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Abstract
In this paper, we analyze and systematize the state-of-

the-art graph data privacy and utility techniques. Specif-
ically, we propose and develop SecGraph (available
at [1]), a uniform and open-source Secure Graph data
sharing/publishing system. In SecGraph, we system-
atically study, implement, and evaluate 11 graph data
anonymization algorithms, 19 data utility metrics, and 15
modern Structure-based De-Anonymization (SDA) at-
tacks. To the best of our knowledge, SecGraph is the
first such system that enables data owners to anonymize
data by state-of-the-art anonymization techniques, mea-
sure the data’s utility, and evaluate the data’s vulnerabil-
ity against modern De-Anonymization (DA) attacks. In
addition, SecGraph enables researchers to conduct fair
analysis and evaluation of existing and newly developed
anonymization/DA techniques. Leveraging SecGraph,
we conduct extensive experiments to systematically eval-
uate the existing graph data anonymization and DA tech-
niques. The results demonstrate that (i) most anonymiza-
tion schemes can partially or conditionally preserve most
graph utilities while losing some application utility; (ii)
no DA attack is optimum in all scenarios. The DA
performance depends on several factors, e.g., similar-
ity between anonymized and auxiliary data, graph den-
sity, and DA heuristics; and (iii) all the state-of-the-art
anonymization schemes are vulnerable to several or all
of the modern SDA attacks. The degree of vulnerability
of each anonymization scheme depends on how much
and which data utility it preserves.

1 Introduction

Many computing systems generate data with graph struc-
ture, e.g., social networks, collaboration networks, and
email networks [2–4]. Even mobility traces, e.g., WiFi
traces, Bluetooth traces, instant message traces, and
check-ins, can be modeled by graphs via applying so-
phisticated techniques [3–5]. Generally, those data are

called graph data. For research purposes, data and net-
work mining tasks, and commercial applications, these
graph data are often transferred, shared, and/or provided
to the public, research community, and/or commercial
partners. Since graph data carry a lot of sensitive private
information of users/systems who generated them [2, 3],
it is critical to protect users’ privacy during the data trans-
ferring, sharing, and/or publishing.

To protect users’ privacy, several anonymization tech-
niques have been proposed to anonymize graph data,
which can be classified into six categorizes: Naive
ID Removal, Edge Editing (EE) based techniques
[6], k-anonymity based techniques [7–11], Aggrega-
tion/Class/Cluster based techniques [12–14], Differen-
tial Privacy (DP) based techniques [15–19], and Random
Walk (RW) based techniques [20]. Fundamentally, these
techniques try to protect users’ privacy by perturbing the
original graph’s structure while preserving as much data
utility as possible.

Following Narayanan and Shmatikov’s work [2],
many new Structure-based De-Anonymization (SDA, we
use DA and SDA interchangeably in this paper) at-
tacks on graph data have been proposed, which can be
categorized into two classes: seed-based attacks, e.g.,
Narayanan-Shmatikov’s attack [2], and seed-free attacks,
e.g., Ji et al.’s attack [3]. For both types of attacks, the
goal is to de-anonymize anonymized users using their
uniquely distinguishable structural characteristics.

Surprisingly, although we already have many sophis-
ticated anonymization techniques (e.g., [6, 7, 12, 15, 20])
and powerful SDA attacks (e.g., [2,3,5,21–24]), whether
state-of-the-art anonymization techniques can defend
against modern SDA attacks is still an open problem.
This is because of the incomplete evaluation of exist-
ing anonymization and DA techniques. For anonymiza-
tion works, they usually only evaluate the data util-
ity performance of their proposed techniques (although
some works provide a theoretical security guarantee,
these guarantees usually do not hold due to improper



assumptions or incomplete considerations as analyzed
in Section 4). For DA works, they usually evaluate
their attacks’ performance without applying state-of-the-
art anonymization techniques (e.g., k-anonymity based
schemes, DP based schemes) to their test data.

Contributions. To address the above open problem,
we systematically study, implement, and evaluate ex-
isting graph data anonymization techniques and DA at-
tacks. Specifically, our main contributions are as follows.

(a) We design and implement a Secure Graph data
publishing/sharing (SecGraph) system (available at [1]).
SecGraph enables data owners to anonymize their data
using state-of-the-art anonymization techniques, mea-
sure the anonymized data’s graph and application util-
ities, and comprehensively evaluate their data’s actual
vulnerability against modern DA attacks. To the best of
our knowledge, SecGraph is the first such system pub-
licly available to both academia and industry. More im-
portantly, SecGraph provides the first uniform platform
that enables researchers to conduct accurate comparative
studies of anonymization/DA techniques, and to compre-
hensively understand the resistance/vulnerability of ex-
isting or newly developed anonymization techniques, the
effectiveness of existing or newly developed DA attacks,
and graph and application utilities of anonymized data.

(b) In SecGraph, we systematically analyze, im-
plement, and evaluate 11 state-of-the-art graph data
anonymization schemes and 19 graph and application
utility metrics. We also analyze the 11 anonymiza-
tion schemes with respect to the 19 utility metrics,
both analytically and experimentally. The evaluation re-
sults demonstrate that most existing anonymization algo-
rithms can partially or conditionally preserve most graph
utilities. However, all the anonymization schemes lose
one or more application utility.

(c) We summarize and analyze the fundamental prop-
erties of existing SDA attacks. Then, we systematically
implement and evaluate 15 modern SDA attacks on real-
world graph datasets. Our results show that modern SDA
attacks are powerful and robust to seed mapping errors.
Furthermore, no attack is optimum in all scenarios. The
DA performance of an attack depends on the similarity
between the anonymized and auxiliary data, graph den-
sity, DA heuristics, etc.

(d) We analytically and experimentally evaluate the
performance of existing graph data anonymization
schemes on defending against modern SDA attacks. We
find that existing anonymization techniques are vulnera-
ble to modern SDA attacks. Their degree of vulnerabil-
ity depends on how much data utility is preserved in the
anonymized data.

Abbreviations. For convenient reference, we summa-
rize the used abbreviations in Table 1.

Roadmap. In Section 2, we study existing graph data

Table 1: Abbreviations and acronyms.
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DA De-anonymization
SF Seed-Free
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DP Differential Privacy
RW Random Walk

k-NA k-Neighborhood Anonymity
k-DA k-Degree Anonymity
k-auto k-automorphism
k-iso k-isomorphism
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Deg. Degree
JD Joint Degree
ED Effective Diameter
PL Path Length

LCC Local Clustering Coefficient
GCC Global Clustering Coefficient
CC Closeness Centrality
BC Betweenness Centrality
EV Eigenvector
NC Network Constraint
NR Network Resilience
Infe. Infectiousness
RX Role extraction
RE Reliable Email
IM Influence Maximization

MINS Minimum-sized Influential Node Set
CD Community Detection
SR Secure Routing
SD Sybil Detection

D
e-

an
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ym
iz

at
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n

DV Distance Vector [5]
RST Randomized Spanning Tress [5]
RSM Recursive Subgraph Matching [5]
DeA De-Anonymization [25]
ADA Adaptive De-Anonymization [25]
BDK Backstrom et al.’s attacks [26]
NS Narayanan-Shmatikov’s attack [2]

NSR Narayanan et al.’s attack [21]
NKA Nilizadeh et al.’s attack [22]
PFG Pedarsani et al.’s attack [23]
YG Yartseva-Grossglauser’s attack [27]
KL Korula-Lattanzi’s attack [24]

JLSB Ji et al.’s attack [3]

anonymization schemes and their utility performance. In
Section 3, we study modern SDA attacks. In Section
4, the effectiveness of existing anonymization schemes
against modern DA attacks is analyzed. We systemat-
ically implement and evaluate SecGraph in Section 5.
The future research directions are discussed in Section
6. We conclude this paper in Section 7.

2 Graph Anonymization

2.1 Status Quo

Generally, existing graph data anonymization techniques
can be classified into six categories. We discuss each
category as follows.
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Naive ID Removal. To anonymize graph data, a
straightforward method is naive ID removal. Although
this method has been demonstrated to be extremely vul-
nerable to SDA attacks, it is still widely used because
of its simplicity, ease of applicability, and scalability
[2, 3, 5, 26, 28].

Edge Editing based Anonymization. To protect
graph data’s privacy, Ying and Wu proposed spectrum
preserved Edge Editing (EE) based schemes Add/Del and
Switch [6]. Under Add/Del, k randomly chosen edges
will be added followed by the deletion of another k ran-
domly chosen edges. Under Switch, k random edge
switches are conducted.

k-anonymity. k-anonymity has been widely used to
anonymize relational data [29, 30]. Similarly, much ef-
fort has been spent to extend k-anonymity to graph data
[7–11]. To defend against neighborhood attacks, Zhou
and Pei proposed k-Neighborhood Anonymity (k-NA) for
graph data [7]. In another work, Liu and Terzi consid-
ered degree attacks and proposed k-Degree Anonymity
(k-DA) for graph data, under which for each user, there
exists at least k− 1 other users with the same degree
[8]. In [9], Zou et al. simultaneously considered four
types of structural attacks on graph data and proposed
k-automorphism (k-auto), where each user always has
k− 1 other symmetric users with respect to k− 1 auto-
morphic functions. Another similar work is [10], where
Cheng et al. proposed k-isomorphism (k-iso) to defend
against structural attacks. Under k-iso, a graph is parti-
tioned and anonymized into k disjoint isomorphic sub-
graphs. In [11], Yuan et al. considered personalized pri-
vacy protection for anonymizing graph data in terms of
both semantic and structural information.

