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INTRODUCTION

Information about carcinogenicity is obtained
from exposing animals to measured doses of
suspect substances in the laboratory or by
studying associations between exposures to sus-
pect carcinogens and development of cancer in
humans. In practice, both the animals and cer-
tain groups of humans, particularly those ex-
posed in the workplace, are exposed to doses far
larger than those encountered by most citizens.
A number of “numeric extrapolation” methods
have been developed to estimate the effect of ex-
posure to low doses based on observed effects at
high doses. When information about carcino-
genicity is obtained from animals, “biologic ex-
trapolation” techniques are employed to project
from animal results to estimates of human risk.
(In this report the word “hazard” is applied to a
substance or exposure that harbors a “risk” to
people who come in contact with it—i.e., a car-
cinogenic chemical is itself a hazard. Risk is the
probability of cancer developing as a result of a
particular exposure to the hazard. )

NUMERIC EXTRAPOLATION

This discussion describes information that
can be obtained from extrapolation, and com-
ments on various extrapolation methods. It is
neither rigorous nor inclusive, and the inter-
ested (and mathematically sophisticated) reader
is referred to Heel et al. (170), Crump et al. (75)
and the Food Safety Council (FSC) (125) for
such treatments.

Toxicity testing produces data relating tumor
incidence (I) to dosage (D) as shown in figure
21. Generally, a smooth curve drawn between

In most cases, no adequate human data are
available for estimating risks, and it is necessary
to make both numeric and biologic extrapola-
tion from measured responses in animals to esti-
mate human risk. Less uncertainty attends mak-
ing numeric extrapolations from observation of
human responses at high-exposure levels than
extrapolations from animal data. However,
such extrapolations are often complicated by
poor exposure data.

Extrapolation, like testing, is employed to
make regulatory decisions, and as in the case of
testing, a number of agencies have made state-
ments about the methods they will employ.
These policy statements are necessary to ex-
plain, in the absence of agreed-on universal pro-
cedures, how the agencies intend to use bioassay
and epidemiologic data to estimate risk through
the use of extrapolation methods.

the experimental points, P1-P5, (solid line in
figure 21) is sigmoidal, or S-shaped. It can be
seen that the incidence of tumor formation de-
creases with decreasing dosage. The crux of the
extrapolation problem is what sort of line best
approximates the response in the region for
which data are not available. Or, what kind of
line should be drawn from point P1 to lower, un-
measured, response levels.

Graphic representations such as figure 21 do
not fully show the difficulties in estimating in-
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Figure 21 .—A Stylized Dose-Response Curve
and Some Extrapolated Curves
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SOURCE: Office of Technology Assessment

cidence at very low doses. The first division on
the vertical incidence scale is 10 percent, which
means that 1 human or animal out of 10 devel-
oped cancer. For many agents, especially those
present in air or water, we are interested in
knowing what dose is projected to cause an inci-
dence orders of magnitude less, e.g., 1 tumor in
100,000 animals or humans. Such small frac-
tions cannot be seen on the figure, but they can
be calculated using any extrapolation method.

The solid curved line drawn from point PI to
the origin is a continuation of the curve con-
structed between the experimentally determined
points. It was drawn by eye, and it is represent-
ative of a number of smooth, concave upward
lines that can connect PI and the origin as a con-
tinuation of the sigmoidal curve constructed be-
tween P1 and P5.

The Question of Thresholds

The solid line on figure 21 embodies the
premise that there is no threshold. A threshold
model would have the curve hit zero incidence
at some dose greater than zero, as is shown in
figure 21.

The threshold argument contends that there
are doses of carcinogens so low that they will
not cause cancer, and that no matter how many
animals are exposed to doses that low or lower,
no tumors will result. The counterargument is
that any dose of a carcinogen, no matter how
small, has a finite although small, chance of
causing a tumor, and, if an experiment were
performed with a sufficiently large number of
animals, such risk would be detectable.

The concept of a population threshold, which
is discussed here, includes the idea that there are
exposure levels below which no individual in
the population will develop cancer. No solution
to the threshold/no threshold argument can be
found by doing increasingly larger experiments
with more and more animals. If a given dose of
chemical causes no excess tumors in 1,000 ani-
mals, there is no guarantee that it will not cause
an excess when 2,000 are exposed.

Individuals may have thresholds, as sug-
gested by the fact that all heavy cigarette
smokers do not develop lung cancer. Possible
biologic reasons advanced to explain such dif-
ferences in susceptibilities include physiologic
and genetic variations among people. Another
reason for the apparent differences in suscep-
tibility may be chance. Some heavy smokers
may be “luckier” than others in that their ex-
posures do not trigger carcinogenesis, and they
may not develop cancer, or they may die from
some other cause before cancer develops. In any
case, it is as yet impossible to predict an in-
dividual’s threshold for even a single carcino-
genic agent and impossible to derive a popula-
tion’s threshold with current knowledge or
methods.

In a highly recommended article, Maugh
(224) reports on conversations with a number of
scientists and administrators from the National
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Institutes of Health, private testing laboratories,
and industry. The conclusion of the article, ap-
parently shared by the interviewed scientists
and administrators, is that resolution of the
threshold question is not now available:

. . . it is extremely unlikely that it would be
possible to distinguish between a linear dose-
response curve and a highly nonlinear one
(threshold), even in a large-scale experiment in-
volving several thousand animals per dose level.

. . . statistical analysis of standard animal
carcinogenicity experiments, Schneiderman
[then-Associate Director of the National Cancer
Institute (NCI)] concludes, does not now, and
probably never will, resolve the threshold ques-
tion, There are, he says, simply too many “bio-
logically reasonable” mathematical models,
both implying and denying the existence of
thresholds, that will fit the observed results.

