
Camouflage: Memory Traffic Shaping to Mitigate Timing Attacks

Yanqi Zhou, Sameer Wagh, Prateek Mittal, and David Wentzlaff
Electrical Engineering Department

Princeton University
Princeton, NJ, United States

yanqiz@princeton.edu, swagh@princeton.edu, pmittal@princeton.edu, and wentzlaf@princeton.edu

Abstract—Information leaks based on timing side channels in
computing devices have serious consequences for user security
and privacy. In particular, malicious applications in multi-user
systems such as data centers and cloud-computing environ-
ments can exploit memory timing as a side channel to infer
a victim’s program access patterns/phases. Memory timing
channels can also be exploited for covert communications by
an adversary.

We propose Camouflage, a hardware solution to mitigate
timing channel attacks not only in the memory system, but
also along the path to and from the memory system (e.g.
NoC, memory scheduler queues). Camouflage introduces the
novel idea of shaping memory requests’ and responses’ inter-
arrival time into a pre-determined distribution for security
purposes, even creating additional fake traffic if needed.
This limits untrusted parties (either cloud providers or co-
scheduled clients) from inferring information from another
security domain by probing the bus to and from memory, or
analyzing memory response rate. We design three different
memory traffic shaping mechanisms for different security
scenarios by having Camouflage work on requests, responses,
and bi-directional (both) traffic. Camouflage is complementary
to ORAMs and can be optionally used in conjunction with
ORAMs to protect information leaks via both memory access
timing and memory access patterns.

Camouflage offers a tunable trade-off between system secu-
rity and system performance. We evaluate Camouflage’s secu-
rity and performance both theoretically and via simulations,
and find that Camouflage outperforms state-of-the-art solutions
in performance by up to 50%.

Keywords-hardware; security; memory system;
I. INTRODUCTION

Running VMs on the same physical machine has become
prevalent in Clouds and data centers. Workload consoli-
dation and novel architectures improve server utilization
though they can compromise the security of VMs due to
leaked information caused by resource sharing [1], [2], [3],
[4]. While Secure software [5] and hardware have been
proposed, including an authentication circuit [6], Intel’s
TXT [7], eXecute Only Memory (XOM) [8], Aegis [9],
and Ascend [10], they do not prevent information leakage
through side channels caused by resource sharing.

Applications from different security domains can share
hardware resources (caches, on-chip networks, memory
channels, etc.). Contention or interference in shared re-
sources results in information leakage across security do-
mains. For instance, memory queuing delay and scheduling
delay highly depend on co-running workloads. Interference

Δt2!=Δt1	

è	

request	

response	

request	

Figure 1. An Example of Timing Leakage. Attacker measures its own
response latency to estimate a co-scheduled VM’s memory traffic.

between different security domains can create performance
interference on some applications, posing a security threat
by creating an opportunity for timing channels [11], [12].
For example, when two VMs share a memory system, their
memory requests will be co-scheduled by a centralized
memory controller. The memory request service time of one
application can be greatly impacted by the other application.
Figure 1 shows a timing channel attack, where the malicious
VM can infer information from the co-running VM by
observing its own memory service time (response time).

In our work, we focus on timing channel attacks in a
shared memory system and in the shared channel (NoC,
etc.) connecting the processor cores and memory controllers,
where the attacker can measure the timing of memory
requests and responses, and statistically infer information of
victim VMs. We make no assumption on who the malicious
entity is. It can be a malicious server, who controls the
processor and wants to learn more about the user’s data by
monitoring the processor’s I/O pins or memory buses. Alter-
natively, it can be a malicious client, who tricks the server
into being scheduled on the same physical machine as the
victim and infers the victim’s memory timing information
by measuring its own memory access latency.

Side-channel attacks and their countermeasures have been
widely studied in the context of shared caches, on-chip
networks, and shared memory channels. Most of them rely
on static spatial/temporal partitioning of resources and re-
ducing interference between security domains, thus incurring
significant performance degradation. Higher security can be
achieved at the cost of performance or higher hardware
overhead. An efficient way to remove side-channels is to use
a static scheduling or partitioning algorithm. For instance,

rather than using a First Ready-First Come First Serve
(FR-FCFS) memory scheduling algorithm to improve row
buffer hit rate, a leakage-aware scheduler can allocate a
static scheduling window for every process/thread that shares
the memory system. This potentially impairs throughput
and utilization because of its fixed scheduling windows.
Alternatively, memory banks/ranks can be partitioned so that
each thread accesses a different bank/rank. However, this
reduces the effective memory capacity for each thread and
could potentially lead to imbalanced memory accesses.

We propose a novel memory traffic shaping and traffic
generation mechanism, Camouflage, that is able to cam-
ouflage the timing information of memory requests and
responses. In order to create a memory traffic distribution
exactly matching a pre-determined one, Camouflage lim-
its traffic rate as well as generates fake traffic. Different
from ORAM, we do not solve the memory address/data
encryption/obfuscation problem, but only focus on timing
channel attacks. However, Camouflage is complementary
to address/data encryption/obfuscation or techniques like
ORAM. Camouflage can mitigate multiple threat models
when used together with ORAM. We don’t time partition the
memory scheduling window or spatially partition memory
capacity, but rather only camouflage memory requests and
responses to make it difficult or impossible for a VM to infer
any useful information. Specifically, Camouflage uses three
different strategies to address different attack scenarios. Re-
quest Camouflage (ReqC) shapes only memory request inter-
arrival distribution at the processor core side. This limits
obtaining timing information from probing or monitoring I/O
pins or the path from the core to and from memory. Response
Camouflage (RespC) shapes only memory response inter-
arrival distribution at the egress of the memory controller.
This prevents an untrusted VM from inferring traffic patterns
of other VMs by observing its own memory response laten-
cies. Bi-directional Camouflage (BDC) shapes both requests
and responses, securing both request and response timing in-
formation. The hardware mechanism takes inspiration from
the MITTS hardware memory traffic shaper [13], but applies
memory traffic shaping for security and not for increasing
performance.

Camouflage provides a richer security/performance trade-
off space compared with a constant rate shaper (CS) [14].
Compared with Temporal Partitioning (TP) [15], Camou-
flage mitigates memory timing leakage while not com-
promising performance and hardware efficiency. Different
from Fixed Service (FS) [16], which relies on constant rate
shaping and spatial (bank/rank) partitioning, Camouflage
does not rely on spatial partitioning for higher performance
and is scalable to larger number of threads (more than the
total number of banks/ranks). Figure 2 shows the trade-
off space provided by Camouflage compared with CS, TP,
and FS. Camouflage can be configured to be a constant
rate shaper by using only one bin, but also can be used

Performance	

M
ut
ua
l	
 I
nf
or
m
a0

on
	
 TP	

CS	

No-­‐shaping	

MI	
 between	
 a=acker’s	
 response	

and	
 vic0m’s	
 request	

MI	
 between	
 intrinsic	
 request	
 	

and	
 shaped	
 request	

Camouflage’s	

tradeoff	
 space	

FS	

Figure 2. Camouflage Security and Performance Trade-off Space. This
plot is based on analysis of the mutual information vs. performance.

to explore alternative security/performance trade-off points.
In simulation, Camouflage on average improves program
throughput by 1.12x, 1.5x, and 1.32x compared with CS, TP,
and FS respectively. We also conduct a real covert channel
attack and show that Camouflage is able to mitigate practical
covert channel attacks.

