Appendix I-B **A Timetable for the Commercial Production of Compounds Using Genetically Engineered Micro-Organisms in Biotechnology**

Objectives

- The estimation of the proportions of various groups of commercial products and processes for which recombinant DNA (rDNA) technology could be applicable.
- The construction of timetables to indicate plausible sequences of commercial developments that would result from the application of rDNA technology.

Approaches

The following five industries were evaluated:

- 1. pharmaceutical,
- 2. agricultural,
- 3. food,
- 4. chemical, and
- 5. energy

The manufacturing processes that would result from the application of rDNA technology would be based on fermentation technology, Therefore, a set of parameters was developed to serve as a guide to assess the economics of applying fermentation technology to the manufacture of products currently manufactured by other means.

The chemical industry generates a large number of products that could be attributed to (and is in this study) the other four industries cited, this particular industry was focused on more closely than the others. The following factors were considered in constructing the timetables showing the applicability of rDNA technoloGY:

- the current state of the art of genetic engineering
- t ion technology;
- the length of time to progress from a laboratory process to the pilot plant to large-scale production:
- the plant construction time; and
- the Government regulatory agency approval re-

quired (of the products and manufacturing processes, not of the rDNA technology per se).

Sources of information

While much of the information compiled for this report was obtained from published sources, a considerable amount came from prior proprietary studies performed by Genex Corp. In the latter case, information is used that is not proprietary, although the sources must remain confidential. In this connection Genex has had numerous discussions with the technical and corporate management of more than 100 large companies (generally multibillion dollar companies), concerning research interests, product lines, and market trends. Production costs are extrapolated for four fermentation plants of various sizes and capabilities. (See table I-B-1.)

A group of Genex scientists, consisting of a biochemical engineer, two organic chemists, a biochemist, and four molecular geneticists rated the feasibility of devising micro-organisms to produce various chemicals in accordance with the fermentation conditions specified in table I-B-1. For those chemicls that appeared to be capable of being produced microbiologically, dates were assigned for the times when the necessary technology would be achieved in the laboratory. By combining both technical and economic factors, it then became possible to project a timetable for commercial production. (See table I-B-2.)

It should be emphasized that an extremely conservative approach was taken in considering fermentation economics over the next 10 years. only the relatively poor economics of conventional batch fer-• the current economic limitations of fermentmentation was considered. immobilized cell processes were projected to be 15 years away, and even then, the incremental cost savings projected (see table I-B-1) are lower than the incremental cost ings currently obtained with immobilized cell processes. The assumptions made here, however, did include reasonably high product yields and highly effi-

Earliest date (year)	Size of plant (lb)	Type of fermentation	Product yield (%)	Annual c [®] excluding precursor (\$ millions)	Unit cost excluding precursor (\$/lb)	Precursor	Complete unit cost (W/lb)
5	50	Ordinary batch	12	23.5	0.47	Petrochemical	0.66
10		Ordinary batch	40	24.5	0.25	Petrochemical	0.44
	200	Immobilized cells	40	25.5	0.13	Petrochemical	0.32 ⁴
20	200	Immobilized cells	40	25.5	0.13	Carbohydrate	0.24 ^d

Table I-B= I.-Unit Cost Assumptions for the Production of Chemicals by Fermentation After Various Intervals of Time

Annual costs for cidinary tatch formentation viere estimated from proprietary cata. Values obtained for the inimmobilized all examples a are omputed at 31.2 arcent

below the comparable slues i for ordinary batch fermentation. Average cost cr pstrochemical equals \$ \$0.17/lb.t \$) p percent conversion efficiency, cost contribution of petrochemical quals \$0.19/lb c of prOdUCt. Average cost cr c carbohydrate ssumed a at 0.04/lb c of iolasses c or 0.02/lb c of cellulose-containing ellets f from biomass isidue. For 0 percent free ugar content c Of molasses, cost of sugar equals 3.08/lb. / At 70 percent conversion efficiency from the sugar, cost contribution of molasses equals S0.1 l/lb of product. For 50 percent cellulose content in the biomass pellets, coat of cellulose quals \$ \$0.04/lb. For 50 percent conversion efficiency to free sugar, followed by 70 percent conversion fi

ency h from the sugar, coat contribution of the ellets a also equals \$0.1 ib o of product. These u unit costs maybe further reduced to \$0.26 and \$0.17/lb, respectively, for products whose annual U.S. production currently exceeds 1 billion lb, ssumptions it in-clude reduction in precursor cost by 20 percent (presumably because manufacturer controls suppry of precursor); reduction in unit cost of immobilized cell process by 13 percent (d) and 42 percent (e), respectively; maximum of 60 percent product yield (e); and a nearly 100 percent oconversion ϵ efficiency from the petrochemical precursor

SOURCE: Genex Corp.

Table I- B-2.-Basis for Estimating the Timetable for Manufacture of Chemicals by Means of Microbial Processes

		And if bulk	Assuming
	If all the	selling prices	unit costs (in
Earliest date			1979 dollars)
for commer	cial is achieved	dollars) equal	equal or
productio	n is: by:	or exceed:	exceed:
5 years	2 years	\$1.32/lb	\$0.66/lb
10	7	0.88	0.44
	12	0.64 (0.43)	0.32(0.26)
20	17	0.48 (0.28)	0.24 (0.17)

t it a sumed that d development of the appropriate manufacturing cilities

gins at at least 5 years ion to the onset of production. echnology refers to both genetic and biochemical engineering. Technology build b be achieved on demonstrating that the chemical could be biologically produced in the laboratory at commercially desirable yields and reaction fi-

is a sumed that all b bulk lling piprices are arked u up 0 pircent from the corresponding unit costs, except for chemicals whose annual U.S. production currently exceeds 1 lion It lb. In those ses tr the bulk lling pr prices (numbers in parentheses) are assumed to be marked up only 67 rcent. Init c sts wire o obtained from table I-B-I. See footnote of table I-1 ft for ex-

planation of mbers in in parentheses.

SOURCE: Inex C Corp.

cient transformations of precursor to product, but nothing exceptional with respect to current fermentation technology. Indeed, high product yields and highly efficient reactions would be expected with genetically engineered micro-organisms.

