OTA would like to thank the members of the advisory panel who commented on drafts of this report and the many individuals and organizations that supplied information for the study. In addition, OTA acknowledges the following individuals who reviewed drafts of this report:

Ronald T. Acton
University of Alabama, Birmingham
Birmingham, AL

Dan Adams
Office of the Attorney General of Massachusetts
Boston, MA

Robert C. Allen
Medical University of South Carolina
Charleston, SC

Sue Anderson
Chicago, IL

Jeffrey Ashton
Assistant State's Attorney
Orlando, FL

Bernard Auchter
National Institute of Justice
Washington, DC

John Ballantine
Office of the Medical Examiner, Suffolk County
Hauppauge, NY

Jan S. Bashinski
California DNA Lab
Berkeley, CA

Peter G. Beeson
Office of the Attorney General of New Hampshire
Concord, NH

Robert P. Bennett
Office of the Attorney General of North Dakota
Bismarck, ND

Robert A. Bever
Genetic Design, Inc.
Greensboro, NC

Paul R. Billings
New England Deaconess Hospital
Boston, MA

Edward T. Blake
Forensic Science Associates
Richmond, CA

Bruce Budowle
Federal Bureau of Investigation
Quantico, VA

Brian L. Burgess
Office of the Attorney General of Vermont
Montpelier, VT

Beverly J. Burke
Office of the Corporation Counsel of the District of Columbia
Washington, DC

John E. Burris
National Academy of Sciences
Washington, DC

R. Alta Charo
University of Wisconsin
Madison, WI

Byron Chatfield
Office of the Attorney General of Oregon
Salem, OR

James J. Coman
Office of the Attorney General of North Carolina
Raleigh, NC

Catherine T. Comey
Federal Bureau of Investigation
Quantico, VA

John P. Connor
Office of the Attorney General of Montana
Helena, MT

Edward L. Dance
Crime Laboratory, Kentucky State Police
Frankfort, KY

Steven D. Ebert
Office of the Attorney General of Wisconsin
Madison, WI

John Edward Farley
Office of the Attorney General of Rhode Island
Providence, RI

Paul B. Ferrara
Virginia Bureau of Forensic Science
Richmond, VA

Robert I. Field
Dilworth, Paxson, Kalish & Kauffman
Philadelphia, PA
Barry A.J. Fisher
Scientific Services Bureau, Los Angeles County Sheriff’s Office
Los Angeles, CA

William Fitzgerald
Office of the Attorney General of Guam
Agana, GU

Theodore Friedmann
University of California, San Diego
La Jolla, CA

R.E. Gaensslen
University of New Haven
West Haven, CT

Daniel D. Gamer
Cellmark Diagnostics
Germantown, MD

Barry D. Gaudette
Central Forensic Laboratory, Royal Canadian Mounted Police
Ottawa, Ontario, Canada

Andrew Geiser
Gaithersburg, MD

Paul L. Gimenez
Office of the Attorney General of the Virgin Islands
St. Thomas, VI

Jo Ann Given
Naval Investigative Services
Norfolk, VA

Richard Givens
Attorney-at-Law
New York NY

Dorothy Gordimer
Crime Laboratory, Union County Prosecutor’s Office
Westfield, NJ

Lionel H. Grundy
Home Office
London, England

Laura Lee Hall
Office of Technology Assessment
Washington, DC

Dan Hanaway
Attorney General, Wisconsin
Madison, WI

Rockne P. Harmon
District Attorney’s Office, Alameda County
Oakland, CA

Linda F. Harrison
School of Law, Georgia State University
Athens, GA

John W. Hicks
Federal Bureau of Investigation
Washington, DC

Theodore Holder
Office of the Attorney General of Arkansas
Little Rock, AR

Edward E. Hueske
Northern Regional Laboratory, Arizona Department of Public Safety
Flagstaff, AZ