. . . there is so little data and so many inter-
pretations, Gehring [Dow Chemical Co. ] says,
arguing about thresholds is an exercise in fu-
tility.

The view that thresholds cannot be demon-
strated is accepted in publications of the Na-
tional Research Council (NRC) (262), Interagen-
cy Regulatory Liaison Group (IRLG) (180), FSC
(125), and, for tumors resulting from somatic
mutations, by the American Industrial Health
Council (AIHC) (8). Despite the apparent agree-
ment that it is impossible to demonstrate a
threshold, many individuals object to the idea
that thresholds should not be considered in
making decisions about carcinogens.

In particular, some tumors are thought to re-
sult from irritation or mechanical injury, and
threshold models are postulated for those. An
often mentioned example is Clayson’s (60) find-
ing that bladder stones are found in conjunction
with some bladder tumors. Stone formation
may be dependent on intake of large quantities
of a chemical; if exposure to the chemical is suf-
ficiently low so that no stones are formed and if
stone formation is necessary for carcinoge-
nicity, then a threshold should exist. This and
other examples of “epigenetic” tumors can be
considered separately from tumors that orig-
inate from somatic mutations. Just as thresholds
for acute toxic responses differ, thresholds for

stone formation most likely differ among indi-
vidual animals. Therefore, it may be impossible
to determine exactly what dose is necessary to
produce a stone and therefore pave the way to a
tumor. Nevertheless, if the threshold for stone
formation in animals is found to be 100 or 1,000
times greater than human exposure levels, the
observation takes on great significance. If stone
formation is a necessary precursor to tumor ap-
pearance, and no stone formation occurs at hu-
man exposure levels, it becomes difficult to
maintain the position that human exposure lev-
els present a carcinogenic risk. The difficulties in
this argument are the possibility that some hu-
mans may produce stones at very much lower
doses than animals and that carcinogenicity
might not proceed through stone formation in
humans. Such caveats seem reasonable to some
people; unreasonable to others. Experimenta-
tion and more sophisticated models may even-
tually settle such questions. However, for the
present, positions on these issues reflect orga-
nizational policy and individual judgment.

Gehring, Watanabe, and Young (139) de-
scribe differences between metabolism of chem-
icals administered at low and high doses. Meas-
urement of these differences is called pharma-
cokinetics. In general, biochemical mechanisms
to detoxify chemicals and to repair damage to
DNA are seen as having a better chance of de-
toxifying and repairing damage at low doses
than at high doses. High doses can swamp de-
fense mechanisms resulting in toxic effects;
lower doses are seen as presenting little or no
risk.

Metabolic differences measured by pharma-
cokinetics might have important effects on the
shape of the dose-response curve. If a metabolize
of an ingested substance is the actual carcino-
gen, and the production of the metabolize in-
creases out of proportion to dose above a cer-
tain level, then the dose-response curve might
bend upward at that point. Pharmacokinetic
data are not always collected, and the standard
bioassay which produces data at only two dose
levels does not provide sufficient information to
see if differences in metabolism might be impor-
tant in the slope of the dose-response curve.
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Biochemistry of a particular compound may
be affected by other compounds present in the
organism. Cancer is a relatively common dis-
ease, and if avoiding cancer involves biochem-
ical detoxification processes, it may be that
small doses of many substances can swamp the
process as well as large doses of a single sub-
stance. If this is correct, the addition of the car-
cinogens, even at low doses, might be enough to
overcome the detoxification mechanism.

Cornfield (67) described quantitative extrap-
olation models to take into account differences
in metabolism at high and low doses. His paper
was criticized because it postulated a threshold
(see 36,73,229,276,.319), and his hope that the
paper would lead to discussion of the merit of
his models apparently was not realized (68). The
difficulty with models which propose detoxi-
fication activities for producing thresholds is
that the detoxification has to be instantaneous
and complete. Otherwise molecules might
escape detoxification and initiate a carcinogenic
event.

Donald Kennedy, a few months after leaving
the post of Commissioner of the Food and Drug
Administration (FDA), expressed his opinion
that thresholds may exist for some chemicals:

Dr. Kennedy said that the [Delaney] clause in
the FDA’s authorizing legislation codifies the hy-
pothesis that there is no threshold concentration
below which a chemical does not cause cancer.
And although this hypothesis “probably holds
most of the time, ” Dr. Kennedy said that he was
“as certain as I can be of any scientific prediction
that some day, very soon, some compound will
be demonstrated to have a threshold level for
cancer causation” . . . (274).

It is difficult, if not impossible, to marshal
more evidence on one side of the threshold ques-
tion than on the other. The ascendancy of the
more conservative view, that thresholds cannot
be identified for human populations, can be
taken as a policy decision made in the interest of
protecting the public health. Such a general pol-
icy can not exclude the possibility that a thresh-
old may someday be demonstrated.

Numeric Extrapolation To Project Risk
at Doses Below Those Tested

The shape of the line in figure 21 depends on
the number of tumors observed at points P1-P5.
No matter what method is used to extend the
line below P1, that extension represents an esti-
mate. Any number of smooth curves can be
drawn from point P1 to the origin; for conveni-
ence, the possible lines will be divided into three
families: supralinear, linear, and infralinear. A
detailed discussion of these models as they relate
to radiation and cancer is available in a paper
by Sinclair (329).

Supralinear Extrapolation

A supralinear extrapolation is presented on
figure 21. It says that some doses less than ID
are relatively more effective in inducing tumors
than doses equal to ID. Conceptually the con-
tention that lower doses are more carcinogenic
is easy to address. Further tests at lower doses
would resolve the question, but additional tests
are costly and time consuming.

