Index
"AAtrex" (Ciba-Geigy), 129
Administrative Procedure Act, 49
Advanced Genetic Sciences, Inc. (AGS), ice-minus bacteria research by, 40, 49-51, 125
Agracetus Corp. (Middleton, Wisconsin), plant disease resistance research by, 5, 53, 129
Agricultural Genetics Co. (UK), 130
Agriculture
applications of genetically engineered organisms to, 5, 6, 7-16, 19, 20, 21-22, 33, 35, 49-57, 60, 86-88, 89-92, 94-95, 96, 125-130
BT use in, 5, 7-8, 18-19, 39, 54, 74, 75, 90, 125, 130
Agrobacterium rhizogenes, 128
Alfalfa mosaic virus, “vaccination” of plants against, 5, 36, 54, 96
Algae
genetic engineering of marine, for mining or mineral recovery, 38, 97, 126, 130
impacts of planned introductions on local communities of, 97
Animal and Plant Health Inspection Service (APHIS). See Department of Agriculture, U.S. (USDA)
Animals
applications of engineered organisms involving, 6-7, 38, 59, 131
engineered vaccines for, 128
gene transfer’s likelihood among, 11, 12, 71, 112
see also Fish; Livestock; Poultry
Antibiotics, bacterial resistance to, 13, 14, 77
Applications, anticipated near-term, of genetically engineered organisms, 3, 5-8, 36-40, 86-87, 91, 93, 94-95, 96, 97, 125-32
Aquatic life, See Algae; Fish
Argentina, biotechnology-related field testing in, 59, 128
Asilomar Conference (California), 9, 60
Atrazine, developing plant resistance to, 5, 36, 53-54, 89, 129
Australia, biotechnology research in, 127, 128, 130, 131, 132
Australian National University, 130
Autographa California, 127
Bacillus thuringiensis (BT)
delta-endotoxin gene insertion into plants, 5, 7-8, 18-19, 39, 54, 90, 92, 125, 126, 130
inhibiting gene transfer while transferring toxin gene of, 15, 74, 80
toxin gene’s insertion into Pseudomonas fluorescent for pest control, 15, 19, 39, 74, 80, 125, 126, 130
Backus, Richard A., 52
Bacteria. See Micro-organisms; Viruses; individual bacteria
Bacteroides nodosus, 128
Baculoviruses. See Viruses “Basta” (Hoechst), 129
Baylor University, 128
Beltsville, Maryland, 131
Benefits
consideration of, in risk management, 22, 109
derived from planned releases, 3, 33, 34, 86, 96, 101, 102
Biocine Co., 128
“Bio-Hakuran,” 131
Biomass energy, engineered microbes’ aid in producing, 127
Biosphere II, 39
BioTechnica, Canada, 131
BioTechnica International, Inc. (BTI) Massachusetts field test information brochure developed by, 55-57
“nitrogen-fixing research by, 8, 54-55, 63, 96, 130
Biotechnology, Australia, 128
Biotechnology Science Coordinating Committee (BSCC), 27-28, 61
Bolivar County (Mississippi), 130
Borneo, “cascade effect” in, 92-93
Bozeman, Montana, planned introduction in, 58-59
Brentwood, California, “ice-minus” field test near, 51, 125
Calgene, Inc. (Davis, California), herbicide resistance work by, 5, 128, 129, 131
California
bio-technological field tests in, 49-52, 125
heat-shocked fish in, 131
State biotechnology-related legislative activity in, 50
California, University of-Berkeley, “ice-minus” bacteria research by, 40, 51, 125
Canada, 129
Carbon cycle, 20, 98
“Cascade effects,” 92-93, 95, 101, 116
Chakrabarty, Ananda, 126
Cheney, Donald, 130
Chiron (Emeryville, California), 127, 128
Chlorella vulgaris, 130
Ciba-Geigy Corp. (Greensboro, North Carolina)
genetically altered vaccine production by, 128
herbicide resistance research by, 5, 53-54
Clemson University (South Carolina), lac ZY marker system research at, 40
Cleveland, Mississippi, planned introduction near, 54
Commonwealth Scientific and Industrial Research Organization (CSIRO), 127, 128
