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Abstract—Improving the power grid’s security against cyber-
physical attacks has been a major challenge for the power
grid operators since the cyber attack on the Ukrainian grid
in Dec. 2016. In order to partly address this challenge, we
study the problem of power grid state estimation following such
an attack. We assume that an adversary attacks an area by
disconnecting some lines within the attacked area and blocking
the measurements coming from inside the attacked area from
reaching the control center in order to mask the failed lines.
The objective is to use the phase angle measurements before and
partial measurements after the attack to detect the failed lines.
Despite recent efforts, there is no method that is both efficient
and robust for estimating the state of the grid after such an
attack in practical noisy settings. In this work, we provide such
a method using Bayesian regression. Bayessian regression allows
us to determine the probability that each line is failed, instead of
a 0-1 hard decision on the status of the lines. These probabilities
reflect the uncertainty in the detection, depending on the noise
level. We show that these probabilities can further be used to limit
the search space and significantly improve the running time of
the existing brute force search methods for failed lines detection.

I. INTRODUCTION

In this paper, we provide a novel application of Bayesian
data analysis for power grid state estimation. By the state of
the grid, we mean both its topological and operational states.
We focus on the state estimation following a cyber-physical
attack that has gained a lot of attention [1], [2], [3], [4], [5]
since the Dec. 2016 cyber attack on the Ukrainian grid [6].
Although, here, we mainly focus on the scenarios caused by
attacks, similar scenarios can result from natural disasters or
the lack of enough measurement devices. So the provided
methods have broad applicability for grid state estimation.

We follow [1] and assume that an adversary attacks an
area by disconnecting some lines within the attacked area and
blocking the measurements coming from inside the attacked
area from reaching the control center in order to mask the
failed lines. The objective is to use the phase angle mea-
surements before and partial measurements after the attack
to detect the failed lines. Detecting failed lines is necessary
for obtaining a correct understanding of the grid topology and
estimating the power flows on the lines after the attack.

This problem is thoroughly studied in [1] in the noise-free
and low-noise settings. However, the previous work provides
little insight on how to deal with the noisy measurements and
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inconsistency in power supply/demand. In this work, we adapt
the convex relaxation of the failed lines detection problem
provided in [1] and use Bayesian regression [7] to detect
failed lines probabilistically based on noisy measurements.
We follow the Bayesian Regression with Automatic Relevance
Determination (ARD) model provided in [8]. The Bayesian
approach provides the probability that each line is failed,
instead of 0-1 hard decision on the status of the lines, which
reflects the uncertainty in the detection caused by the noise.

These probabilities can further be used in two ways: (i)
turn them into 0-1 hard decisions by considering a probability
threshold p and detect all lines with probability of being
failed greater than p as failed, and (ii) use them to limit the
search space in the Brute Force Search (BFS) type methods
by considering only lines with the high probability of being
failed. We numerically compare these two approaches with
the method provided in [1] as well as the BFS based methods
provided in [9], [10], in the IEEE 300-bus system. We show
that the second approach provides accuracy similar to (and
sometimes better than) the BFS method but in an exponentially
faster running time (e.g., in an attacked area with 15 lines, it
runs 40 times faster). Hence, by combining the probabilities
obtained by the Bayesian regression with the BFS, it reaches
a sweet spot in accuracy and efficiency.

II. MODEL AND PRELIMINARIES

A. DC Power Flow Model

We use the linearized DC power flow model, which is
widely used as an approximation for the non-linear AC power
flow model in studying vulnerabilities of power grids. We
represent the power grid by a connected undirected graph
G = (V,E) where V = {1, 2, . . . , n} and E = {e1, . . . , em}
are the set of nodes and edges corresponding to the buses and
transmission lines, respectively. Each edge ei = {u, v} ∈ E
is characterized by its reactance xuv = xvu = xei .

Given the power supply/demand vector ~p ∈ R|V | and the
reactance values, a power flow is a solution ~f ∈ R|E| and ~θ ∈
R|V | of: A~θ = ~p and BDt~θ = ~f, where D ∈ {−1, 0, 1}|V |×|E|
is the incidence matrix of G defined as,

dij =


0 if ej is not incident to node i,
1 if ej is coming out of node i,
−1 if ej is going into node i,



B := diag([1/xe1 , 1/xe2 , . . . , 1/xem ]) is a diagonal matrix
with diagonal entries equal to the inverse of the reactance
values, and A ∈ R|V |×|V | is the admittance matrix of G
defined as A := DBDT .