Two points should be stressed that place these projections on the low side. First, they exclude certain groups of products, the end products of which could not be microbially processed, although their basic constituents could be produced microbiologically (e.g., monomers of microbial origin could form chemically synthesized polymers). Second, the projections exclude naturally occurring products of microbial origin, which could be effective or superior substitutes for chemically synthesized products that could not he manufactured microbiologically. As examples, dyes of microbial origin, such as prodigiosin, might advantageously replace those synthesized chemically, because their toxicity is lower than their chemical counterparts. In the case of plastics, a new generation of plastics of microbial origin, e.g., pullulans, would not have to be made from petrochemical feedstocks and would be biodegradable.

Explanation of tables

Tables 1-B-3 through 1-B-32 present the compounds from two points of view. Tables 1-B-3 to 1-B-lo group the compounds by industry subgrouped by product category. Tables 1-B-l 1 to I-B-32 group the cornpounds by product category irrespective of industry.

The tables based on industry present end use data for each compound; e.g., in the pharmaceutical industry aspirin is listed as an aromatic used as an analgesic, whereas in the chemical industry aniline is listed as an aromatic used as a cyclic intermediate. Thus, the similarities and differences between compounds of similar origin, i.e., product category, are revealed.

The tables based solely on product category are divided into two types; one type pertaining to market data (tables 1-B-lo, 11, and the subsequent odd numbered ones through table 1-B-33), and the other pertaining to technical data (the even numbered tables from I-B-12 through I-B-32.)

The market data were obtained both from published sources and from prior proprietary studies

Table I-B-3.—Pharmaceuticals: Small Molecules

Product category	End use
Amino acids	
Phenylalanine	Intravenous solutions
Tryptophan.	
Arginine	Therapeutic: liver disease
,	and hyperammonemia
Cystoine	Therapeutic: bronchitis and
Cysteme	nasal catarrh
	nasai catarm
Vitamins	
Vitamin E	. Intravenous solutions,
	prophylactic
Vitamin B ₁₂	Intravenous solutions
Aromatics	
Aspirin.	Analassia
p-acetaminophenol	Anaigesic
Steroid hormones	
Corticoids	
Cortisone	Therapeutic:
	anti-inflammatory agent
Prednisone.	Therapeutic:
	ant i-inflammatory agent
Prednisolone	Therapeutic:
1 rounicolonic	anti-inflammatory agent
Aldosterone .	Therapeutic: control of
Aldosterone .	electrolyte imbalance
Andressen	electrolyte impalance
Androgens	
Testosterone	Therapeutic: infertility,
	hypogonadism, and
	hypopituitarism
Estrogens	
Estradiol	Prophylactic, therapeutic:
	vaginitis
Antibiotics	
	Control of infectious diseases
Short peptides	
Glycirie-Histidine-Lysine	Manufacturing processes:
	tissue culture

SOURCE: Conex Cor

performe 1 b 7 Gener in the latte case, data are suse that are sinc proprietary althoug the sources must remail confidentia Market values were estimated b multiplyin the market volum (total amount or product sold in 1973) b the bulk cost (unit) bul selling price i 1 980). Excel for aromatics and all phatic a marke dat represent worldwide estimates. Marke data i for aromatics and 1 aliphatic are restricted to the 1 Unite States. Data that could not be found were market value were identified, and those that could be produce biologically were a selected for this report.

Hig market to values were relative to the γ industr 1111(1 end the list i time reach compound. For resample ∞ h + respecto chemicals, _ normal? on cyclic + i -

Table I=B=4.—Pharmaceuticais: Large Molecules

Product category	End use
Peptide hormones	
Insulin	
Endorphins	Analgesics, narcotics,
	prophylactics
Enkephalins	Analgesics, narcotics,
	prophylactics
ACTH [®]	Diagnostic: adrenal instability
Glucagon	. Therapeutic: diabetes-induced
	hypoglycemia
Vasopressin	Therapeutic: antidiuretic
Human growth hormone	. Therapeutic: dwarfism
Enzymes	
	. Diagnostic: measurement of
	blood sugar
Urokinase	. Therapeutic: antithrombotic
Asparaginase	Therapeutic: antineoplastic
Tyrosine hydroxylase	. Therapeutic: antineoplastic . Therapeutic: Parkinson's
	disease
Viral antigens	
Hepatitis viruses	Vaccine
Influenza viruses	
Herpes viruses	
Varicella virus	
Rubella virus.	
Reoviruses	
Epstein-Barr virus	. Vaccine: infectious
	mononucleosis,
	nasopharyngeal
	carcinoma, Burkitt
	lymphoma
Miscellaneous proteins	
Interferon	. Control of infectious diseases
Human serum albumin	. Therapeutic: shock and burns
Monoclinal antibodies	. Diagnostics: hepatitis, cancer,
	etc; therapeutics
Cono proporationa	ete, merupeuties
Gene preparations	. Control of hereditary disorder
	. Control of hereditary disorder
Thellesomies	. Control of hereditary disorder
111011035111103	
^a Adrenocorticotrop hormone.	

SOURCE: E: Gene Corp.

termediate with production volumes (which diffe from market volumes) exceeding (5 million lb were selected, but in the case of flaves and perfume mate rial compounds with production values generally exceeding million lb were selected. In the case of many pharmaceuticals, clinical importance was weighed heavily in their selection process.

The technical data were also obtained both from published and proprietary sources. Wit respect to the timetable \pm fc commercial production, the stated lengh oft times the time required to b developexist stimtechnolog (including both genetic and | biochemicengineering) to the point where it time he applied to appropriation in fact structure for the \pm larg scale \pm producion is the desired compounds. These time intervals should be sufficient \pm for undertaking

Product category	End use
Amino acids	
	Food enrichment agent, flavoring agent
Cysteine	. Food enrichment agent, manufacturing processes
Aspartame	
Vitamins	
Vitamin C.	Food additive, food
	enrichment agent
Vitamin D	Food enrichment agent
Aromatics	
Benzoic acid	Food preservative
Aliphatics	
Propionic acid.	Food preservative
Short peptides	
Aspartame	Artificial sweetener
Enzymes	
Rennin	Manufacturing processes
Amvloglucosidase.	Manufacturing processes
a-amvlase	Food enrichment agent,
,	manufacturing processes
Glucose isomerase.	Manufacturing processes:
	sweetener
Nucleotides	
5 ¹ -IMP [®]	
5'-GMP [°]	Flavoring agent
5 ¹ -inosinic a acid.	

