

Differences-in-Differences (v. 3.3)

Oscar Torres-Reyna

otorres@princeton.edu

August 2015

http://www.princeton.edu/~otorres/

Intro

Differences-in-Differences regression (DID) is used to asses the causal effect of an event by comparing the set of units where the event happened (treatment group) in relation to units where the event did not happen (control group).

The logic behind DID is that if the event never happens, the differences between treatment and control groups should stay the same overtime, see graph next slide.*

*See: https://www.publichealth.columbia.edu/research/population-health-methods/difference-difference-estimation

Source: https://www.publichealth.columbia.edu/research/population-health-methods/difference-difference-estimation

$y = \beta_0 + \beta_1 time + \beta_2 treated + \beta_3 time * treated + \varepsilon$

Coefficient	Calculation	Interpretation
βο	В	Baseline average
β1	D-B	Time trend in control group
β ₂	A-B	Difference between two groups pre-intervention
β ₃	(C-A)-(D-B)	Difference in changes over time

Intro

This document shows how to perform difference-in-differences regression in the following two situations:

• Event happened at the same time for all treated groups.

• Event is staggered across groups.

Event happens at the same time for all treated groups

Data preparation

The before/after variable

Create an indicator variable where:

- 0 = time before the event happens
- 1 = time when the event happens and after

Example:

```
use "http://www.princeton.edu/~otorres/WDI.dta", clear
```

* Fake event X happens in 2009 affecting all countries * Creating the before/after dummy variable: 0 = before, 1 = after

```
gen after = (year >= 2009) if !missing(year)
```

*To check, type:

```
tab year after
```

Source of data: World Development Indicators, https://databank.worldbank.org/source/world-development-indicators

The treatment variable

Create an indicator variable to identify treated cases where:

- 0 = units in your data that were never treated, for example, states that never passed a policy of interest.
- 1 = units that where treated, for example, states that passed a policy of interest.

If, for example, states "abc", "xyz", and "cgi" are in the treatment group and in string format, you can create the treated variable as follows:

The treatment variable

* For the example in this document, the treated countries were saved in a separate fake Stata dataset containing a variable "treated" = 1. Below we merge that file to have the treatment variable.

merge m:1 country using
"http://www.princeton.edu/~otorres/Treated.dta",
gen(merge1)

*The untreated units will have a missing value (".")

replace treated = 0 if treated ==.

*To check, type:

tab country treated

The diff-in-diff indicator

* The diff-in-diff indicator is an interaction between the treatment and before/after variables.

* In this example we call the treatment variable "treated" and the before/after variable "after" (replace with your own variables as needed).

* Create the diff-in-diff indicator

gen did = after * treated

* Create a **labeled numeric variable** for the grouping or panel variable. This is needed for Stata commands to identify the panels in the data.

encode country, gen(country1)

* Set data as panel data (only for use with 'xt' commands). xtset countryl year

Event happens at the same time for all treated groups

Using Stata's xtdidregress / didregress

Using Stata's xtdidregress

* Works only for Stata 17+ (see manual estimation few slides ahead). * For details and examples on this command type: help xtdidregress

xtdidregress (gdppc) (did), group(country1) time(year)

Number of groups and treatment time

Time variable: year Control: did = 0 Treatment: did = 1 Control Treatment Group | country1 | 58 68 Time | Minimum | 2000 2009 Maximum | 2000 2009

Use xtdidregress if panel data. Use didregress if repeated crosssectional data (i.e. surveys over time)

Difference-in-differences regression Data type: Longitudinal Number of obs = 2,772

(Std. err. adjusted for 126 clusters in countryl) Robust gdppc | Coefficient std. err. t P>|t| [95% conf. interval] ATET did | (1 vs 0) | 1164.492 610.0838 1.91 0.059 -42.93971 2371.923 Note: ATET estimate adjusted for panel effects and time effects. Not significant at 5%, event did not have a significant effect on GDPpc.

