TABLE OF CONTENTS

SECTION		PAGE
1	SUMMARY	1
2	INTRODUCTION	9
3	ELECTRIC VEHICLE SYSTEMS	11
	 3.1 Introduction and Summary 3.2 Batteries 3.3 Drive Train 3.4 Vehicle Design 3.5 The Tradeoffs Between Range and Cost 3.6 Representative Future Electric Vehicles References for Section 3 	11 14 27 34 43 48 62
4	HYBRID VEHICLE SYSTEMS	64
	4*1 Introduction and Summary 4.2 Vehicle Design 4.3 Representative Future Hybrid Vehicles References for Section 4	64 67 79 91
5	INFRASTRUCTURE	93
	501 Introduction and Summary 5.2 The Utility System 5*3 Charging provisions 5.4 Materials 5*5 production and Support References for Section 5	93 97 109 116 123 127
6	MARKETABILITY	128
	 6.1 Summary 6.2 Vehicle Use 6.3 Market Penetration Estimates 6.4 Cost and Availability of Fuel 6.5 Incentives References for Section 6 	128 128 139 142 146 155

SECTION

_

-

PAGE

7	BENEFITS AND COSTS, MONETARY AND NON-MONETARY	157
	<pre>7* 1 Summary 7.2 Energy 7.3 Environment 7.4 Economy 7.5 Resources 7.6 Transportation 7.7 Major Uncertainties References for Section 7</pre>	157 159 163 180 185 191 197 202
APPENDIX	ASSUMPTIONS FOR PROJECTING WEIGHT AND PERFORMANCE OF ELECTRIC AND HYBRID VEHICLES	204
GLOSSARY		211

TABLES

NO.		PAGE
3.1	Projected Improvements in Propulsion Batteries	20
3.2	Assumed Performance and Cost for Near-Term Propulsion Batteries (to be Mass-produced by 1990)	21
3.3	Assumed Performance and Cost for Advanced Propulsion (to be Mass-produced by 2000)	22
3.4	Cost of Electricity from Propulsion Batteries	26
3.5	Representative Future Electric Cars	50
3.6	Initial and Life-Cycle Costs of Representative Four- Passenger Electric Cars	52
3.7	Equivalent Fuel Economies of Four-Passenger Electric Cars Recharged from Petroleum or Coal Resources	55
3.8	Effect on Range of Changed Driving Conditions	57
309	Characteristics of Larger Vehicles Relative to Those of Representative Four-Passenger Cars	60
401	Representative Future Range-Extension Hybrid Cars	81
4.2	Weight and Cost Breakdowns for Representative Future Electric and Range-Extension Hybrid Cars	82
4.3	Initial and Life-Cycle Costs of Representative Four- Passenger Range-Extension Hybrid Cars	83
4.4	Equivalent Fuel Economies of Four-Passenger Range- Extension Hybrid Cars Recharged from Petroleum or Coal Resources	84
4.5	Projected Performance, Cost, and Fuel Use of Preliminary Designs for High-Performance Hybrid Cars	87
4.6	Projected Weight and Drive Train' Characteristics of Preliminary Designs for High-Performance Hybrid Cars	89
5.1	Use of Electric Energy in Households	100
5.2	Regional Fuel Mix for One-Percent Electrification of Light-Duty Vehicular Travel in 2000	107

<u>NO.</u>		PAGE
5.3	Estimated Availability of Cars and Off-Street Parking	111
5.4	Cost of Hardware and Installation for Electric Outlets for Charging 50 Amps, 220 Volts	113
5.5	Materials in Typical US Autos, 1980 and 1990	117
5.6	Battery Materials Required for a Representative Fleet of Electric and Hybrid Vehicles	118
5.7	Percent Increase in Primary Demand for Battery Materials Due to Electrification of 20 Percent of Light-Duty Vehicular Travel	120
5.8	Adequacy of Battery Material Resources With and Without 20 Percent Electrification of Light-Duty Vehicular Travel	122
6.1	Projected Size and Composition, US Light-Duty Vehicle Fleet	130
6.2	Nominal Requirements for Personal Urban Electric Cars	134
6.3	Long Trips (over 100 miles one-way) by Car and Light Truck, 1972	137
6.4	Applications of Non-Personal Light Trucks	139
6.5	DOE EHV Program and Project Funding	149
6.6	DOE Battery R&D Funding	150
6.7	Projection of Annual Electric Vehicle Sales Under Alternative Policies	153
6.8	Estimated Sales of EHVs to Consumers in 1983	154
7.1	Fuel Economy of Future Cars and Light Trucks	161
7.2	Summary of Fuel Use and Equivalent Fuel Economy of Electric, Hybrid, and Conventional Four-Passenger Subcompact Cars	162
7.3	National Use of Energy Without and With 20 Percent Electrification of Light-Duty Vehicular Travel, Quadrillion British Thermal Units Per Year	166
7*4	Percent Contribution of Autos and Power Plants to Emissions Without EHVs	168