Table I- B-5.-Food Products

5'-quanylic a acid.

SOURCE: enex C Corp.

all the R&D starting from the current knowledge base necessary to demonstrate that the desired compounds can be biologically produced first in the laboratory and then in the pilot plant at commercially desirable yields and reaction efficiencies. The timetable does not consider delays caused by construction of new facilities nor delays required to obtain Government regulatory approval of new products.

It should be noted that in the technical data charts, when glucose is listed as an alternate precursor by fermentation, other carbohydrates, e.g., cellulose and cornstarch, could be used. Moreover, if glucose were the precursor of choice, the actual feedstock would probably be a commodity like molasses as opposed to pure glucose.

Summary

Over 100 compounds representing 17 different product categories that span the five industries under evaluation are represented in table I-B-10. The current market value of all these products exceeds \$27 billion. One particular compound, methane, accounts for over \$12 billion. The even-numbered

Table I- B-6.-Agricultural Products

Product category	End use
Amino acids	
Amino acios Lysine	Feed additive
Methionine	
Threonine	
Tryptophan.	
Vitamins	
Nicotinic acid	
Riboflavin (B ₂)	Feed additive
/itamin C	Feed additive
Aliphatics	
Sorbic acid	Feed preservative
Antibiotics	
Penicillins	
Erythromycins	Feed additive, prophylactic
Peptide hormones	
Bovine growth hormone	Growth promoter
Porcine growth hormone	Growth promoter
Ovine growth hormone	Growth promoter
/iral antigens	
Foot-and-mouth disease virus.	Vaccine
Rous sarcoma virus	. Vaccine
Avian leukemiavirus	Vaccine
Avian myeloblastosis virus	Vaccine
Enzymes	
Papain	. Feed additive
Glucose oxidase	Feed preservative
Pesticides	
Microbial	
Aromatic	. Insecticide
norganic	
Ammonia	. Fertilizer

SOURCE: enex (Corp.

tables from 1-B-12 to I-B-32 project that within 20 years all these products could be manufactured using genetically engineered microbial strains on a more economical basis than using today's conventional technologies. In many cases, the time required to apply genetically engineered strains in commercial fermentations could be reduced to as little as 5 years.

The impact of genetic engineering on selected markets is shown in table I-B-33. only five product categories are considered here, and in one, amino acids, only a few of the compounds comprising it are evaluated. The products represented in the five categories currently have a total market value exceeding \$800 million. However, within 20 years this market value could rise to over \$5 billion (in 1980 dollars) due largely to the application of genetic engineering. In a number of cases, the desired products would most likely not be available in significant quantities if not for the application of genetic engineering technology.

Table I- B-7.—Chemicals: Aliphatics

Compound	End use
Acetic acid [®]	Miscellaneous acyclic
Acrylic acid [®]	Miscellaneous acyclic
Adipic acid [®]	Misceilaneous acyclic
Bis (2-ethylhexyl) adipate	
Citronella	Flavor/perfume material
Citronellol	Flavor/perfume material
Ethanol [®]	Miscellaneous acylic
Ethanolamine	Miscellaneous acyclic
Ethylene glycol*	
Ethylene oxide [®]	Miscellaneous acyclic
Geraniol	
Glycerol [®]	Miscellaneous acyclic
Isobutylene	
	flavor/perfume material
Itaconic acid	
Linalool.	
Linalyl acetate	
Methane	
Nerol	
Pentaerythritol	
Propylene giycol [®]	
Sorbitol	2
a-terpineol	Flavor/perfume material
a-terpinylacetate	Flavor/perfume material

aIndicate: compounds also identified by the Massachusetts Institute o Technology. The following additional chemicals were identified by MIT as amenable to biotechnologica production methods: acetaldehyde acetoin acetone, acetylene, acrylic acid, butadiene butanol buty acetate, butyraldehyde dihydroxyacetone ethyl acetate, ethyl acrylate ethylene, for-maldehyde, isoprene isopropanol methanol, methyl ethyl ketone, methyl acrylate propylene, propylene oxide, styrene vinyl acetate.

SOURCE: Gene Corp. and the Massachusetts Institute of Technology.

Table I-B-8.—Chemicals: Aromatics and **Miscellaneous**

Product category	End use
Aromatics	
Aniline	
Benzoic acid	
Cresols	. Cyclic intermediate
Phenol	. Cyclic intermediate
Phthalic anhydride	
Cinnamaldehyde	
Diisodecyl phthalate	
Dioctyle phthalate	. Plasticizer
Inorganic	
Ammonia	Manufacturing processes
Hydrogen	
Enzymes	
Pepsin	. Manufacturing processes
Bacillus protease	
Mineral leaching	
Transition metals (cobalt,	Inorganic intermediates:
nickel, manganese, iron)	
Biodegradation	Removal of organic phosphates, aryl sulfonates, and haloaromatics

SOURCE: Gene Corp.

Table I- B-9.—Energy Products

Product category	End use
, ,	Manufacturing processes Manufacturing processes
Biodegradation	Petroleum byproducts removal
Aliphatics Methane	
Inorganic Hydrogen	Fuel
Mineral leaching Uranium	Fuel

SOURCE: Genx Corp.

Table I- B- 10.—Total Market Values for the **Various Product Categories**

Product category	Number of compounds	Current value (\$ millions)
Amino acids.	9	\$ 1,703.0
Vitamins	6	667.7
Enzymes	11	217.7
Steroid hormones	6	376.8
Peptide hormones	9	263.7
Viral antigens	9	N/A
Short peptides	2	4.4
Nucleotides	2	72.0
Miscellaneous proteins	2a	300.0
Antibiotics.	4 ^b	4,240.0
Gene preparations	3 2 [°]	N/A
Pesticides	2 °	100.0
Aliphatics:		
Methane		12,572.0
Other	24°	2,737.5
Aromatics	10°	1,250.9
Inorganic	2	2,681.0
Mineral leaching	5	N/A
Biodegradation	N/A	N/A
Totals	107	\$27,186.7 ^ª

^aOni two of a number of compounds are considered here. ^bThes numbers refer to major classes of compounds; not actual numbers of compounds. CThes numbers refer only to those compounds rePresenting the larges

market volume In classes specified in the text. ^OCurrert valu excluding methane = \$14,614,700,000

SOURCE: Genex Corp.