Using Stata's xtidregress: parallel trends

* For details and example on didregress postestimation commands type

```
help xtdidregress postestimation
```

* Run xtdidregress first

```
xtdidregress (gdppc) (did), group(country1) time(year)
```

[OUTPUT OMITTED]

estat ptrends

Using Stata's xtdidregress: visualization

* For details and example on didregress postestimation commands type help xtdidregress postestimation

* Run xtdidregress first

xtdidregress (gdppc) (did), group(country1) time(year)

estat trendplots, ytitle(GDP pc)

Event happens at the same time for all treated groups

Using OLS fixed effects regression (manual estimation)

Diff-in-diff basic regression: same event for all

* Create a labeled numeric variable for the grouping or panel variable.

```
encode country, gen(country1)
```

* DID regression (after and treated not needed due to the panel/time fixed effects).

xtreg gdppc did i.year, fe vce(cluster country1)

year	[YEAR	FE OUTPU	T OMITTEI	01		
did 1164.49	2 610.0838	1.91	0.059	-42.93971	1	2371.923
gdppc Coefficie	Robust nt std.err.		P> t	[95% cor	nf.	interval]
	(Std. err.	adjusted	for 126	clusters	in	country1)
corr(u i, Xb) = 0.0072			F(22,125) Prob > F	1	=	7.55
R-squared: Within = 0.2119 Between = 0.0023 Overall = 0.0063			Obs per o	group: min avg max	= =	22 22.0 22
Fixed-effects (within) r Group variable: country1	egression		Number of Number of	E obs E groups	=	2,772 126

* The coefficient for 'did' is the differences-in-differences estimator. The effect is not significant at 95% (P>|t| > 0.05), therefore we conclude that the event did not have a significant effect on the response variable.

Visualizing parallel trends

bysort year treated: egen mean gdppc = mean(gdppc)

```
twoway line mean_gdppc year if treated == 0, sort || ///
line mean_gdppc year if treated == 1, sort lpattern(dash) ///
legend(label(1 "Control") label(2 "Treated")) ///
xline(2009)
```


Testing for parallel trends (event happening at the same time)

reg gdppc treated##ibn.year if after == 0, vce(cluster country1) hascons
note: 1.treated#2008.year omitted because of collinearity.

Linear regress	sion			Number F(18, 1 Prob > R-squar Root MS	of obs = 1,134 25) = 7.91 F = 0.0000 ed = 0.0037 E = 18443
		(Std. err.	adjuste	ed for 12	6 clusters in country1)
gdppc	Coefficient	Robust std. err.	t	P> t	[95% conf. interval]
1.treated	1791.787	3498.167	0.51	0.609	-5131.519 8715.093
year 2000 2001 2002 2003 2004 2005 2006 2007 2008	12148.72 12281.17 12419.36 12563.37 12912.69 13214.44 13579.78 13972.03 14042.81	2113.707 2137.624 2158.998 2168.074 2219.854 2257.931 2305.982 2352.561 2344.425	5.75 5.75 5.75 5.82 5.85 5.89 5.94 5.99	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	No significant difference (at 95%) between treatment and control groups per year, which may suggest parallel trends.
1 2000 1 2001 1 2002 1 2003 1 2004 1 2005 1 2006 1 2007 1 2008	-1215.452 -1163.395 -1081.763 -907.977 -636.9737 -495.4092 -229.9688 35.19131	624.5541 594.2939 548.8365 494.2322 350.322 283.8196 174.1906 94.47967 (omitted)	-1.95 -1.96 -1.97 -1.84 -1.82 -1.75 -1.32 0.37	$\begin{array}{c} 0.054 \\ 0.053 \\ 0.051 \\ 0.069 \\ 0.071 \\ 0.083 \\ 0.189 \\ 0.710 \end{array}$	-2451.52220.61814-2339.57612.78646-2167.9784.452972-1886.12470.16994-1330.30556.35703-1057.12366.30495-574.7137114.7761-151.7957222.1783

Creating a time-to-event variable

For illustration purposes, no needed when event happened at the same time

Creating time to event (single event)

The following procedure is not needed when testing for a single event. Showing here as FYI.

