
Proceedings on Privacy Enhancing Technologies ..; .. (..):1–17

Michael Freyberger*, Warren He, Devdatta Akhawe, Michelle L. Mazurek, and Prateek Mittal

Cracking ShadowCrypt: Exploring the
Limitations of Secure I/O Systems in Internet
Browsers
Abstract: An important line of privacy research is in-
vestigating the design of systems for secure input and
output (I/O) within Internet browsers. These systems
would allow for users’ information to be encrypted and
decrypted by the browser, and the specific web appli-
cations will only have access to the users’ information
in encrypted form. The state-of-the-art approach for a
secure I/O system within Internet browsers is a sys-
tem called ShadowCrypt created by UC Berkeley re-
searchers [23]. This paper will explore the limitations of
ShadowCrypt in order to provide a foundation for the
general principles that must be followed when design-
ing a secure I/O system within Internet browsers. First,
we developed a comprehensive UI attack that cannot be
mitigated with popular UI defenses, and tested the effi-
cacy of the attack through a user study administered on
Amazon Mechanical Turk. Only 1 of the 59 participants
who were under attack successfully noticed the UI at-
tack, which validates the stealthiness of the attack. Sec-
ond, we present multiple attack vectors against Shadow-
Crypt that do not rely upon UI deception. These attack
vectors expose the privacy weaknesses of Shadow DOM
— the key browser primitive leveraged by ShadowCrypt.
Finally, we present a sketch of potential countermea-
sures that can enable the design of future secure I/O
systems within Internet browsers.

DOI Editor to enter DOI
Received ..; revised ..; accepted ...

*Corresponding Author: Michael Freyberger: Princeton
University, E-mail: mdf3@alumni.princeton.edu
Warren He: UC Berkeley, E-mail: _w@eecs.berkeley.edu
Devdatta Akhawe: Dropbox, E-mail:
dev.akhawe@gmail.com
Michelle L. Mazurek: University of Maryland, E-mail:
mmazurek@cs.umd.edu
Prateek Mittal: Princeton University, E-mail: pmit-
tal@princeton.edu

1 Introduction
Privacy Concerns in Web Applications. Smart-
phone and web applications have transformed peoples’
lives. In just over a decade, Facebook now has 1.23 bil-
lion daily active users [1]. Gmail, YouTube, and Google
Maps similarly all have more than 1 billion daily ac-
tive users [27]. Even smaller companies, like Wunderlist,
which is a to-do list manager, has over 13 million users
who have created more than 1 billion to-dos [34]. While
all of these applications are incredibly useful, they all
rely upon the user trusting them with sensitive data.

We must trust Google will not leak our sensitive
information regarding our meetings, tasks, and emails.
Recently, Google was found to be collecting users’ mo-
bile device locations even when the users opted out of
location services [11]. We must trust Facebook will not
allow employees to spy on our conversations with our
friends. However, just a few years ago, a bug at Face-
book led to a leak of 6+ million users’ data [22]. This
is just one of the many headlines regarding information
leaks.

Some popular applications require access to users’
sensitive information. For instance, Google Maps needs
to know the user’s home address in order to navigate
him home. However, many applications do not actu-
ally need to know users’ sensitive information in order
for their product to work. Wunderlist does not need
to know any of the contents of the 1+ billion to-dos
on their platform. All of this content can be encrypted,
and ought to be encrypted. However, in many cases, the
business incentives of corporations may not be aligned
with customers’ expectation of privacy. Users need to
be in control of their information in order for them to
be confident their data is secure.

Browser Based Secure I/O. One important step
toward putting users back in control of their information
is creating a framework that allows for users’ informa-
tion to be encrypted before being accessed by the web
application. This framework would allow a user to enter
text on any web application, and the untrusted web ap-
plication would only be able to access an encrypted ver-

Cracking ShadowCrypt 2

sion of the user’s information. The user would have ex-
clusive access to his plaintext information. This frame-
work requires Internet browsers to support secure input
and output (I/O). The state-of-the-art approach for a
secure I/O system within Internet browsers is a sys-
tem called ShadowCrypt created by UC Berkeley re-
searchers [23]. ShadowCrypt transforms all input fields
into secure input fields. Secure input fields are modified
in two important ways. First of all, ShadowCrypt adds a
lock icon, a border color, and a passphrase to all secure
input fields, which signal to the user that the input has
been made secure. Secondly, ShadowCrypt modifies the
HTML and JS of the page so that the web application
can only access the users’ information in an encrypted
format.

1.1 Contributions

We first demonstrate practical attacks against Shadow-
Crypt that bypass its security features. We validated our
attacks using a real-world implementation of Shadow-
Crypt and via a user study administered on Mechanical
Turk. Finally, we present a sketch of potential counter-
measures against our attacks. By using ShadowCrypt
as a case study, our work highlights important guid-
ing principles for designing secure I/O within Internet
browsers.

User Interface Attack. Addressing user interface
(UI) attacks — attacks that rely upon deceiving the
user through a manipulation of UI elements — is an
important part of the threat model for a secure I/O
system. We demonstrate, through a combination of at-
tacks, that ShadowCrypt is vulnerable to a serious user
interface attack. ShadowCrypt provides in-content se-
curity indicators for all secure input nodes, which are
input nodes that do not reveal the user’s information to
the web application. All secure input nodes have a lock
placed at the end of the input, a user specified border
color, and a user specified passphrase. Our attack mim-
ics these in-content security indicators in order to trick
the user into thinking an insecure input node is secure.
Our user interface attack is significant because it cannot
be mitigated using existing UI defenses. In Section 7, we
discuss why InContext [24] does not prevent our attack.
The detailed steps of the UI attack provide insight into
how a secure I/O system can be designed such that it
is robust against UI attacks. The attack is comprised of
the following aspects:

– Render an unencrypted input field onto the
web page by bypassing the ShadowCrypt scheme of
converting all input fields into secure input fields.

– Position the unencrypted input field directly
on top of a secure input field so that the unen-
crypted input field looks and feels secure based on
the positioning of the lock and the border color.

– Guess the user’s selected border color used
by ShadowCrypt when the input is focused and the
border has become thicker.

– Prevent the user from detecting that his infor-
mation was intercepted by triggering ShadowCrypt
to encrypt the plaintext after it has been read by
the attacker.

The crux of our user interface attack is that it tricks
users into interacting with an insecure element by re-
drawing the insecure element as a secure element. This
is conceptually different than typical UI attacks, such
as clickjacking; rather than trying to lure the user into
interacting with a sensitive element without them real-
izing it (as previous attacks do), our attack is making
the user interact with a non-sensitive element, hoping
the user believes the element is sensitive.

Attack Evaluation. We tested the UI attack
through a user study administered on Amazon Mechan-
ical Turk. Of the 105 users who completed the study
successfully, 46 users were not under attack and 59 were
under attack. Of the 59 users who were under attack,
only 1 user identified the attack. This user study vali-
dates the stealthiness of the user interface attack. We
discuss the design of the user study and our results in
Section 5 and 6 respectively.

Shadow DOM Analysis. In addition to the user
interface attack, this paper presents a deep study of
Shadow DOM, the browser primitive that empowers
ShadowCrypt. We present additional attacks directly
against ShadowCrypt’s use of Shadow DOM. These at-
tacks allow us to directly access the plaintext informa-
tion via client side JavaScript code, which is the most
important attack vector to prevent in a secure I/O sys-
tem in the browser. Therefore, these attacks demon-
strate the privacy guarantees of Shadow DOM, which
ShadowCrypt relies upon, are insufficient.

Countermeasures Sketch. In addition to demon-
strating the various types of attacks and validating their
effectiveness, we discuss a sketch of potential counter-
measures against these attacks. An important takeaway
from our analysis is that secure I/O systems must use
browser primitives that are explicitly designed for secu-
rity and privacy. Our proposal is to put users’ text into

Cracking ShadowCrypt 3

a separate origin, which would be isolated via the same
origin policy. We present how iframes can be used to
host all of the users’ plaintext information, rather than
Shadow DOM elements. The same origin policy that is
enforced by modern web browsers will allow for all of the
user events that take place and the data that is stored
within the iframe to never leak information to the par-
ent web application. Additionally, our countermeasure
analysis presents how systems can be developed such
that they are robust against UI attacks. The most im-
portant aspect of the UI defense is that it must be able
to analyze the web page and alert the user of a UI attack,
rather than simply rely upon in-page UI indicators.