Supralinear models are considered for two
reasons. In several NCI bioassays, the tumor
yield was lower at the high dose than at the low
dose (102). In other words, the lower dose was
more efficient at producing tumors. The ex-
planation is that the higher dose was so toxic
that it killed animals before they developed
tumors. The other reason for considering supra-
linear responses is that some studies of
radiation-induced cancer have been interpreted
as producing supralinear dose-response curves
(e.g., 241), but those interpretations are hotly
disputed.

Such responses might result from the presence
of a subpopulation of more sensitive individ-
uals. On figure 21, the supralinear response be-
tween the origin and P1 represents the tumors
induced in the proposed sensitive fraction of the
population; the solid line drawn from the origin
to P5 represents the sensitivity of the remaining
members of the population. The difference be-
tween the two lines between the origin and P1
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represents the contribution of the sensitive sub-
population to the total response at doses below
ID. It can be seen that the sensitive subpopu-
lation accounts for the majority of tumors that
occur below P1. Clearly, if this model describes
risks, reducing doses to 1/2D or l/4 D would not
significantly reduce tumor incidence, and a
supralinear dose-response curve would force
lowering doses to very small fractions of D to
significantly reduce tumor incidence.

Nonartifactual, supralinear dose responses
have rarely been observed in bioassays but
neither would they be expected. Laboratory
animals are highly inbred and each animal
should be more nearly equally sensitive than are
members of human populations. Supralinear
response models have been advanced but do not
now receive the acceptance accorded to the
other two general models.

Linear Extrapolation

A linear model is shown by the straight line
that extends from P1 to the origin on figure 21. If
the true dose-response curve is represented by
the solid curved line from P1 to the origin, then
the linear model is “conservative” and over-
estimates the number of tumors at all doses be-
tween P1 and the origin.

The paper by Crump et al. (75) is an often-
cited and important argument for linear dose re-
sponses at low doses. The paper points out that
25 percent of the U.S. population will develop
cancer as a result of existing carcinogenic in-
fluences (see ch.3). Crump et al. (75) propose

that any new carcinogenic substance interacts
additively with exposures and behaviors al-
ready present in the environment. Their mathe-
matical theories predict that regardless of the
shape of the dose-response curve at high expo-
sures, at low doses cancer incidence should be
proportional (linear) with exposure to the sub-
stance under study.

Gaylor and Kodell (137) argue that no risk
estimate can be very reliable for doses below
that associated with the lowest data point (Pl in
figure 21) because there is no information avail-
able below point P1. They propose the use of
“linear interpolation” and the 95-percent upper

confidence level to estimate the maximum risk
posed by a substance.

Error is associated with any experimental de-
termination, and standard methods can be used
to calculate “confidence limits” for each es-
timate. Usually “95-percent confidence limits”
are calculated for carcinogenicity experiments;
they are plotted as vertical bars extending from
the data points, as shown on the figure. The 95-
percent confidence limit says that given the ex-
perimentally determined incidence and the size
of the experiment, we can be 95-percent certain
that the actual incidence represented by the
point estimate lies inside the error limits.

In the method of Gaylor and KodelI (137) a
line is drawn from the upper limit of the error
bar on the lowest data point to the origin. In-
spection of figure 21 shows that this method
projects a larger risk than does linear inter-
polation from the point P1 to the origin. This is
not an estimate of risk; it is an estimate of the
upper bound of risk.

Objections to including upper confidence
levels in extrapolation are frequently voiced.
The practice of including them is seen as in-
troducing a “safety factor. ” Industry spokesmen
(9a) and others contend that the best risk es-
timate should be made and the safety factors
added after the estimate is made.

As a practical matter, there is often no alter-
native to the linear model. The dose-response
curve in figure 21 is an outrageous overstate-
ment of the data that are generally available.
Bioassays carried out according to NCI’s cancer
testing guidelines (331) produce only two data
points. The Environmental Protection Agency’s
(EPA) (102) analysis of many such tests showed
that tumor incidence was sometimes higher and
sometimes only measurable at the lower of the
two doses because other toxic effects killed
animals at the higher dose. Left with only the
response at the lower dose, there is little choice
available but to estimate responses at still lower
doses on the basis of simple proportionality.
Such calculations produce a straight line from
the experimental point to the origin.

IRLG (180) did not discuss how to extrapolate

when more than one data point is available; it
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recommends linear extrapolation (proportion-
ality) for making estimates from a single point.
IRLG further proposes that the upper confidence
level be used as the starting point for extrapola-
tion to achieve “an added degree of protec-
tion . . . .“

A linear extrapolation model from the lowest
positive data point to zero dose (104) was used
by EPA’s Carcinogen Assessment Group (CAG)
until the summer of 1980. At that time, CAG
(48) announced it was going to discontinue use
of the linear model and subsequently employ a
model developed by Crump. The CAG decision
was not made because evidence had shown the
linear model was poorer than the new one (48):

There is no really solid scientific basis for any
mathematical extrapolation model which relates
carcinogen exposure to cancer risks at the ex-
tremely low level of concentration that must be
dealt with in evaluating the environmental haz-
ards.

The now-adopted model is linear at low
doses, and, in practice, produces estimates of
risk at low doses which “ . . . are not markedly
different from those obtained with the former
procedure based on the one-hit [linear] model”
(230). However, the new model does allow con-
sideration of data produced above the linear
part of the curve (points P4 and P5 on figure 21)
to influence the slope of the line and the range of
error associated with each point.

Infralinear Extrapolation

The curved line between P1 and the origin on
figure 21 or any curved line which remains be-
low the straight line is infralinear. Such models
predict lower tumor incidence than the linear
model. If it were decided that a certain level of
risk were acceptable, higher exposure to the
chemical would be allowable under infralinear
than under linear models.

