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ABSTRACT
It is important to study the risks of publishing privacy-sensitive data.
Even if sensitive identities (e.g., name, social security number) were
removed and advanced data perturbation techniques were applied,
several de-anonymization attacks have been proposed to re-identify
individuals. However, existing attacks have some limitations: 1)
they are limited in de-anonymization accuracy; 2) they require
prior seed knowledge and suffer from the imprecision of such seed
information.

We propose a novel structure-based de-anonymization attack,
which does not require the attacker to have prior information
(e.g., seeds). Our attack is based on two key insights: using multi-
hop neighborhood information, and optimizing the process of de-
anonymization by exploiting enhanced machine learning techni-
ques. The experimental results demonstrate that our method is
robust to data perturbations and significantly outperforms the state-
of-the-art de-anonymization techniques by up to 10× improvement.
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1 INTRODUCTION
Privacy-sensitive data (social relationships, mobility traces, me-
dical records, etc.) are increasingly becoming public to facilitate
data-mining researchers and applications. To protect users’ privacy,
data anonymization techniques have been the focus of extensive
investigations [6, 12, 19].

Most privacy-sensitive data are closely related to individual be-
havior, and thus contain rich structural/graph-theoretic characte-
ristics. For example, social networks can be modeled as graphs in
a straightforward manner. Mobility traces can also be modeled as
graph topologies [22]. However, even equipped with sophisticated
anonymization techniques, the privacy of structural data still suf-
fers from de-anonymization attacks assuming that the adversaries
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have access to rich auxiliary information (also called background
information) from other channels [1, 2, 5, 7–12, 14, 15, 17, 22].

Today, many individuals have accounts in various social net-
works such as Facebook, Twitter, Google+, Myspace and Flickr.
Based on the inherent cross-site correlations, Narayanan et al. [15]
effectively de-anonymized a Twitter dataset by utilizing a Flickr
dataset as auxiliary information. Furthermore, Nilizadeh et al. [17]
exploited the community structure of a graph to de-anonymize
social networks. Other public datasets may also contain individual
behavior information. For instance, Srivatsa et al. [22] proposed to
de-anonymize a set of location traces based on a social network.
They demonstrated that a contact graph identifying meetings bet-
ween anonymized users in the location traces can be structurally
correlated with the corresponding social network graph.

However, previous work on de-anonymization attacks have se-
veral limitations: 1) most previous works [14, 15, 17] rely on a seed-
identification process. To obtain the useful seeds, they assume that
the attacker possesses detailed information about a small number of
members of the target network. They also assume that the attacker
can determine if these members are also present in his auxiliary net-
work (e.g., by matching user names and other contextual informa-
tion). Furthermore, these methods may suffer from the imprecision
of the adversary’s background knowledge (misidentified seeds); 2)
existing seed-free de-anonymization techniques [7, 18] have limited
accuracy because they only utilize limited structural information
of the data. In this paper, we aim to solve these problems by propo-
sing a novel blind (i.e., seed-free) de-anonymization technique and
exploring fine-grained structure information of graph topologies.
Overall, we make the following contributions:

• We present a novel de-anonymization technique, which does not
require adversaries to have any prior information (e.g., seeds). In
our method, 1) we propose the nK-series to incorporate multi-hop
neighbors’ information in graph structures as novel features in
our de-anonymization attack; 2) we jointly optimize the matching
for users between the anonymized graph and the auxiliary graph
by leveraging a machine learning technique: pseudo relevance
feedback support vector machine (PRF-SVM).

• We show that our method is practical and effective: our attack is
robust to data perturbations and has significant de-anonymization
advantages over existing approacheswith up to 10× improvement.
Our method demonstrates that structural data can be effectively
de-anonymized even without any seed information.
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Figure 1: Mechanism for our blind de-anonymization attack.

2 BLIND DE-ANONYMIZATION ATTACKS

Previous works on structure-based de-anonymization do not fully

utilize fine-grained graph-theoretic information. For instance, only

one-hop neighbors have been utilized in [14], and very limited struc-

tural information has been leveraged in [7]. Also, most existing

work rely on assumptions that the adversary has prior information

or some ground truth (e.g., the seed information in [15]). However,

seed-based de-anonymization attacks have some issues in practice:

1) the seed identification process usually requires heavy computati-

onal complexity [15]; 2) misidentified seeds may seriously decrease

the de-anonymization capability.