Impact and Significance. Our work highlights
significant UI vulnerabilities in ShadowCrypt. Even
though ShadowCrypt has not witnessed widespread de-
ployment, we believe it is critical to understand the se-
curity of such mechanisms, which could influence the
design of ongoing research systems [7, 13, 17, 19, 28–
30, 36] and future technologies. Our work demonstrates
that it is important for any system that aims to secure
browser-based I/O (even beyond ShadowCrypt) to ex-
plicitly consider UI attacks in its threat model. Given
the vulnerabilities that we have identified, and the cor-
responding lessons learned, we hope that our findings
motivate the design and deployment of the next gen-
eration of secure browser-based I/O systems that are
resilient to UI based attacks.

2 Background and System Model
Creating a secure I/O system within web browsers re-
quires an understanding of the different components of
a web application and how they interact. Next, we dis-
cuss fundamental implementation details of web appli-
cations, our design goals, and our system/threat model.

2.1 Client Server Model

A web application comprises many different compo-
nents. The server is typically comprised of a database
and a front-end layer. The front-end layer is respon-
sible for handling calls made to the server, querying
the database, and delivering the results to the client.
When the client requests to view the overall website, the
server responds to the client with HTML, CSS, and JS
files that are used to create the web application on the
client. The client is the web browser, which is respon-

sible for creating the Document Object Model (DOM)
given HTML files and executing the JavaScript files.
The DOM is a tree structured representation of the user
interface. JavaScript files can be used to add animation
to the site and listen to user events such as clicks or
keypresses. JavaScript files have APIs that allow them
to directly manipulate the DOM.

2.2 Chokepoints

When considering a user’s privacy, it is important to
consider which of these components have access to the
user’s data in plaintext. Oftentimes, web applications
are built such that every component has access to the
user’s information. If the application has a stronger con-
cern for security and privacy, it will encrypt data at one
of the chokepoints that are labeled in Figure 1 by utiliz-
ing a particular framework or application that encrypts
the application’s information.

Fig. 1. The client server model. A web application can encrypt
data at one of the above chokepoints (A, B, or C).

Server-Database Interface. Systems in this cat-
egory encrypt the data before it reaches the database
server, but allow server-side and client-side appli-
cation code access to plaintext data. For instance,
CryptDB [32] encrypts all of the web application’s in-
formation before it is stored in the database. Web appli-
cations that use CryptDB or other forms of encrypted
databases operate at chokepoint “C”.

When executing at chokepoint “C”, despite stor-
ing all of the information securely, all of the server
code has access to the plaintext information. In other
words, when the front-end logic makes a request to
the database, the user’s data will be returned to the
front-end component in plaintext. Therefore, the user
is forced to trust all of the components to the left of
the chokepoint to not handle their data maliciously or
inappropriately. Therefore, the trusted computing base
(TCB) includes all components except for the database.
Applications that only employ database encryption are
protected against database attacks, but do not provide

Cracking ShadowCrypt 4

strong privacy guarantees since any employee with the
database keys can access the user’s private information.

Client-Server Interface. Systems in this category
only allow for their client side application code (in-
cluding Javascript/HTML) to have access to the users’
plaintext information. The encyption takes place at
chokepoint “B”. All components to the left of choke-
point “B” are part of the TCB and all components to
the right of chokepoint “B” only access the encrypted
information. An example of an application that executes
at chokepoint “B” is Mylar [33].

It is important to understand there is a distinc-
tion between chokepoint “B” and network communica-
tion that uses HTTPS. An application that operates
at chokepoint “B” encrypts all of the users informa-
tion prior to sending the data to their backend server.
Therefore, the backend server only has access to the en-
crypted data. With HTTPS, the users’ information is
encrypted prior to sending the data over the network
to the backend server, but upon arrival the data is de-
crypted. Therefore, with HTTPS the backend server has
access to the plaintext data.

Client-Web Application Code Interface. The
final chokepoint in Figure 1, chokepoint “A”, is located
between the client (browser) and untrusted web appli-
cation code (JavaScript/HTML). In this case, the clien-
t/browser is fully in control of the information provided
to the web application. All web application components
(including JavaScript/HTML) only have access to the
encrypted forms of the information, and the client has
exclusive access to the plaintext information. This is the
chokepoint at which a secure I/O system must execute.
While chokepoints “C” and “B” allow some components
to be removed from the TCB, by executing at choke-
point “A” the TCB is as small as possible.

2.3 Design Goals

Executing at chokepoint “A” is not the only requirement
for a secure I/O system. These are the following goals
that must be addressed in order to build a secure input
and output system.

Client Side Component Isolation. All client
side code that belongs to the parent site must be pre-
vented from accessing the plaintext information as it is
being entered by the user, or when it is being rendered
as output by the browser. The browser must be able
to read the plaintext information, as it must be able
to render the plaintext, but all client side code must
be prevented from accessing the information. Therefore,
there must be a strong boundary that exists between

the client side components of the parent site and the
client side components that represent the secure input
and output fields.

Key Management. The information must be en-
crypted by one of the user’s secret keys. This secret key
must only be known by the user and anyone with whom
the user shares this key. The keys will be managed by
the browser, and it is critical the keys cannot be ac-
cessed by any other application on the user’s device or
web application running inside of the browser.

UI Defenses. The system must be robust against
user interface attacks. The system must detect a user in-
terface attack and notify the user before the user enters
private information into an insecure field.

Usability. The system must not interfere with the
usability of the site. The performance of web applica-
tions must not be significantly impacted and the user
interface must not be drastically changed by the secure
input and output fields on the site. Furthermore, the
design of the system must be intuitive so that register-
ing a web application with the system is simple. The
usability of the secure I/O system must not be a barrier
that inhibits users from adopting the feature.

2.4 Threat & Trust Model

Our primary threat is that of a malicious web applica-
tion attempting to exploit the user’s personal informa-
tion. Therefore, the attacker in this case is the web ap-
plication itself. The aim of the attacker is to bypass the
secure I/O system that is implemented by the browser.

The system must be designed in order to prevent all
confidentiality attacks. As long as the client side web ap-
plication cannot access the plaintext information, net-
work attackers and server side attackers are not of any
concern in regards to confidentiality because the infor-
mation will be encrypted and the keys will be stored
securely in the user’s browser.

The system must also be robust against integrity
attacks. If the encrypted information is tampered with
by an attacker on the client side, network, or server side,
the system should identify the attack and notify the user
that his information has been corrupted.

The system does not consider attacks against avail-
ability. As with many systems, preventing availability
attacks is near impossible. For example, a malicious web
application can always drop entries with encrypted data
(specially since encrypted data is explicitly marked as
such in ShadowCrypt like systems).

This system only considers applications that can
function with access to only ciphertext. A todo list man-

Cracking ShadowCrypt 5

ager is an example of such an application. A banking
application on the other hand needs access to the plain-
text data, and is therefore outside of the scope of this
paper.

The TCB for this system includes the browser, be-
cause the browser is ultimately responsible for rendering
the plaintext information. Furthermore, given we must
trust the browser, everything beneath the browser must
be trusted, this includes the OS and any I/O peripher-
als. This system does not need to trust any of the client
side code or the sites that it is executing on.

We assume that the browser reliably isolates web
applications from each other (following the same-origin
policy) and that the browser’s internals are isolated
from all sites. Google Chrome implements a multi-
process system [35], based on earlier research [21], that
provides strong isolation between untrusted web content
of different origins and the browser itself. In Chrome,
extensions are modeled as origins that have additional
permissions over web content, but, like web content, are
still isolated from one another and from the browser
itself. Extensions’ code runs separately from web ap-
plications’ code, and we assume that they are securely
isolated. However, extensions that alter pages, such as
ShadowCrypt, share the same document with web con-
tent; we do not assume that elements added to the page
by an extension are isolated from the web application
(although ShadowCrypt attempts to do this).

The attacker (such as a malicious or compromised
web application) is capable of tampering with client side
JavaScript code in order to bypass or block the secure
I/O mechanism; thus client side JavaScript code is con-
sidered untrusted. However, note that client side Java-
Script code cannot access the user’s sensitive informa-
tion that is stored inside the browser such as the user’s
keys and configuration settings, due to access control
primitives deployed in modern browsers.

