim
ε→0

1
ε

(ϕ(x) −ϕ(x− ε)) ∀x ∈ (0, 1] , (10)

ψ(x) 6 lim
ε→0

1
ε

(ϕ(x+ ε) −ϕ(x)) ∀x ∈ [0, 1) , (11)

such that
s(i, x) = −ϕ(x) −ψ(x)(i− x) ∀x ∈ (0, 1) . (12)

Function ϕ is strictly convex if and only if the inequality (9) is strict for x 6= p.

Conversely, if s is of the form (12), with ϕ bounded and convex and ψ satisfying
(10)–(11), then s satisfies (9).

It is a fact (Hardy et al., 1934) that every convex function ϕ on [0, 1] is continuous on
(0, 1) and has a right and left derivative, ψR and ψL (defined by the right sides of (11)
and (10), respectively) at every point (except the endpoints, where it has only a right
or left derivative, respectively). Both ψR and ψL are non-decreasing functions, and
ψL(x) 6 ψR(x) for all x ∈ (0, 1). Except for countably many points, ψL(x) = ψR(x),
i.e., ϕ is differentiable. Eqs. (10)–(11) say that ψL(x) 6 ψ(x) 6 ψR(x). The concept
of subgradient, well known in convex analysis (Rockafellar, 1970), plays the role of
derivative for non-differentiable convex functions.

Note that although s(0, x) and s(1, x) may be discontinuous, the combination ϕ(x) =

−xs(1, x) − (1 − x)s(0, x) is continuous. Hence, if s(0, x) jumps up at a point x, s(1, x)
has to jump down by an amount proportional to (1 − x)/x.

The proof of Proposition 4 is virtually the same as the proof of Proposition 2, so we
omit it.
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7.3 Open question

Whether Theorem 1 holds for this generalized notion of a discontinuous scoring rule
remains open. The proof of Theorem 1 given here does not extend to the discontinuous
case, since for inequality (4) to hold, differentiability of Φ is necessary, in general.
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