A number of such models have been devel-
oped and are well described in FSC’s (125) re-
port. All of them produce concave upward lines
between the origin and the lowest data point
(P l, in figure 21). Different models produce dif-
ferently shaped lines. It is suggested (e.g., 125)
that the model which produces the line that best
fits the data points (Pl to P5 in figure 21) is the
model to use to predict risk between P1 and the
origin. Unfortunately, usually any of the mod-
els seems to fit the available data points about
equally well (9a,125,138,180). The reasons for
the equally good fits are that generally only one,
two, or three data points are available and all of
them measure incidence above 10 percent. Data
points at such relatively high response rates do
not often provide enough information to decide
what the dose-response curve is at an incidence
of 1 percent or less.

QUANTITATIVE EFFECTS OF SELECTING A MODEL

Selection of the appropriate model for esti-
mating risks at low doses would be made easier
if some models clearly did not fit the observed
data points. As mentioned above, hardly ever is
it possible to select the best model or even to re-
ject the worst on the basis of fit to observed data
points. The low end of the dose-response curve
is most informative for selecting the correct
model but it is the part that is most difficult to
measure. In practice, incidence rates in animal
tests much below 113 percent (5 tumor-bearing
animals in a test population of 50) can seldom

be distinguished from the rate of spontaneous
tumors.

Table 32, derived from a paper by Brown
(35), shows that two infralinear models and the
one-hit model, which is essentially linear at
doses that cause an incidence of 10 percent or
less, are indistinguishable at high doses. For the
table, a dose level of one was set as sufficient to
cause an incidence of 50 percent. The expected
incidence using higher doses or doses as low as
one-sixteenth are nearly equal regardless of the
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Table 32.—Expected Incidence of Tumors Calculated by Three Models When a
Dose of 1.0 Caused Tumors in 50 Percent of the Tested Animals

Projected percentage of tumor bearing animals

Single-hit model
Log-normal model Log-logistic model (linear at incidence

Dose level (Infralinear) (Infralinear) below 10°/0)

16 98 96 100
4 84 84 94
1 50 50 50

1/4 16 16 16
1/16 2 4 4
1/100 0.05 0.4 0.7
1/1 ,000 0.00035 0.026 0.07
1/10.000 0.0000001 0.0016 0.007

SOURCE: Adapted from Brown (35).

model. Brown (35) points out that no experi-
ment of practical size could distinguish among
the three models at those dose levels.

However, at much lower dose levels of 1/100,
1/1,000, and 1/10,000, the models diverge
greatly in their projections of incidence. These
greatly lower dose and response levels are often
the ones of most interest for estimating human
risks, but they cannot be measured. The inci-
dence measured at higher doses do not provide
sufficient information to choose the appropriate
model, These problems plague all extrapolation
efforts.

In general, either a linear or infralinear model
is used for extrapolation. The linear model pre-
dicts a higher incidence at low doses than does
the infralinear model.

Selection of the correct extrapolation model is
important for only one of the three possible reg-
ulatory strategies for carcinogens. The first
strategy is to accept either human or animal evi-
dence as sufficient to identify carcinogens, and
once the identification is made, try to eliminate
the exposure. This approach requires no quan-
titative or numeric extrapolation. The second
approach uses biologic and numeric extrapola-

tion to rank substances in order from that ex-
pected to be most carcinogenic to those that are
noncarcinogenic. This relative ranking can be
accomplished by consistently applying any
model, and the numerical accuracy of the
estimated incidence is not critical. The third ap-
proach, which includes a quantitative estimate
of human risk to be used in risk-benefit com-
putations or to consider levels of acceptable risk
requires the most accurate numerical estimate.
Clearly, in this case, the selection of models is
important because the numbers produced by
different models vary across a wide range,

Virtually Safe Doses

A very low risk of cancer, say, one chance in
million lifetimes, is sometimes suggested as a
virtually safe dose. Any extrapolation model
can be used to calculate the dose which will pro-
duce such a risk, and different models produce
very different estimates for the virtually safe
dose (see table 32 and 125,170). As shown on
figure 21, infralinear models predict higher vir-
tually safe doses (i.e., lower risks at any dose)
than does the linear model.
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WHAT QUANTITATIVE PROJECTIONS CAN BE MADE
FROM NEGATIVE RESULTS (ZERO
IN A TEST POPULATION)?

No tumors occurring in a test population of
100 animals or no excess tumors among 100 ani-
mals as compared with the number of tumors in
100 control animals does not show that zero
cancer risk is associated with the chemical. In-
stead standard statistical calculations based on
zero excess tumors in 100 animals show that we
can be 95-percent confident that the actual in-
cidence of tumors is no more than 4.5 percent.
This estimate of the incidence of tumors that
might have gone undetected is called the upper
confidence limit. The percentage can be reduced
by testing more animals, for instance, finding
zero excess tumors in 1,000 animals would mean
that we can be 95-percent confident that the ac-
tual incidence is no more than 0.45 percent.

Proceeding with the illustration of zero excess
tumors in 100 animals, assume that the dose ad-
ministered to the animals was 1,000 times higher
than that to which humans are exposed. Linear

The supralinear, linear, and infralinear mod-
els are all dichotomous. They compare the num-
ber of tumors or tumor-bearing animals in the
exposed population to the number in the con-
trols. In both populations, the analysis depends
on the presence or absence of tumors. Other
models can be used to make inferences about the
times (or ages) at which animals develop tumors
in response to exposures.