Overall, our work demonstrates the feasibility of new
design points for mitigating timing channel leaks that pro-
vide a combination of strong security and performance, and
can serve as a key enabler for the practical deployment
of hardware-based timing defenses. Our main contributions
include:

1) We design three hardware traffic shaping and gen-
eration mechanisms that shape memory requests, re-
sponses, and both in terms of inter-arrival times, and
generate fake traffic if needed. This enables security-
sensitive VMs to camouflage their memory request and
response timing.

2) Camouflage protects timing information not only in
the memory system, but also the shared channel be-
tween processor cores and memory controllers.

3) We leverage information theory and the idea of mutual
information to analyze the amount of information that
Camouflage leaks. We show that it is less than 0.1%
of the transmitted information.

4) We design Camouflage to provide a larger security
and performance trade-off space. Camouflage can be
configured to leak zero (constant rate shaping), or can
be configured to leak slightly more (optimized for
performance).

II. MOTIVATION
A. Threat Model

This paper focuses on mitigating or preventing two types
of threats: memory-based side-channel and covert-channel
attacks, and monitoring of I/O pins or memory buses.

Memory Side-Channel and Covert-Channel: The ad-
versary measures its own overall execution time or memory
response latencies in order to estimate its co-scheduled
application VM’s memory intensity over time. Applications
create interference in the memory system due to contention

in hardware resources such as NoCs, queues, row buffers,
and the memory scheduler. Increasing memory intensity of
one application is very likely to slow down other applica-
tions’ service rate. Therefore, by monitoring the memory
response rate change or the overall execution time change,
the adversary can infer the memory access pattern of another
application.

Pin/Bus Monitoring: The adversary (eg. a data center ad-
ministrator) has physical access to the processor’s I/O pins,
system buses, and peripherals. Such information includes the
program’s start and termination time, the addresses and data
sent to and read from the main memory, and when each
memory access occurs. In this threat scenario, we focus on
the timing aspect of memory access and assume the address
and data are protected by ORAM [17] or are encrypted.
For example, the adversary can observe communications
over the bus between the processors and the memory, in
terms of access number and frequency. We assume only
off-chip components are insecure while on-chip components
are secure. Moreover, we assume the adversary can conduct
fine-grain timing measurements, at a per-memory-request
level. These fine-grain measurements can lead to direct
information leakage of the victim’s program characteristics.

B. Timing Protection Overheads

Temporal Partitioning (TP) [15] divides time into fixed-
length turns during which only requests from a particular se-
curity domain can be issued. It provides security against tim-
ing based side-channels. Static temporal partitioning reduces
the amount of flexibility in a scheduler, impairing throughput
and utilization. For example, application memory traffic is
unlikely to be a constant. When there are not sufficient
requests from a specific process in its own time division,
it is desirable to schedule requests from other processes.
Temporal Partitioning applications based on several security
domains is feasible, however, it is not scalable if hundreds
of applications don’t trust each other. For example, if one
hundred processes are running on a manycore processor and
each ask for separate security domains, TP will have trouble
providing high bandwidth, as each of them only receives 1

100
of the memory bandwidth.

A secure processor, Ascend [18] prevents leakage over the
ORAM timing channel by forcing ORAM to be accessed at a
single, strictly periodic rate. An enhanced version [14] splits
a program into coarse-grain time epochs and chooses a new
ORAM rate out of a set of rates at the end of each epoch.
This technique bounds the leakage to E × logR, where E
is total number of epochs and R is total number of rates.

Fixed Service (FS) [16] forces every thread to have a
constant memory injection rate and a uniform memory
access pattern. Similar to CS, it provides little tradeoff
opportunity in selecting between security and performance.
Combined with memory bank/rank partitioning, it improves
performance compared with TP. Spatial partitioning memory

Frequency	

Inter-­‐arrival	
 Times	

Constant	

Rate	
 Shaper	

(CS)	

Temporal	

Par==oning	

(TP)	

Camouflage	

Frequency	

Frequency	
 Frequency	

Inter-­‐arrival	
 Times	

Figure 3. Conceptual Difference between Camouflage and Two Prior
Work (CS [14] and TP [15]). CS has only requests/responses in one bin.
TP has more requests/responses in high latency bins due to time multiplexed
resource.

Malicious Program:
for (i = 0; i < |D|; i++)

if (D[i]) wait
else Mem[4*i]++

1 0 1 1 0

DRAM Rate

Time

Frequency

Inter-arrival Times

Intrinsic
Distribution

1 0 1 10

DRAM Rate

Time

Frequency

Inter-arrival Times

Camouflage

Camouflaged Keys

Figure 4. Camouflage a Vector of Keys. Camouflage slightly changes the
request inter-arrival time distribution to distort the inferred keys.

reduces the effective memory capacity and bandwidth for
each thread and could potentially create imbalanced accesses
to a few banks/ranks. Spatial partitioning does not work well
when there are massive number of threads that is greater than
the total number of ranks or banks.

These three techniques negatively impact program perfor-
mance and provide little tradeoff opportunity for choosing
between security and performance. Having more than three
points in the security and performance tradeoff space is
highly desirable.

C. Memory Traffic Distribution and Timing Channel Pro-
tection

Ideally, Camouflage only tunes the traffic pattern slightly
so that a malicious user cannot infer the desired information
from the camouflaged traffic pattern without significantly
changing the intrinsic traffic distribution. There are two
different aspects of memory access patterns, bulk bandwidth
(total number of memory requests within a timing window)
and burstiness. Executing a certain branch of code results
in changes in memory bulk bandwidth. A program that
deliberately conveys a bit array of sensitive key informa-
tion can encode that information in memory burstiness.
Camouflage uses a memory inter-arrival time distribution to
encapsulate both aspects of memory accesses. A distribution
describes how an application’s memory requests/responses
occur at different intervals, and what percentage of re-
quests/responses fall into a specific inter-arrival time.

In our proposed memory distribution, the horizontal axis

Techniques Capable of Preventing Performance
Pin/Bus Memory Side-Channel

Monitoring Covert-Channel
ReqC Yes No High
RespC No Yes High
BDC Yes Yes High

TP [15] No Yes Impacted by the number of security domains
CS [14] Yes No Low for workloads with non-constant

memory request rates
FS [16] No Yes Requires spatial partitioning for better performance

Table I
DIFFERENT MEMORY TIMING PROTECTION TECHNIQUES. FIRST THREE

ARE CAMOUFLAGE.

represents the time difference between two subsequent mem-
ory requests, while the vertical axis determines how frequent
a request falls into a certain inter-arrival category. The inter-
arrival time along with the frequency at which memory
requests occur with that inter-arrival time determines the
bandwidth consumed.

Camouflage shapes memory request/response inter-arrival
times into pre-determined statistical distributions. This pre-
determined distribution is independent of the intrinsic dis-
tribution, thus reducing leaked timing information. Different
from conventional static partitioning or static rate limiting,
Camouflage enables the choice of flexible distributions of
request/response inter-arrival times, which improves perfor-
mance and memory channel utilization while still hindering
timing attacks. As shown in Figure 3, Camouflage does not
necessarily shape the intrinsic traffic into a constant rate
as a constant rate shaper, or delay a significant number of
requests due to time partitioning of the scheduling window
(which results in a large number of entries in the high la-
tency bar for Temporal Partitioning). However, Camouflage
can be configured as a constant rate shaper if necessary.
Intuitively, Camouflage is able to hide the frequency domain
information in a more generalized and efficient way. Figure 4
shows an example where a malicious program leaks a vector
of secret keys. With Camouflage, we slightly change the
request inter-arrival time distribution so that the inferred keys
are distorted. Table I summarizes the differences between
different techniques.