2.5 Shadow DOM

The most important primitive leveraged by Shadow-
Crypt is the Shadow DOM. The Shadow DOM provides
the ability to create a separate encapsulated DOM at-
tached to an existing element. This helps programmers
avoid breaking sites due to conflicting CSS selectors or
JavaScript variables [12]. In Figure 2, the input and
span element within the document tree are both shadow
hosts, which host their own shadow tree. Inside of the
shadow tree on the left is an input node encapsulated
from the rest of the document tree. When this page is

Fig. 2. Shadow DOM creates encapsulated DOMs hosted by an
element in the normal DOM.

rendered, the styling and placeholder value for the in-
put node in the Shadow DOM will be rendered rather
than the input in the document tree, which is acting as
the shadow host. This is the key idea behind Shadow-
Crypt. If the shadow tree can host the plaintext data,
the user will be able to interact with the site as normal.
If there can be a barrier placed between the shadow host
and its corresponding shadow tree, the plaintext infor-
mation will be encapsulated away from the client side
code entirely, and only the user of the application will
be able to see the plaintext information.

Creating Shadow Trees. A shadow tree is created
via JavaScript, and cannot be created directly via the
HTML of the page. Here is some sample code demon-
strating how to create a shadow tree.

1 <button>Hello, world!</button>
2 <script>
3 var host = doc.querySelector(’button’);
4 var treeRoot = host.attachShadow();
5 treeRoot.textContent = ’Hello from Shadow!’;
6 </script>

The main API call is attachShadow, which is ap-
plied to a DOM element. The DOM element that calls
attachShadow becomes the shadow host, as indicated by
the variable names. In this above example, the button
will render “Hello from Shadow” because the content
inside of the shadow tree is rendered rather than the
content in the shadow host.

3 ShadowCrypt
Overview. ShadowCrypt is a Chrome extension that
runs before each web page is loaded. ShadowCrypt
makes input text fields and corresponding output fields
secure by using the Shadow DOM to guard the DOM
boundary, ensuring client-side JavaScript cannot access
the user’s private information. In addition to guard-

Cracking ShadowCrypt 6

Fig. 3. An example site with a standard input field.

Fig. 4. The same site with the input field made secure by
ShadowCrypt. Notice the border around the input field, and
the lock on the right side of the input field.

ing the DOM boundary, ShadowCrypt modifies the UI
of the input field to demonstrate that the input field
has been made secure. Figure 3 and 4 demonstrate
how ShadowCrypt transforms the user interface of input
fields. ShadowCrypt adds a colored border to the input
field, and places a lock icon on the right side of the in-
put field. These UI modifications are used to signal to
the user that ShadowCrypt has secured the input field.

For each site registered with ShadowCrypt, there
are different configurable settings, demonstrated by Fig-
ure 5. The parameter that is most noticeable from the
user’s perspective is the key color, which is the color
of the lock used in the secure input fields. While this
may seem like an aesthetic choice, it is used a means of
authentication for the user.

Fig. 5. The ShadowCrypt options for each key. The configurable
settings include the key name, key color, note, and passphrase.

Authentication. ShadowCrypt uses the key color
and an associated passphrase, which hovers as a tooltip
over the lock, to signal to the user that a secure text
field is genuine. The user sets a color and passphrase,
known only to the ShadowCrypt extension, for each do-
main with which he plans to use ShadowCrypt. When
he sees his correct color and passphrase, the user can be
confident there is no attempt to spoof ShadowCrypt’s
secure text field.

In addition to the passphrase being displayed to
the user upon hovering over the lock, upon hitting the
keyboard shortcut CTRL-`, ShadowCrypt displays the
passphrase in a pop up input window. The pop up win-
dow along with the passphrase, which is set to “secret
passphrase”, is provided in Figure 6.

Fig. 6. ShadowCrypt provides an alternate means of entering
information into the input field through a pop up window. The
pop up window includes the user’s passphrase to prove to the
user the pop window was produced by ShadowCrypt.

Threat Model. The authentication mechanisms
that are put into place by ShadowCrypt may provide a
false sense of security against UI attacks. Even though
UI attacks were not included in the original Shadow-
Crypt threat model, we argue that UI attacks are impor-
tant attack vectors that must be considered for any sim-
ilar secure I/O framework. Furthermore, given Shadow-
Crypt makes an effort to prevent UI attacks through the
use of a lock icon, key color, and passphrase, we believe
it is important to determine to what extent these mea-
sures are actually protecting the user. This paper will
highlight in detail how ShadowCrypt is currently vul-
nerable to a UI attack. We have developed a detailed
UI attack that utilizes many different attack vectors,
and the final discussion will present different ways to
design a system that is protected against these attack
vectors.

Cracking ShadowCrypt 7

4 User Interface Attack

4.1 Rendering Unencrypted Nodes

The first step in the user interface attack is being able
to render an unencrypted input node onto the page.
ShadowCrypt attempts to detect all input fields on the
page, and make them secure; however, we uncovered
multiple methods that can be used to get past Shadow-
Crypt and render unencrypted input nodes on the page.

Undetected Input Types. The first method fo-
cuses on how ShadowCrypt selects which input nodes
to make secure. ShadowCrypt protects against text in-
puts, textareas, iframes, and nodes that have editable
content. This covers many of the possible ways client
applications can ask for user input; however, it does not
cover all of the input types. HTML5 added a few new
input types, and some of these types can be used to
directly receive user input. The input type search be-
haves just like a regular text input but is intended to be
used for search fields [3]. Therefore, a client application
can simply change all inputs with type “text” to type
“search” in order to bypass ShadowCrypt. While it is
conceivable for ShadowCrypt to also scan the page for
search entries, this attack vector can similarly be exe-
cuted using input elements of type email. In this case,
it is important for ShadowCrypt, and any future secure
I/O system, to not manipulate email fields, because a
user’s email is typically required for logging into an ap-
plication, and therefore, must be entered in plaintext.
Given email input types must not be protected in order
for the application to be usable, this method can be ap-
plied in order to render an unencrypted input field on
the page.

Undetected DOM Events. Rather than relying
upon these different input types, we also found a DOM
manipulation that ShadowCrypt is not currently listen-
ing to, which can lead to an input node being left un-
encrypted. If an input form is set to be the following:

1 <form class="new−task">
2 <input class="main−input" type="checkbox" name="text"

placeholder="New task" />
3 <input class="false−input" type="text" name="false−text"

placeholder="New task" />
4 <input type="submit" value="Submit">
5 </form>

ShadowCrypt will transform the input with class
false-input (line 3) into a secure input node, and ig-
nore the input with class main-input (line 2) because it
is of type “checkbox”. Now, once the page finishes ren-
dering, the user interface attack can run a very simple
line of JavaScript:

1 document.querySelector(’.main-input’).type = "text";

This will transform the input node which was originally
a checkbox into an input with type text. This modifi-
cation of the DOM can be listened to using a Mutation
Observer, and ShadowCrypt catches this modification,
but does not correctly transform this new input node
into a secure input node. Rather, the new input with
type text is left unencrypted. This demonstrates the dif-
ficulty of comprehensively securing all input nodes.

Input-Like Elements. Lastly, in addition to these
above methods, a client application could simply cre-
ate an input-like div element, that will not be noticed
by ShadowCrypt. A user could create a div, and reg-
ister all of the necessary click and keyboard events to
make the div feel like an input field. A good example
of this is a Google Document. Google Documents do
not use input fields, rather it is a div that has all of
the necessary listeners to take the user’s input. Simi-
larly, a client application can create a div that feels like
an input, and this input-like div would not be made se-
cure by ShadowCrypt. Therefore, no amount of patching
to ShadowCrypt will prevent a client application from
rendering an unencrypted input field on the page. This
makes it clear that a secure I/O system must operate
under the threat model that includes an attacker ren-
dering an unencrypted input field onto the page. Given
this attack vector, it is important for a secure I/O sys-
tem to have in-content security indicators that cannot
be mocked or a means of alerting the user that there is
an unencrypted input field on the page.

These above methods can lead to certain input
nodes being left visibly unencrypted; however, the at-
tack is not complete. A user that insists on having en-
crypted data will not use the application, reducing the
attack to a denial of service. The attack must appear
to have ShadowCrypt working properly in order to in-
tercept sensitive data. Next, we discuss approaches to
enhance the stealthiness of the attack.

4.2 Positioning

In order to make the user feel that he is interacting with
a secure input node, the unencrypted input node can be
placed directly on top of a secure input node. Therefore,
the secure input field’s border color will be present, and
the ShadowCrypt lock will be on the right side of the
input. Even though there is an unencrypted input node
being rendered directly on top of the secure input node,
it will still look exactly like a secure input field. Figure

Cracking ShadowCrypt 8

Fig. 7. This site is being attacked. The attack includes an input
field with type search, which makes this input field unencrypted.
It is positioned directly on top of the secure input field. The un-
encrypted input field is slightly less wide in order to not conflict
with the the lock at the end of the secure input.