Aggregation/Class/Cluster based Anonymization.
Another popular idea to protect graph data is to group
users into clusters (equivalently, groups, classes). In
[12], Hay et al. proposed an aggregation based graph
anonymization algorithm, which first partitions users and
then describes the graph at the level of partitions. An-
other work, at the semantics level, is [13], where Bhagat
et al. designed a class-based anonymization algorithm.
In [14], Thompson and Yao presented two cluster-based
anonymization schemes for graph data.

Differential Privacy. Differential Privacy (DP) is an
emerging anonymization technique with a strong privacy
guarantee [31, 32]. Initially, DP was proposed for sta-
tistical databases [31]. Recently, there have been works
that seek to enable differentially private graph data re-
lease. Aiming at protecting edge/link privacy, defined
as the privacy of users’ relationship in graph data, in
[15], Sala et al. introduced Pygmalion, a differentially-
private graph model. To bypass many difficulties en-
countered when working with the worst-case sensitiv-
ity [15], Proserpio recently presented a general platform,

named wPING, for differentially private data analysis
and publishing [16, 17]. Similar to [15], Wang and Wu
also employed the dK-graph generation model for en-
forcing edge DP in graph anonymization [18]. Another
recent work for edge DP is [19], where Xiao et al. pro-
posed a Hierarchical Random Graph (HRG) model based
scheme to meet edge DP.

Random Walk based Anonymization. In [20],
Mittal et al. proposed a Random Walk (RW) based
anonymization technique for preserving link (edge) pri-
vacy. In this technique, an edge in the original graph is
replaced by a RW path.

2.2 Anonymization and Utility
Generally, an anonymization scheme can be evaluated
from two perspectives: data utility preservation and re-
sistance to DA attacks. However, most, if not all, existing
graph anonymization works have not been significantly
evaluated with respect to their utility or resistance to DA
attacks. On one hand, most existing graph anonymiza-
tion works only conducted limited evaluations on their
utility preservation, e.g., degree distribution, path length
distribution, which are insufficient to understand their
value for high-level data mining tasks and applications,
e.g., sense-making, search for similar users, user classi-
fication, reliable email, influence maximization. On the
other hand and more seriously, to the best of our knowl-
edge, no work (including existing DA works) actually
evaluated the resistance of state-of-the-art anonymiza-
tion techniques against modern SDA attacks.

To address these concerns, we comprehensively ana-
lyze the utility of existing graph data anonymization al-
gorithms in this subsection and defer the detailed resis-
tance analysis to Section 4. Before performing the anal-
ysis, we first present the used utility metrics, which can
be classified as graph utility metrics or application utility
metrics.

2.2.1 Graph Utility Metrics

Graph utility captures how the anonymized data pre-
serves fundamental structural properties of the original
graph after applying an anonymization technique. Par-
ticularly, we examine 12 graph utility metrics of existing
anonymization schemes as follows1.

Degree (Deg.), which refers to the degree distribution;
Joint Degree (JD), which refers to the joint degree dis-
tribution of a graph; Effective Diameter (ED), which is
defined as the minimum number of hops in which 90%
of all connected pairs of nodes can reach each other;
Path Length (PL), which refers to the distribution of the

1Without of causing confusion, we interchangeably use node and
user in this paper.
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shortest path lengths between all pairs of users; Local
Clustering Coefficient (LCC) and Global Clustering Co-
efficient (GCC). Clustering coefficient measures the de-
gree to which users in graph data tend to cluster together.
Closeness Centrality (CC), which is defined as the in-
verse of the farness of a user within a graph and mea-
sures how long it takes to spread information from a user
to all other users sequentially; Betweenness Centrality
(BC), which quantifies the number of times a user acts as
a bridge along the shortest path between two other users;
EigenVector (EV). The EV of the adjacency matrix A of a
graph G is a non-zero vector v such that Av = λv, where
λ is some scalar multiplier; Network Constraint (NC),
which measures the extent to which a user links to others
that are already linked to each other; Network Resilience
(NR) [33], which measures how robust a graph is and is
defined as the number of users in the largest connected
component when users are removed from the graph in the
degree decreasing order; and Infectiousness (Infe.) [34],
which measures the number of users infected by a dis-
ease, given that a randomly chosen user is infected and
each infected user transmits this disease to its neighbors
with some infection rate.

2.2.2 Application Utility Metrics

In reality, most data is published/shared for data/network
mining tasks, high-level applications, etc. Therefore, be-
sides examining data’s fundamental structural utility, it is
also crucial to ensure that the anonymized data is useful
for practical applications. Toward this objective, we eval-
uate 7 popular application utility metrics for anonymiza-
tion schemes as follows.

(a) Role eXtraction (RX) [35]. Based on users’ struc-
tural behavior, users in a graph can be labeled as having
different roles, e.g., clique members, periphery-nodes.
RX is an important operation for graph data that is use-
ful for many network mining tasks such as sense-making.
We measure the RX utility of an anonymization scheme
using the method in [35].

(b) Reliable Email (RE) [36]. RE is a whitelisting sys-
tem leveraging users’ neighborhoods to filter and block
spam emails. To evaluate the structural utility of an
anonymization scheme with respect to RE, we take a
similar method as in [15] to compute the number of users
who can be spammed by a fixed number of compromised
neighbors in a graph.

(c) Influence Maximization (IM) [37]. The IM prob-
lem seeks to find a set of θ users such that these θ users
have the maximum influence to the network under some
influence propagation model. IM is important for many
real world applications, e.g., advertisements.

(d) Minimum-sized Influential Node Set (MINS) [38].
MINS is another popular and important application util-

ity metric that leverages a graph’s structure to identify
the minimum-sized set of influential nodes, such that all
other nodes in the network could be influenced with a
probability above a threshold. MINS can be used in
many meaningful applications, e.g., social problems al-
leviation, new products promotion.

(e) Community Detection (CD) [39]. CD is a popular
application on graph data which enables comprehensive
analysis of a network structure and supports other appli-
cations, e.g., classification, routing (information propa-
gation). To measure the CD utility of an anonymization
scheme, we employ the hierarchical agglomeration algo-
rithm proposed in [39].

(f) Secure Routing (SR) [40]. The structure of graph
data can also be used to improve the performance of
secure routing for systems such as P2P systems. For
our purpose, we evaluate the SR application utility of
an anonymization scheme using the method designed
in [40].

(g) Sybil Detection (SD) [41]. Sybil attacks are a se-
rious threat to both centralized and distributed systems,
e.g., recommendation systems, anonymity systems. For
our purpose, we evaluate the SD application utility of an
anonymization scheme using the method in [41].

2.2.3 Anonymization vs Utility

We are ready to analyze the utility performance of exist-
ing graph data anonymization techniques. We summa-
rize the graph and application utilities, and Resistance
to SDA attacks (R2SDA) (e.g., [2, 3, 25, 27]) of existing
graph anonymization schemes in Table 2. We analyze
the results in Table 2 as follows.

For the Naive ID removal scheme, it is straightforward
that it preserves all the data utility. However, it is also the
most vulnerable scheme to SDA attacks.

Since Add/Del randomly adds and deletes edges,
which is an global edge edition operation and thus it
may change many fundamental structural properties of
a graph. It follows that it can conditionally or partially
preserve both graph and application utilities. However,
utilities like JD, GCC, NC, CD, and MINS would be de-
stroyed if too many existing edges are deleted while new
edges are added. For Switch, it switches two randomly
selected qualified edges, which preserves the degree of
each user. Consequently, Switch can preserve Deg. and
partially preserve most other utilities. Furthermore, com-
pared to Add/Del, Switch can conditionally preserve the
RX and CD utilities which are destroyed in Add/Del.
This is because that Add/Del randomly changes users’
degree in the global edge edition process and thus some
global structure-sensitive application utility is lost or sig-
nificantly affected. Furthermore, Add/Del and Switch
cannot defend against modern SDA attacks as shown
in [2, 3, 5].
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Table 2: Analysis of existing graph anonymization techniques. 3 = preserving the utility, G#= partially preserving the
utility, � = conditionally preserving the utility depending on parameters and considered data (based on our analysis,
it is necessary to distinguish partially and conditionally preserving a data utility. For instance, k-DA conditionally
preserves the Deg. utility depending on k while Add/Del can partially preserve the Deg. utility for an arbitrary k), 7 =
not preserving the utility, and n/a = evaluation not available in existing works.

graph utility application utility R2SDADeg. JD ED PL LCC GCC CC BC EV NC NR Infe. RX RE IM MINS CD SR SD
Naive 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 7