	Current market data			
Compound	Market volume 1,000 lb	Bulk cost \$/lb	Market value (\$ millions)	
Arginine	900	12.73	11.46	
Aspartate	3,000	2.86	8.6	
Cysteine	600	22.75	13.6	
Glutamate	600,000	1.80	1,080.0	
Lysine	129,000	2.10	258.0	
Methionine	210,000	1.40	294.0	
Phertylalanine	300	38.18	11.46	
Threonine	300	58.18	16.2	
Tryptophan	225	43.18	9.71	

Table I-B-11.-Amino Acids: Market Information

SOURCE: Compiled by Genex Corp. from data in references 1,2, and 3.

Table I-B-12.—Amino Acids: Technical Information

Compound	Typical synthetic process	Typical precursor	Is precursor renewable/non- renewable limited	Alternate precursor by fermentation	Time to implement commercial fermentation by genetically engineered strain
Arginine	fermentation	glucose and NH₄*ª	renewable		5 yrs.
Aspartate	fermentation	fumaric acid and ammonia	limited		5 yrs.
Cysteine	extraction	protein hydrolysis	renewable		5 yrs.
Glutamate	fermentation	glucose and NH₄⁺	renewable		5 yrs.
Lysine	fermentation	glucose and NH₄⁺	renewable		5 yrs.
Methionine	chemical	B-methylmercapto proplonaldehyde	nonrenewable	glucose and NH₄⁺	10 yrs.
Phenylalanine	chemical	a-acetamino- cinnamic acid	limited	glucose and NH₄⁺	5 yrs. 5 yrs.
Threonine	fermentation	glucose and NH₄⁺	renewable		5 yrs.
Tryptophan	chemical	a-ketoglutaric phenylhydrazone	nonrenewable	glucose and NH₄⁺	5 yrs.

Ammonium i ion.

SOURCE: Compiled by ienex (Corp. from data in references 2,3,4, and 5

Table I- B-	13Vitamins:	Market	Information

	Current market data				
Compound	Market volume 1,000 lb	Bulk cost \$/lb	Market value (\$ millions)		
Nicotinic acid	1,400	1.82	2.5		
Riboflavin (B ₂)	22	15.40	0.34		
Vitamin B12		6,991.60	153.8		
Vitamin C	90,0%	4.50	405.0		
Vitamin D	12	42.50	0.51		
Vitamin E	3,641	29.00	105.6		

SOURCE: Compiled by Genex Corp. from data in references 1,6,7,8, and 9.

Compound	Typical synthetic process	Typical precursor	ls precursor renewable/non- renewable limited	Alternate precursor by fermentation	Time to implement commercial fermentation by genetically engineered strain
Nicotinic Acid	chemical	aikyl a-subst.	nonrenewable	glucose and NH ₄ "	10 yrs.
Riboflavin (B2)	fermentation	pyridines glucose	renewable	_	10 yrs.
Vitamin B	fermentation	carbohydrates	renewable	_	10 yrs.
Vitamin C	semisynthetic	glucose or sorbitol	renewable		10 yrs.
Vitamin D	fermentation	glucose	renewable	glucose	10 yrs.
Vitamin E	extraction	wheat germ oil	limited	glucose	15 yrs.

Table I- B-14.—Vitamins: Technical Information

^aAmmoniurion,

SOURCE: Compiled by / Gene Corp. from data in references 4,7,8, 10,11, and 12.

	C	urrent market	t data
Compound	Market volume 1,000 lb	Bulk cost \$/lb	Market value (\$ millions)
a-amylase. , Amyloglucosidase	600 600	19.33	11.6
Asparaginase	(Info	rmation not	available)
Bacillus protease. Ethanol	1,000	8.28	8.2
dehydrogenase .	(Info	rmation not a	vailable)
Glucose isomera	se 100	40000	400
Glucose oxidase .			0.80
Hydrogenate	(lforr	mation not a	vailable)
Papain	2Ò0	59.00	11.8
Pepsin	10	360.00	3.8
Rennin Tyrosine	24	696.00	40.0
hydroxylase	(Info	rmation not a	vailable)
Urokinase		60,000 IU°	89.5

Table I-B-1 5.—Enzymes: Market Information

all internation units.

SOURCE: Compiled by Genex Corp. from data in references 9,13,14,15, and 16.

Compound	Typical synthetic process	Typical precursor	IS precursor renewable/non- renewable limited	Alternate precursor by fermentation	Time to implement commercial fermentation by genetically engineered strain
a-amylase	fermentation	molasses	renewable		5 yrs.
Amyloglucosidase	fermentation	molasses	renewable		5 yrs.
Asparaginase	extraction	tissue culture	renewable	glucose and NH₄⁺	5 yrs.
Bacillus protease.	fermentation	molasses	renewable		5 yrs.
Ethanol dehydrogenase		(Information not available)		glucose and NH₄⁺	10 yrs.
Glucose isomerase	fermentation	glucose and NH4**	renewable		5 yrs.
Glucose oxidase .	fermentation	molasses	renewable		5 yrs.
Hydrogenate		(Information not available)		glucose and NH₄⁺	10 yrs.
Papain	extraction	рарауа	renewable	glucose and NH₄⁺	5 yrs.
Pepsin	fermentation	molasses	renewable		5 yrs.
Rennin	fermentation	molasses	renewable		5 yrs.
Tyrosine	extraction	tissue culture	renewable	glucose and NH₄⁺	5 yrs.
Urokinase	extraction	tissue culture	renewable	glucose	5 yrs.

Table I- B-16.-Enzymes: Technical Information

Ammonium i ion.

SOURCE: Compiled by enex (Corp. from data in references 4,5,13,14,16,17, and 18.

Table I=B=17.-Sterold Hormones: Market information

	Current market data				
Compound	Market volume 1,000 lb	Bulk cost \$/lb	Market value (\$ millions)		
Corticoids Cortisone Prednisone Prenisolone Aldosterone	N/A N/A N/A N/A	208.84 467.62 463.06 N/A	305.8 N/A N/A N/A N/A		
Androgens Testosterone Estrogens Estradiol	,	rmation not a rmation not a	60.2		

SOURCE: Compiled by Genex Corp. from data In references 1 and 4.