7 shows the extent of the false input overlaid on the
secure input, along with the DOM trees.

In order to position the insecure input field on top
of the secure input field we had to set the insecure field’s
CSS properties to be:

1 .false−input { position: absolute; z−index: 10; }

Setting the position to be absolute allows for the po-
sition of the secure input field to not be affected by the
presence of the insecure input field. The z-index prop-
erty allows for the insecure input field to be rendered on
top of the secure input field. The width of the insecure
input field is set to be exactly 40px less than the width
of the secure input field, because the width of the lock
is 40px. Since the lock is not covered by anything, all of
the functionality of the lock is retained. With this type
of styling on the insecure input field, the user interface
attacks become impossible to notice. An advanced user
can explore the HTML source code to identify the at-
tack, but based on the UI alone, a user cannot tell there
are two input fields being rendered on top of each other.

4.3 Border

So far the look of the site has been perfectly masked, and
the user cannot identify the insecure input field. When
the user clicks into the input field, the user expects to
see the border become slightly thicker. ShadowCrypt
sets the border width to be 2px when the input field
is focused (the user clicks into the input field). How-
ever, now when the user clicks into the input field, the
ShadowCrypt input field is not focused because the in-
secure input field has been focused. There is no way to
force the secure input field into a focused state, because
there is no API for letting two disjoint elements be fo-
cused at the same time, so this portion of ShadowCrypt
cannot be mocked perfectly.

Fig. 8. Above: Benign, a 2px green border rendered by the
ShadowCrypt. Below: Under attack, a 1px green border and a
1px purple border around that.

In order to attempt to mock the thicker border, we
apply a border with a fixed color around the insecure
input field. In order to apply this border we added a
div before the insecure input field that is set to not
be displayed unless the insecure input field is focused.
The fixed color that we use as the extra border is the
key color that is set by default by ShadowCrypt. This
is because even though the key color is a configurable
parameter, we believe that a typical user will not ac-
tually change the default key color. Furthermore, even
if the user does change the key color, it is very diffi-
cult to notice that the extra thickness on the border is
a different color. The key color was originally included
in the ShadowCrypt design in order to make user inter-
face attacks more difficult; however, it seems that this
feature is not enough for the user to notice when an
attacker is getting in the way of the key color working
as it is supposed to. We present empirical validation for
our observations in Section 6.

Figure 8 demonstrates how similar the focused in-
puts are even when the extra thickness is a different
color. Note that text-based input type in our examples
is the dominant use case for a system like ShadowCrypt.
The user study, which is discussed in the next two sec-
tions, empirically demonstrates that users have a hard
time noticing the extra thickness is a fixed purple color.
A further discussion on how to best include UI markers
in a secure I/O system will be explored in Section 7.

4.4 Keyboard Shortcuts

ShadowCrypt comes with two keyboard shortcuts.
CTRL-` opens a new window in which the user can en-
ter text. This new window includes the user’s passphrase
as means of authentication. CTRL-SPACE is used to
toggle the input field between a locked and unlocked
state. Both of these keyboard shortcuts cannot be
mocked without access to the internals of the shadow
tree. The pop-up is a separate window where the at-
tacker has no control, so an overlay attack would not be
possible. We do not know the passphrase, so creating a
mock pop-up window with the correct passphrase would
be very difficult. In a similar manner to how we mocked
the thicker border, we could use the default passphrase

Cracking ShadowCrypt 9

in the pop-up window; however, in this case if the user
changes the passphrase, it will be very obvious some-
thing is broken/attacked.

CTRL-SPACE changes the state of the lock into
a grayed out lock and the default border is removed.
Even though the style of the unlocked input is static,
it cannot be mimicked because the functionality of the
grayed out lock cannot be replicated. We originally at-
tempted to listen for an input of CTRL-SPACE in the
insecure input field, and then simulate a CTRL-SPACE
event in the secure input field, which would change the
state of the lock without degrading the functionality at
all. However, creating key events with a specific key is
blocked by JavaScript APIs because the keyCode field
is read-only.

Since the keyboard shortcuts cannot be mocked,
whenever a user hits CTRL, we turn off the attack un-
til the user has submitted that particular entry. Here
is the code demonstrating the attack being turned off
upon CTRL being pressed:

1 ’keydown .false-input’: function(e) {
2 if (e.keyCode === 17) {
3 targetNode = document.querySelector(’#input-todo-new’);
4 falseNode = document.querySelector(’.false-input’);
5 targetNode.value = falseNode.value;
6 ev = new Event("input");
7 targetNode.dispatchEvent(ev);
8 $(’.false-input’).emulateTab();
9 $(’.false-input’).remove();

10 $(’.div-border’).remove();
11 } }

If CTRL is hit, we set the value of the secure input
host node to be the value that is currently in the in-
secure input node. We then trigger an input event on
the host node. This event will be captured by Shadow-
Crypt and interpreted as if it came from the internal
input node of the shadow tree because of event retar-
getting. This event will trigger ShadowCrypt to encrypt
this new value. By setting the value of the host node,
and then triggering the encryption process to take place,
it is as if the user has been entering the text into the
secure input field all along. We then simulate hitting
TAB so that the secure input field is focused, and we
finish the attack by removing the insecure input field
and the border that is used to mock the extra thick-
ness. Once the user has submitted the entry, the attack
is turned back on by adding the insecure input field and
the mock border div. With the insecure input field in
the DOM, we simulate hitting SHIFT-TAB, which will
return the focus to the insecure input field. These steps
allow for the attack to be turned off in a smooth manner
upon the user attempting to use the keyboard shortcuts,
which allows for the attack to not be noticed even when
the user uses one of the keyboard shortcuts.

4.5 Man in the Middle

With the attack as it stands the user will most likely
be tricked into entering his information into an inse-
cure input field because he thinks it is secure. There-
fore, masking the secure input is complete. The final
step requires mocking the secure output. Each output
 is highlighted with the user’s key color. Once
again, we do not have access to the user’s key color, so
this step is difficult. However, rather than attempting
to highlight each secure output, for each entry we store
both the plaintext and the ciphertext (which we obtain
by triggering the ShadowCrypt encryption scheme) in
the database. Then we only return the ciphertext to the
client so that ShadowCrypt’s secure output works as ex-
pected and we do not have to mock anything for secure
output to work as expected. Therefore, this attack acts
as a man-in-the-middle attack as we gain access to the
plaintext information, and then allow for ShadowCrypt
to work as expected when rendering the output.

4.6 Summary of UI Attack

The key to the UI attack is making the user believe he
is interacting with a secure input node, when in fact
the input node is insecure. First, we managed to bypass
ShadowCrypt’s input detection schemes in order to ren-
der an insecure input node onto the page. Next, we ren-
dered a secure input node directly beneath the insecure
input node, which allowed for the insecure input node
to appear to have a lock indicator, which would trick
the user into believing the insecure input node was ac-
tually secure. We were unable to perfectly imitate the
secure input node; however, we were able to mock the
important security indicators allowing for our UI attack
to be essentially undetectable. In order to measure the
stealthiness of the attack we administered a user study
on Amazon Mechanical Turk. The design of the study
will be covered in Section 5 and the results will be cov-
ered in Section 6.

5 User Study Design
Our user study was designed with two parallel goals:
to evaluate the usability of ShadowCrypt (which was
not evaluated in the original paper) and to examine the
effectiveness of the UI attacks identified in Section 4.

To do this, we implemented a sample application to
work with ShadowCrypt. In an online study with 105

Cracking ShadowCrypt 10

participants, we asked participants to first use Shadow-
Crypt within this sample application and then attempt
to determine whether an experimental version of the ap-
plication was compromised. Overall, we aim to evaluate
the stealthiness of our user interface attack.

We recruited 105 participants via the Mechanical
Turk platform. Following best practices, we required
participants to have above 95% approval rating, and to
have completed 100 approved human intelligence tasks
(HITs). The survey took less than 30 minutes to com-
plete, and we paid the participants $3.50. We sought
permission from our Institutional Review Board (IRB)
to conduct the study; however, this study was deter-
mined to not be human subjects research as defined by
DHHS regulations.

5.1 Sample Application

Our sample application is a to-do list manager, strongly
based on the sample Meteor application [5]. This appli-
cation allows users to create an account, and then once
logged in to create to-do lists and add tasks to each
list. We selected a to-do list manager as our sample
application since it focuses on text-based input types,
which is the dominant use case for a system like Shadow-
Crypt [23].