III. ARCHITECTURE
A. Hardware Design

Camouflage can shape either memory requests, memory
responses, or even a combination of both.

As shown in Figure 5, a memory request shaper is placed
locally after a processor core’s LLC to limit memory request
rate for a particular core or thread. The request shaper
(ReqC) can transform a process’s intrinsic traffic into a fixed
pre-determined inter-arrival time distribution. This prevents
timing leakage in multiple shared channels, such as NoC
(SC1), the memory controller (SC2, SC4), and DRAM
(SC3). The request shaper needs to be able to throttle down
the request rate when the desired request rate is lower than
the intrinsic request rate, as well as generate fake requests
if the desired request rate is higher than the intrinsic request
rate. The post-shaper memory traffic distribution does not
vary with different program phases or branches. Request

Core1	
 NoC	

Request	
 Camouflage	
 (ReqC)	

LLC	
 MC	
 DRAM	

ReqC	

RespC	

Response	
 Camouflage	
 (RespC)	

SC1	
 SC2	
 SC3	

SC4	
 SC5	

Figure 5. Request, Response, and Bi-directional Camouflage

Camouflage can effectively mitigate I/O pin or memory bus
timing channel attack, when combined with address/data
encryption/obfuscation techniques.

Similarly, a memory response shaper (RespC) is placed
at the egress of the memory controller, before entering a
particular processor’s LLC. The response shaper eliminates
timing leakage generated by the memory system (SC3), pro-
viding timing security for shared channels (SC) 4 and 5. For
instance, issuing requests from different threads to the same
memory rank or bank creates contention on memory bus and
row buffers. This can lead to memory side-channel or covert-
channel attacks. The RespC throttles down response rate
by buffering the response and accelerates response rate by
signaling the memory scheduler to give higher priority to the
requesting application or generating fake memory responses.
This technique reduces the correlation between the victim’s
request rate and the attacker’s response rate and effectively
camouflages the interaction occurred in the memory system.

Bi-directional Camouflage (BDC) shapes both memory
requests and responses by combining ReqC and RespC. This
technique is desirable when we require a shaping mechanism
for both memory requests and responses and do not want to
change memory controller scheduling policies.

Camouflage is able to shape memory requests and re-
sponses into arbitrary statistical distributions, many more
options than a fixed rate (Ascend). Requests/responses occur
at the attack point at different rates, while the overall inter-
arrival distribution within a time window is fixed. This
obfusticates the timing information between the shaped
distribution compared with the intrinsic one, thereby signif-
icantly reducing mutual information of the intrinsic traffic
timing and the shaped traffic timing.

1) Bin-based Traffic Shaper: Camouflage uses a bin-
based request/response shaper to shape inter-arrival times.
In order to control the Camouflage hardware, the hypervisor
writes special purpose control registers to configure the
shape of the request/response distributions. Each individual
core has its own request/response shapers. The use of dis-
tributed memory bandwidth traffic shaping can scale up with
multicore and manycore systems, and it doesn’t necessarily
require changes to the centralized memory controller. The
traffic shaper tracks cache miss information and measures

request/response inter-arrival times. It generates a stall signal
to the processor core when the request/response rate exceeds
the pre-determined value. The traffic shaper also generates
fake traffic if the memory request rate is lower than the pre-
determined value. In order to track fine-grained inter-arrival
times, we have multiple bins that contain available credits
for memory requests. Each bin contains credits that represent
one memory transaction at a certain request interval deter-
mined by the bin. The scheduling of a memory transaction
consumes a single credit. If the memory is shaped into a
constant request/response rate, there will be only one of the
hardware bins that contains credits. Bin configuration can
be arbitrary. Instead of being forced to choose a constant
rate, Camouflage enables better performance optimization
and leverages applications’ constructive traffic.

The maximum number of credits in a bin is bounded by
the total memory bandwidth that a memory controller can
serve. The request/response shaper enforces that a core’s
memory request/response distribution does not exceed the
prescribed/pre-determined distribution by delaying (stalling)
a memory transaction if there are no credits available in a
bin that represent lower or equal to the memory transaction’s
inter-arrival time. The memory transaction will be delayed
enough until its inter-arrival time matches a corresponding
bin that has credits, or until credits have been replenished.

Each bin is a container holding credits for memory
requests with a certain request inter-arrival time. The total
number of bins N can be determined by how fine-grain the
quantization of inter-arrival interval is desired. We choose
ten bins in our design in order to enable the traffic shaper
to choose from enough distinct inter-arrival times.

2) Bin Credits Replenishment and Fake Request Genera-
tion: Credits are replenished with a fixed period. During
credit replenishment, if the hardware detects any unused
credits, it saves the credits in another array of unused credits.
Whenever there are credits in the unused credit registers, the
processor core generates non-cached fake memory requests
to random memory addresses and enqueues these fake
requests to the miss handling registers. However, the fake
traffic generated always has lower priority than the intrinsic
requests, and will only be generated when there isn’t a real
memory request at the same cycle.

3) Hardware Overhead: Camouflage’s implementation is
very similar to MITTS (less than 0.1% in area compared to
a two-way OoO processor) with the addition of registers
and logic for fake traffic generation [19]. Each Camouflage
hardware module (of which in each design there may be
multiple) contains a register per bin to track current credits,
a register per bin to hold the number of credits to replenish,
and a register per bin to track unused credits at each
replenishment interval. We assume ten bins where each bin
is 10-bits. This added hardware overhead is minimal when
compared to the size of most security mechanisms such as
hardware implementations of ORAM.

Memory	
 Controller	

Credits	

Unused	

Credits	
 3.	
 Fake	
 	

response	
 rep_en	

1.	
 Pending	

response	

2.	
 Response	
 from	
 MC	

rep_credits	

{rep_en,	
 	

req_en}	

credits	
 -­‐1	
 unused	

credits	

{~req_en,	
 	

rep_en}	

-­‐1	

credits	
 credits	

Figure 6. Response Queue. Responses are queued after credits are
depleted. Credits are given to queued responses first. 1. There are available
credits. 2. There are available credits but no pending responses. 3. There
are available unused credits but no pending responses or responses directly
from MC.

B. Prevention Mechanisms

1) Memory Side-Channel and Covert-Channel: To com-
bat side-channel and covert-channel attacks caused by re-
sponse inspection, we propose “Response Camouflage” (Re-
spC). RespC puts shaping hardware at the egress of memory
on a per-core or a per-application basis. The hardware
accelerates as well as throttles memory responses. For throt-
tling, a response queue buffers responses when not enough
credits are available. After bin replenishment, the response
queue will be checked to dequeue any response that has
been buffered, as shown in Figure 6. However, accelerating
responses is challenging if the intrinsic memory intensity
is lower than the desired one such that there might not be
enough memory responses available. Not enough responses
can be caused by the memory being hogged by co-running
applications, which slows down the affected application’s
memory responses. In this case, Camouflage accelerates re-
sponses by giving high priority to that particular application
in the memory scheduler. The RespC hardware monitors
the response inter-arrival time distribution and compares the
distribution with a target one. If the response rate is lower
than the required one, the RespC sends a warning to the
memory scheduler, asking for higher priority for the affected
application. At each replenishment, the response shaper
sums up unused credits in the hardware bins, and sends
the total number of credits along with the warning signal
to the memory controller. The memory scheduler will give
more priority to the affected application in proportion to the
number of unused credits. However, this alone cannot handle
changes to a VM’s request distribution. In order to maintain
a fixed response distribution when a VM drops its request
rate, Camouflage generates fake memory responses. Similar
to fake request generation, a fake response generator creates
fake responses when there are not any pending responses
or new responses from the memory controller and there are
unused credits accumulated, as shown in Figure 6.