Robert Ianni
Office of the Attorney General of Michigan
Lansing, MI

Edward Imwinkelried
School of Law, University of California, Davis
Davis, CA

Dirk Janssen
Crime Laboratory, Wisconsin Department of Justice
Milwaukee, WI

Kathleen Jennings
Office of the Attorney General of Delaware
Wilmington, DE

Donald M. Johnson
National Crime Information Center
Washington, DC

Randolph N. Jonakait
New York Law School
New York NY

Roger Kahn
Crime Laboratory, Metro-Dade Police Department
Miami, FL

Michael Katzer
Office of the District Attorney, Albany County
Albany, NY

James J. Kearney
Federal Bureau of Investigation
Quantico, VA

Frank J. Kelley
Attorney General, Michigan
Lansing, MI

Margaret Kuo
Orange County Sheriff-Coroner’s Crime Laboratory
Santa Ana, CA
Appendix C-Acknowledgments

Terry L. Laber
Minnesota Bureau of Criminal Apprehension
St. Paul, MN

Timothy D. Leathers
U.S. Department of Agriculture
Peoria, IL

John N. Linssen
Crime Laboratory, Wisconsin Department of Justice
Milwaukee, WI

Don MacClaren
Crime Laboratory, Washington State Patrol
Seattle, WA

Michael T. McDonnell
Automated Microbiology Systems, Inc.
San Diego, CA

Gary T. Marx
Massachusetts Institute of Technology
Cambridge, MA

Frederick R. Millar, Jr.
Office of the Attorney General of California
San Diego, CA

Keith L. Monson
Federal Bureau of Investigation
Quantico, VA

Laurence Mueller
University of California, Irvine
Irvine, CA

Peter J. Neufeld
New York, NY

Kenneth W. Nimmich
Federal Bureau of Investigation
Washington, DC

Kathleen Nolan
The Hastings Center
Briarcliff Manor, NY

Carla M. Noziglia
Crime Laboratory, Las Vegas Metro Police Department
Las Vegas, NV

Shannon Odelberg
University of Utah
Salt Lake City, UT

Linley E. Pearson
Attorney General, Indiana
Indianapolis, IN

Rickie L. Pearson
Office of the Attorney General of Kentucky
Frankfort, KY

Joseph L. Peterson
University of Illinois, Chicago
Chicago, IL

James M. Pollock
Crime Laboratory, Florida Department of Law Enforcement
Jacksonville, FL

Warren Price, III
Attorney General, Hawaii
Honolulu, HI

Noreen F. Purcell
New Mexico State University
Las Cruces, NM

Christopher Pyle
Mount Holyoke College
South Hadley, MA

Carlos L. Rabren
Alabama Department of Forensic Sciences
Auburn, AL

Lisa J. Raines
Industrial Biotechnology Association
Washington, DC

Emmet A. Rathbun
Federal Bureau of Investigation
Washington, DC

Richard M. Rau
National Institute of Justice
Washington, DC

Dennis J. Reeder
National Institute of Standards and Technology
Gaithersburg, MD

Priscilla M. Regan
George Mason University
Fairfax, VA

Philip R. Reilly
Shriver Center for Mental Retardation
Waltham, MA

Rex E. Riis
Office of the Attorney General of South Dakota
Pierre, SD

Ira Robbins
Washington College of Law, American University
Washington, DC

Richard Roberts
Cold Spring Harbor Laboratory
Cold Spring Harbor, NY
Additionally, OTA gratefully acknowledges the assistance of two contractors who provided material for this assessment:

Susan Sanford, MedSciArtCo, Washington, DC.
Appendix D

Acronymns and Glossary

Acronymns

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AABB</td>
<td>American Association of Blood Banks</td>
</tr>
<tr>
<td>AAFS</td>
<td>American Academy of Forensic Sciences</td>
</tr>
<tr>
<td>AFIS</td>
<td>Automated Fingerprint Identification Systems</td>
</tr>
<tr>
<td>APB</td>
<td>Advisory Policy Board (NCIC)</td>
</tr>
<tr>
<td>ASCLD</td>
<td>American Society of Crime Laboratory Directors</td>
</tr>
<tr>
<td>ASHG</td>
<td>American Society of Human Genetics</td>
</tr>
<tr>
<td>ASHI</td>
<td>American Society of Histocompatibility and Immunogenetics</td>
</tr>
<tr>
<td>BJS</td>
<td>Bureau of Justice Statistics (DOJ)</td>
</tr>
<tr>
<td>C</td>
<td>Cytosine</td>
</tr>
<tr>
<td>CAC</td>
<td>California Association of Criminalists</td>
</tr>
<tr>
<td>CACLD</td>
<td>California Association of Crime Laboratory Directors</td>
</tr>
<tr>
<td>CLIA</td>
<td>Clinical Laboratory Improvement Amendments of 1988</td>
</tr>
<tr>
<td>CTS</td>
<td>Collaborative Testing Services</td>
</tr>
<tr>
<td>DHHS</td>
<td>U.S. Department of Health and Human Services</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>Doc</td>
<td>U.S. Department of Commerce</td>
</tr>
<tr>
<td>DOJ</td>
<td>U.S. Department of Justice</td>
</tr>
<tr>
<td>FBI</td>
<td>Federal Bureau of Investigation (DOJ)</td>
</tr>
<tr>
<td>FSA</td>
<td>Forensic Science Associates</td>
</tr>
<tr>
<td>FSF</td>
<td>Forensic Science Foundation</td>
</tr>
<tr>
<td>FSRTC</td>
<td>Forensic Science Research and Training Center (FBI/DOJ)</td>
</tr>
<tr>
<td>G</td>
<td>Guanine</td>
</tr>
<tr>
<td>HCFA</td>
<td>HealthCareFinance Administration (DHHS)</td>
</tr>
<tr>
<td>HGML</td>
<td>Human Gene Mapping Library</td>
</tr>
<tr>
<td>HLA</td>
<td>Human leukocyte antigen</td>
</tr>
<tr>
<td>ISFH</td>
<td>International Society for Forensic Haemogenetics</td>
</tr>
<tr>
<td>mtDNA</td>
<td>Mitochondrial DNA</td>
</tr>
<tr>
<td>NCIC</td>
<td>National Crime Information Center</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>NJ</td>
<td>National Institute of Justice</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology (DOC)</td>
</tr>
<tr>
<td>NLETS</td>
<td>National Law Enforcement Telecommunications System</td>
</tr>
<tr>
<td>OMIM</td>
<td>On-Line Mendelian Inheritance in Man</td>
</tr>
<tr>
<td>OTA</td>
<td>Office of Technology Assessment</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PDB</td>
<td>Protein Data Bank</td>
</tr>
<tr>
<td>PIR</td>
<td>Protein Identification Resource</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction fragment length polymorphism</td>
</tr>
<tr>
<td>SSN</td>
<td>Social security number</td>
</tr>
<tr>
<td>T</td>
<td>Thymine</td>
</tr>
<tr>
<td>Triple I</td>
<td>Interstate Identification Index (NCIC)</td>
</tr>
<tr>
<td>TWGDAM</td>
<td>Technical Working Group on DNA Analysis Methods (FBI/DOJ)</td>
</tr>
<tr>
<td>VNTR</td>
<td>Variable number of tandem repeats</td>
</tr>
</tbody>
</table>

Glossary of Terms

Allele: Alternative form of a genetic locus (e.g., at a locus for eye color there might be alleles resulting in blue or brown eyes); alleles are inherited separately from each parent.

Autoradiogram: An x-ray film image showing the position of radioactive substances. Sometimes called “Autocad.”

Autoradiograph: See autoradiogram.

Autosome: A technique for identifying radioactively labelled molecules or fragments of molecules.