Add/Del [6] G# � G# G# � � G# G# G# � G# G# 7 G# G# � 7 � � 7
Switch [6] 3 � � G# � � G# G# G# G# � G# � G# G# � � G# G# 7
k-NA [7] � � � � � � G# � � G# G# G# 7 G# � � � � � n/a
k-DA [8] � � � � � � G# � � G# G# G# 7 G# � � � � � n/a
k-auto [9] � � � � � � G# � � G# G# G# 7 G# � � � � � n/a
k-iso [10] � � 7 7 � 7 7 7 7 � 7 7 7 7 7 � � 7 � n/a

Aggregation [12] � � � � � � G# � � G# G# G# 7 G# � � � � � n/a
Cluster [14] � � � � � � G# � � G# G# G# 7 G# � � � � � n/a

DP [15] � � � G# � � G# � � � � G# 7 G# � � 7 � � n/a
DP [16, 17] � � � G# � � G# � � � � G# 7 G# � � 7 � � n/a

DP [18] � � � G# � � G# � � � � G# 7 G# � � 7 � � n/a
DP [19] � � � G# � � G# � � � � G# 7 G# � � 7 � � n/a
RW [20] 3 � � � � 7 G# � � G# � G# 7 G# � 7 7 G# G# n/a

The k-anonymity based anonymization schemes k-NA
[7], k-DA [8], and k-auto [9] can partially/conditionally
preserve the graph and most application utilities ex-
cept for the RX utility. This is because the fundamen-
tal idea of k-anonymity based schemes is to make k
users/subgraphs structurally similar. Therefore, there is
a tradeoff between anonymity and utility. If k is large,
more users will be structurally similar while more util-
ity will be lost. On the other hand, if k is chosen to be
small, more utility will be preserved at the cost of lower
anonymity guarantee. Furthermore, since every user is
guaranteed to be structurally similar to at least k−1 other
users while the RX utility tries to distinguish users based
on their structural differences, it turns out k-anonymity
based schemes cannot preserve the RX utility. As we
discussed before, k-iso achieves structure anonymization
by partitioning the original graph into k isomorphic sub-
graphs. Therefore, several fundamental properties of a
graph will be destroyed, e.g., connectivity. It follows that
several important graph and application utilities are lost
in k-iso, e.g., PL, GCC, NR, Infe., RX, RE, IM, and SR.
Finally, compared with other schemes, k-NA, k-auto, and
k-iso have higher computational complexities.

Similar to k-anonymity based schemes, the cluster
based schemes [12, 14] can conditionally/partially pre-
serve graph and application utilities except for RX. This
is because the fundamental idea of cluster based schemes
is to make the users within a cluster structurally indistin-
guishable. Therefore, to what extent these schemes can
preserve data utility depends on the cluster size setting.
Again, since RX is achieved based on users’ structural
difference, this utility is not preserved in cluster based
schemes.

For DP based schemes (e.g., [15, 19]), their main ob-
jective is to protect link privacy by perturbing the edges
of a graph. The fundamental idea of these schemes is
to make an anonymized graph structurally similar to its
neighboring graphs and thus an adversary cannot infer
the existence of an edge. Therefore, they can condition-
ally/partially preserve most graph and application utili-
ties. However, if a high level of privacy is guaranteed,
many edges in the graph are changed. Furthermore, sim-
ilar to Add/Del, the edge perturbation in DP also belongs
to global edge edition. Therefore, the global structure-
sensitive high-level application utilities, e.g., RX, MINS,
and CD, are destroyed or significantly reduced in DP
based schemes.

In the RW based scheme [20], link privacy is achieved
by replacing a random walk path with an edge, and thus
this scheme, theoretically, will not change the degree dis-
tribution of the original data. It follows that several util-
ities, e.g., Deg., RX, SD, NR, Infe., can be preserved or
partially preserved. However, some other global utilities,
e.g. JD, GCC, are lost in the RW based scheme due to
the significant change of the overall graph structure.

From Table 2, no existing work evaluates the resis-
tance of state-of-the-art anonymization schemes against
modern SDA attacks. Although most of the schemes
have nice theoretical privacy guarantees, unfortunately,
that privacy analysis cannot guarantee that they can de-
fend against modern SDA attacks due to the improper
model of the adversary’s auxiliary information, problem-
atic assumptions, etc. Therefore, aiming to address this
open problem, we evaluate the effectiveness of existing
graph data anonymization schemes against modern SDA
attacks in Sections 4 and 5.
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3 Graph De-anonymization

3.1 Graph Data DA
3.1.1 Seed-based DA

When de-anonymizing graph data, it is intuitive to iden-
tify some users first as seeds. Then, the large scale DA is
bootstrapped from these seeds. In [26], Backstrom et al.
presented both active attacks and passive attacks to graph
data. However, the attacks in [26] have several limita-
tions, e.g., they are not scalable and they leverage sybil
users that can be detected by modern sybil defense tech-
niques [41]. To improve the attacks in [26], Narayanan
and Shmatikov presented a scalable two-phase DA at-
tack to social networks [2]. In the first phase, some seed
users are identified between the anonymized graph and
the auxiliary graph. In the second phase, starting from
the identified seeds, a self-reinforcing DA propagation
process is iteratively conducted based on both graphs’
structural characteristics, e.g., node degrees, nodes’ ec-
centricity, edge directionality. Later, Narayanan et al.
employed a simplified version of the attack in [2] (us-
ing less DA heuristics) for link prediction [21]. In [22],
Nilizadeh et al. extended Narayanan and Shmatikov’s
attack by proposing a community-enhanced DA scheme
of social networks. Actually, the community-level DA
in [22] can also be applied to enhance other seed-based
DA attacks (e.g., [5, 25]).

In [5], Srivatsa and Hicks presented three attacks to
de-anonymize mobility traces, which can be modeled
as contact graphs by applying multiple preprocessing
techniques (e.g., [5]). Similar to Narayanan et al.’s
attacks [2, 21], Srivatsa-Hicks’ attacks also consist of
two phases, where the first phase is for seed identifica-
tion and the second phase is for mapping (DA) propa-
gation. To achieve mapping propagation, Srivatsa and
Hicks proposed three heuristics based on Distance Vec-
tor (DV), Randomized Spanning Trees (RST), and Re-
cursive Subgraph Matching (RSM). In [25], Ji et al. pro-
posed two two-phase DA attack frameworks, namely De-
Anonymization (DeA) and Adaptive De-Anonymization
(ADA), which are workable when the auxiliary data only
has partial overlap with the anonymized data.

In [24,27], besides quantifying the de-anonymizability
of graph data, the authors also proposed DA attacks.
In [27], Yartseva and Grossglauser proposed a simple
percolation-based DA algorithm to graph data. Given
a seed mapping set, the algorithm incrementally maps
every pair of users (from the anonymized and auxiliary
graphs respectively) with at least r neighboring mapped
pairs, where r is a predefined mapping threshold. An-
other similar attack was presented by Korula and Lat-
tanzi [24], which also starts from a seed set and iter-
atively maps a pair of users with the most number of

Table 3: Analysis of existing graph DA techniques.
SF = seed-free, AGF = auxiliary graph-free, SemF =
semantics-free, A/P = active/passive attack, Scal. = scal-
able, Prac. = practical, Rob. = robust to noise, 3 = true,
G#= partially true, � = conditionally true, and 7 = false.

SF AGF SemF A/P Scal. Prac. Rob.
BDK [26] 3 3 3 A, P 7 G# 7

NS [2] 7 7 3 P 3 3 3
NSR [21] 7 7 3 P 3 3 3
NKA [22] � 7 3 P � � �

DV [5] 7 7 3 P � � 3
RST [5] 7 7 3 P � � 3
RSM [5] 7 7 3 P � � 3
PFG [23] 3 7 3 P 3 � �
YG [27] 7 7 3 P 3 � 3
DeA [25] 7 7 3 P 3 3 3
ADA [25] 7 7 3 P 3 3 3
KL [24] 7 7 3 P 3 � 3
JLSB [3] 3 7 3 P 3 3 3

neighboring mapped pairs.

3.1.2 Seed-free DA

Taking another approach, some powerful seed-free DA
attacks on graph data have been proposed. Using degrees
and distances to other nodes as each node’s fingerprints,
Pedarsani et al. proposed a Bayesian model based seed-
free algorithm for graph data DA [23]. Another seed-free
DA attack to graph data was presented by Ji et al. [3].
Unlike previous attacks, Ji et al.’s attack is an optimiza-
tion based single-phase cold start algorithm.

3.2 Graph DA Analysis
In this subsection, we analyze the performance of ex-

isting graph data DA algorithms. For convenience, in the
rest of this paper, we denote Backstrom et al.’s attacks
[26] by BDK (the initials of the authors), Narayanan-
Shmatikov’s attack [2] by NS, Narayanan et al.’s at-
tack [21] by NSR, Nilizadeh et al.’s attack [22] by
NKA, Srivatsa-Hicks’ three attacks [5] by DV, RST, and
RSM, respectively, Pedarsani et al.’s attack [23] by PFG,
Yartseva-Grossglauser’s attack [27] by YG, Ji et al.’s
two attacks [25] by DeA and ADA, respectively, Korula-
Lattanzi’s attack [24] by KL, and Ji et al.’s attack [3] by
JLSB. We show our analytical results in Table 3 and dis-
cuss the result as follows.