* Generating the time to event variable, assuming event happened in 2009 for all treatment units.

gen time to event2009 = year - 2009 if treated == 1

replace time to event2009 = 0 if treated == 0

browse country year time_to_event2009

Time to event variable (single event)

. tab time to event2009

time_to_eve nt2009	 Freq.	Percent	Cum.
-9	+ 68	2 45	2 45
-8	68	2.45	4.91
-7	68	2.45	7.36
-6	68	2.45	9.81
-5	68	2.45	12.27
-4	68	2.45	14.72
-3	68	2.45	17.17
-2	68	2.45	19.62
-1	68	2.45	22.08
0	1,344	48.48	70.56
1	68	2.45	73.02
2	68	2.45	75.47
3	68	2.45	77.92
4	68	2.45	80.38
5	68	2.45	82.83
6	68	2.45	85.28
7	68	2.45	87.73
8	68	2.45	90.19
9	68	2.45	92.64
10	68	2.45	95.09
11	68	2.45	97.55
12	68	2.45	100.00
Total	2 , 772	100.00	

Time to event variable (single event)

* Creating dummies for each time_to_event2009

tab time_to_event2009, gen(z)

* Removing the "time_to_event2009== " part of the label for each dummy. Each dummy will have the prefix "z" [replace with your own]

```
sum time_to_event2009
local min = r(min)
local i = `min'
foreach var of varlist z1-z22 {
        label variable `var' "`i'"
        local i = `i'+1
```

time_to_event2009== -9.0000 z1 time to event2009== -8.0000 z2 **↓** z3 time to event2009== -7.0000 time_to_event2009== -6.0000 z4 time to event2009== -5.0000 z5 time_to_event2009== -4.0000 zб time_to_event2009== -3.0000 z7 time to event2009== -2.0000 z8 time_to_event2009== -1.0000 z9 time_to_event2009== 0.0000 z10 z11 time_to_event2009== 1.0000 time_to_event2009== 2.0000 z12 time_to_event2009== 3.0000 z13

Event is staggered across groups

Dynamic differences-in-differences

When the event happens...

Need a variable indicating the timing of the event. For example, if the event happened in country A in year 3, in country B in year 6, and in country C in year 9, then we create a variable called here 'eventX' (you can use any name you like):

```
gen eventX = .
replace eventX = 3 if country == "A"
replace eventX = 6 if country == "B"
replace eventX = 9 if country == "C"
```

* For the example in this document, we saved the year the event happened for a random selection of countries in a separate data file (a fake dataset in this case).

merge m:1 country using
"http://www.princeton.edu/~otorres/eventX.dta", gen(merge2)

order country year eventX

The time to event variable

* Generating the time to event variable. In this example we have years, replace with your own time variable (i.e. months, quarters, etc.).

gen time to event = year - eventX

[See next slide to check the variable]

Time to event variable

tab time_to_event

time_to_eve |

		nt	Freq.	Percent	Cum.
	r	-15	6	0.40	0.40
		-14	14	0.94	1.34
		-13	22	1.47	2.81
		-12	24	1.60	4.41
		-11	35	2.34	6.75
		-10	39	2.61	9.36
		-9	41	2.74	12.10
/ lags	_	-8	51	3.41	15.51
Jiugs		-7	55	3.68	19.18
		-6	61	4.08	23.26
		-5	68	4.55	27.81
		-4	68	4.55	32.35
		-3	68	4.55	36.90
		-2	68	4.55	41.44
		-1	68	4.55	45.99
	- 7	0	68	4.55	50.53
		1	68	4.55	55.08
		2	68	4.55	59.63
		3	68	4.55	64.17
		4	68	4.55	68.72
		5	68	4.55	73.26
		6	68	4.55	77.81
		7	62	4.14	81.95
K leads	4	8	54	3.61	85.56
		9	46	3.07	88.64
		10	44	2.94	91.58
		11	33	2.21	93.78
		12	29	1.94	95.72
		13	27	1.80	97.53
		14	17	1.14	98.66
		15 I	13	0.87	99.53
	L	16	7	0.47	100.00
		+ Total	1,496	100.00	
_					

NOTE: This only includes units where the event happened.