We propose a general, blind (seed-free) de-anonymization attack.

Figure 1 outlines our method, which consists of the following key

steps on each of the anonymized graph,Ga , and the auxiliary graph,

Gu . Our proposed nK-series aims to capture fine-grained structu-

ral information of each node, and the PRF-SVM aims to jointly

de-anonymize the nodes. By exploring richer and finer-grained

structural information of the graphs, our method can achieve better

de-anonymization performance without requiring the adversaries

to have any prior information (e.g., seeds).

Step 1: We first explore multi-hop neighbor information by

proposing our new nK-series structural features for each node.

nK-series: Inspired by the idea of the dK-series [13] for characte-

rizing structural statistics of a graph, we propose the nK-series to

describe structural features of each node in a fine-grained manner,

by incorporating the structural information of its multi-hop neig-

hbors. nK0 represents the degree of the node, i.e., the number of its

neighbors. nK1 captures the degree histogram of its neighbors and

nK2 captures the degree histogram of its 2-hop neighbors. Here, we

focus our research on nK0, nK1, and nK2 to construct the nK struc-

tural features of each node a as v(a) = [nK0(a),nK1(a),nK2(a)]T .
Step 2: Based on the nK structural features, we calculate the

diversity score for each node a, which measures the richness of the
structural characteristics of this node and is defined as DS(a) =∑

i ṽi (a) log ṽi (a)
log(dim(ṽ(a)))

. where ṽ(a) denotes the normalized structural fea-

ture vector of a, i.e., ṽ(a) = v(a)
‖v(a) ‖2

. dim(ṽ(a)) denotes the dimen-

sion for ṽ(a). Here,
∑
i ṽi (a) log ṽi (a) is actually similar to entropy

in information theory [3], which evaluates the amount of informa-

tion stored in ṽi (a), and log(dim(ṽ(a))) is just for normalizing the
diversity score so thatDS(a) ∈ [0, 1]. A higher diversity scoremeans

that this node has more distinguishable structural characteristics.

Next, we start de-anonymizing the anonymized data in an itera-

tive manner.

Step 3: For each round, we calculate the popularity score for

each node, which evaluates its relationships with the set of de-

anonymized nodes in the previous round (the set of de-anonymized

nodes is empty in the initial round). We denote N t as the set of

nodes that have been de-anonymized after the t-th iteration, where
N t is an empty set for the first round. We define the popularity

score of node a, PS(a), as the Jaccard similarity [21] between the
set of neighbors N (a) for each node a and N t as:

PS(a) = J (N t ,N (a)) = |N t ∩ N (a)|/|N t ∪ N (a)| (1)

where J (A,B) is the Jaccard similarity, J (A,B) = |A∩B |
|A∪B |

, and PS(a) ∈

[0, 1]. A higher popularity score represents a closer relationship be-

tween this anonymized node and those previously de-anonymized

nodes. In addition to the diversity score, the popularity score can

also be leveraged to evaluate the structural characteristics of each

anonymized node.

Step 4: Subsequently, we compute the structure score (SS) for
each node a as SS(a) = DS(a) + c · PS(a). where c is a pre-defined
parameter to balance the diversity score and the popularity score.

Step 5: Next, we group the nodes in the anonymized graph

and the auxiliary graph according to their structure scores. Our

grouping process works as follows: for the t-th iteration, we select
Nдroup nodes with higher SS from the anonymized graph and the

auxiliary graph to form the group pair Ct
a (for the anonymized

graph) and Ct
u (for the auxiliary graph). Note that for the first

iteration, we select those nodes with higher DS (since PS = 0 for
the initial round).

Step 6: For each group pair, we rank each potential pair of nodes

according to the similarities between their nK structural features.

For each node a in Ct
a and node b in C

t
u , we evaluate the simila-

rity between their nK structural features by computing the cosine

similarity [4] between v(a) and v(b) as Sim(a,b) = 〈v(a),v(b)〉
‖v(a) ‖2 ‖v(b) ‖2

.

Larger cosine similarity score means two nodes are more similar.