5.2 Survey Design

Using the sample application. To begin, the partic-
ipant joins the sample application.1 Upon registering,
the participant is instructed to create a few lists and
a few tasks per list in order to gain a deeper under-
standing of the application. In order to measure the user
experience of ShadowCrypt, we first measure the user
experience of the to-do list application without Shadow-
Crypt. We ask participants to agree or disagree with five
statements on a 5-point Likert scale, including “Agree
or Disagree: Using the to-do list application was fun”
and “Agree or Disagree: adding a task on the to-do list
application was difficult” (full list of questions in Ta-
ble 2).

Using ShadowCrypt. The next section walks
the participant through installing ShadowCrypt. In
order for the participant to understand how to use
ShadowCrypt, and why it is useful, we created a

1 The full user study can be found at https:
//docs.google.com/document/d/10FSaJfjPd4zjozT_2_-
947qdv2Y74Aljguvs64_6lFA

tutorial video. The tutorial video can be found at
http://bit.ly/shadowcrypt-tutorial-video. We hoped the
video would be more engaging than text-based training.
We carefully designed the video training to cover all of
the relevant information from the original ShadowCrypt
paper, in order to ensure participants had access to all
necessary security knowledge. At the very end of the sur-
vey, after affirming to the participant that they would
be paid, we ask for an honest answer to whether or not
the user watched the full video. Out of the 105 partic-
ipants, 100% of participants claimed to have watched
the video completely.

With ShadowCrypt installed and the tutorial com-
plete, the participant creates a few lists and tasks with
ShadowCrypt enabled. This section also walks the user
through navigating to the options menu and updating
the key color and passphrase. Furthermore, this sec-
tion walks the user through the aspects of ShadowCrypt
that must be checked in order to make sure Shadow-
Crypt is working correctly. Therefore, this explains to
the user how to create a new task using the CTRL-`
keyboard shortcut, as well as how to toggle the input
field between a locked and unlocked state using CTRL-
SPACE keyboard shortcut. There is also an explanation
on passphrase, and it discusses how to hover over the
lock in order to display the passphrase. To understand
the user experience with ShadowCrypt, we next ask the
same user experience Likert questions as in the case of
the sample application without ShadowCrypt (full list
of questions in Table 2) and two direct usability ques-
tions (Table 3).

Experimental Application.We tell the user that
he is about to go to an experimental version of the to-
do list application. This experimental application has a
50% chance of being compromised with the UI attack
that was discussed in Section 4. The user is instructed
to create a few lists and tasks, and explore modifying
the key color and passphrase to determine if the site
is compromised. Once the user is finished using the ex-
perimental application, he reports whether or not he
believes the application was compromised, along with
an explanation of his answer.

5.3 User Study Limitations

While the user study was an efficient means of acquir-
ing information on the usability of ShadowCrypt and
the effectiveness of the UI attack, it does have a few
limitations. First, it is difficult to determine if the us-
ability rankings were honest responses. It is possible the
users claimed ShadowCrypt to be usable because that

https://docs.google.com/document/d/10FSaJfjPd4zjozT_2_-947qdv2Y74Aljguvs64_6lFA
https://docs.google.com/document/d/10FSaJfjPd4zjozT_2_-947qdv2Y74Aljguvs64_6lFA
https://docs.google.com/document/d/10FSaJfjPd4zjozT_2_-947qdv2Y74Aljguvs64_6lFA
http://bit.ly/shadowcrypt-tutorial-video

Cracking ShadowCrypt 11

is what they believed we wanted to hear. Second, this
test represents a best-case scenario for identifying an
attack, since the user is explicitly told to look for an
attack. It is possible the percentage of users who identi-
fied the attack would be even less in real life, when they
would not be focused on identifying the attack. Lastly,
ShadowCrypt requires the user to manage settings for
each of their keys. The concept of key management is
very complicated, and it is difficult to say if users re-
ally understood what they were doing when they were
configuring the various settings for each key. Despite
these limitations, the results from the user study, which
are presented in the following section, make clear that
ShadowCrypt in its current state is reasonably usable,
but vulnerable to a comprehensive UI attack.

6 User Study Results
Table 4 details the demographics of the 105 partici-
pants that completed the user study. Among all re-
cruited participants, 26 dropped out of the study (not
counted among the 105) during the introduction where
they watched a video about ShadowCrypt and explored
a few parts of its interface; we excluded these partici-
pants from our results. Key results are summarized in
Table 1. The most important takeaway is that only 1 out
of 59 participants who were under attack identified the
user interface attack. This indicates that the UI attack
is stealthy and that the existing security indicators are
not effective. While it is possible there is a way to make
the visual authentication mechanism more visible, pas-
sive security indicators (that require the user to notice a
problem) are often unsuccessful [16, 38]. A system that
is proactive and notifies the user of a UI attack might
be more effective at preventing users from being fooled.
A deeper discussion on how to prevent UI attacks will
be presented in Section 7.3.

We turned the attack off whenever the user hit the
CTRL key because we could not mock the keyboard
shortcuts. Our expectation was that users would not use
the keyboard shortcuts very often, and therefore very
few tasks would be fully encrypted. Only five partici-
pants mentioned the keyboard shortcuts in the survey,
although this only provides limited information because
it comes from a free response question. Of the 570 tasks
created by the participants who were under attack, only
43 tasks were created using the keyboard shortcut (8%).

Number of
Participant Type Participant Response Participants

Not Under Attack Site not compromised 40 (87%)
Site compromised 6 (13%)

Under Attack Site not compromised 58 (98.3%)
Site compromised 1 (1.7%)

Table 1. The results demonstrate that only 1 out of 59 users who
were under attack noticed the attack. 6 of the users who were
not under attack claimed to be under attack, which is most likely
a result of trying guess the correct answer.

Statement W Z p r

Using the to-do list applica-
tion was fun.

219 1.12 .251 .078

Adding a task on the to-do
list application was difficult.

22.5 0.91 .350 .063

Adding a list on the to-do
list application was difficult.

13.5 1.01 .398 .070

Adding a task on the to-do
list application was tedious.

25.5 3.55 .001 .245

Adding a list on the to-do
list application was tedious.

50.0 2.80 .006 .194

Table 2. Results of the Wilcoxon Signed-Rank test comparing
the user experience results of the application with and without
ShadowCrypt.

Ratings
Statement Median Q1 Q3

You believe ShadowCrypt made
the to-do list application less user
friendly.

1 1 2

You would recommend Shadow-
Crypt to a friend.

4 3 4

Table 3. The participants’ responses (1 is strongly disagree; 5 is
strongly agree) indicate that they are more likely to recommend
ShadowCrypt to a friend than not, and that on average Shadow-
Crypt did not make the to-do list application less user friendly.
Q1 and Q3 indicate the first and the third quartile respectively.

Therefore, the UI attack gained access to 92% of the
tasks.2

For the participants who believed they were under
attack, we asked how they could tell. Here are some
excerpts:
– “I do not see my updated changes to either the

key color or passphrase ...” 3 participants not un-
der attack noted discrepancies between configurable
passphrase and color. This suggests that performing
these checks can be confusing and error-prone.

2 Note that our attack always succeeded in obtaining plaintext
if the CTRL key was not used.

Cracking ShadowCrypt 12

Metric Percentage Participants

Male 59.05% 62
Female 40.95% 43
H.S. or less 8.57% 9
Some college 29.52% 31
Associate 14.29% 15
Bachelor 36.19% 38
Trade/Technical 4.76% 5
Master 6.66% 7
18-24 years 12.38% 13
25-34 years 39.05% 41
35-44 years 33.33% 35
45-54 years 9.52% 10
55-64 years 2.86% 3
65+ years 2.86% 3

Table 4. Demographics of our sample.

– “I could do everything even though the locked icon
was there,” wrote one participant not under attack.
This participant may not have understood what
ShadowCrypt is meant to prevent.

– “ctrl space doesnt work,” wrote one participant not
under attack. This was the only mention of a key-
board shortcut. However, it is unclear whether this
was due to a technical issue or a misunderstanding
of the shortcut.

6.1 Usability

Fig. 9. Usability results: Users responses to the Likert questions
with and without ShadowCrypt.