Two of these models have been used exten-
sively to describe animal and human “time-to-
tumor” data. The lognormal model described in
Chand and Hoe] (57), predicts that the average
time-to-tumor is longer at low doses. An impor-
tant outcome of this model is that at sufficiently
low doses, the time necessary for tumor devel-
opment may exceed the expected lifespan. Such
a long latent period would produce a “practical
threshold.” The Weibull model (also described

EXCESS TUMORS

extrapolation (proportionality)
posure of the U.S. population

predicts that ex-
to that chemical

at 1/1,000 the level fed to) the animals will result
in fewer than 10,000 cases of cancer assuming
equal sensitivity between man and animals. The
estimated risk would be reduced if the exper-
iment on which it is based is more sensitive. For
instance, finding zero excess tumors in 1,000
animals (instead of 100) would reduce the esti-
mated risk to fewer than 1,000 cases.

The statistics of the above exercise are not
questioned, but they are seldom applied.
Although a test cannot show that a substance
presents no risk, much less concern is attached
to substances that cause no excess of tumors.
The risk associated with substances that are
negative in bioassays is qualitatively lower, and
the consideration of quantitative risk estimates
from negative experiments is of minor im-
portance.

OTHER EXTRAPOLATION MODELS

in 57) predicts that the average time-to-tumor is
nearly independent of dose. This prediction
means that an increase in dose simply causes
more cancers; it does not shift the age distribu-
tion at which they occur. The assumptions and
predictions of these two models are quite dif-
ferent. Unfortunately both are apt to give ade-
quate fits to any available data set, making it
difficult to reject one in favor of the other. IRLG
(181) concluded that these models have not re-
ceived the attention that has been focused on di-
chotomous dose- incidence relation models, and
it recommends more research be directed to-
ward exploring them. The mathematics for
these models is sophisticated, and the interested
reader is referred to Chand and Heel (57).

At this time, discussion of other models is
more an academic than a policy exercise. Op-
posing camps are for or against quantitative ex-
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trapolation, and among those favoring it, the cl). There is no agreement about another single
argument is between those for and against using model being offered as an alternative at this
linear extrapolation (including EPA’s new mod- time.

EXTRAPOLATION FROM SHORT-TERM TESTS TO HUMAN RISKS

McCann et al. (227) and McCann and Ames
(226) showed that about 90 percent of the car-
cinogens tested in the Ames test were mutagenic
(see ch. 4). Meselson and Russell (235) devel-
oped a model to compare the mutagenic and
carcinogenic potency of tested chemicals. Four-
teen chemicals were analyzed because there
were sufficient mutagenic and carcinogenic data
available to construct dose-response curves for
each. The correlation between animal carcino-
genicity and bacterial mutagenicity was ex-
cellent for 10 of the 14 compounds. The other
four compounds (all nitroso-compounds) were
more potent as carcinogens than as mutagens.

A spirited exchange of views resulted from
the suggestion that quantitative relationships
exist between mutagenicity in the Ames test and
carcinogenicity in animal tests. Ashby and
Styles (18) challenged the idea that such rela-
tionships were common, and Ames and Hooper
(12) responded that they were.

The International Program for the Evaluation
of Short-Term Tests for Carcinogenicity (188)
distributed 42 chemicals to each of 12 lab-
oratories for testing in the Ames system: To
eliminate bias, none of the laboratories knew
the identity of the chemicals. There was ex-
cellent agreement among test results obtained in
different laboratories and about 80 percent of
the carcinogens were scored as mutagens and
about 80 percent of the noncarcinogens were
scored as nonmutagens. These numbers com-
pare well with those in the literature that de-
scribe results from experiments in which the in-
vestigators knew before the mutagenicity test
was run that the chemicals were or were not car-

cinogenic. Although the 80-percent is lower
than the 90-percent accuracy sometimes re-
ported, the program included a number of
chemicals that are known to present difficulties
for the Ames test. In a qualitative sense, the test
performed very well, but mutagenic potency did
not correlate with carcinogenic potency. In
other words, the results from this program do
not support the idea that there is a quantitative
relationship between Ames test results and car-
cinogenicity in animals. Similar results showing
good qualitative and poor quantitative agree-
ments between mutagenicity and carcinogenic-
ity were reported by Bartsch et al. (22).

Meselson and Russell (235) reported that suf-
ficient quantitative data were available for two
human carcinogens, aflatoxin B and cigarette
smoke, to allow comparison of mutagenic po-
tency to carcinogenic potency in humans. Cor-
relation between carcinogenicity in humans and
mutagenicity was good for the two compounds,
and the Meselson and Russell paper raised the
possibility that human cancer risks might be
predicted from mutagenicity data. Acceptance
of such a procedure is far away and will depend
on much more data being available to support
the proposed quantitative relationships.

Clearly, controversies now exist about the
value of extrapolations made from short-term
tests. It seems reasonable that, as use of short-
term tests increases, such projections are going
to be made, but some initial optimism about the
value of quantitative extrapolation from short-
term tests to carcinogenicity is apparently
fading.
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CARCINOGENIC ACTIVITY INDICATORS

The NRC Pesticide Committee (267) recom-
mends calculating potency expressions, “Car-
cinogenic Activity Indicators” (CAI), for tested
chemicals. For each point of a dose response
curve (fig. 21), the number of chemical mole-
cules ingested divided by the animal body
weight can be related to the excess percentage of
tumor-bearing animals in the exposed popula-
tion.

excess percentage of
subjects in which tumors tumor

CAI = are observed = incidence
lifetime dose dose

(molecules/kg of
body weight)

CAIs do not have to be based on total tumors,
for instance, site specific tumors may be
counted, the analysis may be limited to one sex,
only malignant tumors may be counted, or
other alterations can be made as wanted. In
practice, the number of molecules of different
substances, S1, S2, and S3 required to induce
the same percentage of excess tumors can be
compared to determine which is the most potent
carcinogen. CAIs will probably be different for
each point on a dose--response curve because the

POTENCY

Ames et al. (14) have analyzed more than
l,500 bioassays carried out on some 600 chemi-
cals. For each experiment, they have calculated
a potency index, TD50, which is calculated as the
total dose of substance necessary to produce
tumors in 50 percent of the animals. They ex-
pect to compare potency:

1.