Congress, U.S., policy issues and options for possible action by, 25-29
Construct
importance of understanding, 13, 75
risk assessment and, 113-114
Contra Costa County, California, biotechnological field test in, 51, 125
Coordinated Framework for the Regulation of Biotechnology, 9-11, 45, 51, 52, 60, 61-65, 111
Cornell University, 131
Corn plants
biotechnological protection of, 19, 39, 52-53, 74, 75, 89, 92, 129
see also Agriculture; Crops; Plants
Courts. See Litigation
Crops
increasing genetic variation in, 91
protection, creation, and nutritional improvement of, by modifying organisms, 5, 7-8, 18-19, 20, 21-22, 35, 37, 89-92, 94-95, 96, 125-130
risk assessments for genetically engineered, 23, 112
see also Agriculture; Plants; individual names of
Crown gall disease, developing plant resistance to, 5, 36, 76
Dade County, Florida, 130
Data
on exotic species survival, 17-18, 85-86, 87
gene transfer agricultural, 15-16, 87
requirements for risk assessment, 23-24, 110, 118-119
Degradation
of toxic compounds by microbial action, 22, 33, 35, 39-40, 97, 98, 101, 126, 130
see also Pollution
Delta-endotoxin gene. See Bacillus thuringiensis
Denmark, planned introduction legislation in, 65
density of engineered organisms and gene transfer, 13, 76
Department of Agriculture, U.S. (USDA), 9, 51, 59, 61-62, 87, 118, 119
Animal and Plant Health Inspection Service (APHIS),
129
field test regulation by, 51, 53-54, 62, 129, 131
Department of Energy, U.S. (DOE), 119
Department of Health and Human Services, U.S. (DHHS), 60, 61
Du Pont. See E.I. du Pont de Nemours & Co., Inc.
Dutch elm disease, 58-59
Earth First! 52
Ecogen, Inc. (Princeton, New Jersey), 126
Ecological considerations
of planned introduction of genetically engineered organisms, 3, 4-5, 15, 24, 33, 85-102, 110, 112-114, 115-116
see also Ecosystems; Environment; Genetic considerations; Risks
Economics
of crop loss to frost damage, 20, 40, 94
of engineered organism development, 34
of exotic insect species (US.), 86
of gene insertion for pesticide-resistance, 89-90
see also Funding
Ecosystems
complexity of, and planned introduction’s consequences, 3, 13, 20-22, 93, 97-101
likelihood of planned introductions disrupting, 16, 18, 20-22, 33, 86, 97-101, 112-114
“rate-limiting” elements role in, 98-100
E.I. du Pont de Nemours & Co., Inc. (Wilmington, Delaware), 5, 129
Endothia parasitica, 113
Energy flow, in ecosystem processes, 96, 98-99
Environment
consequences of planned introductions on, 3, 4-5, 7, 15-22, 33, 85-102, 112-116
see also Ecological considerations; Ecosystems; Pollution; Risks
Environmental Protection Agency, U.S. (EPA), 9, 15, 61, 78, 118, 119
biotechnology research application permits regulation by, 49-51, 52, 53, 54-55, 58, 61, 62, 95, 125, 126, 131
Erwinia, “ice-minus” creation from, 75
Escherichia coli, genetic engineering research using, 7, 73
Ethics, public opinion on biotechnology’s, 9, 46
European Economic Community (EEC), 65, 128
European Parliament, reaction to UK biological release in, 60
Evolutionary lability, as consideration in biological risk assessment, 19, 24-25, 90-91
Exotic species, experience with, and relationship to genetically engineered organisms, 17-18, 35, 37, 85-86, 87, 88
Extrinsic factors
influencing the magnitude, frequency, and stability of gene transfer, 13, 75-77
see also Ecological considerations; Gene transfer
Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) 9, 49, 58, 61, 62, 63, 64, 65
Fish