Except for BDK, all the existing SDA attacks are pas-
sive attacks and require auxiliary graphs to perform the
attack, i.e., they employ the structural similarity between
the the anonymized graph and the auxiliary graph to
break the anonymity. However, when we examine the
anonymization schemes in Table 2, we find that none
properly consider such auxiliary information in their
threat models.
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To perform BDK attacks [26], an adversary either has
to insert some Sybil users in the dataset before the ac-
tual anonymized data release, or has to be an internal
user that knows its neighborhoods. In either case, such
attacks can only de-anonymize some users but cannot
de-anonymize users in large scale. Furthermore, the at-
tacks cannot tolerate any topological change of the orig-
inal data. Therefore, BDK attacks are not scalable or ro-
bust. These attacks require that an adversary successfully
launches Sybil users or be an internal user that obtains his
neighborhoods.

All the examined DA attacks are semantics-free. This
is because the structural information itself is sufficient
to perfectly or partially de-anonymize graph users. Fur-
thermore, compared to semantics information, structural
information is widely available in large scale, resilient
to noise, and easily computable [2, 3, 5]. Following this
fact, all the attacks except for BDK are (conditionally)
scalable, practical, and robust.

Specifically, DV, RST, and RSM [5] are condition-
ally scalable and practical. This is because they are not
computationally feasible when the number of seeds is
large. PFG [23] is conditionally practical and robust.
This is because it is very sensitive to the graph den-
sity of the anonymized data. Generally, this attack is
suitable for sparse graphs however it has a significant
performance degradation as the graph density increases.
YG [27] is conditionally practical because it is designed
to de-anonymize users of degree no less than 4 in the
anonymized data. In many real world graph datasets, the
users with degree less than 4 could dominate or take a
significant portion of graph data based on the statistics
in [3]. The conditional practicability of KL [24] comes
from its improper assumption that Θ(ι · n) (ι ∈ (0,1] is
a constant and n is the number of nodes in a graph)
seeds are available, which is too strong to hold for real
world DA attacks. Note that, the community-level DA of
NKA [22] is scalable (with complexity of O(n2)). How-
ever, the NKA [22] is conditionally scalable, practical,
and robust. This is because, if the community-level DA
of NKA [22] is employed to enhance DV, RST, RSM,
YG, and/or KL, it is conditionally scalable, practical,
and/or robust. NS [2], NSR [21], DeA, ADA, and JLSB
[3,25] adaptively perform DA employing several heuris-
tics based on a graph’s local and global structural charac-
teristics. It follows that they are scalable, practical, and
robust as long as similarity exists between anonymized
graphs and auxiliary graphs.

Both seed-based attacks (e.g., NS, DV) and seed-free
attacks (e.g., PFG, JLSB) have advantages depending on
the application scenarios. On one hand, seed-based at-
tacks are more stable with respect to de-anonymizing
arbitrary anonymized graphs. The reason is straightfor-
ward since seed knowledge provides more auxiliary in-

Table 4: DA attacks vs anonymization techniques. Naive
= naive ID removal, EE = EE based schemes [6], k-
anony. = k-anonymity based schemes [7]- [10], Cluster =
cluster based schemes [12, 14], DP = DP based schemes
[15]- [19], RW = the random walk based scheme [20],
and 3, �, and 7 = the anonymization scheme is vulner-
able, conditionally vulnerable, and invulnerable (i.e., re-
sistant) to the DA attack, respectively.

Naive EE k-anony. Cluster DP RW
BDK [26] 3 7 7 7 7 7

NS [2] 3 3 � � 3 3
NSR [21] 3 3 � � 3 3
NKA [22] 3 � � � 7 7

DV [5] 3 3 � � 3 3
RST [5] 3 3 � � 3 3
RSM [5] 3 3 � � 3 3
PFG [23] 3 3 � � 3 3
YG [27] 3 3 � � 3 3
DeA [25] 3 3 � � 3 3
ADA [25] 3 3 � � 3 3
KL [24] 3 3 � � 3 3
JLSB [3] 3 3 � � 3 3

formation to an adversary. On the other hand, it is pos-
sible that in some scenarios seeds are not available, and
thus seed-free attacks are more general. Furthermore, if
there is some error in the seed seeking phase (which is
possible in real world attacks), seed-based attacks will
suffer performance de-gradation or will possibly fail.

4 Anonymization vs DA Analysis

As we analyzed in Tables 2 and 3, understanding
the vulnerability/resistance of state-of-the-art graph data
anonymization schemes against modern SDA attacks is
still an open problem. After carefully analyzing exist-
ing anonymization and DA techniques, we summarize
the vulnerability of existing anonymization schemes in
Table 4. We further experimentally validate our analysis
in Section 5. Below, we analyze and discuss the results
in Table 4.

It has been shown in both academia and in practice
that the naive ID removal anonymization cannot protect
graph data’s privacy. Therefore, naive anonymization is
vulnerable to all the existing SDA attacks.

As we analyzed before, all other state-of-the-art
anonymization schemes (e.g., EE, k-anony., Cluster, DP,
and RW) are resistant to BDK attacks. Again, this is
because an assumption of BDK attacks is that data is
anonymized by the naive ID removal technique.

For EE based anonymization schemes ( [6]), they are
conditionally vulnerable to NKA [22] and vulnerable to
all the other modern SDA attacks [2,3,25,27]. This is be-
cause although EE can partially modify the structure of
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a graph, to preserve data utility, many structural prop-
erties, e.g., neighborhood, degree distribution, close-
ness/betweenness centrality distribution, and path length
distribution, are generally preserved. Therefore, given
an auxiliary graph consisting of the same or overlap-
ping group of users with the anonymized graph, powerful
DA heuristics can be designed based on these structural
properties to break the privacy of EE based anonymiza-
tion schemes. Furthermore, the availability of seed users
make such heuristics more robust to the noise introduced
by EE. For instance, NS breaks EE by employing degree
and neighborhood similarity [2], DV, RST, and RSM
break EE by employing path length and neighborhood
similarity [5], DeA and ADA break EE by employing
centrality similarity [25], etc. As we analyzed in Table
2, EE based anonymization schemes (e.g., Add/Del) may
destroy graphs’ community utility, and thus they are con-
ditionally vulnerable to NKA [22].

k-anonymity based anonymization schemes ( [7]-
[10]) are conditionally vulnerable to modern SDA at-
tacks [2, 3, 25, 27]. The reasons are as follows: k-
anonymity is initially designed for traditional relational
data, which makes a user semantically indistinguish-
able with k − 1 other users. Unlike relational data,
which are structurally independent of each other, users
in graph data have strong structural correlation in addi-
tion to semantic similarity. When researchers extended
k-anonymity to graph data, they extended the concept of
traditional semantics to graph data as different structural
properties (e.g., degree, neighborhood, and subgraph),
and designed schemes to make k users structurally in-
distinguishable with respect to some structural seman-
tics, i.e., degree, neighborhood, subgraph, etc. How-
ever, even if users in graph data cannot be distinguished
with respect to some structural semantics, e.g., degree,
neighborhood, subgraph, they can be de-anonymized by
other structural semantics, e.g., path length distribution,
closeness centrality, betweenness centrality, or the com-
binations of several structural semantics. Theoretically,
the only way to make users indistinguishable with re-
spect to all structural semantics is to make a graph com-
pletely connected or disconnected, which also implies
that all the data utility is destroyed. Therefore, as long
as some data utility is preserved in the anonymized data,
k-anonymity based schemes are vulnerable to modern
SDA attacks. The degree of vulnerability depends on
how much data utility is preserved.

Cluster based schemes ( [12, 14]) are also condition-
ally vulnerable to modern SDA attacks [2,3,25,27]. The
analysis is similar to that of k-anonymity. The fundamen-
tal idea of cluster based schemes is to cluster users first
and then to make the users within a cluster indistinguish-
able with respect to neighborhoods. Again, even if users
are indistinguishable by neighborhoods, they can be de-

anonymized by other structural semantics or the combi-
nations of other semantics, e.g., centralities scores, path
length distribution. Consequently, cluster based schemes
are vulnerable as long as some data utility, especially
graph utilities, are preserved in the anonymized data, and
the vulnerability depends on the amount of data utility
preserved.

DP and RW based schemes ( [15]- [20]) are vulnerable
to modern SDA attacks except NKA [22]. The reasons
are as follows: First, they are designed with the objec-
tive of protecting the link privacy of graph data and no
dedicated node privacy protection techniques are consid-
ered. Second, to protect link privacy, the edges are per-
turbed in DP based schemes and random walk paths are
replaced by edges in the RW based scheme, both with
a nice theoretical privacy guarantee. However, after the
edge anonymization process, many data utilities, e.g., de-
gree, path length distribution, are still preserved. This
implies that, given an auxiliary graph, users are still de-
anonymizable based on several structural semantics un-
der DP and RW based schemes. Furthermore, as shown
by Narayanan et al. in [21], link privacy can be breached
after de-anonymizing the users in an anonymized graph
(we also employ the same approach to break users’ link
privacy [1]). Again, as we analyzed in Table 2, since DP
and RW based schemes cannot preserve data’s commu-
nity utility, they are resistant to NKA.