Despite the user interface attack being highly ef-
fective, which demonstrates serious privacy vulnerabil-
ities, the user study demonstrated that ShadowCrypt
doesn’t significantly degrade the usability of the visited
website. We asked the participants to agree or disagree
with five statements on a 5-point Likert scale, with and

without ShadowCrypt (1 meaning strongly disagree, 5
meaning strongly agree). In order to test the difference
between the responses to the Likert questions with and
without ShadowCrypt we used a Wilcoxon Signed-Rank
test. The questions with their associated test statistic,
z-score, p-value, and effect size (r) are provided in Ta-
ble 2. For three of the five questions, the p value is
greater than 0.25, which indicates there is not signif-
icant evidence there is a difference in the distribution
of the responses with and without ShadowCrypt. For
the two questions regarding the tediousness of creating
a task and list, the p value is less than 0.05, which in-
dicates there is significant evidence there is a difference
in the distribution of the responses with and without
ShadowCrypt. In these two questions, the responses in-
dicate creating a task and list with ShadowCrypt was
actually less tedious. This is potentially due to ordering
effects; in our user study we always taught the user the
todo list application first and then ShadowCrypt sec-
ond. Ideally we would have varied the order to prevent
ordering effects, but in this case that was not possible
because we could not teach ShadowCrypt before teach-
ing the user how to use the todo list application. This
result suggests that any decrease in usability caused by
ShadowCrypt was small enough that it was outweighed
by the ordering effect. The full results to the Likert ques-
tions in Table 2 are provided in Figure 9.

In addition to the questions intended for compari-
son, we asked two direct usability questions (Table 3).
The results highlight that the vast majority of users
found ShadowCrypt not to negatively impact the site
from a usability point of view, and that the majority of
users would recommend ShadowCrypt to a friend.

Based on these results, it is clear that ShadowCrypt
does not significantly impact the user experience of the
site. This is a very important part of the secure I/O
system, because if the system is not user friendly, there
will not be strong adoption.

7 Discussion
In this section, we discuss the fundamentals behind the
secure I/O system, how ShadowCrypt fails to address
these fundamental issues, and how this information can
be generalized for the future development of a secure
I/O system with Internet browsers.

Cracking ShadowCrypt 13

7.1 Shadow DOM future

The user study demonstrated ShadowCrypt is vulnera-
ble to a user interface attack. Even though it could not
be mocked fully, the areas that could not be mocked
were very hard to notice. Furthermore, the pop-up
method for entering text could not be mocked, but the
poor usability of entering information into a pop-up led
many participants to not use this method. It is clear that
the user interface attack is an attack vector that must
be considered; however, there are more serious concerns
preventing ShadowCrypt, in its current state, from pro-
viding secure I/O. Most importantly, the Shadow DOM
boundary that ShadowCrypt relies upon is no longer
available. Below, we will discuss the mechanisms that
allow client side code to access the plaintext informa-
tion that is supposed to be encapsulated inside of the
shadow tree. The Shadow DOM was originally devel-
oped as a means to support web developers, and was
never intended to be used as a security enhancement.
As such, it is not surprising that the specifications of
the Shadow DOM have changed to the point that it can
no longer provide the security guarantees that Shadow-
Crypt relied upon. Our UI attack does not depend on
any of the weaknesses of the Shadow DOM boundary,
but it is important to understand all of the potential at-
tack vectors, so that a secure I/O system can ultimately
be developed.

DOM Properties. The most simple means of ac-
cessing the shadow tree is through the shadowRoot prop-
erty on the host node. The original ShadowCrypt code
tried to establish the Shadow DOM boundary by setting
the property to null. This removed the native bind-
ing by which the browser would return the shadow tree
to the application. However, Chrome has since changed
its implementation of DOM properties so that they use
“getter” functions on the prototype chain [2]. To inter-
pose fully on the getter’s behavior would pose additional
overhead. While an extension can replace the getter in
the application’s window, any other windows, such as
the content of an iframe, would still expose the origi-
nal getter. The full DOM API provides several ways to
create iframes; an extension would have to mediate all
of them to prevent access to the native shadowRoot get-
ter. This approach is more challenging not only in terms
of development but also maintenance and performance
overhead.

Multiple Shadow Trees. Another means of ac-
cessing the information inside of a shadow tree is at-
taching a second shadow tree (a “younger” one) to the
same shadow tree. A <shadow> element in this younger

shadow tree will render the contents of the older shadow
tree, and a method (getDistributedNodes) is provided
to access what the older shadow tree contains. Shadow-
Crypt originally attempted to prevent the creation of
additional shadow trees on DOM elements that already
host ShadowCrypt’s shadow tree, but this is similarly no
longer effective, due to Chrome changing the implemen-
tation of DOM methods from elements’ own properties
to functions defined in the element’s prototype. The fol-
lowing code gains access to the information in the input
field:

1 root = doc.querySelector(’#input-todo-new’)
2 .attachShadow({mode: ’open’});
3 root.innerHTML = "<shadow></shadow>";
4 shadow = root.querySelector("shadow");
5 shadowCryptNodes = shadow.getDistributedNodes();
6 plaintext = shadowCryptNodes[1].querySelector(’.delegate’)
7 .value;

Ensuring complete mediation [37] of access to the
attachShadow method is challenging because every win-
dow object has a reference to the method, and there are
many ways to create new windows. While this way of
accessing the plaintext information currently works, the
use of multiple shadow trees has been deprecated, and
will not be supported for long [6].

The deprecation of multiple shadow trees, which
took place in April 2015, is bad news for utilizing
Shadow DOM as a primitive for a secure I/O system.
Currently, input fields are supported by a shadow tree
created and managed by the browser itself. Therefore,
creating a shadow tree on input nodes has been dep-
recated along with the deprecation of multiple shadow
trees [20]. One could work around this by (i) changing
the document structure to add a parent to the input for
hosting the shadow tree or (ii) attaching a shadow tree
to the parent of the input and mirroring the input’s sib-
lings as well. These alternative approaches involve either
application-visible changes or monitoring of additional
parts of the page, both of which increase the complexity
and performance overhead of the design.

Given that Shadow DOM is not suitable for provid-
ing the fundamental browser primitive behind a secure
I/O system, it is important to determine what browser
primitive can support a secure I/O system.

7.2 iFrame Based Isolation

Given the current browser primitives, it seems the only
option that would provide strong isolation between el-
ements on one page would be to use an iframe, which
is currently being explored with the priv.ly project [4].
Due to the same origin policy, the iframe and the client
application would be of different origins so that there

Cracking ShadowCrypt 14

would be no way for the client application to get any
information from the content inside of the iframe. Fur-
thermore, all mouse and keyboard events inside of an
iframe cannot be accessed by the parent window, so
there is no need to worry about the event model or event
retargetting with iframes. This system would function
very similar to ShadowCrypt, but rather than relying
upon shadow trees to store the plaintext information,
the plaintext information will be hosted within a ded-
icated iframe. The parent window will only have ac-
cess to the encrypted information. In order to commu-
nicate between the parent window and the iframes, the
browser extension can utilize postMessages in order to
have cross-origin communications. In this system, the
user would enter text into an input within an iframe,
and upon submissions, the iframe would encrypt the
plaintext information, and send a message to the par-
ent window. The browser extension would register a lis-
tener on the parent window to take the encrypted infor-
mation, and submit the encrypted information as if the
user was submitting a form in the parent window.

Utilizing iframes is very effective at creating secure
input fields. However, there are serious performance
downsides for secure output. There are only a handful
of input fields per web page, but there can be hundreds
of output fields. If each iframe causes a performance
hit, utilizing iframes would be inefficient. Future work
involves measuring the performance hit for a secure I/O
system backed by iframes.

8 Related Work
Given a browser primitive that can provide isolation
between the plaintext information and the rest of the
web site, it is important for the system to be robust
against UI attacks. In this section we explore the related
work that can be developed upon in order to create a
secure I/O system for browsers that is robust against
UI attacks.

Previous research on UI security for the web initially
focused on securely displaying the browser’s chrome,
which are the UI elements that surround the arbitrary,
untrusted web content (not to be confused with Google’s
web browser named Chrome). These elements includ-
ing the address bar and connection security indicators.
Felten et al. [18] and Ye et al. [39] have demonstrated
attacks that take advantage of older browsers’ flexibil-
ity in allowing untrusted web page code to hide critical
elements of the browser chrome. Their attacks render a
fake address bar from within the web page, which al-

lows the attacker to display any address, thus fooling
a user into thinking that she is visiting a different site.
In later browsers, the ability to hide the address bar
is removed. Additionally, Chen et al. have proposed a
formal specification of correct behavior of the chrome’s
elements [10].

A similar progression has appeared in mobile UI
security. In current mobile operating systems, there is
no secure indication of what application is on screen.
Bianchi et al. propose to display the current applica-
tion’s developer in an area controlled by the operating
system [9], behaving similar to the HTTPS Extended-
Validation indicator in a browser.