All treatment units experienced the event in this range.

Event is staggered across groups

Using eventdd command.

Source: https://docs.iza.org/dp13524.pdf

Using eventdd for staggered events

* See https://docs.iza.org/dp13524.pdf. Install the following:

ssc install eventdd
ssc install matsort
ssc install reghdfe
ssc install ftools

* Accumulating the periods beyond the specified leads/lags, J = -5, K = 6.

eventdd gdppc, hdfe absorb(country1) vce(cluster country1) timevar(time_to_event)
graph op(xlabel(-5(1)6, labsize(3))) ci(rarea, color(gs14%33)) leads(5) lags(6) accum

HDFE Linear regression Absorbing 1 HDFE group Statistics robust to beteroskedasticity	Number of obs F(11, 125) Prob > F	=	2,772 5.09
Number of clusters (country1) = 126	R-squared Adj R-squared Within R-sq. Root MSE	= = =	0.9801 0.9791 0.1486 2830.3445
(Std. err. adjusted	for 126 clusters	in	country1)

gdppc	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
lead5 lead4 lead3 lead2 lag0 lag1 lag2 lag3 lag4 lag5 lag6 cons	$\begin{array}{c} -1788.375 \\ -567.0806 \\ -263.1147 \\ -184.2048 \\ 406.7118 \\ 960.3596 \\ 1357.789 \\ 1639.607 \\ 1809.949 \\ 1868.826 \\ 2456.058 \\ 14667.33 \end{array}$	408.8666 209.0783 165.3622 90.43976 203.5858 459.2116 559.8445 676.8084 657.0901 509.0578 547.1238 117.7002	-4.37 -2.71 -1.59 -2.04 2.00 2.09 2.43 2.42 2.75 3.67 4.49 124.62	$\begin{array}{c} 0.000\\ 0.008\\ 0.114\\ 0.044\\ 0.048\\ 0.039\\ 0.017\\ 0.017\\ 0.007\\ 0.007\\ 0.000\\ 0.000\\ 0.000\end{array}$	-2597.573 -980.8725 -590.3869 -363.1963 3.790269 51.52283 249.7869 300.1196 509.486 861.3375 1373.232 14434.39	-979.1776 -153.2886 64.15759 -5.213244 809.6334 1869.196 2465.791 2979.095 3110.412 2876.315 3538.884 14900.27

It will run the model only for the times where all units were treated, 'accum' option

Absorbed degrees of freedom:

Absorbed FE	Categories	- Redundant	= Num.	Coefs	+
country1	126	126		0 *	ļ

* = FE nested within cluster; treated as redundant for DoF computation

See graph next slide

_ _ _

Using eventdd for staggered events

* See https://docs.iza.org/dp13524.pdf

Each dot is the coefficient for the corresponding leads/lags. The shaded area show the 95% confidence intervals of the coefficients. The coefficients are significant as long as the shaded area does not cross the horizontal red line. Countries where the event never happened will served as controls (same for pre-time in the treatment). The country fixed effects will account for any unobserved heterogeneity across countries.

Event is staggered across groups

Manual estimation using OLS procedure

When the event happens...