2.
3.

4.

5.

among multiple tests run on the same sub-
stance in the same strain and species;
between male and female animals;
between different strains of the same ani-
mal;
between different sites in different ani-
mals; and
between rodent tests and 26 tests that have
been carried out: in monkeys.

points seldom fall in a straight line, but com-
parisons can be made at comparable doses.

Using information about exposure levels for
human populations, the number of molecules
that compare to human exposures can be calcu-
lated. Linear extrapolation is then to be used to
estimate the animal response at human exposure
level. This method is especially appropriate for
comparing chemicals with similar uses, and if
applied, would assure that the most and least
risky ones based on animal data are identified.

The procedure does not make predictions of
human cancer risks from animal data and
avoids the problems associated with biologic ex-
trapolation. The NRC committee (267) urges
that only epidemiologic data be used to estimate
human risk; it restricts the use of animal data to
making comparisons of carcinogenicity in ani-
mals. (Such an approach is especially attractive
when deciding about regulating pesticides. Sub-
stitutes are often available and CAIs offer a
method to decide on the less or least risky one.
This suggestion corresponds to the second possi-
ble use of extrapolation discussed in Quan-
titative Effects of Selecting a Model above. )

The results of this massive project is expected to
provide much information about biologic ex-
trapolation from species to species and about
potencies.

Ames et al. (14) mention that preliminary
results show that there is usually less than a ten-
fold variation in potencies among rodents. This
level of agreement was also found by Crouch
and Wilson (72) for most of 70 chemicals tested
in both rats and mice by NCI. Crouch and Wil-
son included tumors which were not present at
“statistically significant” levels in their analyses.
Therefore, some chemicals judged positive in
only one species by NCI (146) have potencies
that agree within a factor of 10 between rats and
mice although one is statistically significant and
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the other is not. Results showing a substance is fers from species to species. This information
much more potent in one species than in another will also be important in efforts to improve ex-
will suggest that metabolism of the chemical dif - trapolation methods.

THE

The
search,
known

EDO1 EXPERIMENT AND EXTRAPOLATION MODELS

National Center for Toxicological Re-
a joint FDA/EPA laboratory, tested the
bladder and liver carcinogen 2-ace-

tylaminofluorene (2-AAF) in approximately
24,000 female mice. This experiment was de-
signed to study dose responses down to a 1-
percent tumor incidence, i.e., the effective dose
for a l-percent (0.01) response (ED01).

Figures 22 and 23 show the results of post-
mortem examination for liver and bladder tu-
mors in animals exposed to 2-AAF for between
21.5 and 28.5 months. The curve that describes
the liver tumors (fig. 22) shows no threshold
and
The
(fig.
dose

increases almost proportionally to dose.
curve that describes the bladder tumors
23) gives an impression of a “threshold”
below 60 ppm of 2-AAF. Gaylor (136)

Figure 22.—Proportion (P) of Mice With
Liver Tumors v. Dose (21.5 to 28.5 months)
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Figure 23.— Proportion (P) of Mice With Bladder
Tumors v. Dose (21.5 to 28.5 months)
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ascribes the apparent threshold to a lack of
resolution of the graph for low tumor rates. He
replotted these same data on an enlarged scale
(figure 24) to show that the number of bladder
tumors increases with dose even at lower doses.
This diagram supports the idea that there was
no threshold. However, there is a dramatic
change in slope of the line between 60 and 75
ppm, and the efficiency of 2-AAF in causing
tumors increases greatly at doses above 60 ppm
(fig. 24).

Carlborg (50) has also analyzed the data from
ED01. He does not argue that the bladder cancer
data show a threshold, but he does contend that
neither the bladder nor the liver data fit a one-
hit (linear) model. In addition to trying to fit a
one-hit model to the data, he also tried the
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Figure 24.— Proportion (P) of Mice With Bladder
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Weibull model, a “generalization of the one-hit
model. ” Figures 25 and 26 represent his analysis
of the two sets of data, and the “best-fitting one-
hit and Weibull models” are plotted in both
figures. It can be seen that the Weibull model
provides a better fit, especially with the bladder
tumor data. Carlborg (50) also states that the
one-hit model fits well with only the three
lowest dose points from the liver tumor data.

The Weibull model produces a different slope
for the line to be drawn from 30 to O ppm. Carl-
borg calculates that a 0.000045 ppm dose of 2-
AAF is necessary to produce a one in a million
risk of liver cancer using the one-hit model.
Using the Weibull model, the calculated dose for
a one in a million risk is 100 times higher,
0.0045 ppm. In other words, use of the Weibull
model would allow exposures 100 times higher
than the linear model if there were agreement
that a one in a million risk were acceptable.

Despite the large number of data points from
ED01, Gaylor (136) argues that a “best” model

Figure 25.—Proportion (P) of Mice With
Liver Tumors v. Dose (24 months)
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Figure 26.— Proportion (P) of Mice With
Bladder Tumors v. Dose (24 months)
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cannot be chosen on the basis of fit with the data
and that the Weibull model cannot be singled
out above all others. Furthermore, he says that
several models fit the observed data about
equally well, and that they predict very different
levels of risk at doses between O and 30 ppm 2-
AAF (see discussion of different models in
35,49,51,123,170).
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Obviously, animal data can be best used
quantitatively to estimate potential risks within
the same animal species under test conditions.
These estimates cannot be used directly to es-

timate human risks. Other “biologic” assump-
tions are necessary to extrapolate from animal
data to estimates of human risk.