2) Pin/Bus Monitoring: For the I/O pin or memory
bus inspection attack, we propose “Request Camouflage”

Credit	
 	

Numbers	

Bin0	
 Bin1	
 Bin2	
 Bin3	

Bin0	
 Bin1	
 Bin2	
 Bin3	

Desired	
 Distribu+on	

Inter-­‐arrival	
 	

Time	

Bin0	
 Bin1	
 Bin2	
 Bin3	

Unused	
 Credits	
 A1er	
 Camouflage	
 Distribu+on	

Credit	
 	

Numbers	

Bin0	
 Bin1	
 Bin2	
 Bin3	

Intrinsic	
 Distribu+on	

Desired	
 Intrinsic	
 Fake	
 traffic	

Figure 7. Request Shaping and Fake Requests Generation. Use another
set of bins to store unused credits.

(ReqC). ReqC puts the request shaping hardware at the
processor core side or after the LLC, so that any distribution
of intrinsic memory traffic can be camouflaged into a totally
different distribution. We are not addressing address/data
obfuscation or encryption problem, but rather only focus on
memory timing channel. In order to guarantee the generated
memory traffic distribution matches the predetermined dis-
tribution, the hardware needs to be able to both throttle and
accelerate memory request rate. If the desired request rate is
higher than the actual request rate, the hardware generates
fake memory requests so that the memory traffic adds up to
the desired distribution.

In order to generate fake traffic, we add a register per bin
to store unused credits for each replenishment period. Using
these credits, Camouflage generates fake requests in the next
period to random addresses with the needed distribution.
Figure 7 gives an example of generating fake requests. At the
end of one replenishment period, Camouflage detects unused
credits in Bin1 and Bin2. It immediately saves the unused
credits to the unused credit bins. The next replenishment
cycle, if the application’s intrinsic traffic remains the same
as the previous one, the extra fake traffic and the intrinsic
traffic will add up to the desired distribution. Even if the
distributions of adjacent replenishment periods are different,
the added fake traffic compensates for requests missing
from the previous replenishment period. The overall traffic
distribution will match the desired one.

3) Bi-directional Prevention: Bi-directional technique is
desirable when both memory requests and responses are re-
quired to be shaped or memory scheduling policies cannot be
changed. In order to configure the hardware bins, a software
runtime is co-designed to achieve higher performance. BDC
can effectively camouflage any suspicious VM’s requests
and responses when the request distribution changes.

With Bi-directional Camouflage, a malicious VM is un-
likely to detect timing channel leakage on the memory
bus, as memory traffic from the VMs under protection is
fixed. A malicious VM can hardly infer memory traffic of
the co-running applications, as its own memory response
distribution is fixed. In order to utilize Bi-directional Camou-

Core 2.4GHz, 4-wide issue,
128-entry instruction window

Number of Cores 4
L1 Caches 32 KB per-core, 4-way set associative,

64B block size, 8 MSHRs
L2 Caches 64B cache-line, 8-way associative,

Single-program: 128KB, multi-program: 128KB private
Memory controller 32-entry transaction queue depth
Memory Timing: DDR3, 1333 MHz

Organization: 1 channel, 1 rank-per-channel,
8 banks-per-rank, 8 KB row-buffer

Table II
BASE SIMULATION CONFIGURATION

flage, we use a genetic algorithm described in Section IV-C
to optimize request and response distributions for each
application.

Camouflage can be configured to constant shape the
requests and responses by giving each core the same number
of credits in the same bin. By provising more credits than
can be used over the replenishment period, Camouflage
degenerates into a constant rate shaper that turns into C.
Fletcher et al’s work [14], which showed no information
leakage for unchanging rates. Different from Fletcher et al’s
work, the return traffic can be shaped by Camouflage as well.
Constant response shaping eliminates leakage generated by
interference in the DRAM.

IV. EVALUATION

A. Simulation and Workloads

The CPU core and memory system are modeled with
a cycle-accurate simulator called SDSim which is adapted
from the cycle-accurate core simulator SSim [20], and the
DRAM simulator DRAMSim2 [21]. SSim’s frontend is
integrated with DRAMSim2. This enables us to model out-
of-order cores with out-of-order memory systems. SSim is
driven by the GEM5 Alpha ISA full system simulator [22].
We model a shared LLC and memory system for the
multi-program workloads. Table II shows the details of the
simulated system.

We evaluate the SPECInt 2006 benchmark suite together
with the Apache web server benchmark. In the evaluation
of Response Camouflage and Bi-directional Camouflage,
we run two workloads (ADVERSARY, astar, astar, astar)
and (ADVERSARY, mcf, mcf, mcf) each time. We name
them w(ADVERSARY, astar) and w(ADVERSARY, mcf)
for short. ADVERSARY is the untrusted application that in-
spects the memory bus or its own memory responses to infer
use information from the co-scheduled VMs. astar and mcf
have wildly different memory intensities and access patterns
and are used to simulate the change in memory access. We
run 11 workloads (SPECInt 2006 and Apache web server) as
the ADVERSARY and compares the performance impacts
of Camouflage on both the ADVERSARY and victims.

B. Security Analysis

In order to analyze the effectiveness of different schemes,
we leverage mutual information (MI) which comes from
classical information theory [23], [24], [25], [26], [27], [28].

Mutual information (MI) is a rigorous metric to characterize
statistical privacy in the security/privacy community. In fact,
recent work demonstrate strong connections between mutual
information and even differential privacy [29].

1) Metric: Mutual Information: The mutual information
(MI) of two random variables is a measure of the mu-
tual dependence between the two variables. Specifically, it
quantifies the amount of information obtained about one
random variable, through the other one. Equation 1 shows
the mathematical formulation of MI of variables X and Y.

I(X,Y) =
∑
y∈Y

∑
x∈X

p(x, y)log(
p(x, y)

p(x)p(y)
) (1)

Camouflage is considered to be secure if the MI between
the intrinsic memory inter-arrival distribution and shaped
inter-arrival distribution is zero. In this experiment, we
compare the long term MI between memory request inter-
arrival time distribution before and after Camouflage. More
specifically, X and Y contain timing intervals ti. p(x = ti)
and p(y = ti) are probability densities for the intrinsic mem-
ory request/response and shaped memory request/response at
inter-arrival time ti. p(x = ti, y = ti) is the joint probability
density at inter-arrival time ti. In our implementation, we
have ten different intervals.

2) Mutual Information Measurement: In order to prove
that the MI between traffic distributions before and after
Camouflage is minimal, we measure memory request inter-
arrival time distributions before and after ReqC and compute
the MI between the intrinsic request distribution and the
shaped distribution. Without any traffic shaping, the mutual
information will be I(X,X) = H(X), which is just its
self information. After a traffic shaper, the MI becomes
I(X,Y), and ideally should be zero. In our experiment,
we evaluate MI for a non-shaping case, a constant rate
shaper, and ReqC for w(ADVERSARY, bzip). While the
non-shaping case has a MI of 4.4, a constant rate shaper
(without fake traffic) reduces the MI to 0.002, ReqC (without
fake traffic) reduces the MI to 0.006. With fake traffic,
a constant shaper further reduces the MI to 0, and ReqC
reduces the MI to 0.002. Other benchmarks generate similar
results. This result implies that Camouflage at most leaks
0.1% of the information compared to non-shaping case, and
leaks slightly more than the constant rate shaper. In other
words, ReqC leaks only 0.1 byte if a non-shaping scheme
leaks 100 bytes.