Similarly, Petracca et al. relied upon a trusted dis-
play area where the system could display messages to
the user without any risk of an application tampering
with this area of the user interface [31]. In addition to
a trusted display area, Petracca et al. implements an
enhanced version of user driven access control to sen-
sor data. Each request is uniquely identified by a tu-
ple combining the application owner, set of sensors re-
quested, operation being requested on the set of sensors,
the user event triggering the request, the user interface
of the widget capturing the event, and then user inter-
face configuration capturing the event. Petracca et al.
found that this resulted in a similar number of autho-
rization requests to first-use authorization mechanisms.

Later research has turned its attention to the secu-
rity of UI elements within the page content, involving
attacks such as clickjacking. Huang et al. propose that
clickjacking and related UI attacks occur because sensi-
tive UI elements are presented out of context [24]. They
define a notion of context that includes visual context,
which is what the user should see, and temporal con-
text, which is the timing of a user’s action. Many UI
attacks occur by tricking a user into believing they are
interacting with one thing, but really they are interact-
ing with something completely different. With InCon-
text visual integrity is enforced by comparing an OS
screenshot of the area with the sensitive element, and
a reference bitmap of the sensitive element in isolation
[24]. This defense protects users against many types of
UI attacks. For instance, imagine a PayPal element for
a $1000 product is being rendered on a page. On top
of the price is a node making it look like the price is
only $10. In this case, a user click action on the Pay
button will be blocked because the sensitive PayPal el-
ement has been overlaid with an element, which makes
the OS screenshot and reference bitmap not equal. The
core idea behind this event is to sanitize the user actions

Cracking ShadowCrypt 15

inside of the sensitive element to make sure the context
is correct.

The InContext integrity defense will not prevent our
UI attack. In our case, the secure input field will be cov-
ered by an insecure input field such that the interface
looks exactly as expected. InContext sanitizes actions
that are delivered to sensitive elements by preventing
users from acting on a sensitive element if the element
is obstructed in any way. However, our UI attack lures
the user into interacting with an insecure element that
belongs to the untrusted application. Filtering out inter-
actions with the trusted element thus does not prevent
the user from entering text into the attacker’s untrusted
element in this attack.

Dhamija et al. propose using a user-specific im-
age to provide mutual authentication between the user
and the application [14]. Their system moves particu-
larly sensitive inputs, such as password fields, into the
browser chrome so that they can be securely displayed
without interference from other web content. Shadow-
Crypt’s popup input is similar, showing a prompt from
the browser chrome, but with a textual passphrase in-
stead of an image. It also attempts a weakened variant
by showing a custom border color within web content,
but our experiments showed that this is not noticeable
enough to be secure. The use of a different color and
passphrase for each site in the interest of mutual au-
thentication presents a mental burden for the user, and
it remains to be determined how much this affects the
security of such a system.

Dong et al. propose a more heavy-handed approach
to ensuring that sensitive user interface elements are
presented in context, by presenting them in a stan-
dalone rendering engine completely separate from the
browser process [15]. This rendering engine, called the
Crypton-Kernel, establishes a secure path between
the application and the GPU display buffers. While this
effectively prevents any attacks from web content that
tries to overlay secure inputs and outputs, it also lim-
its the design flexibility of those elements, due to the
complete separation.

Légaré et al. propose a solution that relies on the
implementation details of Chrome browser to prevent
UI attacks [29]. The platform developed by Légaré et
al., BeesWax, uses the small 4px square that is dedi-
cated to each Chrome extension to display to the user
whether or not the in-focus input node is secure. This
4px square cannot be modified or obscured by the web
application, so this signal cannot be tampered with or
covered up by an attacker. However, it is unclear if this
small icon can be used to successfully mitigate UI at-

tacks. Furthermore, this countermeasure has a strong
dependence on the specifics of Chrome, and it does not
scale well to other browsers or mobile devices.

A retroactive change to prevent interactive elements
from being overlaid would break existing sites. Inputs
can end up overlaid intentionally, for example, when
a page creates a modal window [8] containing a form.
Kaminsky has identified many other design features
which can interfere with an element’s rendition, such
as scrolling, clipping, transformations, and shading ef-
fects [26].

Iron Frame. Instead of preventing overlays,
Kaminsky proposes Iron Frame [25], a system to detect
overlays and to allow the browser and the application
to indicate this, so that the user would know if it was
safe to interact. The Iron Frame system informs iframes
of whether they are completely visible. This allows the
iframes disable themselves when they are not in view,
in order to prevent UI attacks. Furthermore, when the
iframes are completely visible and in focus, the browser
can update the address bar [26]. Updating the address
bar could be a very strong visual indicator to the user
that he is interacting with a secure input field, and this
would be impossible to mock.

Trusting the user? Unfortunately, even with the
security guarantees of Iron Frame, the secure I/O sys-
tem must rely upon the user to identify a missing se-
curity indicator in order to witness the attack. Relying
upon the user to notice the UI attack is a very poor
defense, even if the indicator is very obvious and impos-
sible to mock. Wu et al. report that users do not pay
attention to additional security indicators [38]. There-
fore, ideally the secure I/O design would be able to iden-
tify that there is an element overlaid on top of it, and
alert the user. Huang et al. demonstrate that there are
limitations of CSS checking, but it is possible that CSS
checking might be the best approach for this problem.
In order to have a robust defense against UI attacks the
secure I/O system cannot rely upon the user to identify
the attack; instead, the system must identify the attack
and alert the user.

9 Conclusions
In this paper, we explored the practical limitations of se-
cure I/O systems for web applications, such as Shadow-
Crypt. ShadowCrypt provided clear insights into the
problem with web privacy today, and it highlighted
the benefits of a secure I/O system for web applica-

Cracking ShadowCrypt 16

tions. However, we have uncovered a powerful UI attack
that can steal the users’ sensitive data, despite Shadow-
Crypt’s attempts to protect it. In our user study, only
1 out of 59 participants noticed our UI attack, which
demonstrates the stealthiness of the UI redress attack.
Furthermore, existing UI defenses, such as InContext in-
tegrity, do not mitigate our attack. In addition to our UI
attack, we have demonstrated that ShadowCrypt’s im-
plementation based on Shadow DOM no longer provides
the necessary isolation between trusted and untrusted
data. While a similar approach could use iframes to
provide the isolation, it would impose a heavier perfor-
mance overhead. These problems of technical imple-
mentation and secure user interface design are impor-
tant to the ultimate security and usability of a secure
I/O system. While the utility of a secure I/O system is
appealing, we conclude that future research and browser
enhancements on performant UI isolation and secure UI
design are needed to develop a usable system.

Acknowledgements. We thank Giuseppe Pe-
tracca for his help on this paper. We thank the anony-
mous reviewers for their feedback. This material is in
part based upon work supported by the National Sci-
ence Foundation under Grants No. CNS-1553437 and
CNS-1409415. Any opinions, findings, and conclusions
or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the National Science Foundation.

References
[1] Company info | facebook. http://newsroom.fb.com/

company-info/.
[2] Dom attributes now on the prototype chain. https://goo.gl/

DEitmJ.
[3] Html5 input types. http://goo.gl/oDbNhf.
[4] Priv.ly project homepage. https://priv.ly/.
[5] Todos | build a collaborative task app with meteor. https:

//www.meteor.com/todos.
[6] Webapps/web components april2015 meeting. https://goo.

gl/NZ0he2.
[7] A. Afanasyev, J. A. Halderman, S. Ruoti, K. Seamons,

Y. Yu, D. Zappala, and L. Zhang. Content-based secu-
rity for the web. In Proceedings of the 2016 New Security
Paradigms Workshop, pages 49–60. ACM, 2016.

[8] Anthony. Best practices for modal windows. http://
uxmovement.com/forms/best-practices-for-modal-windows/,
March 2011.

[9] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio,
C. Kruegel, and G. Vigna. What the app is that? decep-
tion and countermeasures in the android user interface. In
Security and Privacy (SP), 2015 IEEE Symposium on, pages

931–948. IEEE, 2015.
[10] S. Chen, J. Meseguer, R. Sasse, H. J. Wang, and Y. M.

Wang. A systematic approach to uncover security flaws in
gui logic. In 2007 IEEE Symposium on Security and Privacy
(SP ’07), pages 71–85, May 2007.

[11] K. Collins. Google collects Android users’ locations even
when location services are disabled. https://qz.com/
1131515/google-collects-android-users-locations-even-when-
location-services-are-disabled/, November 2017.