Compound	Typical synthetic process	Typical precursor	Is precursor renewable/non- renewable limited	Alternate precursor by fermentation	Time to implement commercial fermentation by genetically engineered strain
Corticoids Cortisone Prednisone	semisynthetic	diosgenin or stigmasterol	renewable	glucose	10 yrs.
Predisolone Aldosterone		-			
Androgens Testosterone	semisynthetic	chemical modification of cholesterol	renewable	glucose	10 yrs.
Estrogens Estradiol	semisynthetic	chemical modification of cholesterol	renewable	glucose	10 yrs.

Table I-B-18.—Steroid Hormones: Technical Information

SOURCE: Compiled by Genex Corp. from data in references 4,19,20,21, and 22.

Table I- B-19.—Peptide Hormones: Market Information

	Current market data				
Compound	Market volume 1,000 lb	Bulk cost \$/lb	Market value (\$ millions)		
ACTH ^a Bovine growth	N/A	N/A	5.6		
hormone Endorphins Enkephalins Glucagon Human growth	0.0 0.0 (Information not available) (Information not available) (Information not available)				
hormone	N/A	N/A	75.0		
Insulin Ovine growth	N/A	N/A	163.1		
hormone Porcine growth	0.0	0.0	0.0		
hormone Vasopressin	0.0 (Info	rmation not a	0.0 vailable)		

^aAdrenocorticotrop hormone.

SOURCE: Compiled by ${\scriptstyle v\,Genf}$ Corp. from data in reference 4.

Compound	Typical synthetic process	Typical precursor	Is precursor renewable/non- renewable limited	Alternate precursor by fermentation	Time to implement commercial fermentation by genetically engineered strain
ACTH [®]	extraction	adrenal cortex	limited	glucose and NH4⁺⁵	5 yrs.
Bovine growth hormone	extraction	anterior pituitary	limited	glucose and NH₄⁺	5 yrs.
Endorphins	extraction	brain	limited	glucose and NH₄⁺	5 yrs.
Enkephalins	extraction	brain	limited	glucose and NH₄⁺	5 yrs.
Glucagon	extraction	pancreas	limited	glucose and NH₄⁺	5 yrs.
Human growth hormone	extraction	anterior pituitary	limited	glucose and NH₄⁺	5 yrs.
Insulin	extraction	pancreas	limited	glucose and NH₄⁺	5 yrs.
Ovine growth hormone	extraction	anterior pituitary	limited	glucose and NH4⁺	10 yrs.
Porcine growth hormone	extraction	anterior pituitary	limited	glucose and NH₄⁺	10 yrs.
Vasopressin	extraction	posterior pituitary	limited	glucose, and NH4 [⁺]	5 yrs.

Table I- B-20.-Peptide Hormones: Technical Information

Adrenocorticotropic h hormone. Ammonium ic ion.

SOURCE: Compiled by enex C Corp. from data in references 4,23, and 24.

	С	urrent marke	t data
	Market volume	Bulk cost	Market value
Compound	1,000 lb	\$/lb	(\$ millions)
Avian leukemia virus Avian myeloblastosis	•	rmation not a	vailable)
virus		rmation not a	vailable)
Epstein-Barr virus	s 0.0`	0.0	0.0
 Hepatitis virus	. 0.0	0.0	0.0
Herpes virus Hoof and mouth	. 0.0	0.0	0.0
disease virus .	. 0.0		
influenza virus	(Info	rmation not	available)
Reoviruses	. 0.0	0.0	0.0
Rous sarcoma virus Rubella virus Varicella virus	(Info	rmation not a rmation not a rmation not a	vailable)

Table I- B-21.—Vjral Antigens: Market Information

SOURCE: Compiled by Genex Corp. from data in reference 4.

Compound	Typical synthetic process	Typical precursor	Is precursor renewable/non- renewable limited	Alternate precursor by fermentation	Time to implement commercial fermentation by genetically engineered strain
Avian leukemia virus		(Information not available)		glucose and NH₄⁺³	5 yrs.
Avian myeloblastosis. virus		(Information not available)		glucose and NH₄⁺	5 yrs.
Epstein-Barr virus	tissue culture	lymphoblasts	renewable	glucose and NH₄⁺	5 yrs.
Hepatitis viruses		(Information not available)		glucose and NH₄⁺	5 yrs.
Herpes		(Information not available))	glucose and NH₄⁺	5 yrs.
Hoof and mouth disease virus		(Information not available)		glucose and NH₄⁺	5 yrs.
Influenzaviruses		(Information not available)		glucose and NH₄⁺	10 yrs.
Reoviruses		(Information not available)		glucose and NH₄⁺	15 yrs.
Rous sarcoma virus		(Information not available)		glucose and NH₄⁺	5 yrs.
Rubella	tissue culture	duck embryonic cells	renewable	glucose and NH₄⁺	5 yrs.
Varicella virus		(Information not available)		glucose NH₄⁺	5 yrs.

Table I- B-22.—Viral Antigens: Technical Information

Ammonium ion.

SOURCE: Compiled by w Gen Corp. from data in references 4 and 25.

Table I-B-23.—Short Peptides, Nucleotides, and Miscellaneous Proteins: Market Information

	Cu	rrent marke	t data
Product category	Market volume 1,000 lb	Bulk cost \$/lb	Market value (\$ millions)
Short peptides [®] Aspartame Glycine-histidine- lysine	40 (Infori	110.00 nation not a	4.4 vailable)
Nucleotides [®] 5'-IMP ° 5'-GMP ^d	. 4,000 2,000	12.00 12.00	48.0 24.0
Miscellaneous prote Interferon Human serum albumin Monoclinal antibodies	N/A 250	N/A 1,000.00 nation not a	50.0 250.0 vailable)

^aD_i from references 4 and 1d b_{Di} from references 4 and 27. c₅: i_{nOSi} acid. d₅: _{-QUAN} acid. 'Data from reference 4.

SOURCE: Compiled by by Ger Corp.