Notation. If X,Y are two subgraphs of G, AX|Y denotes
the submatrix of A with rows from X and columns from Y .
For any matrix C, CT denotes its transpose and C+ denotes
its Moore-Penrose pseudo-inverse. For a vector ~y, ‖~y‖1 :=∑n
i=1 |yi| is its l1-norm, ‖~y‖2 := (

∑n
i=1 y

2
i )1/2 is its l2-norm,

and supp(~y) := {i|yi 6= 0} is its support.

B. The Attack Model
We follow [1] and assume that an adversary attacks an area

H = (VH , EH) (representing a subgraph of G) by discon-
necting some lines within the attacked area, referred to as
failed lines and denoted by F , and blocking the measurements
coming from inside the attacked area to mask the status of the
lines in H . Hence, after the attack, the phase angles of the
nodes and the status of the lines in H become unavailable
to the control center. The objective is to use the phase angle
measurements before and partial measurements after the attack
to detect the failed lines. Detecting failed lines is necessary
for obtaining a correct understanding of the grid topology and
estimating the power flows on the lines after the attack, and
for executing an effective control algorithm (e.g., power grid
intentional islanding or load shedding) in order to stop the
initial attack from affecting the entire grid through cascade of
failures and causing a major blackout.

We use the prime symbol (′) to denote the values after an
attack. For example A′ and ~θ ′ denote the admittance matrix
and phase angle of the nodes after the attack. We denote the
complement of the attacked area H by H̄ = G\H . ~θH and
~θ H̄ are the vectors of phase angles of the nodes in H and H̄ ,
respectively. Without loss of generality, we also assume that
EH = {e1, e2, . . . , e|EH |}.

Using this notation, we assume that the control center
receives T noisy measurements ~θ (1), ~θ (2), . . . , ~θ (T ) for the
phase angles of the nodes in the grid before the attack, and T
noisy measurements ~θ

′(1)

H̄
, ~θ

′(2)

H̄
, . . . , ~θ

′(T )

H̄
for the phase angles

of the nodes outside of the attacked area after the attack. The T
measurements are from different but very close time intervals
(e.g., within microseconds). The measurements after the attack
are assumed to be associated with the time that the system has
been stabilized after the attack.

The noise corresponds to the measurement noise as well as
fluctuations in the supply/demand vector ~p. We assume that
each measurement ~θ (i) = ~θ +~e, in which ~e ∼ N (0, βI) has a
multivariate Gaussian distribution with a zero mean and a diag-
onal covariance matrix βI, and A~θ = ~p. We assume the same
for the measurements after the attack, ~θ

′(i)

H̄
= ~θ ′

H̄
+ ~eH̄ , in

which ~eH̄ ∼ N (0, βIH̄), and A′~θ ′ = ~p. To measure the noise
level, we define the Signal to Noise Ratio (SNR) based on the
phase angles before the attack as 20 log10(‖~θ‖2/

√
|V |β).

One way of using the T measurements is to take average
of these vectors. Hence, we define ~θ (µ) := (

∑
i
~θ (i))/T and

~θ
′(µ)

H̄
:= (

∑
i
~θ

′(i)

H̄
)/T .

C. Bayesian Regression
Given a data set D = {X,Y}, with X = [~x1, . . . , ~xn] ∈

Rd×n and Y = [y1, . . . , yn] ∈ Rn×1, in linear regression,
we are interested in finding a vector ~w ∈ Rd that minimizes
‖~wTX−Y‖2. Such a vector ~w determines the relation between
in the input vectors X and outputs Y.

The linear regression provides very little information on
the uncertainties in the computed vector ~w, specially when
Y is noisy. One way of overcoming this issue is by adapting
the Bayesian approach to regression [7]. In the Bayesian
regression, instead of finding the maximum likelihood estimate
for a vector ~w that describes the relationship between the
inputs and the outputs, we are interested in computing a
probability distribution on all possible vectors ~w that describe
this relationship. This can be done by computing the posterior
distribution on ~w using Bayes’ rule, by assuming a prior
distribution on ~w and an appropriate model for the way output
data is related to the input. Due to the space constraints, for
further details on Bayesian Regression see [7, Section 3.3].