biotechnological engineering to improve, 6, 7, 38, 97, 131
impacts of planned introductions on local communities of, 97-98
see also Animals
Flinders Island, Australia, 132
Florida
biotechnological engineering of fish in, 38, 131
planned introduction in, 54, 125
Florida, University of, 126, 127
Food and Drug Administration (FDA), 9, 61, 127
Forest Service, U.S., 125
Foundation on Economic Trends (Washington, DC), biotechnological introductions opposition by, 45, 49, 50, 51, 52, 59, 125
France, planned introduction regulation in, 66
Franklin County, North Carolina, planned introduction in, 53-54
Funding
biotechnology risk assessment, 118-119
congressional policy options related to research, 25, 28-29
public opinion on Federal Government biotechnological, 47, 48
see also Economics
Genera) Accounting Office, U.S. (GAO), 110
Genetic considerations
of planned introduction of genetically engineered organisms, 11-15, 71-81, 116
in risk assessments, 23, 111, 112-114
see also Ecological considerations; Gene transfer
Genetics Institute (Cambridge, Massachusetts), 127
Gene transfer
consideration of, in risk assessments, 111-112
mechanisms and frequency of, 11-12, 71-77
monitoring, of genetically altered microbes, 13-15, 38, 39, 40, 55, 60, 77-79, 130
potential recipients of, 13, 76
predicting potential effects of, 12-13, 72-77
preventing or reducing, 15, 79-80
see also Genetic considerations
Geneva, New York, 131
Germany, Federal Republic of, biotechnology regulation in, 66
“Glean” (du Pont), 129
Glyphosate, developing plant resistance to, 5, 36, 89, 129
“GlyphoTol” (Calgene), 129
Great Britain. See United Kingdom
Greene, Benjamin, 130
Green Party, 60
Guidelines
biotechnological application, 45
NIH biotechnological, 58-59, 60, 64, 128
Texas biotechnical, 128
see also Regulation; Standards
Gulf Breeze, Florida, 126
Harman, Gary, 131
Hawaii, University of, 132
“Heat shock,” 38, 97, 131
Heavy metal recovery. See Mining
Henzl, Michael T., 130
Herbicides, developing plant resistance to, 5, 18-19, 36, 53-54, 89-90, 128-129
History
of living organism modification, 3, 5, 7, 34-36, 87, 94
natural, of host organisms, 12-13, 73
Hoechst AG (West Germany), 129
Homestead, Florida, planned introduction near, 54
Horizontal transfer. See Gene transfer
Hotez, Peter J., 128
“Ice-minus” bacteria
construct importance illustration using, 75
formation and use of, 7, 20, 40, 94-96
research, 125
“Ice-plus” bacteria, 95, 125
Illinois
field test in, 129
State biotechnology-related legislative activity in, 50
Imidazolinones, developing plant resistance to, 36, 129
Impacts of planned release. See Benefits; Ecological considerations; Genetic considerations; Risks
Industry
development of molecular biotechnology as an, 3
effects of biotechnological developments on, 35
Insects
generically engineered to serve as pest controls, 132
impacts of planned introductions on local communities of, 19, 85-86, 91-93
see also Pesticides
Institute of Virology (Oxford, England), 60, 92, 127
Integrated pest management (IPM), 7, 91
International Conference on Recombinant DNA Molecules. See Asilomar Conference
Intrinsic factors
influencing the magnitude, frequency, and stability of gene transfer, 12-13, 73-75
manipulation of, to prevent gene transfer, 79-80
see also Gene transfer
Japan
biotechnology regulation in, 66
biotechnology research in, 125, 127-128
Japan Polio Research Institute, 127
Jerseville, Illinois, field test near, 129
Kodak Bioproductions, 125
Korea, Republic of, 14