NO.		PAGE
7.5	Change in the SEAS Composite Pollution Indicator With 20 Percent Electrification of Light-Duty Vehicular Travel	170
7.6	Vehicular Noise Level and Traffic Mix	174
7.7	Estimated Number of People Subjected to Urban Traffic Noise	175
7.8	Impacts of 100 Percent Use of Electric Cars on Employ- ment and Payroll, by Industry	183
7.9	Impacts of 100 Percent Use of Electric Cars on Total Employment in Industries Directly Affected	184
7.10	Impacts of 100 percent Use of Electric Cars on Total Payroll in Industries Directly Affected	184
7.11	Nominal Cumulative Cost of Imported Materials to Elec- trify 20 Percent of Light-Duty Vehicular Travel in the United States	185
7.12	Location of Battery Material Reserves and Resources	186
7.13	On-the-Road Failures of Automobiles	192
7.14	Cost Comparison of Electric, Hybrid, and Conventional Vehicles	195
A.1	Parametric Representation of Electric Vehicle Weight	205
A.2	Weight Parameters for Electric Vehicles	206
A.3	Specific Weights and Efficiencies of Propulsion Com- ponents	207
A.4	Road Load Parameters for Representative Future Vehicles	207
A.5	Battery Fractions and Weights for 4-Passenger Electric Cars	208
A.6	Battery Fractions and Weights for Four-Passenger Hybrid Cars	210

FIGURES

NO.		PAGE
3*1	The GE/Chrysler Electric Car ETV-1	13
3.2	Current Globe-Union Lead-Acid Electric Vehicle Battery	23
3.3	The Basic Electric Drive Train	29
3.4	The 20-hp DC Motor Developed by General Electric for the DOE Electric Test Vehicle ETV-1	32
3.5	Schematic of the Electric Test Vehicle ETV-1	37
3.6	The Battery Compartment of the Electric Rabbit Built by South Coast Technology	39
3.7	The Engine Compartment of the Electric Rabbit	40
3.8	Road Load for Near-Term Subcompact Cars	42
3.9	Measured Acceleration of Urban Traffic	44
3.10	Design Tradeoffs for Four-Passenger Electric Cars	47
3011	Weight Breakdowns for Representative Near-Term Four- Passenger Cars	51
3.12	Energy Use in Urban Driving	56
4.1	Basic Hybrid Configuration	67
4.2	The Briggs and Stratton Hybrid-Electric Car	72
4.3	Schematic of the Briggs and Stratton Hybrid Electric Car	73
4.4	Power Train of Daihatsu 1.5-ton Hybrid Truck	74
4.5	Schematic of DOE's Hybrid Test Vehicle HTV-1	74
4.6	Annual Travel on Electricity Versus Useful Electric Range of Hybrid Cars	76
4.7	Design Tradeoffs for Four-Passenger Range-Extension Hybrid Cars	78
5.1	Electric Energy Required Annually to Electrify 20 Per- cent of Light-Duty Vehicular Travel, by Type of Fuel Used	95

NO.		PAGE
5.2	Electric and Hybrid Vehicle Recharging Infrastructure	98
5.3	Hourly Demand and Net Dependable Capacity for a Single Utility	102
5.4	Annual Capacity Available for Generating Recharge Electricity	103
5.5	Regional Fuel Mix of Annual Capacity Available for Generating Recharge Energy in 2000	104
5.6	Projected Use of Fuels for Recharging Electric and Hybrid Vehicles	106
5.7	Percent of Recharge Energy Demand from Petroleum	108
6.1	Distributions of Full-Day Urban Driving Distance Re- ported by Major Categories of Drivers	132
602	Potential Electrification of Urban Driving by Electric and Hybrid Cars	135
6.3	Gasoline, Electricity, and Consumer Price Indices, 1960 Through 1979 (average)	143
6.4	National Motor Fuel Consumption, 1960-1979	145
7.1	Petroleum Use With Electric and Hybrid Vehicles in 2010	158
7.2	Projected Use of Fuel for 20 Percent Electrification of Light-Duty Vehicular Travel	164
7.3	Petroleum Use by Electric, Hybrid, and Conventional Vehicles	165
7.4	Air Quality Projections Without EHVs	171
7.5	Percent Change in Air Quality With 20 Percent Electrifi- cation of Light-Duty Vehicular Travel	172
7.6	Measured Noise of Japanese Test Cars	176
7.7	Effects of Electric Cars on Urban Auto Noise and Traffic Noise Impact	177
7.8	Life-Cycle Costs of Electric, Hybrid, and Conventional Vehicles Versus Gasoline Prices	196

NO.		PAGE
7.9	Recent Projections of Peak Summer Demand for Electric Power	199
A.1	Power Requirements for Acceleration and Cruise Versus Test Weight	209