3) Mutual Information with BDC: In this section, we
analyze the MI of BDC. We show below that it is never
worse than ReqC or RespC. Assume there are two VMs
sharing the memory channel. Request inter-arrival time of
Alice is converted to Ai by ReqC. Assuming the best case
scenario for an adversary Bob, the memory response Br

contains all possible information about the response to Alice
(which is Ar) and thus the request of Alice (which is Ai).

Now the RespC modifies this response (Br) to give Bob a
further shaped response B. Schematically,

A→ Ai

B ← Br = Ar

The arrows represent ReqC and RespC, which make the
inputs more unlikely to leak information. We will complete
this argument using a data processing inequality for the best
case scenario for an adversary Bob (Ar = Br). According
to data processing inequality, the inequality loosely states
that processing data does not increase MI1. This implies:

I(A;B) ≤ I(A;Ai) and using it the other way
I(A;B) ≤ I(B;Ai)

So the overall system will be at least as good as the
following:

I(A;B) ≤ min(I(A;Ai), I(B,Ai))

which in other words BDC will be at least as good as
the best of ReqC and RespC. Since ReqC and RespC use
the same throttling and fake traffic generation mechanism,
BDC will be at least as good as ReqC, as described in
section IV-B2.

4) Leakage Within A Replenishment Window: Camou-
flage focuses on preventing leakage of long term timing
information (analyzed above), on the order of thousands
of cycles (longer than the replenishment period of Camou-
flage), because long term timing information is the easiest
to exploit with practical attacks. Nevertheless, we analyze
Camouflage in the extreme case where very fine grain timing
information can be used within a replenishment period
to gain information in a side-channel attack. As a worst
case attack, we assume the adversary can receive a bit of
information for every request of its own. If its request is
delayed, it knows the victim had a request at the same
time, else the victim did not have a request. We also make
a conservative assumption that the adversary knows its
shaped distribution, the distribution of the victim, and it can
specifically control the timing of its requests. Given these
conservative assumptions, leaked information is bounded by
the number of credits that the adversary has. In practice,
this leakage is mitigated by the lack of the timing accuracy
that the adversary can use to time memory requests. This
severely degrades the number of (fractional) bits that can be
leaked per memory conflict. Also, any time that the victim is
actively shaped or fake traffic is created by Camouflage, the
intrinsic timing information is obfuscated. If leakage within
replenishment window is considered to be a significant
threat, the timing of memory requests can be randomized
within the interval (that a credit represents) to increase the
timing uncertainty and probability of memory conflict in a

1More formally, if X → Y → Z is a Markov Chain i.e., Z conditioned
on Y is independent of X, then I(X;Y) > I(X;Z)

EPOCH	

P1	

HPM	
 	

P2	

HPM	

Pp	

HPM	

INTERVAL	
 =	
 EPOCH*(POPULATION_SIZE+NUM_OF_PROGRAMS)	

HPM=Highest	
 Priority	
 Mode	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 G	
 =	
 GeneraIon	

P	
 =	
 Program	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 SC	
 =	
 SoKware	
 Cost	
 (SelecIon,	
 Crossover,	
 	
 MutaIon)	

	

Run	

Child1	

Run	

Child2	

Run	

Child3	

Run	

Child4	

Run	

Childc	

INTERVAL	

CONFIG_PHASE	
 =	
 INTERVAL*NUM_OF_GENERATIONS	

G1	
 G2	
 SC	
 G3	
 G4	
 Gn	

RUN_PHASE	

Figure 8. Online Genetic Algorithm. Same GA as in MITTS [13]

randomized manner. Also, short term information leakage
can be mitigated by reducing the size of the replenishment
window.

C. Optimizing Bin Configuration

Camouflage uses a genetic algorithm (GA) to optimize
the hardware bin configurations initially, and guarantees
the request/response inter-arrival time distributions do not
change due to application interference. Genetic algorithms
work well for non-convex search spaces like what we have.

For the BDC, we need an algorithm to optimize perfor-
mance while camouflaging the memory traffic. With a 10-
bin Camouflage that shapes both requests and responses,
the search space could be (MAX CREDITS20), where
MAX CREDITS is the total number of credits allowed
in a bin. For all of the results presented for the BDC, we
use an online genetic algorithm to optimize bin configu-
rations. The online genetic algorithm trades off program
performance for timing information leakage by reconfiguring
the hardware bins. When a constant amount of information
leakage is allowed, the online genetic algorithm reconfigures
the request/response hardware bins after a fixed amount
of time or after a program phase change. As a result,
distributions are fixed within a reconfiguration window, but
are different across configuration windows. To avoid leakage
due to reconfiguration, the online genetic algorithm can
be used at the beginning of the program, the proposed
configuration will be used for the rest of the program after
the configuration phase.

Genetic Algorithms are flexible enough to optimize for
any objective functions, such as program performance,
multi-program system throughput, fairness, program se-
curity, or a combination of all. In our example, we
are interested in preventing timing information leakage
within a multi-program system without compromising sys-
tem throughput. Specifically, the Genetic Algorithm opti-
mizes for multi-program average slowdown, by minimizing
n∑

i=1
slowdowni

n .
The online genetic algorithm in Figure 8 configures

Camouflage at the the beginning of a program phase (Con-
fig Phase), and uses the optimal configuration for the rest

0

Re
tu
rn
	T
im

e	
Di
ffe

re
nc
e	
(C
yc
le
s)

-500000

2000000

20000 40000 8000060000 100000 160000120000 140000

1000000

Figure 9. Memory Request Return Time Difference of Two Techniques

of program phase (Run Phase). The GA needs to run
several generations (typically 20 or 30) with around 20-
30 configurations tested in each generation. We name each
configuration a child within a generation.

The genetic algorithm is able to search for optimal bin
configuration for either a single-program workload or a
multi-program workload. For a multi-program workload, the
GA optimizes all bins from all programs simultaneously.
We use MISE’s [30] online profiling design to measure
application slowdown (slowdown of an App =
(1− α)(αRequest Service Rate with Highest Priority

Shared Request Service Rate),

α = Cycles spent stalling on memory requests
Total number of cycles). At the begin-

ning of each generation, the GA runs each workload with
highest priority in the memory controller in order to measure
workload performance without interference in the memory
system. This information is combined with performance
evaluated in each child configuration to measure workload
slowdown when a workload is mixed with other applications.
After each run, the runtime saves the measured objective
function in memory. After all candidates in one generation
are evaluated, the software GA selects the few best con-
figurations and uses them to create the genomes for the
subsequent generation (children). We have evaluated differ-
ent configuration sizes (child size), and have decided to use
20000 cycles for an individual configuration measurement.
We run 20 generations in total for each reconfiguration, with
about 5000 cycles runtime overhead each generation.

D. Memory Side-Channel and Covert-Channel

In this section, we measure the effectiveness of RespC in
preventing malicious VMs from inferring timing information
by measuring their own memory response times. We use
multi-program workloads made out of SPEC2006 bench-
marks and the Apache web server to verify interference can
be largely removed.