In summary, based on our analysis, state-of-the-art
anonymization schemes are still vulnerable to modern
DA attacks. The fundamental reasons are: first, exist-
ing anonymization schemes only ensure that graph data
users are indistinguishable with respect to some struc-
tural semantics (properties). However, other structural
semantics, especially global ones, and the combinations
of multiple structural semantics can still enable effective
DA of users; and second, as one of the main objectives,
all the anonymization schemes try to preserve as much
data utility as possible. However, data utility from the
adversary’s perspective is equivalent to structural infor-
mation, which can be used along with an auxiliary graph
for conducting powerful DA attacks.

5 SecGraph

As we found when discussing existing anonymization
and DA techniques, they all have limitations when
evaluating the techniques’ performance. For instance,
it is still an open problem to understand the re-
sistance/vulnerability of state-of-the-art anonymization
schemes against modern DA attacks. To address this
open problem, we implement a Secure Graph data pub-
lishing/sharing (SecGraph) system.

8



Raw Data


Anonymized


Data


Publishing


 Data


Utility Module


(UM)


De-Anonymization


Module (DM)


Anonymization


Module (AM)


E

v


a

l
u


a

t
i


o

n




Figure 1: SecGraph: system overview.

5.1 System Overview

The overview of SecGraph is shown in Fig.1. SecGraph
consists of three main modules: Anonymization Module
(AM), Utility evaluation Module (UM), and DA evalua-
tion Module (DM). The main functions of each module
are briefly summarized as follows.

AM: the main function of this module is to anonymize
raw graph data and generate anonymized data. In this
module, we implement 11 state-of-the-art graph data
anonymization schemes, including EE based algorithms
[6], k-anonymity based algorithms and its variants [7–
11], aggregation/class/cluster based algorithms [12–14],
differential privacy based algorithms [15–17,19], and the
random walk based algorithm [20].

UM: in this module, we evaluate raw/anonymized
data’s utility with respect to the 12 graph utility metrics
and 7 application utility metrics as defined in Section 2.2.
With the UM, we can determine whether the data to be
published/shared (e.g., the anonymized data) satisfies re-
quired utility requirements. We can also evaluate how an
anonymization algorithm preserves data utility.

DM: in this module, we implement 15 SDA algo-
rithms (all the existing SDA algorithms, to the best of
our knowledge). By this module, the security of data
to be published/shared can be evaluated with real-world
SDA attacks. More importantly, the effectiveness of an
anonymization algorithm can be examined by this mod-
ule, i.e., whether the anonymized data of an anonymiza-
tion algorithm is resistant to modern SDA attacks.

We make further remarks on SecGraph and its mod-
ules and functions as follows.

(a) From Fig.1, raw data can be published/shared in
multiple forms depending on the data owners’ require-
ments on the security/privacy and utility of the data to be
published. Each path in Fig.1 represents a data publish-
ing scenario. For instance, the path raw data→ publish-
ing data means to publish the raw data directly. The path
raw data → AM → anonymized data → evaluation →
publishing data means that the raw data is anonymized
first. Then, the anonymized data will be evaluated with
respect to utility and/or practical de-anonymizability be-
fore actual publishing. The anonymization and evalua-
tion process may be repeated several times until certain

security and utility requirements are met.
(b) To the best of our knowledge, SecGraph is

the first implemented uniform secure graph data pub-
lishing system, which systematically and comprehen-
sively integrates state-of-the-art anonymization schemes,
DA schemes, and graph/application utility measure-
ments. The significance of SecGraph to the graph data
anonymization and DA area lies in the following as-
pects. First, SecGraph enables data owners to conve-
niently and freely choose any modern anonymization al-
gorithm to anonymize their data. They can also em-
ploy different evaluation modules to examine whether
the anonymized data meets their security/privacy and
utility requirements. Second, SecGraph is a uniform
platform for testing and comparing different anonymiza-
tion and DA algorithms. Previously, due to the lack
of a uniform system, existing anonymization/DA algo-
rithms are often proposed and implemented on separate
platforms and different environments/settings. Conse-
quently, a number of implementation and evaluation dif-
ferences (e.g., particular assumptions, models, evalua-
tion datasets, programming, testing environments, pa-
rameter settings) limit researchers’ understanding of the
performance of existing anonymization and DA algo-
rithms in different scenarios. However, as a uniform plat-
form, SecGraph can reduce the evaluation bias caused by
implementation and testing differences as much as pos-
sible. Therefore, SecGraph allows data owners to choose
and compare the actual performance of different data
anonymization algorithms on their data and thus to make
the best decision. Additionally, SecGraph allows data
anonymization researchers to compare their anonymiza-
tion schemes to existing solutions as well as to exam-
ine their schemes’ resistance against modern DA attacks.
SecGraph also allows data DA researchers to evaluate
the performance of new DA attacks by de-anonymizing
the anonymized data of state-of-the-art anonymization
schemes. Therefore, SecGraph is helpful to both data
owners and researchers in conveniently applying exist-
ing schemes, comprehensively understanding existing al-
gorithms, and effectively developing new anonymiza-
tion/DA techniques.

(c) Besides providing a uniform platform, SecGraph
is an easily portable and extendable system. First, the al-
gorithms in SecGraph are implemented in Java and thus
it is system independent. Second, all the modules of
SecGraph are independent of each other, which means
that each module can work individually. Additionally,
as shown in Fig.1, multiple modules can also work to-
gether to perform data anonymization, utility evalua-
tion, and de-anonymizability evaluation. Third, all the
schemes/measurements within each module are indepen-
dent, which means that they can be implemented, evalu-
ated, and employed independently. Furthermore, newly
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developed anonymization/DA schemes and utility met-
rics can be easily integrated into SecGraph.

5.2 System Implementation
The implementation of SecGraph is as follows.

In the AM, we implement 11 algorithms, which cover
all the categories of state-of-the-art anonymization tech-
niques. Specifically, the implemented anonyzation algo-
rithms are naive ID removal, two EE based algorithms
Add/Del [6] and Switch [6], two k-anonymity based algo-
rithms k-DA [8] and k-iso [10], two cluster based algo-
rithms bounded t-means clustering [14] and union-split
clustering [14], three DP based algorithms Sala et al.’s
scheme [15], Proserpio et al.’s scheme [16,17], and Xiao
et al.’s scheme [19], and one RW based algorithm [20].
Note that, we do not implement all the algorithms dis-
cussed in Section 2.1 even though we cover all the cat-
egories. The implementation criteria includes represen-
tativeness, scalability, and practicality, which led us to
implement the latest, scalable, and practical schemes.

In the UM, we implemented the 12 graph utility met-
rics and 7 application utility metrics as discussed in Sec-
tion 2.2.

In the DM, we implement all the 15 SDA attacks dis-
cussed in Section 3.1. To the best of our knowledge,
these are all of the existing SDA attacks.

5.3 SecGraph-based Analysis
5.3.1 Primary Datasets

The employed datasets for evaluation are Enron, an email
network consisting of 36.7K users and .2M edges, and
Facebook, a Facebook friendship network in the New
Orleans area consisting of 63.7K users and .82M edges
[3, 4].

5.3.2 Anonymization vs Utility

In this subsection, we evaluate the utility performance
of anonymization algorithms. Due to the space limita-
tion, we do not show the evaluation results of all the
implemented algorithms. Particularly, we demonstrate
the results of Switch [6], k-DA [8], union-split cluster-
ing [14], the improved version of Sala et al.’s DP scheme
[15–17], and RW [20] which represent all the categories
of anonymization algorithms. The evaluation methodol-
ogy is that we first anonymize the original graph by an
algorithm, and then measure how each data utility is pre-
served in the anonymized graph compared to the origi-
nal graph. Specifically, when measuring utilities Deg.,
JD, PL, LCC, CC, BC, NC, NR, Infe., RX, and RE, we
measure the cosine similarity between their distributions
in the anonymized and original graphs; when measuring

ED, GCC, and EV, we measure their ratios between the
anonymized and original graphs; and when measuring
MINS and CD, we measure their Jaccard similarity in
the anonymized and original graphs.

We demonstrate the results in Table 5. (more results
are available in [1]). The criteria for anonymization pa-
rameters settings are: (i) we follow the same/similar set-
tings as in the original works of these anonymization
schemes; and (ii) many data utilities can be preserved af-
ter anonymization. For the three graph utilities IM, SR,
and SD, we only test them on small graphs, and put the
results in [1]. We analyze the results in Table 5 as fol-
lows.

Generally, the evaluation results in Table 5 are consis-
tent with our analysis in Table 2. Most anonymization
algorithms can partially or conditionally preserve most
graph and application utilities. Therefore, most of the
anonymized data can be employed for graph analytics,
data mining tasks, and graph applications.

Among all the graph utilities, JD and GCC are the
most sensitive utilities to a graph’s structure change, and
thus they are the easiest ones to be destroyed by the
anonymization algorithms. This is because these two
utilities are very sensitive to edge changes. Even if the
degree distribution of the anonymized data remains the
same as the original data, the JD distribution and GCC
may change significantly.

Compared to application utility, existing anonymiza-
tion algorithms are better at preserving graph utility. For
instance, most algorithms lost the RX utility and CD util-
ity. This is because most application utilities depend
on several graph utilities, e.g., the role of a user in RX
depends on that user’s degree, CC, BC, community at-
tributes, and other structural characteristics. Therefore,
application utilities are more easily affected than graph
utilities, i.e., application utilities are more sensitive to
graph’s structural changes.