Some sparsity constraints on the coefficients, as in the Lasso
regression [7], can also be obtained in Bayesian regression by
appropriate choice of the prior for the coefficients. In partic-
ular, in this paper, we follow the Bayesian Regression with
Automatic Relevance Determination (ARD) model provided
in [8]. This model assumes a linear relation between inputs
~x and outputs y, and constant-variance Gaussian noise, such
that the likelihood is given by

P(y|~x, ~w, τ)=N (y|~wT~x, τ−1)=
( τ

2π

)1/2
exp
(
−τ

2
(y−~wT~x)2

)
,

and the prior on ~w, τ−1 is conjugate normal inverse-gamma

P(~w, τ |~α) = N
(
~w|0, (τdiag(~α))−1

)
Gam(τ |a0, b0),

where diag(~α) is a diagonal matrix with entries given by
vector ~α = [α1, . . . , αd]. The entries of ~α are independent
and the hyper-prior is given by P(α) =

∏
i Gam(αi|c0, d0).

Under this model, analytically computation of the posterior
distribution P(~w, τ, ~α|D) is intractable. Hence, in [8] the
Variational Inference approach is used to approximate the
posterior distribution (for further details on how to compute
~wn,Vn, an, bn see [8])

Q(~w, τ) = N (~w|~wn, τ−1Vn)Gam(τ |an, bn). (1)

In Section IV, we use this model to detect the failed lines
after an attack as described in the previous subsection.

III. DETECTION METHODS

The problem of failed lines detection using partial phase
angle measurements is NP-hard in general [11]. However,
in special cases, it is possible to efficiently solve this prob-
lem. In this section, we provide an overview of the two
main approaches to failed lines detection using phase angle
measurements. In recent years, some efforts have been made
to apply learning algorithms to this problem, such as [12].
However, since detection using these methods is limited to the
state of the grid that they are trained on, they are not general
enough to fit into the scope of this paper.



A. Brute Force Search

The classical approach to the failed lines detection problem
is the Brute Force Search (BFS) [9], [10]. The BFS based
methods consider all possible set of failed lines and return
the set with the maximum likelihood, based on the observed
measurements.

Assume M is the set of all admittance matrices associated
with the graphs that can be obtained by removing any number
of lines in EH from the graph G. One way of finding the set
of failed lines is by searching the entire space of matrices M
to find a matrix C that minimizes the following

min
C∈M

‖(C+A~θ (µ))H̄ − ~θ
′(µ)

H̄
‖2. (2)

To see why (2) is an intuitive approach for detecting the
set of failed lines, assume FC ⊆ EH is the set of lines that
their removal results in the admittance matrix C. Notice that
A~θ (µ) ≈ ~p. Therefore, C+A~θ (µ) is the approximate phase
angles that we would have expected to observe if FC was the
actual set of failed lines. By comparing the expected phase
angle of the nodes outside of the attacked area (C+A~θ (µ))H̄
with the average of the observed phase angles ~θ

′(µ)

H̄
, one can

check how much the guessed set of failed lines FC is consistent
with the observed data.

Despite the simplicity and effectiveness of the BFS based
methods, however, their running time grow exponentially with
the number of lines in the attacked area. This makes them
inapplicable to the scenarios that require fast decision making
in order to localize the attack and reduce its consequences. In
Section V, we numerically investigate the limitations of the
BFS based methods.

B. Convex Optimization

Another approach to the failed lines detection problem is to
use topological properties of the grid in order to find the failed
lines more efficiently for certain topologies. Such methods and
their connection to the topology of the grid were first fully
explored in [1]. However, similar approaches were first studied
in [13] without making the connection to the topology.

It is proved in [1] that under some conditions on the
topology of the attacked area, the optimal solution ~t ∈ R|EH |

and ~z ∈ R|VH | of the following convex optimization problem
is such that supp(~t) = {i|ei ∈ F} and ~z = ~θ ′H :

min
~t,~z,ε
‖~t‖1 + λε s.t. (3)

‖AH|H(~θ
(µ)
H − ~z) + AH|H̄(~θ

(µ)

H̄
− ~θ

′(µ)

H̄
)− DH~t‖2 ≤ ε

‖AH̄|H(~θ
(µ)
H − ~z) + AH̄|H̄(~θ

(µ)

H̄
− ~θ

′(µ)

H̄
)‖2 ≤ ε.

Therefore, by solving (3) the nonzero elements of ~t reveal the
failed lines. It can be shown that in this case, if ei = {j, k} ∈
F , then ti ≈ −ajk(θ′j−θ′k) which is the amount of the power
flow that the line ei would have carried if it was not failed.