1) Leakage Evaluation: We empirically evaluate the se-
curity features of Camouflage. We measure the accumulated
response time difference of w(ADVERSARY, astar) and
w(ADVERSARY, mcf) observed by the ADVERSARY ap-
plication, where ADVERSARY is the adversary application
that is stealing timing information from the co-running
applications. In order to prevent the ADVERSARY from

astar+astarx3
bzip+astarx3

gcc+astarx3

h264ref+astarx3

gobmk+astarx3

omnetpp+astarx3

hmmer+astarx3
mcf+astarx3

libqt+astarx3

sjeng+astarx3

apache+astarx3
GEOMEAN

0.0

0.5

1.0

1.5

2.0

Sl
ow

do
w

n

1.01 1.01 1.02 1.00 1.02
1.08 1.09

1.03 1.01 1.02 1.04 1.031.01 1.01 1.01 1.01 1.01 1.03 1.02 1.01 1.00 1.03 1.03 1.02

ADVERSARY Performance

Overall Throughput

(a) astar

astar+mcfx3
bzip+mcfx3

gcc+mcfx3

h264ref+mcfx3

gobmk+mcfx3

omnetpp+mcfx3

hmmer+mcfx3
mcf+mcfx3

libqt+mcfx3
sjeng+mcfx3

apache+mcfx3
GEOMEAN

0.0

0.5

1.0

1.5

2.0

Sl
ow

do
w

n

0.99 0.98 0.98 1.00

0.92 0.93 0.94
0.98 0.99 0.97 0.97 0.97

1.05 1.02

1.10

1.02 1.02 1.01 1.02 1.01 1.01 1.01

1.12

1.03

ADVERSARY Performance

Overall Throughput

(b) mcf

Figure 10. Performance and Throughput Comparison Between Response
Camouflage and No Shaping.

inferring memory traffic patterns from the co-running ap-
plications, Camouflage guarantees that the ADVERSARY’s
memory response time for each request won’t noticeably
change when the co-running application changes its request
distribution. As shown in Figure 9, Camouflage maintains a
flat line of accumulated response time difference between the
above workloads, indicating minimal timing channel leakage
via response time inspection. First Ready-First Come First
Serve (FR-FCFS) memory scheduling on the contrary, has an
increased accumulated response time difference. We ran this
experiment with all benchmarks we used in Section IV-E,
and see similar profiles for all the benchmarks.

2) Response Camouflage Performance: We evaluate
Camouflage on two different cases when an application
becomes more memory intensive or less intensive. We
use workload w(ADVERSARY, astar) and w(ADVERSARY,
mcf) to measure memory request return time for the ad-
versary benchmark. We run each application in our 11
workloads as the ADVERSARY. In the IaaS Cloud, the
adversary can be any workload in a lower security domain.
As we protect astar and mcf from the adversary application,
we name astar and mcf as applications under protection.
As mcf is more memory intensive compared with astar, the
adversary will notice significant response time increase when
co-running with mcf. Ideally, a secure memory scheduler
will not change the response time of a benchmark no matter
how the co-running benchmarks change. In this case, we
put a response shaper at the egress of the memory con-
troller for the adversary application. The bin configuration
is set the same as the response distribution as workload
w(ADVERSARY, astar). Because the actual response rate
is slower than the desired response rate, Camouflage will

0
2
4
6
8

10
12
14

B
in

 S
iz

e 9 9

4
3

2 2 2
1 1

6

astar

1
0 0 0 0 0 0 0 0

4

bzip

4

2 2
1

0 0 0
1 1

14gcc

0 0
1 1

0 0 0 0 0

2

h264ref

0
5

10
15
20
25
30

B
in

 S
iz

e

2 1 1 0 0 0 0 0 0

9

gobmk

1 0 0 0 0 0 0

5
1

14

libquantum

1 0 0 0 0 0 0 0 0
3

sjeng
27

18

8
4 3 2 2 2 1

5

mcf

0 1 2 3 4 5 6 7 8 9
Bin Number

0
5

10
15
20
25
30

B
in

 S
iz

e

29

8 7
3 2 2 3 2 2

6

hmmer

0 2 4 6 8 10
Bin Number

6

18

6
2 1 0 0 1 1

6

omnetpp

0 2 4 6 8 10
Bin Number

10

3
1 1 0 0 0 1

3

14

apache

0 2 4 6 8 10
Bin Number

10 9 8 7 6 5 4 3 2 1

DESIRED

Figure 11. Camouflage Shapes Different Request Inter-arrival Time
Distribution into a Desired One

send a signal to the memory controller asking for higher
priority for the adversary application. Similarly, if we need
to maintain the response distribution of the adversary ap-
plication for workload w(ADVERSARY, mcf), we set the
response shaper bin configuration of w(ADVERSARY, astar)
the same as w(ADVERSARY, mcf). In this case, response
rate is throttled as the adversary experiences higher response
rate compared with workload w(ADVERSARY, mcf).

We measure the ADVERSARY application performance
slowdown and overall throughput slowdown due to response
Camouflage. Figure 10(a) shows the results of shaping
w(ADVERSARY, astar) to the same response inter-arrival
distribution as w(ADVERSARY, mcf). And Figure 10(b)
shows the result of shaping w(ADVERSARY, mcf) to the
same response inter-arrival distribution as w(ADVERSARY,
astar). As mcf is more memory intensive than astar, shaping
the ADVERSARY’s response of w(ADVERSARY, astar)
slows down the ADVERSARY, resulting in an illusion that
it is still running with mcf. In the other case, shaping mcf
requires requesting higher memory request priority in the
memory controller to match the behavior of running with
astar. Therefore, the ADVERSARY’s performance improves
because of higher scheduling priority. The throughput, how-
ever, is degraded as mcf has lower priority compared with
no shaping case. This shows the tradeoff between security
and performance and Camouflage guarantees security at a
minor cost of performance.

E. Pin/Bus Monitoring

1) Security Evaluation: Distribution Accuracy We eval-
uate Camouflage’s effectiveness in shaping any request dis-
tribution into another desired one. In this section, we mea-
sure 11 application’s intrinsic memory request distribution,
and set the desired request distribution to a fixed DESIRED
distribution. The DESIRED distribution has decreasing size
of bins, as shown in the bottom right of Figure 11. As
shown in Figure 11, different applications have totally dif-
ferent request distributions. We use another hardware bin to
measure the post-Camouflage memory request distribution,
and find all the applications have the same distribution as
the DESIRED one. This result shows that Camouflage can

astar bzip gcc
h264ref

gobmk libqt
sjeng mcf

hmmer
omnetpp

apache
GEOMEAN

1.0

1.1

1.2

1.3

1.4

1.5

1.6
Pr

og
ra

m
 S

pe
ed

up

1.05

1.00

1.11

1.01
1.03

1.00

1.05

1.48

1.12

1.47

1.09

1.12

Figure 12. Performance Gain of Request Camouflage Compared with
Static Rate Limiter

astar+astarx3
bzip+astarx3

gcc+astarx3

h264ref+astarx3

gobmk+astarx3

omnetpp+astarx3

hmmer+astarx3
mcf+astarx3

libqt+astarx3
sjeng+astarx3

apache+astarx3
GEOMEAN

0

1

2

3

4

5

P
ro

g
ra

m
 A

v
e
ra

g
e
 S

lo
w

d
o
w

n

Temporal Partitioning

Fixed Service with Bank Partitioning

Camouflage

(a) astar

astar+mcfx3
bzip+mcfx3

gcc+mcfx3

h264ref+mcfx3
gobmk+mcfx3

omnetpp+mcfx3
hmmer+mcfx3

mcf+mcfx3
libqt+mcfx3

sjeng+mcfx3

apache+mcfx3
GEOMEAN

0

1

2

3

4

5

P
ro

g
ra

m
 A

v
e
ra

g
e
 S

lo
w

d
o
w

n

Temporal Partitioning

Fixed Service with Bank Partitioning

Camouflage

(b) mcf
Figure 13. Workload Average Slowdown Compared with TP and FS
(with bank partitioning only). Workloads under protection are astar and
mcf respectively.

camouflage any request distribution into a totally different
one, mitigating memory timing channel attack at I/O pins
and memory buses.