No anonymization scheme is optimal in preserving ev-
ery data utility. For instance, Switch is better than k-DA
on preserving Deg. and JD while it is worse than k-DA
on preserving GCC and MINS, and DP is better than
RW on preserving LCC and GCC while it is worse than
RW on preserving Deg. Therefore, when choosing an
anonymization algorithm, it is better to take into account
the specific application. Furthermore, RW has the most
utility loss, e.g., GCC, RX, MINS, and CD, which is also
consistent with our analysis in Table 2. This is because
that the graph’s global structure is significantly changed
in RW by replacing random walk paths with edges.

5.3.3 DA Evaluation

In this subsection, we evaluate the performance of mod-
ern DA attacks. As we analyzed before, BDK [26],
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Table 5: Utility analysis of anonymization techniques. k is the number of modified edges for Switch, and the
anonymization parameter for k-DA and Cluster, ε is the anonymization parameter for DP, t is the random walk step
for RW, m is the number of edges in the original graph, and D is the diameter of the original graph (D= 11 for Enron
and D= 6 for Facebook).

Utility
Enron Facebook

Switch (vs. k) k-DA (vs. k) Cluster (vs. k) DP (vs. ε) RW (vs. t) Switch (vs. k) k-DA (vs. k) Cluster (vs. k) DP (vs. ε) RW (vs. t)
.05m .1m 5 50 5 50 300 50 2 D .05m .1m 5 50 5 50 300 50 2 D

Deg. 1 1 .9988 .9166 .9990 .9934 .9617 .8616 .9871 .9964 1 1 .9990 .9595 .9998 .9981 .9932 .9716 .9958 .9959
JD .8725 .8338 .8928 .4183 .8216 .7055 .8496 .7363 .6972 .6438 .9941 .9804 .9947 .7328 .9872 .9024 .9755 .8263 .9678 .9362
ED .9881 .9617 1.080 .9561 1.04 1.02 1.03 .9627 1.02 .9025 .9161 .8328 .9350 1.015 .9957 .9956 .9414 .9313 .9285 .8376
PL .9954 .9887 .9891 .8934 .9994 .9905 .9565 .9839 .9963 .9657 .9618 .9159 .9999 .9946 .9999 1 .9960 .9653 .9706 .8965

LCC .9830 .9631 .9972 .9809 .9966 .9797 .9528 .8328 .6785 .5985 .9204 .8303 .9998 .9983 .9968 .9947 .9793 .9437 .6239 .5543
GCC .8967 .8013 .9921 .9283 .9774 .9097 .7755 .4609 .3107 .5383 .5180 .2241 .9847 .9986 .9766 .9937 .9522 .8702 .2552 .0334
CC .9986 .9965 .9985 .9955 .9999 .9947 .9759 .9666 .9885 .9994 1 .9999 1 1 1 1 1 .9998 1 .9998
BC .9859 .9812 .9691 .9019 .9936 .9733 .8360 .7406 .9613 .9246 .9787 .9494 .9790 .9515 .9983 .9897 .9779 .9518 .9935 .9669
EV .9991 .9977 .9910 .8998 .9947 .9720 .9232 .8653 .9717 .9204 .9881 .9556 .9981 .9626 .9999 .9996 .9977 .9911 .9891 .9480
NC .9984 .9962 .9999 .9991 .9996 .9956 .9977 .9596 .9042 .9028 .9995 .9986 1 1 1 1 .9987 .9934 .9928 .9942
NR .9968 .9917 .9988 .9599 .9998 .9962 .9782 .8591 .9313 .8695 .9990 .9990 .9990 .9990 .9990 .9990 .9990 .9990 .9990 .9990
Infe. .9627 .9597 .9604 .9411 .9427 .9413 .9662 .9593 .9664 .9446 .9748 .9704 .9758 .9695 .9730 .9719 .9730 .9699 .9788 .9778
PR .9980 .9962 .9848 .8934 .9997 .9974 .9801 .9000 .8925 .9942 .9866 .9825 .9878 .9610 .9900 .9907 .9875 .9691 .9869 .9810
HS .9991 .9977 .9910 .8998 .9947 .9720 .9232 .8653 .9717 .9204 .9326 .8780 .9711 .9789 .9648 .9625 .9626 .9322 .9283 .8655
AS .9991 .9977 .9910 .8998 .9947 .9720 .9232 .8653 .9717 .9204 .9920 .9656 .9946 .9498 .9978 .9986 .9970 .9965 .9943 .9594
RX .6575 .6009 .4561 .3173 .4512 .3685 .4196 .4116 .2955 .2680 .3494 .2608 .2974 .3139 .3902 .4652 .3483 .3134 .3250 .2772
RE .9997 .9997 .9999 .9954 .9999 .9996 .9994 .9985 .9994 .9990 .9999 .9997 1 .9999 1 1 1 .9996 .9999 .9997

MINS .7578 .6486 .9639 .9026 .9898 .9297 .7292 .3272 .1815 .1645 .6085 .4419 .9426 .9251 .9240 .9184 .8483 .7768 .2480 .1893
CD .6251 .5411 .8454 .5339 .6794 .6692 .5095 .1028 .2531 .0569 .3536 .1986 .5043 .5887 .8558 .8523 .5027 .3213 .2860 .1205

RST [5], and RSM [5] are not scalable/practical; NSR
[21] and DeA [25] are simplified versions of NS [2] and
ADA [25], respectively; and NKA [22] actually depends
on other attacks, e.g., NS. Therefore, here, we focus
on evaluating the seven general, practical, and scalable
DA attacks: NS [2], DV (we replace its seed identifica-
tion phase with a scalable one) [5], PFG [23], YG [27],
ADA [25], KL [24], and JLSB [3]. Furthermore, PFG
and JLSB are seed-free and the other five attacks are
seed-based.

First, employing the same Enron and Facebook
datasets as before, we evaluate the DA performance of
the seven DA attacks. The evaluation methodology is
generally the same as in previous works [2, 3, 5, 22, 23,
25, 27]: we first randomly sample two graphs with prob-
ability s from the original data as the anonymized graph
and auxiliary graph respectively, and then employ the
auxiliary graph to de-anonymize the anonymized graph.
Furthermore, for seed-based attacks, e.g., NS, DV, YG,
ADA, and KL, we feed them 50 pre-identified seed map-
pings. The DA performance of the evaluated attacks with
respect to different s is shown in Table 6. From Table 6,
we have the following observations.

With the increase of s, more users can be successfully
de-anonymized under each algorithm. The reason is ev-
ident. Since a large s implies that the anonymized graph
and the auxiliary graph are more structurally similar,
more accurate structural information can be employed by
all the SDA algorithms. Hence, better DA performance
can be achieved.

Generally, all the algorithms have their advantages in
some specific scenarios, and no algorithm is the best in
all the cases. For instance, to de-anonymize Enron, KL
has the best performance when s = .6 while ADA has
the best performance when s = .95. Multiple reasons are
responsible for the results such as the similarity between
the anonymized and auxiliary graphs, the density of the
anonymized/auxiliary graph, the heuristics employed by
an algorithm, etc.

According to the results, NS is more suitable for the
scenarios where the anonymized and auxiliary graphs are
highly similar while unsuitable when they are not suf-
ficiently similar, e.g., it can successfully de-anonymize
95.27% Facebook users when s = .95 while only 0.18%
users when s = .6. The reason is because NS mainly em-
ploys local graph structural properties to adaptively con-
duct user DA, and thus is sensitive to users’ local struc-
tural characteristics. When s is small, most users are in-
distinguishable with respect to their local structures, e.g.,
degree, followed by poor DA performance.

Compared to NS, the other attacks, especially DV,
PFG, ADA, and JLSB, are more stable even with a small
s. For instance, when s = .6, DV, PFG, ADA, and
JLSB can successfully de-anonymize 15.63%, 10.87%,
15.68%, and 14.73% Facebook users, respectively. This
is because these attacks mainly employ global graph
characteristics (e.g., clossness centrality, the distance
vector to seeds) to perform the DA, which are more re-
silient to noise.
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Table 6: Performance of DA attacks. s is the probability of generating the auxiliary and anonyized graphs from the
original graph. Each value, e.g., 0.1277, in the table indicates the ratio of successfully de-anonymized users.

s De-anonymize Enron De-anonymize Facebook
NS DV PFG YG ADA KL JLSB NS DV PFG YG ADA KL JLSB

.60 .0037 .1277 .0739 .0310 .1305 .1596 .1191 .0018 .1563 .1087 .2832 .1568 .0599 .1473

.65 .0039 .1601 .0937 .0410 .1651 .1814 .1460 .0020 .1998 .1402 .3346 .2005 .0747 .1799

.70 .0054 .1969 .1397 .0725 .2013 .2026 .1723 .0031 .2437 .1523 .4124 .2444 .0841 .2094

.75 .0055 .2244 .1349 .1004 .2307 .2152 .1958 .8712 .3068 .2041 .4554 .3078 .1196 .2574

.80 .0061 .2841 .1837 .1014 .2896 .2519 .2474 .9056 .3802 .2586 .4970 .3805 .1508 .3042

.85 .3420 .3481 .2180 .1531 .3522 .3123 .2971 .9231 .4561 .3073 .5402 .4576 .1817 .3559

.90 .3660 .4004 .2736 .1885 .4043 .3389 .3443 .9414 .5659 .3977 .5737 .5670 .2552 .4289

.95 .3937 .5814 .4370 .2277 .5898 .5209 .5438 .9527 .7407 .5584 .6071 .7422 .3989 .5542

For the seed-free attacks, PFG and JLSB, they can
achieve comparable performance as seed-based attacks
in most scenarios even without any seed information.
For instance, when s = .95, PFG and JLSB can de-
anonymize 43.7% and 54.38% Enron users, respectively,
which are better than several seed-based algorithms and
further demonstrate the power of structure-based attacks.
The reason for the effectiveness of seed-free attacks is
that in most cases, the combination of a user’s local and
global structural characteristics, e.g., degree, neighbor-
hood degree distribution, closeness/betweenness central-
ity, is sufficient to distinguish him/her from other users.