Band shift: The phenomenon of DNA fragments in one lane of a gel migrating slower or faster than identical fragments in another lane. As visualized on an autoradiogram, the overall patterns would be the same, but out of register. Factors responsible for band shift include contaminants, salt concentration, and DNA concentration.

Base pair: Two complementary nucleotides (adenosine and thymidine or guanosine and cytidine) held together by weak bonds. Two strands of DNA are held together in the shape of a double helix by the bonds between base pairs.

Blot: See Southern blot.

Cell: The smallest component of life capable of independent reproduction and from which DNA is isolated for forensic analysis.

Chromosome: A threadlike structure that carries genetic information arranged in a linear sequence. In humans, it consists of a complex of nucleic acids and proteins.

Controls: Tests designed to demonstrate that a procedure worked correctly and performed in parallel with experimental samples. Controls yield certain expected results; when the observed results for the controls deviate from what is expected, then the results for the case samples cannot be considered reliable.

Deoxyribonucleic acid (DNA): The molecule that encodes genetic information. DNA is a double-stranded helix held together by weak bonds between base pairs of nucleotides.

DNA: See deoxyribonucleic acid.

DNA band: Referring to the visual image, e.g., on an autoradiogram or an ethidium bromide stained gel, that represents a particular DNA fragment.

DNA probe: Short segment of DNA that is labeled with a radioactive or other chemical tag and then used to detect the presence of a particular DNA sequence through hybridization to its complementary sequence.

DNA sequence: Order of nucleotide bases in DNA.

Electrophoresis: Technique used to separate molecules such as DNA fragments or proteins. In forensic uses of DNA tests, electric current is passed through a gel, usually composed of a substance called agarose, and the fragments of DNA are separated by size. Smaller fragments will migrate farther than larger pieces.

Enzyme: A protein that acts as a catalyst, speeding the fate at which a biochemical reaction proceeds, without being permanently altered or consumedly the reaction so that it can be used repeatedly.

Gel: The semi-solid matrix used in electrophoresis to separate molecules. In forensic DNA analysis, the substance usually used is agarose, although acrylamide can also be used.

Gene: The fundamental unit of heredity; an ordered sequence of nucleotide base pairs to which a specific product or function can be assigned.

Genome: All the genetic material in the chromosomes of a particular organism; its size is generally given as its total number of base pairs.

Genotype: The genetic constitution of an organism, as distinguished from its physical appearance, or phenotype.

Hardy-Weinberg equilibrium: In a large, random, intrabreeding population, not subjected to excessive selection, migration, or mutation, the gene and genotype frequencies will remain constant overtime, so that for most single-locus probe analyses, the likelihood of being a homozygote (one band) with genotype aa, will be \(p^2\), where \(p\) is the frequency in the population of allele a. For heterozygotes with two bands, the chance that a person will have genotype a/a, will be \(2p^2\), where \(p\) and \(q\) are the respective frequencies of how often bands a and \(a\) occur.

Heterozygous: Having two different alleles at a particular locus. For most forensic DNA probes and individuals, if the person is heterozygous at the locus the probe detects, the autoradiogram displays two bands.

HLA: See human leukocyte antigen.

Homozygous: Having the same allele at a particular locus. For most forensic DNA probes and individuals, if the person is homozygous at the locus the probe detects, the autoradiogram displays a single band.

Human leukocyte antigen (HLA): Located on the surface of most cells, except blood cells, these protein-sugar structures differ among individuals and are important for acceptance or rejection of tissue or organ grafts and transplants. The locus of one particular class of these antigens, HLA \(DQ\alpha-1\), is useful for forensic analysis using PCR.

Hybridization: The process of joining two complementary strands of DNA, or of DNA and RNA, together to form a double-stranded molecule.

Junk DNA: Sequence of DNA for which no specific coding function has yet been assigned. Also called noncoding DNA.

Linkage disequilibrium: The phenomenon of a specific allele of one locus being associated with an allele of another locus on the same chromosome with a frequency greater than expected by chance.

Locus: A specific, physical position on a chromosome.