2) Performance Evaluation: We evaluate Camouflage’s
speedup compared with a static memory request shaper.
The static shaper limits a program’s memory requests into
a constant rate but it cannot take into account inter-arrival
times. By comparing program speedups, we show Camou-
flage always outperforms the static rate limiter with the same
average bandwidth. In this experiment, we choose 1GB/s
bandwidth for each application. The constant rate limiter
only allows 1GB

REQUEST SIZE requests/second of request
rate, which Camouflage is able to shape the requests into
a distribution which adds up to 1GB/s.

Figure 12 shows the performance gain that Camouflage
achieves. Compared to constant rate shaper, Camouflage has
1.12x better geometric mean. This shows Camouflage does
not compromise performance while traffic shaping.

F. Bi-Directional Camouflage Performance

In this section, we evaluate BDC by having request
shapers for applications under protection and have a re-
sponse shaper for the adversary application. We first run

Algorithm 1 Covert Channel Attack
1: procedure GENERATE COVERT CHANNEL
2: Keylen← length of Key
3: top:
4: if i > Keylen then return 0
5: end if
6: loop:
7: if Key(i) = 1 then
8: while ElapsedT ime < PULSE do
9: BigBuffer[NextCacheLine]← 1. . Generate cache

miss for duration of time
10: NextCacheLine ← NextCacheLine +

CacheLineSize.
11: end while
12: goto loop.
13: close;
14: else
15: while ElapsedT ime < PULSE do
16: DoNothing
17: end while
18: end if
19: end procedure

the workload w(ADVERSARY, astar) with an online genetic
algorithm to configure the hardware bin configurations of the
shapers. The genetic algorithm optimizes overall through-
put of the workload. In order to evaluate Camouflage’s
effectiveness in request/response shaping when workload
traffic pattern changes, we apply the same configuration to
workload w(ADVERSARY, mcf), and evaluate the through-
put under traffic shaping. This mimics a workload traffic
pattern change from astar to mcf. Camouflage keeps fixed
request/response inter-arrival distributions. Then we first run
workload w(ADVERSARY, mcf) with the online genetic
algorithm and apply the optimal configuration for workload
w(ADVERSARY, astar). As we shape both requests and
responses, the response distribution is guaranteed to be the
same for these two workloads. We run the experiments, and
find the response distributions match in two workloads.

We compare Camouflage with TP [15] where each ap-
plication is allocated a fixed timing channel in the memory
scheduler and FS [16] with bank partitioning. As we use only
one rank for all the evaluation section, we did not evaluate
FS with rank partitioning. As shown in Figure 13(a) and
Figure 13(b), Camouflage has minimal impact on workload
throughput compared with TP and FS. Camouflage provides
better performance than FS because FS still requires a
constant memory request rate while Camouflage does not.

G. Covert Channel Prevention
In order to empirically evaluate Camouflage, we imple-

ment an algorithm to conduct a covert channel attack. The
program will generate memory requests for a fixed amount
of time (PULSE) by writing data to different cache lines if
the indexed bit in the key is one, otherwise, it does nothing
until the same fixed amount of time has passed. Algorithm 1
shows the pseudocode for this algorithm.

We use Camouflage request shaping as a demonstration

0 100000 200000 300000 400000 500000 600000

0 100000 200000 300000 400000

Cycles

Cycles

Figure 14. Memory Traffic Before and After Camouflage.
Key:32hx2AAAAAAA.

0 100000 200000 300000 400000 500000 600000 700000

0 100000 200000 300000 400000 500000

Cycles

Cycles

Figure 15. Memory Traffic Before and After Camouflage.
Key:32hx01010101.

of covert channel protection. From Figure 14 and Figure 15,
we can see Camouflage hides the intrinsic traffic effectively
by shaping the memory distribution into another distribution.
During the idle period, Camouflage detects unused credits
and generates fake memory traffic as a result.

V. RELATED WORK
Covert Channels and Side Channels: Processor archi-

tecture features such as simultaneous multithreading, branch
prediction, and shared caches inadvertently introduce covert
channels and side channels [31], [32]. Camouflage comple-
ments existing covert channel and side channel protection
techniques, preventing memory timing attacks without com-
promising performance.

Memory Attacks: Data encryption and oblivious
RAM [17] have been used to prevent leaking sensitive in-
formation. While data encryption does not prevent informa-
tion leakage through statistical inference, ORAM conceals
memory access pattern by continuously shuffling and re-
encrypting data as they are accessed. Camouflage focuses
on memory timing channel protection, and can be combined
with data encryption and ORAM for other security aspects.

Constant Rate Shaping: A secure processor, Ascend [18]
prevents leakage over the ORAM timing channel by forcing
ORAM to be accessed at a single, strictly periodic rate. A
later enhanced version [14] splits programs into coarse-grain
time epochs and chooses a new ORAM rate out of a set of
allowed rates at the end of each epoch. These two design
points are subsets of Camouflage. Camouflage provides a
larger security and performance tradeoff space as it is more
flexible in determining memory traffic inter-arrival times.

Interference Reduction: There has been a growing in-
terest in the study of timing channel attacks and mit-
igation through micro-architectural states, such as cache
interference [33], [34], branch predictors [35], and on-chip
networks. Non-interference in various hardware resources,
such as memory controllers and NoCs, have been stud-
ied to prevent timing channels. Ethearal proposed a time-
division multiplexed virtual circuit switching network [36] to
provide guaranteed services for applications with real-time
deadlines. Temporal Partitioning (TP) divides the memory
scheduling window into multiple security domains, and
only allows applications in the same security domain to be
scheduled in the same time window. Camouflage provides a
scalable solution compared with TP, as application perfor-
mance is not influenced by the number of security domains.
A bandwidth reservation technique is proposed [37] to
avoid information leakage. Camouflage leverages statistical
memory inter-arrival time distributions, rather than relying
on a fixed scheduling policy.

Fixed Service: FS [16] is a memory controller design that
guarantees memory requests to be issued at a constant rate.
Combined with spatial partitioning (bank/rank partitioning),
it improves performance compared with TP. It requires mod-
ifications to the memory controller which Camouflage does
not necessarily require. It does not handle timing leakage
in shared channels such as NoCs and the path to and from
memory nor does it work well with thread counts greater
than the number of available memory partitions. Camouflage
can furthermore guarantee fixed response distribution in face
of request distribution change.

MITTS: MITTS [13] is a distribution-based memory
bandwidth shaper that is designed for manycore memory
system fairness/throughput and fine-grain pricing in IaaS
systems. Camouflage is an extension of MITTS that ad-
dresses the memory system’s timing-channel leakage prob-
lem. Unlike MITTS, Camouflage places traffic shapers at
different locations (both request and response channels). Un-
like MITTS, Camouflage generates fake traffic for security
purposes which generally hurts performance and is antithet-
ical to MITTS’ purpose. Finally, Camouflage communicates
with the memory controller in certain circumstances to rate
limit responses and prevent overflow on the return channels.