When the noise is low, it is shown in [1] that (3) can
detect the failed lines very well. However, as the noise level

increases, the detection based on the solution to (3) produces
false negatives and false positives. The main challenge here is
to determine the weight λ that makes the solution space small
enough to contain only the actual solution. In Section V, we
numerically investigate the limitations of this method as well.

The main goal of this paper is to extend the idea of the opti-
mization (3) and make it more robust to noisy measurements.
In the next section, we show that why Bayesian regression is
a suitable option for this purpose.

IV. BAYESIAN REGRESSION FOR FAILED LINE DETECTION

In order to provide a robust method for failed lines detec-
tion, we use Bayesian regression, which is more suitable for
dealing with uncertainties.

To see how Bayesian regression can be used here, recall
that the key in (3) is that once it is solved, the failed lines can
be detected by looking for the nonzero elements of vector ~t.
Now if the phase angle measurements are noisy, all we need
to compute is the probability that each element of vector ~t is
nonzero in the optimal solution. And this is where Bayesian
regression can be used. Recall the regression notation from
Subsection II-C and define

X:=

[
AH|H DH

AH̄|H 0

]T
,Y(i,j):=

[
AH|H~θ

(i)
H + AH|H̄(~θ

(i)

H̄
− ~θ

′(j)

H̄
)

AH̄|H~θ
(i)
H + AH̄|H̄(~θ

(i)

H̄
− ~θ

′(j)

H̄
)

]T
,

where Y(i,j) is the output vector using the ith phase angle
measurement before that attack and jth phase angle measure-
ment after the attack. In regression, we want to find the vector
~w such that for any 1 ≤ k ≤ |V | and any 1 ≤ i, j ≤ T :
y

(i,j)
k ≈ ~wTxk. Notice that in this setting, the first |VH |

elements of ~w are associated with vector ~z in (3) and the
last |EH | elements are associate with vector ~t.

To find a posterior distribution on ~w, we use the Bayesian
regression model with ARD introduced in [8] and summarized
in Subsection II-C. As we mentioned in Subsection II-C, the
prior distribution on ~w and the structure in this model is such
that it promotes sparsity in ~w which can play the role of ‖~t‖1
minimizer in (3). Hence, this model can be considered as a
Bayesian approach for solving (3).

Once the posterior distribution on ~w is computed as in (1),
it can be used to estimate the phase angles of the nodes inside
the attacked area and compute the probability that each line is
failed. Define ~z to be the first |VH | elements of the posterior
mean vector ~wn. It provides the maximum likelihood estimate
for the phase angles of the nodes inside the attacked area.

Also define ~t = [t1, . . . , t|EH |]
T to be last |EH | entries of

vector ~w, ~µ to be the last |EH | entries of the posterior mean
vector ~wn, and Σ to be the submatirx of matrix Vn associated
with its last |EH | rows and columns. Then according to
the model, P(~t|τ) = N (~µ, τ−1Σ). Moreover, τ can be
further approximated by its posterior mean an/bn to obtain
P(~t) ≈ N (~µ, bn/anΣ). Using this, we can approximate the
probability that each line is failed by computing the probability
that |ti| is greater than γ > 0. Hence, since Σ is diagonal,

P(ei ∈ F ) ≈ P(|ti| ≥ γ) ≈ 1

2
− 1

2
erf
( µi − γ√

2bn/anΣii

)
, (4)



where erf(.) is the Gaussian error function. Here, we select
γ = 0.1, which means that we are interested in detecting the
entries of ~t that can get a substantial value.1

Once the probabilities are computed using (4), there are two
ways to turn these probabilities into hard decisions:
(i) Consider a probability threshold p and detect all lines

with probability of being failed greater than p as failed
and use the probability values as the confidence in the
detection. We refer to this method in Section V as Bayes.

(ii) Use the probabilities to sort the lines and only use the
top k lines as the set of lines that are most probable to
be failed in the search space of the BFS optimization (2).
This significantly reduces the running time of the BFS
method by keeping the size of the search space constant
as the size of the attacked area increases. We refer to this
method in Section V as Bayes+BFS.

V. NUMERICAL RESULTS

In this section, we compare the two Bayesian regression
based methods for failed lines detection, introduced in the
previous section, with the methods described in Section III.