Furthermore, to emphasize the differences between node pairs and

thus to improve the node matching performance, we can transform

the above similarity linearly as

S(a,b) = max
d ∈C t

u

(Sim(a,d)) −

max
d ∈C t

u

(Sim(a,d)) − Sim(a,b)

var (Sim(a, :))
(2)
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where Sim(a, :) is a vector consisting of Sim(a,d) for d ∈ Ct
u and

var (·) is the variance of a vector.
Step 7: Next, we leverage machine learning techniques: pseudo

relevance feedback with support vector machine (PRF-SVM), to

re-rank these potential pairs of nodes.

Specifically, we view this node-matching process from a classi-

fication perspective, i.e., we aim to classify all the possible pairs

of nodes as two categories: matched or unmatched. For each SVM

iteration, we select the top Ntrain node pairs with the highest si-

milarity scores and the bottom Ntrain node pairs with the lowest

similarity scores as the training data, labeling them as matched and

unmatched, respectively.

With these training node pairs, we apply SVM to classify the

remaining node pairs. The SVM method would result in a classifi-

cation hyperplane. Based on this hyperplane, each possible node

pair would be given a value dis(a,b) derived according to its dis-
tance from the hyperplane. We define a confidence score SVM(a,b)
for each potential node pair (a,b), which is linearly normalized as

SVM(a,b) = |dis(a,b) |−dmin

dmax−dmin

, where dmax ,dmin represent the max-

imum and minimum distance from the hyperplane computed over

all the remaining node pairs. The updated similarity score Ŝ(a,b) is
obtained by integrating the original similarity score S(a,b) in Eq. 2
with the confidence score SVM(a,b) as

Ŝ(a,b) = S(a,b) · SVM(a,b)α (3)

where α is a parameter that emphasizes the importance of the

confidence score SVM(a,b) in Eq. 3. A new ranking list is thus

generated based on these updated similarity scores, Ŝ(a,b). This
process of classification and re-ranking can be conducted iteratively

until a stable classification result is obtained.

Step 8: Finally, we extract the matched pairs of nodes based on

the classification result of PRF-SVM in Step 7 and then update the

set of de-anonymized nodesN t . We iteratively repeat Step 3-Step 7

until we cannot de-anonymize any more nodes.

Note that although our method is seed-free, it can be directly

generalized to incorporate seed knowledge if the adversary has

such prior information. Given a set of known seeds, these seeds

could be considered as the matched result in the first group of our

algorithm, and the iteration for finding more matched nodes can

be implemented consequently as shown in Figure 1.

3 EXPERIMENTAL ANALYSIS

In this section, we compare our attack with the state-of-the-art de-

anonymization techniques [7, 17], to show the significant advantage

of our approach (up to 10× improvement in de-anonymization

accuracy). For fair comparison, we use the default parameters in

the code these authors provided or the optimal parameters they

utilized in their papers. We experiment on the collaboration dataset,

the Twitter dataset and the Gowalla dataset (discussed below) for

fair comparison with the method of Ji et al. and the method of

Nilizadeh et al. since these are also the datasets they utilized [7, 17].

3.1 Datasets and General Settings

The Collaboration dataset [16] is a network of co-authorships bet-

ween scientists who have posted preprints on the CondensedMatter

E-Print Archive, which consists of 36,458 users and 171,735 edges.

The Twitter dataset [17] captures the connections between users

who mentioned each other at least once between March 24th, 2012

and April 25th, 2012, and contains two different graphs named Twit-

ter (small) with 9,745 users and 50,164 edges, and Twitter (large)

with 90,331 users and 358,422 edges.

The Gowalla dataset consists of a social graph and a mobility

trace dataset [20]. The social graph contains 196,591 users with

950,327 edges. The mobility trace consists of 6.44M checkins ge-

nerated by these users. To better evaluate the performance of our

method, we leverage the techniques in [20] to construct four graphs

from the mobility trace dataset with different recalls and precisions,

denoted by M1, M2, M3, and M4. All the four mobility trace graphs

contain 196,591 users, and the corresponding number of edges are

659,186, 829,375, 919,671, 1,070,790, respectively.

To evaluate the performance of our de-anonymization attack,

we consider a popular perturbation method of Hay et al. [6], which

applies a sequence of r random edge deletions followed by r random
edge insertions (a similar perturbation process has been utilized

for the de-anonymization attacks in [17]). Here, we define noise
(perturbations) as the extent of edge modification, i.e., the ratio

of altered edges r to the total number of edgesM , i.e., noise = r
M .