BIOLOGIC EXTRAPOLATION FROM ANIMAL TESTS

Bioassay guidelines call for testing in two
species. Qualitative judgments are based on
whether a tested substance causes tumors in
both, only one, or neither species. Sometimes, a
substance is reported positive (causes tumors) in
only one species and negative in another. The
frequency with which this problem is encoun-
tered can be estimated from Griesemer and
Cueto’s (146) discussion of the results of the NCI
bioassay program (see app. A). Of the 98 chem-
icals for which “very strong” or “sufficient”
evidence of carcinogenicity was found in either
rats, mice, or both, 54 were positive in only one
species. An analysis of test results from 250
substances (300) found 38 percent were carcino-
genic in neither rats nor mice, 15 percent were
carcinogenic in either the rat or the mouse but
not both, and 44 percent were carcinogenic in
both. Crouch and Wilson (72) and Ames et al.
(14) tend to dismiss these discordant results be-
tween rats and mice because tests analyzed by
their methods, which consider experimental
error and test sensitivity, are in agreement much
more often.

In cases in which there are apparent species
differences in sensitivity, the positive result is
generally accepted as more important. The Of-
fice of Science and Technology Policy (281),
IRLG (180), the Occupational Safety and Health
Administration (279), and American Federation
of Labor/Congress of Industrial Organizations
(7) all present arguments for following this
course. AIHC (8) and Purchase (300) present
arguments against deciding that the more sensi-
tive animal is predictive for human response.
The disagreement continues, but in Federal pro-
grams, extrapolation is based on results from
the more sensitive species.

Accepting that experimental animals provide
appropriate data for extrapolation to estimates

of human risk, a decision has to be made about
how to adjust the dose measured in the bioassay
to the dose experienced by humans. A mouse or
rat, of course, is much smaller than a human,
and the dose necessary to cause a carcinogenic
response is less than that required in humans.
Three “scaling factors” are in general use to
make allowance for the different sizes and rates
of metabolism between experimental animals
and humans. The three are listed below in order
from least conservative, that is the one that
predicts the lowest human risk, to the most con-
servative. The fourth scaling factor is less often
used, but it is included because it was used for
the estimates reported in table 34. For rats and
mice, the most commonly used laboratory ani-
mals, the relationship between scaling factors
and estimated risk in man for the same doses are
shown in table 33.

1.

2.

3.

Exposures may be adjusted on the basis of
relative body weights, milligram of agent/
kilogram of body weight/day (mg/kg/
day), for animals and humans. This meth-
od is most generally used by toxicologists.

In cases where the experimental dose is
measured as parts per million in food, air,
or water and human exposure is through
ingestion, the dose of the chemical is ex-
pressed as parts per million. This method
is generally used by FDA and in some
cases by EPA.

Exposure may be adjusted on the basis of
the relative surface areas of the test animal
and humans: milligram of agent/surface
area/day, for animals and humans. It is
generally expressed as milligram of sub-
stance/square meter of surface area/day
or mg/m2/day. EPA uses this scaling fac-
tor.

BII-4  31 9 - 81  - 12
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Table 33.—Relative Human Risk Depending on How Dose Rate is Scaled From
Experimental Animals to Humans

Risk projected for humans when an identical dose is
scaled by different factors

Milligram Parts per million Milligram Milligram

Kilogram Kilogram
Experimental animal body weight/day In diet m2 body area body weight/lifetime

Mouse 1 6 14 40
Rat 1 3 6 35

SOURCE: Off Ice of Technology Assessment.

4. Exposures may be adjusted on the basis of
relative body weight over lifetime, milli-
grams of agent /kilogram of body weight/
lifetime (mg/kg/lifetime).

As can be seen from table 33, the choice of
scaling factor can make a difference of up to
fortyfold in estimating human risks. The mg/
kg/day scaling factor was arbitrarily set equal to
1.0. Use of the mg/m2/day factor (for instance)
projects that humans would have 14 times the

risk of a mouse for equivalent doses measured in
mg/kg/day. The information given in table 33
allows a comparison to be made among the scal-
ing factors. However, it is important to remem-
ber that great uncertainties surround biologic
extrapolation because of possible differences be-
tween laboratory animals and man, and no
great assurance is attached to any number in
table 33.

COMPARING MEASURED HUMAN CANCER INCIDENCE AND
MORTALITY TO ESTIMATES MADE USING EXTRAPOLATION

The more troubling and more fundamental
problem with biologic extrapolation concerns
questions about how closely the test animal
resembles humans. This problem is partially re-
lated to differences in the greater genetic com-
plexity of human populations. Populations of
test animals are highly inbred and are almost ge-
netically identical. Populations of humans are
outbred and include greatly differing genotypes.
There is no way to deal with the problem of
humans that may differ in sensitivities because
there is seldom, if ever, a way to associate sen-
sitivities with individuals. The other problem
concerns differences in metabolism between test
animals and humans. Few are well understood,
and many may be unidentified.