Need a variable indicating the timing of the event. For example, if the event happened in country A in year 3, in country B in year 6, and in country C in year 9, then we create a variable called here 'eventX' (you can use any name you like):

```
gen eventX = .
replace eventX = 3 if country == "A"
replace eventX = 6 if country == "B"
replace eventX = 9 if country == "C"
```

* For the example in this document, we saved the year the event happened for a random selection of countries in a separate data file (a fake dataset in this case).

merge m:1 country using
"http://www.princeton.edu/~otorres/eventX.dta", gen(merge2)

order country year eventX

The time to event variable

* Generating the time to event variable. In this example we have years, replace with your own time variable (i.e. months, quarters, etc.).

gen time to event = year - eventX

[See next slide to check the variable]

Time to event variable

tab time_to_event

time_to_eve |

-15 6 0.40 0.40 -14 14 0.94 1.34 -13 22 1.47 2.81 -12 24 1.60 4.41 -11 35 2.34 6.75 -10 39 2.61 9.36 -9 41 2.74 12.10 -8 51 3.41 15.51 -7 55 3.68 9.18 -6 61 4.08 23.26 -5 68 4.55 27.81 -4 68 4.55 32.35 -3 68 4.55 32.35 -3 68 4.55 32.35 -3 68 4.55 50.53 1 68 4.55 50.68 2 68 4.55 77.81 7 62 4.14 81.95 3 68 4.55 77.81 7 62 4.14 <			nt	Freq.	Percent	Cum.
<i>Iags</i> -14 14 0.94 1.34 -13 22 1.47 2.81 -12 24 1.60 4.41 -11 35 2.34 6.75 -10 39 2.61 9.36 -9 41 2.74 12.10 -8 51 3.41 15.51 -7 55 3.68 19.18 -6 61 4.08 23.26 -5 68 4.55 32.35 -3 68 4.55 32.35 -3 68 4.55 41.44 -1 68 4.55 50.53 1 68 4.55 50.53 1 68 4.55 50.63 3 68 4.55 73.26 6 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.		r	-15	 6	0.40	0.40
Iags -13 22 1.47 2.81 -12 24 1.60 4.41 -11 35 2.34 6.75 -10 39 2.61 9.36 -9 41 2.74 12.10 -8 51 3.41 15.51 -7 55 3.68 19.18 -6 61 4.08 23.26 -5 68 4.55 32.35 -3 68 4.55 32.35 -3 68 4.55 50.53 1 68 4.55 50.53 1 68 4.55 50.53 2 68 4.55 50.53 3 68 4.55 50.63 3 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.9 1.94 95.72 13 2.7<			-14	14	0.94	1.34
Iags -12 24 1.60 4.41 -11 35 2.34 6.75 -10 39 2.61 9.36 -9 41 2.74 12.10 -8 51 3.41 15.51 -7 55 3.68 19.18 -6 61 4.08 23.26 -5 68 4.55 27.81 -4 68 4.55 36.90 -2 68 4.55 50.53 1 68 4.55 50.53 1 68 4.55 50.63 2 68 4.55 64.17 4 68 4.55 73.26 6 68 4.55 73.26 6 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 8.64 10 44 2.94 91.58 11 33 2.21 <th></th> <th></th> <td>-13 </td> <td>22</td> <td>1.47</td> <td>2.81</td>			-13	22	1.47	2.81
Jlags -11 35 2.34 6.75 -10 39 2.61 9.36 -9 41 2.74 12.10 -8 51 3.41 15.51 -7 55 3.68 19.18 -6 61 4.08 23.26 -5 68 4.55 32.35 -3 68 4.55 36.90 -2 68 4.55 41.44 -1 68 4.55 45.99 0 68 4.55 50.53 1 68 4.55 68.72 5 68 4.55 68.72 5 68 4.55 73.26 6 68 4.55 73.26 6 68 4.55 73.26 6 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 </td <th></th> <th></th> <td>-12 </td> <td>24</td> <td>1.60</td> <td>4.41</td>			-12	24	1.60	4.41
Jlags -10 39 2.61 9.36 -9 41 2.74 12.10 -8 51 3.41 15.51 -7 55 3.68 19.18 -6 61 4.08 23.26 -5 68 4.55 27.81 -4 68 4.55 32.35 -3 68 4.55 36.90 -2 68 4.55 50.53 1 68 4.55 50.53 1 68 4.55 50.63 3 68 4.55 50.63 3 68 4.55 50.63 3 68 4.55 50.63 3 68 4.55 77.81 7 62 4.14 81.955 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94			-11	35	2.34	6.75
Jlags -9 41 2.74 12.10 -8 51 3.41 15.51 -7 55 3.68 19.18 -6 61 4.08 23.26 -5 68 4.55 27.81 -4 68 4.55 32.35 -3 68 4.55 36.90 -2 68 4.55 50.63 1 68 4.55 50.53 1 68 4.55 50.63 1 68 4.55 50.63 1 68 4.55 50.63 1 68 4.55 50.63 3 68 4.55 64.17 4 68 4.55 68.72 5 68 4.55 73.26 6 68 4.55 73.26 6 68 4.55 73.26 6 68 3.07 88.64 10 44 2.94 91.58 11 33 2.21 <th></th> <th></th> <td>-10 </td> <td>39</td> <td>2.61</td> <td>9.36</td>			-10	39	2.61	9.36
Jlags -8 51 3.41 15.51 -7 55 3.68 19.18 -6 61 4.08 23.26 -5 68 4.55 27.81 -4 68 4.55 32.35 -3 68 4.55 36.90 -2 68 4.55 41.44 -1 68 4.55 50.53 1 68 4.55 50.53 1 68 4.55 50.63 2 68 4.55 50.63 3 68 4.55 50.63 3 68 4.55 73.26 6 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80<			-9	41	2.74	12.10