Note that we add the same amount of noise to the original graph of
the Collaboration, Twitter datasets to obtain the anonymized graph

and the auxiliary graph, respectively. For Gowalla mobility trace,

we utilize its social network structure for de-anonymization attacks.

Furthermore, we vary the system parameters of our method and

set c = 2,Nдroup = 1000,Ntrain = 1250,α = 1 for achieving the
best performance in our experiments.

We utilize Accuracy to evaluate the de-anonymization perfor-

mance. Accuracy is the ratio of the correctly de-anonymized nodes

out of all the overlapped nodes between the anonymized graph and

the auxiliary graph, i.e., Accuracy = Ncor

|Va∩Vu |
, where Ncor is the

number of correctly de-anonymized nodes andVa ,Vu represent the
sets of nodes in the anonymized and auxiliary graph, respectively.

3.2 Comparison with Ji et al. [7]

Ji et al. [7] proposed a cold-start optimization-based de-anonymization

attack. Although they utilized four structural attributes for each

node: degree, 1-hop neighborhood, top-K reference distance and

sampling closeness centrality, these attributes only represent coarse-

grained structure information of the graphs.

We compare our approach with the method of Ji et al. in the

Collaboration dataset, the Twitter dataset and the Gowalla dataset

in Figure 2. We can see that our approach has much higher accuracy

than their method: we can achieve up to 10× improvement for colla-

boration dataset, and about 6× improvement for two Twitter graphs.

Furthermore, we utilize the Gowalla social dataset to de-anonymize

the Gowalla mobility trace dataset, in order to compare with the

method of Ji et al. for fairness (they experimented on this data in

[7]). In Figure 2(d), the de-anonymization results of our method for

Gowalla mobility trace datasets (M1)(M2)(M3)(M4) are 81.3%, 84.8%,

85.3% and 89.1%, respectively. By utilizing finer-grained and richer

structural information, our method also outperforms the method

of Ji et al. for the Gowalla dataset.
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(b) Twitter: small
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(c) Twitter: large
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(d) Gowalla
Figure 2: The comparison of our approach with the method of Ji et al. [7].

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Noise (%)

Ac
cu

ra
cy

 (%
)

 

 

Our method
Nilizadeh et al.

(a) Collaboration

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Noise (%)

Ac
cu

ra
cy

 (%
)

 

 

Our method
Nilizadeh et al.

(b) Twitter: small
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(c) Twitter: large
Figure 3: The comparison of our approach with the method of Nilizadeh et al. [17].

3.3 Comparison with Nilizadeh et al. [17]
Nilizadeh et al. [17] leveraged community detection techniques
to partition the networks into separate components. Then, they
applied existing network alignment methods to the nodes inside
the communities for more seed knowledge. However, their method
has the following limitations: 1) it requires prior knowledge (seeds)
to boot up their attack, which is a strong assumption and may suffer
frommisidentified seeds; 2) their performance may be influenced by
the inconsistency problem of community detection methods [23].
We experiment on the collaboration dataset and the two Twitter
graphs for fair comparison with the method of Nilizadeh et al. since
these are also the data they used in [17].

Figure 3(a) compares our method with the approach of Nilizadeh
et al. on the collaboration dataset. Our method can de-anonymize
muchmore authors and is alsomore stable to data perturbations. For
noise = 0.4, our method significantly outperforms the method of
Nilizadeth et al. by more than 10× for de-anonymization accuracy.

Figure 3(b) and 3(c) compare our method with the method of
Nilizadeh et al. on the Twitter datasets. Our method is more robust
to noise, and has higher accuracy especially when the noise is high.
For noise = 0.4, we have almost 1.25× improvement for Twitter
(small) dataset, and 9× improvement for Twitter (large) dataset.

4 CONCLUSION
We presented a novel blind (seed-free) de-anonymization method
by utilizing the nK-series that we define to capture fine-grained
structure features, and proposing a new variant of the SVMmachine
learning technique called PRF-SVM to do concurrent matching of
the nodes between the anonymized graph and the auxiliary graph.
Experimental results demonstrate the significant advantages (up to
10× improvement in de-anonymization accuracy) of our method
over the state-of-the-art de-anonymization attacks.
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