Lactobacillus molecular genetic research using, 7
Lac ZY gene, 13, 40, 78
Lake Michigan, heat-shocked fish stocking of, 131
Legionella pneumophila, 113
Legislation, 9
local biotechnology-related, 50, 51, 53-54
see also Regulation; individual statutes
Life history. See History, natural
Lindow, Steven, 51, 125
Litigation, biotechnology-related, 45, 49, 51, 52
Livestock
bioengineered to produce and store pharmaceuticals, 38, 131
generic engineering to improve, 6, 59, 131
see also Animals
Los Angeles Times, 59
Louis Harris & Associates, 33, 45
Luciferase gene, 78-79

Manduca sexta, 90, 130
Markers. See Gene transfer; Monitoring
Melville, George, 130
Merck & Co., 127
Merck, Sharp, & Dohme (West Germany), 127
Michigan, genetic research on fish in, 38, 131
Michigan Technological University, 131
MicroGeneSys, 127
Micro-organisms
anticipated applications of genetic engineering involving, 7-8, 38-40, 86-87, 93-96
impacts of planned introductions on local communities of, 19-20, 93-96
see also viruses; individual micro-organisms
Middleton, Wisconsin, planned introduction in, 53, 129
Mining, genetically engineered organisms application in, 33, 35, 38, 97, 126, 130
Mississippi, planned introduction in, 54
Missouri, planned introduction in, 52
Models
- genetic variation/resistance, 91
- life history and population, 24
- risk assessment, 110
Molecular Genetics (Minnetonka, Minnesota), 129
Monitoring, genetically altered microbes, 13-15, 38, 39, 40, 55, 77-79, 130
Monsanto Agricultural Products Co. (St. Louis, Missouri)
- lac ZY marker system developed by, 13, 40, 78
- plant disease resistance research by, 5, 18-19, 36, 52-53, 92, 126, 129, 130
Montana, planned introduction in, 58-59
Montana State University, 58-59, 131
Monterey County, California, biotechnological field test in, 49-51
Mutualisms, 112
National Academy of Sciences (NAS), 36, 109
National Environmental Policy Act (NEPA), 49, 51, 60
National Institute of Allergy and Infectious Diseases (NIAID), 128
National Institutes of Health (NIH)
- biological research funding by, 25
- biotechnological release approval by, 51, 53, 58-59, 95
- guidelines for DNA research by, 9, 58-59, 60, 64, 128
- Recombinant DNA Advisory Committee (RAC) of, 51, 53, 60, 128
National Science Foundation, (NSF), 71
- research funding by, 118-119
- research policies of, 9, 25, 64
Natural history. See History, natural
Nature Conservancy Council, 60, 127
Netherlands, biotechnology research regulation in, 66
New Jersey, State biotechnology-related-activity in, 50
New Mexico State University, 130
New York State Agricultural Experiment Station Vegetable Research Farm, 131
New York Times, 59
New York University, 128
New Zealand, biotechnical field testing in, 59, 128
Nitrogen
- cycle, 20-21, 98, 100
- fixation, 8, 19-20, 21-22, 38, 54-55, 96, 99-100, 130
North Carolina
- planned introduction in, 53-54, 129
- State biotechnology-related legislative activity in, 50, 53-54
Northern University (Boston, MA), 130
Northrup King, 129
Novagene, Inc., 128
Nutrient cycles, 20-22, 98