We assume T = 10 noisy measurements before and after the
attack. In the BFS optimization (2), we limit the search to the
set of failed lines of size at most 5. In the convex optimization
(3), we set λ = 1000 and refer to the solution obtained by this
method by CVX. Finally, we set p = 0.9999 as the threshold
probability in Bayes, and k = 7 in Bayes+BFS.

Fig. 1 depicts an attack example and the detected failed
lines using different methods. In this example, as depicted
in Fig. 1(a), the phase angle measurements from the attacked
area, shown by red filled nodes, are blocked and 3 lines, shown
by red dashed lines, are failed. Figs. 1(b) and 1(c) compare
the probability that each line is failed, computed by different
methods, under low and high noise levels. Each color bar
indicates the probability that a particular method assigns to a
line. Since all the methods except Bayes make hard decisions,
the probabilities they provide are either 0 or 1. Therefore, in
these figures, the lines are ordered based on the probabilities
obtained by the Bayes method.

When the noise level is low, as can be seen in Fig. 1(b), all
the four methods can detect the failed lines accurately. When
the noise level is high, however, all the methods except the
Bayes+BFS result in a false positive or a false negatives, or
both in their detections. For example, CVX misses failed line
193 and incorrectly detects line 221. Bayes with p = 0.9999
threshold also misses failed line 193. The interesting result,
however, is that BFS method incorrectly detects additional line
193 as failed. On the other hand, Bayes+BFS by focusing only
on the lines with high probability of being failed, avoids this
false extra detection and detects all the failed lines correctly.

Fig. 1(d) shows the running times of these methods. As we
mentioned in Section III and can be seen in this figure, the
BFS method is significantly slower than other methods which

1The threshold γ should be selected based on the active power nominal
value. Here, based on the IEEE test system, the nominal value is 100MW
which makes the 0.1 threshold in per unit, equal to 10MW .
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Fig. 1: An example of an attack and the failed lines detection using
different methods. (a) The attacked area shown by red filled nodes
and three failed lines shown by red dotted lines in the IEEE 300-bus
system, (b) the probability that each line is failed as computed by
different methods when the noise is low (SNR = 42.8dB), (c) the
probability that each line is failed as computed by different methods
when the noise is high (SNR = 3.7dB), (d) running times.

make it unsuitable for practical purposes. While CVX method
is very fast, it may provide less accuracy as the noise level
increases. The Bayes method is the fastest among the four and
by combining it with the BFS, as in Bayes+BFS, it reaches
the sweet spot in accuracy and efficiency.

To further investigate these observations, we performed
more simulations under different attack scenarios (e.g., dif-
ferent number of failed lines and different noise levels). The
results are presented in Fig. 2. As can be seen, the results are
consistent with the results that we presented in Fig. 1. While
all the methods perform very well when the noise level is low,
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(f) |F | = 5

Fig. 2: The average number of false positives and negatives using
different detection methods under different SNR values and different
number of failed lines.

the BFS and Bayes+BFS perform better than the CVX and the
Bayes, specially in the number of false negatives.

Finally, to show the main disadvantage of the BFS method
more clearly, in Fig. 3, we compared the running times of
the four methods as the number of lines in the attacked area
increases. As can be seen, while the running times of the CVX,
Bayes, and Bayes+BFS remain constant as the number of lines
increases, the BFS method significantly slows down. Hence,
Figs. 2 and 3 confirm the results we observed in Fig. 1 that
the Bayes+BFS provides an accuracy level similar to BFS in
significantly lower running time.

VI. CONCLUSION

In this work, we provided a new method based on Bayesian
regression for power grid state estimation following a cyber-
physical attack. We numerically showed that the method that
uses Bayesian regression to find the set of lines with the
highest probability of being failed and performs a limited BFS
on that small set of lines, reaches a sweet spot in terms of
accuracy and efficiency.

Our work is one of the first works in applying Bayesian data
analysis tools for power grid state estimation. We believe that
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Fig. 3: The relationship between the running times of different
methods and the number of lines in H .

these tools have a vast potential and can be applied for power
grid state estimation not only during an attack but also during
the daily operation of the grid. Providing a general framework
for power grid state estimation using Bayesian Regression is
part of our future work.

Finally, in this work, we used the linearized DC power
flows to describe the state of the grid. However, the provided
methods can also be extended to the AC power flows using
the extension of the optimization (3) to the AC power flows
that is provided in a recent work [14]. Moreover, they can
be extended to the case where there is false data injection
instead of data blocking, using similar methods to ones in [11].
Exploring these directions are also part of our future work.
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