VI. CONCLUSION
Camouflage is a hardware mechanism designed to mit-

igate memory channel timing attacks. Camouflage shapes
memory requests/responses inter-arrival time into a pre-
determined distribution, even creating additional traffic if
needed. This prevents malicious parties from inferring infor-
mation from another security domain by probing the mem-
ory bus, or analyzing memory response rate. We compare
Camouflage with Temporal Partitioning, constant rate limit-
ing (Ascend) and Fixed Service (with bank partitioning). We
find Camouflage on average improves program performance
by 1.5x, 1.12x, and 1.32x respectively. Camouflage provides

a larger performance/security tradeoff space than CS, TP,
and FS. We analyze the mutual information which can be
communicated with Camouflage in place. We also show
Camouflage defends against a real covert channel attack.

ACKNOWLEDGEMENT

This work was partially supported by the NSF under
Grants No. CCF-1217553, CCF-1453112, CCF-1438980,
and CNS-1409415, AFOSR under Grant No. FA9550-14-
1-0148, and DARPA under Grant No. N66001-14-1-4040.

REFERENCES

[1] Y. Zhang et al., “Secure information and resource sharing in
cloud,” ser. CODASPY ’15. New York, NY, USA: ACM,
2015, pp. 131–133.

[2] J. Demme et al., “Side-channel vulnerability factor: A metric
for measuring information leakage,” in ISCA, ser. ISCA ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp.
106–117.

[3] Y. Zhou et al., “CASH: Supporting IaaS customers with a
sub-core configurable architecture,” ser. ISCA, 2016.

[4] M. Shahrad and D. Wentzlaff, “Availability knob: Flexible
user-defined availability in the cloud,” in SoCC, ser. SoCC
’16. New York, NY, USA: ACM, 2016, pp. 42–56.

[5] G. E. Suh et al., “Secure program execution via dynamic
information flow tracking,” SIGARCH Comput. Archit. News,
vol. 32, no. 5, pp. 85–96, Oct. 2004.

[6] J. W. Lee et al., “A technique to build a secret key in
integrated circuits for identification and authentication appli-
cations,” in VLSI Circuits, 2004. Digest of Technical Papers.
2004 Symposium on, June 2004, pp. 176–179.

[7] The Intel Safer Computing Initiative: Bulding Blocks for
Trusted Computing, Intel, 2006.

[8] D. L. C. Thekkath et al., “Architectural support for copy
and tamper resistant software,” in ASPLOS, ser. ASPLOS IX,
2000, pp. 168–177.

[9] G. E. Suh et al., “Aegis: Architecture for tamper-evident and
tamper-resistant processing,” in ICS, ser. ICS ’03, 2003, pp.
160–171.

[10] C. W. Fletcher et al., “A secure processor architecture for
encrypted computation on untrusted programs,” in STC, ser.
STC ’12, 2012, pp. 3–8.

[11] Y. Wang and G. E. Suh, “Efficient timing channel protection
for on-chip networks,” ser. NOCS ’12, 2012, pp. 142–151.

[12] H. M. G. Wassel et al., “Surfnoc: A low latency and prov-
ably non-interfering approach to secure networks-on-chip,” in
ISCA, ser. ISCA ’13, 2013, pp. 583–594.

[13] Y. Zhou and D. Wentzlaff, “MITTS: memory inter-arrival
time traffic shaping,” in ISCA 2016, Seoul, South Korea, June
18-22, 2016, 2016, pp. 532–544.

[14] C. Fletcher et al., “Suppressing the oblivious ram timing
channel while making information leakage and program effi-
ciency trade-offs,” in HPCA, Feb 2014, pp. 213–224.

[15] Y. Wang et al., “Timing channel protection for a shared
memory controller,” in HPCA, 2014, pp. 225–236.

[16] A. Shafiee et al., “Avoiding information leakage in the mem-
ory controller with fixed service policies,” ser. MICRO-48.
New York, NY, USA: ACM, 2015, pp. 89–101.

[17] E. Stefanov et al., “Path ORAM: An extremely simple obliv-
ious ram protocol,” in CCS, ser. CCS ’13. New York, NY,
USA: ACM, 2013, pp. 299–310.

[18] C. Fletcher et al., “A secure processor architecture for en-
crypted computation on untrusted programs.”

[19] J. Balkind et al., “Openpiton: An open source manycore
research framework,” in ASPLOS, ser. ASPLOS ’16. New
York, NY, USA: ACM, 2016, pp. 217–232.

[20] Y. Zhou and D. Wentzlaff, “The sharing architecture: Sub-
core configurability for iaas clouds,” in ASPLOS, ser. ASP-
LOS ’14. New York, NY, USA: ACM, 2014, pp. 559–574.

[21] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A
cycle accurate memory system simulator,” Computer Archi-
tecture Letters, vol. 10, no. 1, pp. 16 –19, jan.-june 2011.

[22] N. Binkert et al., “The GEM5 simulator,” SIGARCH Comput.
Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[23] S. Guiasu, Information Theory with Applications. New York:
McGraw-Hill, 1977.

[24] L. Sankar et al., “Utility-privacy tradeoffs in databases: An
information-theoretic approach,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 8, no. 6, pp. 838–852,
June 2013.

[25] J. Dautrich and C. Ravishankar, “Tunably-oblivious memory:
Generalizing oram to enable privacy-efficiency tradeoffs,” ser.
CODASPY ’15. ACM, 2015, pp. 313–324.

[26] H. Yamamoto, “A source coding problem for sources with
additional outputs to keep secret from the receiver or wiretap-
pers (corresp.),” IEEE Transactions on Information Theory,
vol. 29, no. 6, pp. 918–923, Nov 1983.

[27] L. Sweeney, “K-anonymity: A model for protecting privacy,”
Int. J. Uncertain. Fuzziness Knowl.-Based Syst., vol. 10, no. 5,
pp. 557–570, Oct. 2002.

[28] A. Wyner and J. Ziv, “The rate-distortion function for source
coding with side information at the decoder,” IEEE Trans-
actions on Information Theory, vol. 22, no. 1, pp. 1–10, Jan
1976.

[29] P. Cuff and L. Yu, “Differential privacy as a mutual informa-
tion constraint,” CoRR, vol. abs/1608.03677, 2016.

[30] L. Subramanian et al., “MISE: Providing performance pre-
dictability and improving fairness in shared main memory
systems,” in HPCA, 2013, pp. 639–650.

[31] J. Chen and G. Venkataramani, “Cc-hunter: Uncovering
covert timing channels on shared processor hardware,” in
MICRO, Dec 2014, pp. 216–228.

[32] Z. Wang and R. B. Lee, “Covert and side channels due to
processor architecture,” ser. ACSAC ’06. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 473–482.

[33] O. Aciiçmez, “Yet another microarchitectural attack:: Exploit-
ing i-cache,” ser. CSAW ’07, 2007, pp. 11–18.

[34] Z. Wang and R. B. Lee, “New cache designs for thwarting
software cache-based side channel attacks,” in ISCA, ser.
ISCA ’07, 2007, pp. 494–505.

[35] O. Aciiccmez et al., “Predicting secret keys via branch
prediction,” ser. CT-RSA’07, 2006, pp. 225–242.

[36] K. Goossens, J. Dielissen, and A. Radulescu, “Thereal net-
work on chip: Concepts, architectures, and implementations,”
IEEE Des. Test, vol. 22, no. 5, pp. 414–421, 2005.

[37] A. Gundu et al., “Memory bandwidth reservation in the cloud
to avoid information leakage in the memory controller,” ser.
HASP ’14. New York, NY, USA: ACM, 2014, pp. 11:1–11:5.