[12] D. Cooney. Shadow dom 101, January 2013. http://goo.gl/
Rbu0w.

[13] P. De Ryck, N. Nikiforakis, L. Desmet, F. Piessens, and
W. Joosen. Protected web components: Hiding sensitive
information in the shadows. IT Professional, 17(1):36–43,
2015.

[14] R. Dhamija and J. D. Tygar. The battle against phishing:
Dynamic security skins. In Proceedings of the 2005 sym-
posium on Usable privacy and security, pages 77–88. ACM,
2005.

[15] X. Dong, Z. Chen, H. Siadati, S. Tople, P. Saxena, and
Z. Liang. Protecting sensitive web content from client-side
vulnerabilities with cryptons. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications
security, pages 1311–1324. ACM, 2013.

[16] S. Egelman, L. F. Cranor, and J. Hong. You’ve been warned:
An empirical study of the effectiveness of web browser
phishing warnings. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI ’08,
pages 1065–1074, New York, NY, USA, 2008. ACM.

[17] S. Fahl, M. Harbach, T. Muders, M. Smith, and U. Sander.
Helping johnny 2.0 to encrypt his facebook conversations.
In Proceedings of the Eighth Symposium on Usable Privacy
and Security, page 11. ACM, 2012.

[18] E. W. Felten, D. Balfanz, D. Dean, and D. S. Wallach. Web
spoofing: An internet con game. Software World, 28(2):6–8,
1997.

[19] B. Fuhry, W. Tighzert, and F. Kerschbaum. Encrypting
analytical web applications. In Proceedings of the 2016
ACM on Cloud Computing Security Workshop, pages 35–46.
ACM, 2016.

[20] D. Glazkov and H. Ito. Shadow dom w3c working draft 15
december 2015, December 2015. https://goo.gl/JgL7e8.

[21] C. Grier, S. Tang, and S. T. King. Secure web browsing with
the op web browser. In 2008 IEEE Symposium on Security
and Privacy (sp 2008), pages 402–416, May 2008.

[22] D. Guarini. Experts say facebook leak of 6 million users’
data might be bigger than we thought, June 2013. http:
//www.huffingtonpost.com/2013/06/27/facebook-leak-
data_n_3510100.html.

[23] W. He, D. Akhawe, S. Jain, E. Shi, and D. Song. Shadow-
crypt: Encrypted web applications for everyone. In Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, pages 1028–1039, New
York, NY, USA, 2014. ACM.

[24] L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schecter, and
C. Jackson. Clickjacking: Attacks and defenses. In Presented
as part of the 21st USENIX Security Symposium (USENIX
Security 12), pages 413–428, Bellevue, WA, 2012. USENIX.

[25] D. Kaminsky. Want these * bugs off my * internet. def con
23, August 2015. https://youtu.be/9wx2TnaRSGs.

http://newsroom.fb.com/company-info/
http://newsroom.fb.com/company-info/
https://goo.gl/DEitmJ
https://goo.gl/DEitmJ
http://goo.gl/oDbNhf
https://priv.ly/
https://www.meteor.com/todos
https://www.meteor.com/todos
https://goo.gl/NZ0he2
https://goo.gl/NZ0he2
http://uxmovement.com/forms/best-practices-for-modal-windows/
http://uxmovement.com/forms/best-practices-for-modal-windows/
https://qz.com/1131515/google-collects-android-users-locations-even-when-location-services-are-disabled/
https://qz.com/1131515/google-collects-android-users-locations-even-when-location-services-are-disabled/
https://qz.com/1131515/google-collects-android-users-locations-even-when-location-services-are-disabled/
http://goo.gl/Rbu0w
http://goo.gl/Rbu0w
https://goo.gl/JgL7e8
http://www.huffingtonpost.com/2013/06/27/facebook-leak-data_n_3510100.html
http://www.huffingtonpost.com/2013/06/27/facebook-leak-data_n_3510100.html
http://www.huffingtonpost.com/2013/06/27/facebook-leak-data_n_3510100.html
https://youtu.be/9wx2TnaRSGs

Cracking ShadowCrypt 17

[26] D. Kaminsky. Want these * bugs off my * internet. def con
23. slide 71-72, August 2015. http://www.slideshare.net/
dakami/i-want-these-bugs-off-my-internet-51423044.

[27] F. Lardinois. Gmail now has more than 1b monthly active
users, February 2016. https://techcrunch.com/2016/02/01/
gmail-now-has-more-than-1b-monthly-active-users/.

[28] S. Liang, Y. Zhang, B. Li, X. Guo, H. Guo, X. He, Z. Liu,
and C. Jia. Shadowpwd: practical browser-based password
manager with a security token. In Proceedings of the ACM
Turing 50th Celebration Conference-China, page 30. ACM,
2017.

[29] J.-S. Légaré, R. Sumi, and W. Aiello. Beeswax: a platform
for private web apps. In Proceedings on Privacy Enhancing
Technologies, pages 24–40. PETS, 2016.

[30] A. T. Ozcan, C. Gemicioglu, K. Onarlioglu, M. Weissbacher,
C. Mulliner, W. Robertson, and E. Kirda. Babelcrypt: The
universal encryption layer for mobile messaging applications.
In International Conference on Financial Cryptography and
Data Security, pages 355–369. Springer, 2015.

[31] G. Petracca, A.-A. Reineh, Y. Sun, J. Grossklags, and
T. Jaeger. Aware: Preventing abuse of privacy-sensitive
sensors via operation bindings. In 26th USENIX Security
Symposium, pages 379–396. USENIX, 2017.

[32] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakr-
ishnan. Cryptdb: Protecting confidentiality with encrypted
query processing. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP ’11,
pages 85–100, New York, NY, USA, 2011. ACM.

[33] R. A. Popa, E. Stark, S. Valdez, J. Helfer, N. Zeldovich, and
H. Balakrishnan. Building web applications on top of en-
crypted data using mylar. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14),
pages 157–172, Seattle, WA, Apr. 2014. USENIX Associa-
tion.

[34] C. Reber. Our future: Wunderlist joins microsoft, June 2015.
https://www.wunderlist.com/blog/our-future-wunderlist-
joins-microsoft/.

[35] C. Reis and S. D. Gribble. Isolating web programs in modern
browser architectures. In Proceedings of the 4th ACM Euro-
pean Conference on Computer Systems, EuroSys ’09, pages
219–232, New York, NY, USA, 2009. ACM.

[36] S. Ruoti, D. Zappala, and K. Seamons. Messageguard:
Retrofitting the web with user-to-user encryption. interface,
9:6.

[37] J. H. Saltzer and M. D. Schroeder. The protection of in-
formation in computer systems. Proceedings of the IEEE,
63(9):1278–1308, 1975.

[38] M. Wu, R. C. Miller, and S. L. Garfinkel. Do security tool-
bars actually prevent phishing attacks? In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’06, pages 601–610, New York, NY, USA,
2006. ACM.

[39] Z. E. Ye, S. Smith, and D. Anthony. Trusted paths for
browsers. ACM Transactions on Information and System
Security (TISSEC), 8(2):153–186, 2005.

http://www.slideshare.net/dakami/i-want-these-bugs-off-my-internet-51423044
http://www.slideshare.net/dakami/i-want-these-bugs-off-my-internet-51423044
https://techcrunch.com/2016/02/01/gmail-now-has-more-than-1b-monthly-active-users/
https://techcrunch.com/2016/02/01/gmail-now-has-more-than-1b-monthly-active-users/
https://www.wunderlist.com/blog/our-future-wunderlist-joins-microsoft/
https://www.wunderlist.com/blog/our-future-wunderlist-joins-microsoft/

	Cracking ShadowCrypt: Exploring the Limitations of Secure I/O Systems in Internet Browsers
	1 Introduction
	1.1 Contributions

	2 Background and System Model
	2.1 Client Server Model
	2.2 Chokepoints
	2.3 Design Goals
	2.4 Threat & Trust Model
	2.5 Shadow DOM

	3 ShadowCrypt
	4 User Interface Attack
	4.1 Rendering Unencrypted Nodes
	4.2 Positioning
	4.3 Border
	4.4 Keyboard Shortcuts
	4.5 Man in the Middle
	4.6 Summary of UI Attack

	5 User Study Design
	5.1 Sample Application
	5.2 Survey Design
	5.3 User Study Limitations

	6 User Study Results
	6.1 Usability

	7 Discussion
	7.1 Shadow DOM future
	7.2 iFrame Based Isolation

	8 Related Work
	9 Conclusions