Office of Science and Technology Policy, White House (OSTP), Coordinated Framework by, 9, 60-61
Oil, engineered bacteria extraction of, 127
Oregon State University, 59, 128
Organization for Economic Cooperation and Development (OECD), safety guideline proposals for biotechnological applications developed by, 45
Orlando, Florida, field trials near, 125
"Oust" (du Pont), 129
Pan American Health Organization (PAHO), 59, 128
Panolis flammea, 127
Panopoulos, Nickolas, 51, 125
Pathogens, risk assessment of genetically engineered products using, 23, 112
Pepin County, Wisconsin, planned introduction in, 54-55, 63
Personnel, training interdisciplinary scientific, 29
Pesticides
- bacteria and viruses use in, 5, 8, 15, 19, 39, 52-53, 54, 74, 75, 89-90, 125, 130
- BT toxin gene’s use in, 5, 8, 18-19, 39, 54, 74, 75, 125, 130
- viruses as, 8, 19, 39, 60, 92, 127
Phosphonitricin, developing plant resistance to, 36
Plant Breeding Institute (United Kingdom), 130
Plant Genetic Systems (Belgium), 129, 130
Plant Pest Act, 9, 62
Plants
- applications of engineered organisms involving, 5, 36-38, 86-88, 89-91, 93, 94-95, 96, 97, 125-130, 131
- bioengineered to produce pharmaceuticals, 131
- genetic engineering to increase tolerances to limiting environmental factors, 130
- gene transfer’s likelihood among, 11, 12, 71, 87-88
- impacts of planned introductions on local communities of, 18-19, 89-91
- see also Agriculture; Crops; individual species
Policy
- issues and options for possible congressional action, 25-29
- regulatory agencies planned introduction, 9-11, 64-65
Pollution, control using genetically engineered products, 5, 7, 8, 33, 35, 39-40, 89, 101, 126-127, 130
Populations
- decompose, 98, 101
- planned introductions’ impact on local, 18-20, 86, 88-97, 116
- size of, and risk assessment, 117
Poultry
- engineered vaccines for, 128
- genetic engineering to improve, 6, 59, 131
- see also Animals
Poultry Research Laboratory (Michigan), 131
Pseudomonas fluorescens
- BT toxin gene’s insertion into, 15, 19, 39, 74, 80, 92, 126
- “(ice-minus” research using, 49, 125
- survival of, 75-76
Pseudomonas syringae, “ice-minus” research using, 49, 51, 52, 125
Public Health Act, 6.5
Public opinion attitudes, on biotechnological development, 3, 4, 8-9, 10-11, 45-48, 65
role of local, in proposed field tests, 49-60, 65
“Rate-limiting” elements, 98-100
“Recombinax HB,” 127
Regulation
congressional policy options relating to planned introductions, 25, 27-28
degree of scrutiny in biotechnological, 4, 22, 61
existing framework for planned introduction, 9-11, 60-66
jurisdictional authority regarding, 65
public opinion on biotechnological, 48
relationship between development and stringency of, 34
see also Guidelines; Regulator agencies; Review
Regulatory agencies
biotechnological policies of, 9-11, 64-65
congressional policy options relating to administrative mechanisms and powers of, 25, 27-28
review categories establishment by, 4, 111-114, 119
see also Regulation; Review: individual agencies
Research
congressional policy options concerning support of planned introduction, 25, 28-29
coordinated interdisciplinary, 25, 28, 118-119
future needs in, 4, 119
“ice-minus” bacteria, 7, 20, 40, 94-96
nitrogen fixation, 8, 21-22, 54-55, 96, 99-100
public opinion on biotechnological, 47-48
vector immobilization, 15, 80
Review
approaches to establishing categories for, 4, 23-24, 111-114, 119
congressional policy options relating to planned introductions, 25, 26-27
flexibility of, 8, 22, 111-112
molecular details and level of, 23-24, 113-114
Rhizobium meliloti, nitrogen fixing properties of, 21-22, 54-55, 66, 90, 99-100, 130
Rhome-Poulenc Agrochimie (France), 129
Rifkin, Jeremy, 45
Risk assessment
criteria to consider in, 4, 22, 27, 110
for genetically engineered organisms planned introduction, 4-5, 22-25, 109-114
Risk management, 22, 109-110
Risks
environmental, from planned release, 3, 4-5, 7, 15-22, 33, 86, 97-101, 102, 112-114
genetic, from planned release, 12-15, 72-77, 111-113, 116
of macro-organisms as compared to micro-organisms, 23, 24-25, 115-117
public opinion concerning biotechnological, 3, 4, 8-9, 10-11, 46-47, 48, 49
see also Ecological considerations; Genetic considerations
Rockefeller University, 128
Rohm & Haas Co., plant disease resistance research by, 18-19, 54, 90, 130
Rothamstead Experimental Station (United Kingdom), 129-130
“Roundup” (Monsanto), 128, 129
Saccharomyces cerevisiae, 7
St. Charles County, Missouri, planned introduction in, 52-53
Salinas Valley, California, “ice-minus” field test in, 49-51
Salmonella typhimurium, 7, 128
Sands, David, 131
Screening
for gene transfer discovery, 13-15, 77-79
see also Monitoring
Seeds, protection of, by biotechnological techniques, 37-38, 91, 130
Selection
human use of, in breeding, 5, 35-36
pressure and resistance evolution, 19, 24-25, 90-91
probability of, and gene transfer, 13, 14, 17, 76-77, 117
Sierra Club, 54
Sirica, John, 51
Small-scale field tests
public opinion and actual experiences with, 49-60
see also locations of individual tests
Smith Kline Biological (Belgium), 127
Smith, Kline, & French, 128
Snomax Technologies (Oakland, California), 125
Soybeans, inoculation with bacteria for increased yields of, 54, 89
Spodoptera exigua, 127
Standards. See Guidelines; Regulation
Streptococcus, 7
Strobel, Gary, 58-59
“Suicide” bacterium, 15, 80, 126
Sulfonylurea, developing plant resistance to, 5, 36, 89, 129
Sungene, 131
Sweden, biotechnology regulation in, 66
Taxonomic groupings, for risk assessment, 23, 113-114, 119
TechAmerica Group, Inc. (Omaha, Nebraska), 128
Technologies
development of recombinant DNA, 3, 34-35
gene transfer monitoring, 13-15, 77-79, 80
Teitz, William, 59
Texas, State biotechnology-related legislative activity in, 50
Texas A&M University, 128
Thiobacillus ferrooxidans, 126
Tn5, 92
Toa Gosei Chemical (Japan), 12.5
Tobacco mosaic virus (TMV), “vaccinating” plants against, 5, 129
Tobacco plants, biotechnical herbicide and disease resistance research using, 5, 18-19, 36, 53-54, 89, 90, 129
Tokyo, University of, 127
Tomato plants, biotechnological herbicide and disease protection for, 5, 18-19, 89, 130
Tottori University (Japan), 127
Toxic Substances Control Act (TSCA), 9, 54, 61, 62, 63, 64, 65
Toxic wastes, microbial degradation of, 22, 33, 35, 39-40, 97, 98, 101, 126, 130
Tracking. See Monitoring; Screening
Training, interdisciplinary scientific personnel, 29
Tulelake, California, “ice-minus” field test in, 51-52, 125