Laying these problems aside, a few efforts
have been made to compare human cancer inci-
dence or mortality to the levels of incidence or
mortality extrapolated from animal studies. The
number of such attempts is limited by the few
cases for which data are available both from ex-
perimental animals and from humans. The Con-

sultative Panel on Health Hazards of Chemical
Pesticides of the National Research Council’s
Study of Pest Control (262), identified six
chemicals for which such comparisons could be
made. Comparisons were made on the basis of
lifetime dosage (expressed as milligram chemi-
cal/kilogram body weight/lifetime) in animals
and in humans. Table 34 shows those findings.
It can be seen that for three chemicals the in-
cidence of human tumors was essentially that
predicted from animal studies, and for the other
three, extrapolation from animal data over-
estimated human risk as measured by epide-
miology. Crouch and Wilson (72) have made
similar comparisons for 13 chemicals (including
the 6 in table 34). They reported good agree-
ment between predicted and observed human
tumors rates, using a linear nonthreshold ex-
trapolation model. Crouch and Wilson (72) also
calculated “scaling factors” from their experi-
ments and concluded that humans are twice as
sensitive as mice and between one-third and
three times as sensitive as rats to the same dose
expressed as mg/kg/day. These values differ
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Table 34.—Comparison of Tumor Rates in Laboratory Test Animals and Humans
Following Lifetime Exposures to Comparable Amounts of Each of Six Agents

(comparison based on mg agent/kg body weight /lifetime)

Animal tumor Human tumor Relative tumor
Chemical Test animal site(s) site r a t ea

Benzidine Mouse Liver Bladder ca. 1
Rat Bladder

Cigarette smoking Mouse Lung Lung ca. 1
Hamster Larynx

N, N-bis(2-chIoro-
ethyl) -2-naphtyl-
amine Mouse Lung Bladder ca. 1

Aflatoxin B, Mouse Liver Liver ca. 10
Rat Liver

Diethylstilbestrol
(DES) Mouse Mammary Daughters’ re- ca. 50

productive tract
Mouse Cervix and

vagina

Vinyl chloride Mouse Lung Liver ca. 500
Mouse Mammary
Rat Kidney
Rat Liver

ar~lativ~ ~U~Or ~at~ = ~mor Incidence predicted from~ost Sensltlve  animal  sPecles— ————
tumor incidence observed In humans

SOURCE Adapted from National  Research Council (262)

from unity by a factor of 3 or less which is
assumed for doses scaled on the basis of mg/
kg/day (see table 33).

A decision about whether the reasonably
good agreement between extrapolated values
and observations (72,262) are of significance,
and whether or not these findings mean extrap-
olation is accurate enough for making quanti-
tative decisions about human risks depends on
the observer. The NRC Committee (262) con-
cluded that:

Although there are major uncertainties in ex-
trapolating the results of animal tests to man,
this is usually the only available method . . .
Despite the uncertainties, enough is known to
indicate what dependencies on dose and time
may operate and to provide rough predictions of
induced cancer rates in human populations.

Regulating Pesticides, a report prepared by
the National Academy of Science’s Committee
on Prototype Explicit Analyses for Pesticides
(267), says that seven previous National Re-

search Council reports have recommended ex-
trapolating from animal data to projected
human risk, The Committee (267) took a differ-
ent position and recommended that only epi-
demiologic data be used to estimate human risk:

OPP [Office of Pesticide Programs, EPA]
should abandon its attempts to produce numer-
ical estimates of the effects of the use of pes-
ticides on human mortality and morbidity ex-
cept when reliable human epidemiological data
are available. In the usual case, in which major
reliance has to be placed on the results of bio-
assays, those results should be used to construct
indicators of the relative pathological activity of
the pesticide under review in comparison with
other pesticides and compounds.

Documented differences between the metab-
olism of a chemical in test animals and in hu-
mans would be very useful in any attempt at
biologic extrapolation. Poor understanding of
comparative biochemistry hampers research in
the basic biology of cancer. As research con-
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tinues, knowledge of metabolic differences be- limited by strong constraints on studying me-
tween animals and humans may provide clearer tabolism of carcinogens in humans.
direction, but such information will always be

SUMMARY

Animal tests
data that relate

or epidemiologic studies yield
cancer (or tumor) incidence to

exposure levels (dosage) of the substance under
study. The accuracy of the relation between ex-
posure and incidence is always limited. Practical
restraints on the number of animals that can be
tested means that the data are always subject to
significant experimental error; it also means that
only relatively high incidence almost always
greater than 10 percent, can be measured in the
experiments. Epidemiologic studies may be lim-
ited by small numbers of people available for
study, or by unknown or uncertain exposure
levels. In all cases, deficiencies in experimental
design and execution may further limit the ac-
curacy of relating incidence to dose.

Quantitative extrapolation begins with the
experimentally determined relationship between
incidence and exposure and may use one of sev-
eral methods to derive an estimate of incidence
at exposure levels likely to be encountered in the
environment. When animal data are used for ex-
trapolation one of four scaling factors can be
used to extrapolate from animal results to ex-
pected human response. The scaling factors
vary some fortyfold in the risk they project for
humans, and agreement has not been reached
about which one is most appropriate.

There is also no agreement about which
mathematical models best extrapolate from the
exposure levels measured in studies to those en-
countered in the environment. Linear models,
which assume that incidence is proportional to

exposure at low-exposure levels, are used by
Federal agencies. Some other organizations
favor nonlinear models in which estimates of in-
cidence decrease faster than dose decreases. A
special feature of some models is the incorpora-
tion of a threshold, a low, but nonzero exposure
level at which the estimated incidence is zero.
Nonthreshold models, which are used by Fed-
eral agencies, associate some positive estimate
of incidence with all doses above zero.

Suggestions are frequently made that careful
inspection of available data and testing various
extrapolation models against them will allow
selection of the best model. Unfortunately data
are not sufficient to make such judgments.
Another method to decide which model is ap-
propriate is to make projections from animal
data and compare those to observed incidence in
humans. The cases where human data are avail-
able to make comparisons are few, but the con-
ceptually simple, linear, nonthreshold model is
reported to estimate human incidence reason-
ably well.

The increasing importance of short-term tests
has led to efforts to extrapolate from them to
estimates of carcinogenic risks in humans or
animals. Qualitatively short-term tests perform
well in predicting whether a substance will be
carcinogenic or noncarcinogenic in an animal
test. Quantitative agreement between muta-
genic potency in short-term tests and carcino-
genic potency in animal tests for carcinogenicity
is not nearly so good.