5.3.4 Robustness of Modern SDA Attacks

The robustness of modern DA attacks with respect to
graph noise (e.g., adding fake edges and deleting true
edges) has been extensively evaluated in existing works
[2,3,5,25]. However, to the best our knowledge, no exist-
ing work has evaluated the robustness of any seed-based
de-anonymizaton attack to incorrect seed mappings. Em-
ploying Enron and Facebook, we address this open is-
sue by conducting such an evaluation and the results are
shown in Table 7. We analyze the results in Table 7 as
follows.

Generally, all the DA algorithms are robust with re-
spect to incorrect seed mappings in most scenarios.
This is because during the DA process, most algorithms
also employ other seed-independent structural proper-
ties, e.g., degree, closeness/betweenness centrality, in ad-
dition to relying on seed-dependent structural properties.
Even for the pure seed-based DA attacks, e.g., YG and
KL, they perform DA in the decreasing order of user de-
grees. Therefore, the negative impacts of incorrect seed
mappings can be partially offset, i.e., even with some in-
correct seed mappings, many users are still distinguish-
able with respect to their structural characteristics.

For all algorithms, when incorrect seed mappings in-
crease, fewer users can be correctly de-anonymized. The
reason is evident: more incorrect seed mappings imply
more incorrect seed-dependent structural information is

provided to each algorithm, followed by the degradation
of the DA performance of each algorithm.

When de-anonymizing Enron, the performance of NS
has a significant drop when the percentage of incorrect
seed mappings is increased from 8% to 10%. This is be-
cause of the seed transitional phenomena as observed in
[2], i.e., when the correct effective seed-dependent struc-
tural information is below/above some crucial threshold,
NS’s performance has a significant transition.

DV is much more stable than other algorithms. This
is because it is a pure global structure-based attack and
thus incorrect seed mappings have minimum impact on
it.

5.3.5 Anonymization vs DA

Now, we evaluate the effectiveness of state-of-the-art
anonymization techniques against modern DA attacks
employing Enron and Facebook. The methodology is
that we first employ different anonymization techniques
to anonymize Enron/Facebook. Then, we sample an
auxiliary graph from Enron/Facebook with probabil-
ity s. Finally, we employ different DA algorithms to
de-anonymize the anonymized data using the auxiliary
graph. We show the results in Table 8 and analyze the
results as follows.

All the state-of-the-art graph anonymization algo-
rithms are vulnerable to some or all of the modern SDA
attacks, which confirmed our analytical results in Ta-
ble 4. For instance, when s = .85, NS can still suc-
cessfully de-anonymize more than 80% Facebook users
anonymized by Switch, k-DA, Cluster, or DP, and DV
can successfully de-anonymize 15.3% Facebook users
anonymized by RW (t = 2). Similarly, when s = .85,
NS can successfully de-anonymize more than 35% En-
ron users anonymized by k-DA (k = 5), Cluster (k =
5,50), YG can successfully de-anonymize 13.73% and
15.49% Enron users anonymized by Switch (k = .05m)
and DP (ε = 300) respectively, and DV can successfully
de-anonymize 19.23%/24.12% Enron users anonymized
by RW with t = 2/11. Based on the results, we con-
clude that modern SDA attacks are very powerful. As
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Table 7: DA robustness with respect to seed errors. Each algorithm is provided with 50 seed mappings, and Λe/Λ

indicates the percentages of incorrect seed mappings. Each value in the table indicates the ratio of successfully de-
anonymized users.

Λe
Λ

De-anonymize Enron De-anonymize Facebook
NS DV YG ADA KL NS DV YG ADA KL

4% .341 .342 .148 .336 .302 .922 .456 .537 .442 .183
6% .341 .342 .133 .329 .303 .917 .456 .528 .440 .183
8% .338 .348 .135 .329 .310 .918 .456 .542 .428 .184

10% .007 .348 .147 .323 .310 .918 .456 .536 .420 .182
12% .007 .348 .142 .313 .311 .915 .456 .529 .414 .185
14% .006 .348 .112 .306 .307 .916 .456 .526 .403 .186
16% .006 .348 .129 .297 .303 .916 .456 .525 .394 .184
18% .006 .348 .099 .293 .308 .913 .456 .533 .380 .183
20% .006 .348 .126 .285 .306 .913 .456 .518 .356 .179
22% .005 .348 .125 .280 .303 .912 .456 .531 .347 .182
24% .005 .348 .116 .268 .304 .910 .456 .521 .332 .180
26% .005 .348 .118 .255 .303 .889 .456 .528 .319 .179
28% .004 .348 .112 .253 .300 .886 .456 .520 .309 .182
30% .004 .348 .120 .247 .307 .884 .456 .522 .283 .180
32% .004 .348 .106 .235 .305 .888 .456 .521 .270 .178
34% .004 .348 .081 .230 .304 .887 .456 .521 .259 .178
36% .004 .348 .084 .216 .300 .889 .456 .505 .245 .182
38% .004 .347 .096 .199 .301 .888 .456 .493 .230 .178
40% .004 .347 .065 .186 .302 .886 .456 .505 .214 .179
42% .003 .347 .071 .182 .302 .882 .456 .516 .195 .181
44% .003 .347 .106 .169 .303 .881 .456 .495 .185 .180
46% .003 .347 .050 .160 .299 .881 .456 .480 .173 .177
48% .003 .347 .059 .153 .297 .881 .456 .497 .161 .180
50% .002 .347 .063 .146 .298 .874 .456 .475 .148 .176

Table 8: Anonymization vs DA. The seed-based algorithms are provided with 50 seeds and the anonymization param-
eters are chosen according to the same criteria as in Table 5.

s
Enron Facebook

Switch (k) k-DA (k) Cluster (k) DP (ε) RW (t) Switch (k) k-DA (k) Cluster (k) DP (ε) RW (t)
5 10 5 50 5 50 300 50 2 D 5 10 5 50 5 50 300 50 2 D

NS

.85 .0072 .0052 .3702 .0088 .3722 .3707 .0091 .0055 .0015 .0015 .8973 .8247 .9454 .9402 .9456 .9442 .9317 .8914 .0008 .0006

.90 .0077 .0054 .3822 .0105 .3900 .3839 .0095 .0060 .0015 .0015 .9063 .8427 .9520 .9495 .9519 .9508 .9393 .8944 .0008 .0007

.95 .3577 .0064 .4033 .0418 .4049 .4064 .3946 .0064 .0015 .0016 .9162 .8583 .9570 .9559 .9569 .9558 .9453 .9130 .0000 .0007

DV

.85 .1261 .0813 .1433 .0437 .2120 .1408 .1160 .0701 .1923 .2412 .1716 .0926 .2411 .0588 .3340 .3368 .2324 .0736 .1530 .1271

.90 .1546 .0956 .1765 .0517 .2564 .1637 .1394 .0733 .2129 .2169 .2124 .1147 .2999 .0758 .4113 .4090 .3623 .0802 .1604 .1322

.95 .2121 .1366 .2548 .0753 .3745 .2215 .1821 .0858 .2072 .2190 .3006 .1586 .4210 .1161 .5767 .5656 .4087 .1016 .1591 .1332

PFG

.85 .0667 .0422 .0692 .0214 .1116 .0683 .0489 .0365 .1578 .2131 .0706 .0395 .0703 .0154 .1191 .1155 .0891 .0206 .1349 .1190

.90 .0805 .0478 .0810 .0263 .1317 .0789 .0571 .0390 .1711 .2012 .0978 .0497 .0946 .0213 .1480 .1595 .1870 .0223 .1382 .1217

.95 .1193 .0695 .1123 .0353 .1978 .0952 .0755 .0479 .1714 .2074 .1378 .0725 .1317 .0332 .2034 .2330 .1756 .0295 .1397 .1216

YG

.85 .1373 .0969 .1646 .0289 .1576 .1570 .1549 .0664 .0394 .0323 .5437 .5056 .5816 .5086 .5897 .5805 .5404 .4347 .0356 .0210

.90 .1716 .1037 .1612 .0253 .1868 .1710 .1577 .0736 .0404 .0342 .5681 .5182 .6089 .5129 .6036 .5980 .5702 .4818 .0372 .0222