Ultraviolet (UV) light, degradation of BT toxin by, 90
Unilever, 131
United Kingdom (UK)
biotechnology regulation in, 66
planned release in, 60, 92, 127, 129-130
virus resistance research in, 129-130

Vaccine
FDA approval of genetically engineered, 127
inadvertent release of genetically engineered, 128
recombinant DNA developed multivalent, 8, 39, 128
viruses used as, 5, 8, 18-19, 36, 39, 59, 127-128

Vectors, importance of understanding, 13, 15, 75

Viruses
vaccination of plants against, 5, 18-19, 36
as pesticides, 8, 19, 39, 60, 92, 127
as vaccines, 5, 8, 18-19, 36, 39, 59, 127-128

Walter Reed Army Institute of Research, 128
Washington (State), genetic research on fish in, 38
Washington, University of, 131
Washington University (St. Louis, Missouri), plant disease resistance research by, 5, 36, 129
Waterville Township, Wisconsin, planned introduction near, 54-55
Webster, Arthur, 128
Westfarmers Algal Biotechnology Pty. Ltd. (Australia), 130
West Germany, biotechnology regulation in, 66
White House Office of Science and Technology Policy (OSTP), Coordinated Framework by, 9, 60-61
Wisconsin
planned introduction in, 53, 54-55, 63
State biotechnology-related legislative activity in, 50
Wisconsin State Journal, 53
Wistar Institute (Philadelphia, Pennsylvania), biotechnical research by, 59, 128
World Health Organization (WHO), “cascade effect” triggered from spraying program by, 92-93

Yeast
engineered for ethanol production enhancement, 127
molecular genetic research using, 7

Yersinia, gene expression of, 74
"Frankly, I think we'll regret introducing these organisms into the environment."

Drawing by Lorenz; © 1987 The New Yorker Magazine, Inc