Product category	Typical synthetic process	Typical precursor	IS precursor renewable/non- renewable limited	Alternate precursor by fermentation	Time to implement commercial fermentation by genetically engineered strain
Short peptides					
Aspartame	chemical	phenylalanine & aspartic acid	renewable	glucose and NH₄⁺	5 yrs.
Glycine-histidine-		-			
lysine	extraction	human serum	renewable	glucose and NH₄⁺	5 yrs.
Nucleotides®					
5 ¹ -IMP ⁴	extraction	yeast	renewable	glucose and NH₄⁺	10 yrs.
5 ¹ -GMP [®]	extraction	yeast	renewable	glucose and NH₄⁺	10 yrs.
Miscellaneous pro	teins'				
Interferon	extraction or tissue culture	leukocytes, lymphoblasts, or fibroblasts	renewable	glucose and NH4 ⁺	5 yrs.
Human serum					
albumin	extraction	human serum	renewable	glucose and NH₄⁺	5 yrs.
Monoclinal					
antibodies	somatic cell hybridization	various cells	renewable	glucose and NH₄⁺	10 yrs.

Table I- B-24.—Short Peptides, Nucleotides, and Miscellaneous Proteins: Technical information

Data fi from reference 4 and 27. Ammonium k ion. Data fi from references 4 and 3. 5'-inosinic a acid. 5'-guanylic a acid. 'Data from reference 4. SOURCE: pmpiled b by enex C Corp.

Table I- B-25Antibiotics, Gene Preparations, an	d
Pesticides: Market information	

	Current market data					
	Market volume		Market value			
Product category	1,000 lb	\$/lb	(\$ millions)			
Antibiotic@ Penicillins Tetracycline Cephalosporins Erythromycins	4,210	22.11 34.13 114.00 rmation not a	1,080.0 1,000.0 460.0			
	(iiii)	iniation not a	ivaliable)			
Gene preperations [®] Sickle cell anemia Hemophilias	0.0	0.0	0.0 0.0			
Thallasemias	0.0	0.0	0.0			
Pesticides° Microbial Aromatics	N/A N/A	N/A N/A	25.0 75.0			

aD_t_from references 4,28, and 9.)ata fr from references 4 and 1.)ata fr from references 4 and 1.

SOURCE: Compiled by anex C Corp.

Product category	Typical synthetic process	Typical precursor	IS precursor renewable/non- renewable limited	Alternate precursor by fermentation	Time to implement commercial fermentation by genetically engineered strain
Antibiotics					
Penicillins	fermentation semisynthetic	lactose & nitrogenous oils	limited		10 yrs.
Tetracycline	fermentation	lactose & nitrogenous oils	limited	—	10 yrs.
Cephalosporins	fermentation	lactose & nitrogenous oils	limited		10 yrs.
Erythromycins .	fermentation	lactose & nitrogenous oils	limited		10 yrs.
Gene preprations ^b		•			
Sickle cell anemia		(No process exists currently)		glucose and NH₄⁺⁴	15 yrs.
Hemophilias		(No process exists currently)		glucose and NH₄⁺	20 yrs.
Thallasemias		(No process exists currently)		glucose and NH₄⁺	20 yrs.
Pestlcides					
Microbial	fermentation	molasses & fishmeal	renewable		5 yrs.
Aromatics	semi synthetic	naphthalene	nonrenewa	ble —	10 yrs.

Table I- B-26.—Antibiotics, Gene Preparations, and Pesticides: Technical Information

^bDat from reference 4.

SOURCE: Compiled jtv Gene Corp.

Table I= B-27. - Aliphatics: Market Information

'Ammonium ion.

	Current market data				
	Market				
	volume	Bulk cost	Market value		
Compound	1,000 lb	\$/lb	(\$ millions)		
Acetic acid	823,274	0.23	189.4		
Acrylic acid	46,503	0.43	20.0		
Adipic acid	181,097	0.50	90.5		
Bis (2-ethylehexyl) adipate	43,015	0.49	21.1		
Citronella	394	3.90			
Citronellol	1,443	4.50	6.5		
Ethanol	1,048,000	0.24	251.5		
Ethanolamine	320,236	0.46	147.3		
Ethylene glycol	3,137,000	0.31	972.5		
Ethylene oxide	525,113		189.0		
Geraniol	2,307	3.25	7.5		
Glycerol	116,612	0.54	63.0		
Isobutylene	597,712	0.95	567.2		
Itaconic acid	200	0.83	0.2		
Linalool	3,341	2.60	8.7		
Linalyl acetate	1,535	3.50	5.4		
Methane	878,000,000	0.013	11,573.0		
Nerol	462	4.20	1.9		
Pentaerythritol	117,085	0.62	72.6		
Propionic acid	62,848	0.21	13.2		
Propylene glycol .	525,527	0.73	173.4		
Sorbic acid	20,000	2.15	43.0		
Sorbitol	160,267	0.36	57.7		
a-terpineol	2,416	1.28	3.0		
a-terpinyl acetate.	1,066	1.30	1.4		

SOURCE: Compiled by w Gen Corp. from data in references 1,4,9, and 33.

Compound	Typical synthetic process	Typical precursor	ls precursor renewable/non- renewable limited	Alternate precursor by fermentation	Time to implement commercial fermentation by genetically engineered strain ^⁵
Acetic acid	chemical	methanol or ethanol	nonrenewable	glucose	10 yrs.
Acrylic acid	chemical	ethylene	nonrenewable	glucose	10 yrs.
Adipic acid	chemical	phenol	nonrenewable	glucose	10 yrs.
Bis (2-ethylhexyl) adipate	chemical	phenol	nonrenewable	glucose	20 yrs.
Citronella	chemical	isobutylene	nonrenewable	glucose	20 yrs.
Citronellol	chemical	isobutylene	nonrenewable	glucose	20 yrs.
Ethanol	chemical	ethylene	nonrenewable	glucose	5 yrs.
Ethanolamine	chemical	ethylene	nonrenewable	glucose	10 yrs.
Ethylene glycol	chemical	ethylene	nonrenewable	glucose	5 yrs.
Ethylene oxide	chemical	ethylene	nonrenewable	glucose	5 yrs.
Geraniol	chemical	isobutylene	nonrenewable	glucose	20 yrs.
Glycerol	chemical	soap manuf.	nonrenewable	glucose	5 yrs.
Isobutylene	chemical	petroleum	nonrenewable	glucose	10 yrs.
Itaconic acid	fermentation	molasses	renewable		5 yrs.
Linalool	chemical	isobutylene	nonrenewable	glucose	20 yrs.
Linalyl acetate	chemical	isobutylene	nonrenewable	glucose	20 yrs.
Methane	chemical	natural gas	nonrenewable	sewage	10 yrs.
Nerol	chemical	isobutylene	nonrenewable	glucose	20 yrs.
Pentaerythritol	chemical	acetaldehyde & formaldehyde	nonrenewable	glucose	10 yrs.
Propionic acid	chemical	ethanol & carbon monoxide	limited	glucose	10 yrs.
Propylene glycol	chemical	propylene	nonrenewable	glucose	10 yrs.
Sorbic acid	chemical	crotonaldehyde & malonic acid	nonrenewable	glucose	15 yrs.
Sorbitol	chemical	glucose	renewable		10 yrs.
a-terpineol	chemical	isobutylene	nonrenewable	glucose	20 yrs.
a-terpinyl acetate	chemical	isobutylene	nonrenewable	glucose	20 yrs.