-7 55 3.68 19.18 -6 61 4.08 23.26 -5 68 4.55 27.81 -4 68 4.55 32.35 -3 68 4.55 36.90 -2 68 4.55 41.44 -1 68 4.55 50.53 1 68 4.55 50.53 1 68 4.55 59.63 3 68 4.55 64.17 4 68 4.55 67.2 5 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 95.53<	/ lags	4	-8	51	3.41	15.51
-6 61 4.08 23.26 -5 68 4.55 27.81 -4 68 4.55 32.35 -3 68 4.55 32.35 -3 68 4.55 32.35 -3 68 4.55 32.35 -2 68 4.55 41.44 -1 68 4.55 50.53 1 68 4.55 55.08 2 68 4.55 55.08 2 68 4.55 64.17 4 68 4.55 73.26 6 68 4.55 73.26 6 68 4.55 73.26 6 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13	5 1055		-7	55	3.68	19.18
-5 68 4.55 27.81 $-4 $ 68 4.55 32.35 $-3 $ 68 4.55 36.90 $-2 $ 68 4.55 41.44 $-1 $ 68 4.55 45.99 $0 $ 68 4.55 50.53 $1 $ 68 4.55 50.63 $2 $ 68 4.55 59.63 $3 $ 68 4.55 64.17 $4 $ 68 4.55 68.72 $5 $ 68 4.55 77.81 $7 $ 62 4.14 81.95 $8 $ 54 3.61 85.56 $9 $ 46 3.07 88.64 $10 $ 44 2.94 91.58 $11 $ 33 2.21 93.78 $12 $ 29 1.94 95.72 $13 $ 27 1.80 97.53 $14 $ 17 1.14 98.66 $15 $ 13 0.87 99.53 $16 $ 7 0.47 100.00			-6	61	4.08	23.26
-4 68 4.55 32.35 -3 68 4.55 36.90 -2 68 4.55 41.44 -1 68 4.55 45.99 0 68 4.55 50.53 1 68 4.55 50.63 2 68 4.55 59.63 3 68 4.55 64.17 4 68 4.55 73.26 6 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00			-5	68	4.55	27.81
-3 68 4.55 36.90 -2 68 4.55 41.44 -1 68 4.55 45.99 0 68 4.55 50.53 1 68 4.55 55.08 2 68 4.55 59.63 3 68 4.55 64.17 4 68 4.55 68.72 5 68 4.55 73.26 6 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00			-4	68	4.55	32.35
-2 68 4.55 41.44 -1 68 4.55 45.99 0 68 4.55 50.53 1 68 4.55 55.08 2 68 4.55 59.63 3 68 4.55 64.17 4 68 4.55 68.72 5 68 4.55 73.26 6 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00			-3	68	4.55	36.90
-1 68 4.55 45.99 0 68 4.55 50.53 1 68 4.55 55.08 2 68 4.55 59.63 3 68 4.55 64.17 4 68 4.55 68.72 5 68 4.55 73.26 6 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00			-2	68	4.55	41.44
Kleads 0 68 4.55 50.53 1 68 4.55 55.08 2 68 4.55 59.63 3 68 4.55 64.17 4 68 4.55 68.72 5 68 4.55 73.26 6 68 4.55 73.26 6 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00 Total 1,496 100.00		L	-1	68	4.55	45.99
Kleads 1 68 4.55 55.08 2 68 4.55 59.63 3 68 4.55 64.17 4 68 4.55 68.72 5 68 4.55 73.26 6 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00		ŕ	0	68	4.55	50.53
Kleads 2 68 4.55 59.63 3 68 4.55 64.17 4 68 4.55 68.72 5 68 4.55 73.26 6 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00			1	68	4.55	55.08
X leads 3 68 4.55 64.17 4 68 4.55 68.72 5 68 4.55 73.26 6 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00			2	68	4.55	59.63
K leads 4 68 4.55 68.72 5 68 4.55 73.26 6 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00			3	68	4.55	64.17
Kleads 5 68 4.55 73.26 6 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00			4	68	4.55	68.72
6 68 4.55 77.81 7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00			5	68	4.55	73.26
7 62 4.14 81.95 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00			6	68	4.55	77.81
Kleads 8 54 3.61 85.56 9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00			7	62	4.14	81.95
9 46 3.07 88.64 10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00	K leads	-	8	54	3.61	85.56
10 44 2.94 91.58 11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00			9	46	3.07	88.64
11 33 2.21 93.78 12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00			10	44	2.94	91.58
12 29 1.94 95.72 13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00			11	33	2.21	93.78
13 27 1.80 97.53 14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00 Total 1,496 100.00			12	29	1.94	95.72
14 17 1.14 98.66 15 13 0.87 99.53 16 7 0.47 100.00 Total 1,496 100.00			13	27	1.80	97.53
15 13 0.87 99.53 16 7 0.47 100.00 Total 1,496 100.00			14	17	1.14	98.66
L 16 7 0.47 100.00 Total 1,496 100.00			15	13	0.87	99.53
Total 1,496 100.00		L	16	7	0.47	100.00
			Total	1,496	100.00	