.95 .1730 .1197 .2155 .3785 .1971 .2064 .1884 .0838 .0418 .0348 .5821 .5439 .6208 .5504 .6223 .6190 .5716 .4538 .0346 .0231

ADA

.85 .1262 .0820 .1468 .0445 .2130 .1418 .1160 .0701 .0771 .0731 .1724 .0926 .2425 .0603 .3358 .3379 .2337 .0749 .0985 .0725

.90 .1543 .0964 .1795 .0534 .2588 .1652 .1394 .0729 .0855 .0704 .2129 .1146 .3026 .0776 .4124 .4103 .3639 .0823 .1008 .0764

.95 .2139 .1381 .2605 .0768 .3777 .2230 .1823 .0855 .0872 .0733 .3019 .1589 .4245 .1186 .5780 .5667 .4105 .1038 .1041 .0784

KL

.85 .0904 .0811 .0997 .0357 .0965 .0689 .0745 .0331 .0900 .0729 .0799 .0764 .0819 .0683 .0788 .0762 .0769 .0313 .1099 .0737

.90 .1077 .0970 .1202 .0549 .1134 .0918 .0874 .0319 .0939 .0744 .0979 .0939 .1013 .0848 .0960 .0863 .1249 .0317 .1099 .0715

.95 .1381 .1150 .1936 .0978 .2052 .1686 .1719 .0376 .0994 .0776 .1350 .1331 .1418 .1265 .1294 .1206 .1450 .0600 .1171 .0754

JLSB

.85 .0692 .0440 .0798 .0234 .1248 .0854 .0886 .0656 .0709 .0720 .1453 .0786 .2025 .0595 .2618 .2673 .1958 .0768 .0901 .0681

.90 .0886 .0536 .1046 .0296 .1618 .1135 .1070 .0664 .0767 .0728 .1673 .0911 .2335 .0708 .3001 .3094 .3050 .0777 .0911 .0699

.95 .1846 .1189 .2381 .0746 .3317 .2319 .1449 .0814 .0838 .0740 .2180 .1174 .3111 .1096 .3983 .3924 .3142 .0950 .0940 .0734
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we analyzed in Table 4, two fundamental reasons make
state-of-the-art graph anonymization algorithms vulner-
able. First, in existing graph anonymization schemes,
graph users are only indistinguishable with respect to
some structural properties/semantics. However, several
other structural properties or the combinations of them
can still enable effective graph user DA. Furthermore, the
design philosophy of existing anonymization schemes is
to preserve as much data utility as possible. However,
data utility can be used to conduct powerful SDA attacks.
Therefore, it is still an open problem to design effective
graph data anonymization algorithms which can defend
against modern SDA attacks.

Generally, when s is large and the anonymization level
(e.g., k for Switch and k-DA) is low, more users can be
correctly de-anonymized. The reason is straightforward.
A large s implies more structural information of the origi-
nal graph can be preserved in the auxiliary graph and thus
more accurate structural characteristics can be employed
for DA. Meanwhile, a low anonymization level implies
less perturbation applied to the original graph’s structure
followed by the anonymized graph is more structurally
similar to the original graph and thus is easier to be de-
anonymized.

Among all the DA attacks, NS, YG, and ADA per-
form better than other attacks in most scenarios. This
is because they mainly employ the combinations of sev-
eral local structural characteristics to conduct the DA.
According to our utility analysis in Table 2 and evalu-
ation results in Table 5, most existing anonymization al-
gorithms can preserve most graph utilities, especially the
local graph utilities, e.g., Deg., LCC. It turns out that the
graph utility preserved by anonymization algorithms can
be used by DA attacks to conduct effective DA. There-
fore, in the scenarios where an anonymization algorithm
preserves more data utility, the corresponding dataset is
more vulnerable to modern SDA attacks.

Among all the anonymization techniques, RW has bet-
ter performance than others in most of the cases. The rea-
son is that, a random walk path of length t is replaced by
an edge in RW. It follows that the original graph structure
is significantly changed. Therefore, a RW-anonymized
graph is more resistant to DA attacks. However, RW
achieves such DA resistance at the cost of sacrificing
more data utility compared with other anonymization
techniques, which is consistent with our utility analysis
and evaluation results in Tables 2 and 5. Furthermore, we
can also find that in most scenarios, existing anonymiza-
tion techniques can degrade the performance of SDA at-
tacks. Again, as shown in Tables 2 and 5, some data
utilities are also degraded/lost.

6 Future Research and Challenges

In this section, we discuss the future research directions
and challenges of graph data anonymization and DA.

Graph Data Anonymization. According to our an-
alytical results in Table 4 and evaluation results in Ta-
ble 8, all the state-of-the-art anonymization techniques,
e.g., k-anonymity based schemes, DP based schemes,
are vulnerable to modern SDA attacks. Their vulnera-
bility depends on how much data utility is preserved in
the anonymized data. Therefore, it is very difficult, if
not impossible, to develop effective and universal graph
data anonymization techniques to defend against mod-
ern SDA attacks. The main challenges are two-folds.
First, guaranteeing data utility is one of the primary ob-
jectives when publishing/sharing graph data. However,
as we explained before, the preserved graph and appli-
cation utilities enable adversaries to conduct large-scale
DA attacks. Therefore, it is a big challenge to effectively
anonymize graph data with desired data utility preserva-
tion and without enabling adversaries to utilize these data
utilities. Second, many local and global structural char-
acteristics (or, structural scemantics), e.g., Deg., LCC,
CC, BC, are embedded in graph data’s structure. Exist-
ing anonymization techniques can only make graph users
structurally indistinguishable with respect to one or sev-
eral semantics, e.g., degree and neighborhood. However,
as we explained before, in many scenarios, several other
structural semantics and their combinations are sufficient
to enable a SDA attack to de-anonymize graph users.
Therefore, it is also a key challenge to make graph users
structurally indistinguishable with respect to most, if not
all, structural semantics.

Considering that it is difficult to seek a tradeoff
between generic utility and anonymity, a promising
research direction could be developing application-
oriented anonymization techniques. Instead of preserv-
ing as much data utility as possible, one only considers
some specific application-aware utility when designing
the anonymization techniques. For instance, although
RW loses more data utility than most existing graph
anonymization techniques, it achieves better anonymity
and meanwhile supports some application utility, e.g.,
sybil detection [20].

Graph Data DA. Based on our DA evaluation results,
future DA research may follow two directions.

First, it is interesting to study how to combine the ad-
vantages of different algorithms and develop new stable
and improved DA schemes. To achieve this, the chal-
lenge is to decide which structural characteristics should
be employed and how to use these characteristics during
the DA process. This is because some structural char-
acteristics are local (e.g., Deg.) while others are global
(e.g., CC and BC). Therefore, it is better to seek a bal-
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ance between the employed local and global structural
semantics. Additionally, some structural characteristics
may carry similar structural semantics, and thus simul-
taneously employing such characteristics will not lead to
too much improvement.

Second, instead of trying to design a uniformly
optimal DA algorithm, it is better to develop some
anonymization technique-oriented and application-aware
DA schemes. This is because, for some anonymiza-
tion algorithms, e.g., most k-anonymity based schemes,
they mainly achieve anonymity by local graph pertur-
bation. In this scenario, the global graph characteris-
tics based DA algorithms will be more effective. On
the other hand, for some anonymization algorithms,
e.g., Add/Del and RW, they mainly achieve anonymity
through global graph perturbation. Therefore, the local
graph characteristics based DA schemes will be better
at de-anonymizing the data anonymized by these tech-
niques. Furthermore, according to our DA evaluation
experience, some DA attacks are more effective to de-
anonymize dense graphs, e.g., NS and JLSB, while some
other attacks are more effective to de-anonymize sparse
graphs, e.g., DV, PFG. Therefore, when developing new
DA algorithms, it is helpful to take into account both the
attacked anonymization technique and the attacked ap-
plication.

More Future Work. In this paper, we focus on im-
plementing and evaluating graph data anonymization and
DA techniques. It is also interesting to integrate the
anonymization and DA techniques for other data types,
e.g., relational data. In the future, we propose to develop
a uniform and open-source evaluation system supporting
multi-type data anonymization and DA.

7 Conclusion

In this paper, we propose, implement, and evaluate Sec-
Graph (available at [1]), an open-source secure graph
data publishing/sharing system. Within SecGraph, we
systematically analyze, implement, and evaluate 11
graph data anonymization algorithms, 19 data utility
metrics, and 15 modern SDA attacks. To the best of
our knowledge, SecGraph is the first such system that
provides a uniform platform enabling data owners to
anonymize and evaluate the security of their data, and si-
multaneously enabling researchers to conduct fair studies
of existing or newly developed anonymization/DA tech-
niques. Leveraging SecGraph, we conduct extensive ex-
perimental evaluations. The results demonstrate that (i)
most anonymization schemes can partially or condition-
ally preserve most graph utility but lose some applica-
tion utility; (ii) no DA attack is optimum in all scenarios.
The actual DA performance depends on several factors;
and (iii) all the state-of-the-art anonymization schemes

are vulnerable to modern SDA attacks. Based on our
findings and analysis, we discuss the future research di-
rections and challenges of graph data anonymization and
DA.
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