Table I- B-28.—Aliphatics: Technical Information

Vherever q glucose π mentioned, other carbohydrates maybe ibstituted, ir including starch and cellulose. n m any clses triese ti nes alare ised o on more readily developed fermentations using nonrenewable or limited hydrocarbons as Precursors.

SOURCE: provided b by Genex Corp. from data in references 4,33,34, and 35.

Current market data					
Compound	Market volume 1,000 lb	Bulk cost \$/lb	Market value (\$ millions)		
Aniline	187,767	0.42	78.9		
Aspirin	32,247	1.41	45.5		
Benzoic acid	36,822	0.47	17.3		
Cinnamaldehyde	1,098	2.10	3.4		
Cresols Diisodecyl	94,932	0.54	51.2		
phthalate	151,319	0.42	63.6		
Dioctyl phthalate	391,131	0.42	164.3		
p-acetaminophenol.	20,000	2.65	53.0		
Phenol	1,431,000	0.36	515.2		
Phthalic anhydride	646,289	0.40	258.5		

Table I= B-29.-Aromatics: Market Information

SOURCE: Compiled by Genex Corp. from data in references 1 and 9.

Compound	Typical synthetic process	Typical precursor	Is precursor renewable/non- renewable limited	Alternate precursor by fermentation	Time to implement commercial fermentation by genetically engineered strain
Aniline	chemical	benzene	nonrenewable	aromatic	10 yrs.
Aspirin	chemical	phenol	nonrenewable	aromatic	5 yrs.
Benzoic acid	chemical	tar oil	nonrenewable	aromatic	10 yrs.
Cinnamaidehyde	chemical	benzaldehyde acetaldehyde	nonrenewable	aromatic	20 yrs.
Cresols	chemical	phthalic an hydride	nonrenewable	aromatic	10 yrs.
Diisodecyl phthalate	chemical	coal tar	nonrenewable	aromatic	20 yrs.
Dioctyl	chemical	coal tar	nonrenewable	aromatic	20 yrs.
p-acetaminophenol.	chemical	nitrobenzene	nonrenewable	aromatic	5 yrs.
Phenol	chemical	coal tar	nonrenewable	aromatic	10 yrs.
Phthalicanhydride	chemical	coal tar	nonrenewable	aromatic	15 yrs.

Table I- B-30.-Aromatics: Technical Information

at a precure to the second of the second of

SOURCE: Compiled by Genex Corp. from data in references 4 and 35.

Table I-B-31 .—Inorganics and Mineral Leaching: Market Information

	Current market data				
Product category	Market volume 1,000 lb	Bulk cost M \$/lb	Market value (\$ millions)		
Inorganic Ammonia Hydrogen	. 33,400,000 451,000	0.06 0.15	2,004.0 677.0		
		nation not av nation not av on)			

SOURCE: Compiled by Genex Corp. from data in reference 4.

Table I- B-32.-Inorganics and Mineral Leaching: Technical Information

Product category	Typical synthetic process	Typical precursor	ls precursor renewable/non- renewable limited	Alternate precursor by fermentation	Time to implement commercial fermentation by genetically engineered strain
Inorganic Ammonia Hydrogen	chemical catalytic reforming	water and coke petroleum	nonrenewable nonrenewable	nitrogen(air) water and air	15 yrs. 15 yrs.
Mineral leaching Uranium Transition metals. (cobalt, nickel, m	nanganese, iron)	(Information not available) (Information not available)			

SOURCE: Compiled by Genex Corp. from data in references 4 and 35.

Table I- B-33.-Projected Growth of Selected Markets Involving Applications of Genetic Engineering

Product category	Current market \$ millions	Projected market in 20 yrs. \$ millions
Amino acids [®]	300	00
Miscellaneous proteins.	300	1,000
Gene preparations	0	
Short peptides Peptide hormones	5	2,100
Totals	865	5,100

Drive four amino acids are considered here. SOURCE: apar (Corp.

References

- 1. Chemical Marketing Reporter, tauch and April 1980.
- 2. Jirose Y., and Jkada H., "Microbial Production of Amino Acids," in *Microbial Technology: Microbial Processes*, vol. 1, H. J. Peppier and D. Jerlman ods.) (New York: Academic Press, 1979), pp. 211-240.
- 3. Jinoso Y., Sane, K., and bibai H., "Amino Acids," in Annual Reports on Fermentation Processes, vol. T. Tsao and D. ordevan edel (New York: Academic Press, 1978), pp. 155-190. Conox (Corp. proprietary information.
- Weinstein, L., Chemotherapy of Microbial Diseases, "in The Pharmacological Basis of Therapeutics, 5th cd., L. S. Goodman and A. Human Eds.) (New York: MacMillan Publishing Co., Inc., 1975), pp. 1,090-1,247.
- 6. Cohn, V. H., "k'at-Soluble Vitamins: Vitamin K and itamin E," in The *Pharmacological Basis* for *Ther apeutics*, 5th cd., L. S. Condman, and A. Siman ideal (New York: MacMillan Publishing Co., Inc., 1975), D. 1,591-1,600.
- 7. Ioront J., and litiot L., "Vitamin <u>"in there</u> ist Technology Microbial Processes, vol. 1, H. J. Peppier and D. <u>pelman adds 1</u> (New York: Academic Press, 1979), pp. 497-520.
- Ferlman D., "Microbial Process for Riboflavin Product ion," in *Microbial Technology: Microbial Processes*, vol. 1, H. J. Peppier *ide* 11 (New York: Academic Press, 1979), pp. 521-528.
- *vnthetic* Organic Chemicals, March and April 1980.
- Burns, J. J., "Water Soluble Vitamins, The Vitamin B Complex," in *The Pharmacological Basis of Therapeutics*, 5th cd., L. S. Goodman and A. ilman (ds.) (New York: MacMillan Publishing Co., Inc., 1975), pp. 1,549-1,563.
- 11. reengard, J P., "Water Soluble Vitamins, The Vita-

min B Complex, "in *The Pharmacological Basis of Therapeutics,* 5th cd., L. Goodman and A. Silman Eds.) (New York: MacMillan Publishing Co., Inc., 1975), pp. 1,549-1,563.