NOTE: This only includes units where the event happened.

All treatment units experienced the event in this range.

Modified time to event variable

clonevar time_to_event_accum = time_to_event

tab time_to_event_accum

time to eve |

nt_accum	Freq.	Percent	Cum.
	+ 416	27.81	27.81
-4	68	4.55	32.35
-3	68	4.55	36.90
-2	68	4.55	41.44
-1	68	4.55	45.99
0	68	4.55	50.53
1	68	4.55	55.08
2	68	4.55	59.63
3	68	4.55	64.17
4	68	4.55	68.72
5	68	4.55	73.26
6	400	26.74	100.00
Total	1,496	100.00	

All treatment units experienced the event at J = -5 and K = 6

Time to event indicators (modified variable)

* Creating dummies for each time_to_event, each dummy will have the prefix "x" [replace with your own]

tab time to event accum, gen(x)

* Removing the "time_to_event_accum== " part of the label for each dummy.

```
sum time_to_event_accum
local min = r(min)
local i = `min'
foreach var of varlist x1-x12 {
    label variable `var' "`i'"
    local i = `i'+1
```

OTR

Name	Label	
x1	time_to_event_accum==	-5.0000
x2	time_to_event_accum==	-4.0000
x3	time_to_event_accum==	-3.0000
x4	time_to_event_accum==	-2.0000
x5	time_to_event_accum==	-1.0000
хб	time_to_event_accum==	0.0000
x7	time_to_event_accum==	1.0000
x8	time_to_event_accum==	2.0000
x9	time_to_event_accum==	3.0000
x10	time_to_event_accum==	4.0000
x11	time_to_event_accum==	5.0000
x12	time_to_event_accum==	6.0000

