Contents

Summary and Conclusions 1

Chronology of the Use of Water on Grain 5

Justification for Allowing Application of Water and Oil for Dust Suppression 10

Air Pollution Regulations 10
OSHA Regulations 11
Insurance Rates 12
Grain Quality 13
Congressional Actions 13

Frequency and Causes of Grain Dust Explosions 14

Improved Air Quality 20

Grain Quality Considerations 22

Cost and Effectiveness of Alternative Technologies 25

Pneumatic Systems 25
Housekeeping Practices 27
Use of Liquid Additives 27
 Effectiveness of Oil as a Dust Suppressant 27
 Effectiveness of Water as a Dust Suppressant 28
Cost Comparisons. 32
Economic Impacts 35
Results of the Survey 36
 Dust Control Techniques 36
 Motivation for Implementing Dust Control Strategies 37
 Base Moisture Levels Used in Buying Grain 37
Regulation of Alternative Technologies 39

Monitoring the Use of Water on Grain 42

Practices in Other Countries 51

A Market Directed Solution 53

References 56
TABLES

Table 1. Opacity Limits by Type of Facility 12
Table 2. Five-year Average Grain Elevator Explosions and U.S. Grain Export Volumes, 1960-1994 18
Table 3. Comparison between Grain Elevator Dust Explosions and Grain Export Volume 18
Table 4. Equilibrium Moisture Contents at 25C of Common Grains, Seeds, and Feed Ingredients at Relative Humidities of 65-90%, and Fungi Likely to be Encountered 23
Table 5. Financial Impact of Water and Oil Dust Suppressants on Soybeans 34
Table 6. Number of Responses by Type of Firm, 1994 36
Table 7. Method of Dust Control by Type of Firm, 1994 37
Table 8. Primary Motive for Using Dust Control Practices 38
Table 9. Base Moisture Content Used in Purchasing Grain 39
Table 10. Weight or Price Adjustments for Grain Below Base Moisture Content 55

FIGURES

Figure 1. Annual Number of Dust Explosions 17
Figure 2. Grain Elevator Explosions Versus Grain Export Volume 19