Marker: A gene with a known location on a chromosome and a clear-cut phenotype that is used as a point of reference when mapping another locus; or, referring to DNA fragments of known base pair length run on gels from which the size of unknown DNA sample fragments can be determined.

Mitochondria: Structures, or organelles, found within a cell that are responsible for generating the cell’s (and hence organism’s) energy. Mitochondria contain DNA molecules that are inherited only from an individual’s mother. An individual and his or her siblings will share the same mitochondrial DNA pattern—the pattern of their mother (and other maternal relatives, including the maternal grandmother and maternal aunts and uncles).

Multilocus probe: DNA probe that detects genetic variation at multiple sites in the genome. An autoradiogram of a multilocus probe application yields a complex, stripe-like pattern of 30 or more bands per individual. Compare Single-locus probe.

Nucleotide: The unit of DNA consisting of one of four bases—adenine, guanine, cytosine, or thymine—attached to a phosphate-sugar group. The sugar group is deoxyribose in DNA. (In RNA, the sugar group is ribose and the base uracil substitutes for thymine.)

Phenotype: The appearance of an individual or the observable properties of an organism that result from the interaction of genes and the environment.

Polymerase chain reaction (PCR): An in vitro process, through which repeated cycling of the reaction reproduces a specific region of DNA, yielding millions of copies from the original.

Polymorphism: The existence of more than one form of a genetic trait.

Probe: In forensic applications, a short segment of DNA tagged with a reporter molecule, such as radioactive phosphorus (32P), used to detect the presence of that particular complementary DNA sequence.

Protein: A biological molecule whose structure is determined by the sequence of nucleotides in DNA. Proteins are required for the structure, function, and regulation of cells, tissues, and organs in the body. Some traditional forensic genetic markers are proteins.

Recombinant DNA technology: Processes used to form a DNA molecule through the union of different DNA
molecules, but now commonly used to refer to any techniques that directly examine DNA.

Replication: The synthesis of new DNA from existing DNA. PCR is an in vitro technology based on the principles of replication.

Restriction endonuclease: An enzyme that has the ability to recognize a specific DNA sequence and cut it at that sequence.

Restriction enzyme: See restriction endonuclease.

Restriction fragment length polymorphism (RFLP): Variations in the size of DNA fragments produced by a restriction endonuclease at a polymorphic locus.

RFLP analysis: DNA technique using single-locus or multilocus probes to detect variation in the DNA sequence by revealing size differences in DNA fragments produced by the action of a restriction enzyme. See restriction fragment length polymorphism.

Serology: Scientific discipline concerned with the study of body fluids.

Single-locus probe: DNA probe that detects genetic variation at only one site in the human genome. An autoradiogram using one single-locus probe usually displays one (homozygote) or two (heterozygote) bands. Compare multilocus probe.

Southern blot: The nylon membrane to which DNA has adhered after the process of Southern blotting.

Southern blotting: The technique for transferring DNA fragments separated by electrophoresis from the gel to a nylon membrane, to which DNA probes that detect specific fragments can then be applied.

Standardization: In forensic uses of DNA tests, refers to a national system that uses a single restriction endonuclease with, in whole or part, certain designated DNA probes; critical to databanking considerations. Compare standards.

Standards: Criteria established for quality control and quality assurance; or, known test reagents, such as molecular weight standards. Compare standardization.

Tandem repeats: Multiple copies of the identical (or nearly identical) DNA sequence arranged in direct succession at a particular site on a chromosome. See variable number of tandem repeats.

Tag polymerase: DNA polymerase-the enzyme used to form double-stranded DNA from nucleotides and a single-stranded DNA template-isolated from the bacterium Thermus aquaticus, which normally lives in hot springs. Taq polymerase can withstand the high temperatures required in the repeating cycles of PCR.

Variable number of tandem repeats (VNTR): Repeating units of a core DNA sequence, for which the core number varies between individuals, thus providing the basis for RFLP analysis. See tandem repeats.