- 12 Straw, J. A., "Fat-Soluble Vitamins: Vitamin D," in *The Pharmacological Basis* of *Therapeutics*, 5th cd., L. S. Goodman and A. Elman Eds.) [New York: MacMillan Publishing Co., Inc., 1975), pp. 1,579-1,590.
- 13 unstrub. K., "Industrial Approach to Enzyme Product ion," in *siotechnological Applications of Protoins and Enzymes, Z. Bohak and N. Sharon* ods.) (New York: Academic Press, 1977), pp. 39-50.
- 14. MINSTELL K., Andresen, O., alch E. and Hollsen, T. K., "Production of Microbial Enzymes," in Microbial Processes, vol. 1, H. J. Peppier and D. Jackman Edg. (New York: Academic Press, 1979), pp. 282-311.
- 15. Bernard Wolnak & Associates, in *bood Prod.*, July 1978, p. 41.
- olomons (G. L., "The Microbial Production of Envmes," " in *liotechnological Applications* of *Proteins nd* (*Enzymes, Z.* Bohak and N. Sharon *ids*) (New York: Academic Press, 1977), pp. 51-61.
- 17 Chemical and Engineering News, Apr. 14, 1980, p. 6.
- 18 Levine, W. G., "Anticoagulants, Intithromhotic and hrombolvtic |Drugs," in *The Pharmacological Basis of Therapeutics,* 5th cd., L. S. Goodman and A. Silman ods.) (New York: MacMillan Publishing Co., Inc., 1975), p. 1,365.
- 19 ilman A. G., and <u>Inriad</u> "Androgens and nabolic Steroids," in *The Pharmacological Basis* of *Therapeutics*, 5th cd., L. S. Goodman and A. "Innan ideal (New York: MacMillan Publishing Co., Inc., 1975), pp. 1,451-1,471.
- "Iman A. G., an-d- Impired 1 "Estrogens and more estimes."" in *The Pharmacological Basis* of *Therapeutics*, 5th cd., L. S. Goodman and A. "Iman adds 1 + (New York: MacMillan Publishing Co., Inc., 1975), pp. 1,423-1,450.
- lavnes, R. C., and Lamer, J., Advancestical tropic Hormone: depresention. Steroids and Their Synthetic Analogs: inhibitors of depresention. Steroid Biosynthesis, " in *The Pharmacological Basis of Therapeutics*, 5th cd., L. S. and man and A. Human edget.) (New York: MacMillan Publishing Co., Inc., 1975), pp. 1,472-1,506.
- abok 1 O. K., and activation D., "Microbial Transformation of Steroids and torole" in Microbial Technology: Microbial Processes, vol. H. J. enpier and D. activational (New York: Academic Press, 1979), pp. 483-496.
- 23. P., "Agents Affecting the Renal

Vallo 1 0 Water, "in *The Pharmacological Basis of Therapeutics,* 5th cd., L. S. Goodman and A. Gilma: 1008 (New York: MacMillan Publishing Co 1 mc 1975), 121 858-859.

- 24 Haynes R. C., and Lamer, J., "Insulin and Oral Hypoglycenii Drugs: Glucagon, in *Th* Pharmacological Basis of Therapeutics, 5th cd., L. S. Good man and A. Gilma (ed.) (New York: MacMilla Publishing Co., Inc., 1975), pp. 1,507-1)533.
- 25 Jawetz, E., Melnici J. L., and Adelbert E. Z., Reviews of Medice Microbiology 1 11th cd., (Los Altos, Calli Lange Medical Publications, 1974).
- 26. Thalei M. M., Biochen Biophy: Re: Comm 54:56: 1973.
- 24 Nakac Y., "MICRODIC Production of Nucleoside and Nucleotides," in Microbial Technology.. Microbial Processes, 100 1, H. J. Peppier and D. Perima tects UNEV York: Academic Press, 1979), pp. 312.3,55.
- 22 Perimai D., "Microbial Production of Antibiotics," in Microbial Technology Microbial Processes, VO 1, H. J. Peppier and D. Perima (ed.) (New York: Academic Press, 1979), pp. 241-281.
- 2v. Weatheral D. J., and Clegg J. B., "Recent Deve opment in the Molecular - Genetic of Human Hemoglobin," Cempto. 1978

- 30. Ignomed M., and Anderson, R. F., Diomsec ucide: " in Microbial Technology: Microbial Processes, vol. 1, H. J. Peppier and D. Perima tecks (New York: Academic Press, 1979 pp. 211-.z4o.
- 31. German, M., and Hubel F. M., B-Lactar Antibiotics, "in Annua Reports on Fermentation Processes, vol. 2, G. T. Tsao and D. Perima lect.) (New York: Academic Press, 1978), pp. 203-222.
- 32, Smbatt M., and Uvede M. "Microbial Transformation of Antibiotics, " in Annue Reports on Fermentation Processes, VO 2, G. T. Tsao and D. Perimanteds (New York: Academic Press, 1978), pp. 267-304.
- Lockwood, L. B., "Production of Organic Acids^{3, D}, Fermentation," in *Microbial Technology: Microbial Processes, vol.* 1, H. J. Peppier and D. Perima ¹⁰⁰¹⁵ (New York: Academic PTES: 1979), pp. 367-372.
- 3- Roberts, J. D., and FCASEPICM. C., Basic Principles Organic Chemistry (New York: Benjamin, Inc., 1964), 11,096.
- 35. WUMANOF M. (cd.), *The Merck* ^(Inde) 9th ed. (Mar way, N. J.: Merck ^{(C}Co., 1976).