Event staggered across groups

* Using reghdfe, need to install:

```
ssc install reghdfe
ssc install ftools
```

* Event diff-in-diff regression where x5 is the reference (year before the event happened in each country)

reghdfe gdppc x1-x4 x6-x12, absorb(country1) vce(cluster country1)

(MWFE estimator converged in 1 iterations)

HDFE Linear regression Absorbing 1 HDFE group Statistics robust to heteroskedasticity Number of clusters (country1) = 68					of obs F red squared R-sq. E		1,496 5.04 0.0000 0.9739 0.9724 0.1738 3515.6856
		(Std. err	. adjusted	for 68	clusters	in	country1)
gdppc	 Coefficient	Robust std. err.	t_P	> t	[95% cor	nf.	interval]
x1 x2 x3 x4 x6 x7 x8 x9 x10 x11 x12 	$ \begin{bmatrix} -1788.375 \\ -567.0806 \\ -263.1147 \\ -184.2048 \\ 406.7118 \\ 960.3596 \\ 1357.789 \\ 1639.607 \\ 1809.949 \\ 1868.826 \\ 2456.058 \\ 15297.11 \end{bmatrix} $	410.9684 210.1531 166.2122 90.90466 204.6323 461.5721 562.7223 680.2874 660.4678 511.6746 549.9362 219.2126	$\begin{array}{ccccc} -4.35 & 0\\ -2.70 & 0\\ -1.58 & 0\\ -2.03 & 0\\ 1.99 & 0\\ 2.08 & 0\\ 2.41 & 0\\ 2.41 & 0\\ 2.74 & 0\\ 3.65 & 0\\ 4.47 & 0\\ 69.78 & 0 \end{array}$.000 .009 .118 .047 .051 .041 .019 .019 .019 .008 .001 .000 .000	-2608.672 -986.5478 -594.8756 -365.6512 -1.735955 39.05775 234.5902 281.748 491.6496 847.5194 1358.381 14859.56	2362592364	-968.0792 -147.6133 68.64625 -2.758306 815.1596 1881.661 2480.987 2997.467 3128.248 2890.133 3553.735 15734.66

Absorbed degrees of freedom:

Absorbed FE	Categories	- Redundant	= Num.	Coefs
country1	68	68		0 *

* = FE nested within cluster; treated as redundant for DoF computation

Visualizing the time to event coefficients

* Install user-written command -coefplot-

* See http://repec.sowi.unibe.ch/stata/coefplot/getting-started.html

ssc install coefplot

reghdfe gdppc x1-x4 x6-x12, absorb(country1) vce(cluster country1)

coefplot, keep(x*) order(x1 x2 x3 x4 . x6 x7 x8 x9 x10 x11 x12) vertical drop(_cons) yline(0) xline(5) xlabel(, labsize(2)) ylabel(, labsize(2)) ciopts(recast(rarea) color(gs14%33)) ttext(-4500 5 "-1", size(2))

Each dot is the coefficient for the corresponding dummy. The shaded area shows 95% confidence intervals of the

coefficients.

The coefficients are significant as long as the shaded area does not cross the horizontal red line.

Countries where the event never happened will served as controls (same for pre-time in the treatment). The country fixed effects will account for any unobserved heterogeneity across^Rcountries.

Additional references

- Introduction to econometrics, James H. Stock, Mark W. Watson. 2nd ed., Boston: Pearson Addison Wesley, 2007.
- "Difference-in-Differences Estimation", Imbens/Wooldridge, Lecture, Notes 10, summer 2007. <u>http://www.nber.org/WNE/lect 10 diffindiffs.pdf</u>
- "Lecture 3: Differences-in-Differences", Fabian Waldinger, <u>https://www.fabianwaldinger.com/_files/ugd/0d0a02_6fef9_51d28064c8db2cf06d6dfa0cff6.pdf</u>